/src/openssl/crypto/rsa/rsa_oaep.c
Line  | Count  | Source (jump to first uncovered line)  | 
1  |  | /*  | 
2  |  |  * Copyright 1999-2024 The OpenSSL Project Authors. All Rights Reserved.  | 
3  |  |  *  | 
4  |  |  * Licensed under the Apache License 2.0 (the "License").  You may not use  | 
5  |  |  * this file except in compliance with the License.  You can obtain a copy  | 
6  |  |  * in the file LICENSE in the source distribution or at  | 
7  |  |  * https://www.openssl.org/source/license.html  | 
8  |  |  */  | 
9  |  |  | 
10  |  | /* EME-OAEP as defined in RFC 2437 (PKCS #1 v2.0) */  | 
11  |  |  | 
12  |  | /*  | 
13  |  |  * See Victor Shoup, "OAEP reconsidered," Nov. 2000, <URL:  | 
14  |  |  * http://www.shoup.net/papers/oaep.ps.Z> for problems with the security  | 
15  |  |  * proof for the original OAEP scheme, which EME-OAEP is based on. A new  | 
16  |  |  * proof can be found in E. Fujisaki, T. Okamoto, D. Pointcheval, J. Stern,  | 
17  |  |  * "RSA-OEAP is Still Alive!", Dec. 2000, <URL:  | 
18  |  |  * http://eprint.iacr.org/2000/061/>. The new proof has stronger requirements  | 
19  |  |  * for the underlying permutation: "partial-one-wayness" instead of  | 
20  |  |  * one-wayness.  For the RSA function, this is an equivalent notion.  | 
21  |  |  */  | 
22  |  |  | 
23  |  | /*  | 
24  |  |  * RSA low level APIs are deprecated for public use, but still ok for  | 
25  |  |  * internal use.  | 
26  |  |  */  | 
27  |  | #include "internal/deprecated.h"  | 
28  |  |  | 
29  |  | #include "internal/constant_time.h"  | 
30  |  |  | 
31  |  | #include <stdio.h>  | 
32  |  | #include "internal/cryptlib.h"  | 
33  |  | #include <openssl/bn.h>  | 
34  |  | #include <openssl/evp.h>  | 
35  |  | #include <openssl/rand.h>  | 
36  |  | #include <openssl/sha.h>  | 
37  |  | #include "rsa_local.h"  | 
38  |  |  | 
39  |  | int RSA_padding_add_PKCS1_OAEP(unsigned char *to, int tlen,  | 
40  |  |                                const unsigned char *from, int flen,  | 
41  |  |                                const unsigned char *param, int plen)  | 
42  | 0  | { | 
43  | 0  |     return ossl_rsa_padding_add_PKCS1_OAEP_mgf1_ex(NULL, to, tlen, from, flen,  | 
44  | 0  |                                                    param, plen, NULL, NULL);  | 
45  | 0  | }  | 
46  |  |  | 
47  |  | /*  | 
48  |  |  * Perform the padding as per NIST 800-56B 7.2.2.3  | 
49  |  |  *      from (K) is the key material.  | 
50  |  |  *      param (A) is the additional input.  | 
51  |  |  * Step numbers are included here but not in the constant time inverse below  | 
52  |  |  * to avoid complicating an already difficult enough function.  | 
53  |  |  */  | 
54  |  | int ossl_rsa_padding_add_PKCS1_OAEP_mgf1_ex(OSSL_LIB_CTX *libctx,  | 
55  |  |                                             unsigned char *to, int tlen,  | 
56  |  |                                             const unsigned char *from, int flen,  | 
57  |  |                                             const unsigned char *param,  | 
58  |  |                                             int plen, const EVP_MD *md,  | 
59  |  |                                             const EVP_MD *mgf1md)  | 
60  | 0  | { | 
61  | 0  |     int rv = 0;  | 
62  | 0  |     int i, emlen = tlen - 1;  | 
63  | 0  |     unsigned char *db, *seed;  | 
64  | 0  |     unsigned char *dbmask = NULL;  | 
65  | 0  |     unsigned char seedmask[EVP_MAX_MD_SIZE];  | 
66  | 0  |     int mdlen, dbmask_len = 0;  | 
67  |  | 
  | 
68  | 0  |     if (md == NULL) { | 
69  | 0  | #ifndef FIPS_MODULE  | 
70  | 0  |         md = EVP_sha1();  | 
71  |  | #else  | 
72  |  |         ERR_raise(ERR_LIB_RSA, ERR_R_PASSED_NULL_PARAMETER);  | 
73  |  |         return 0;  | 
74  |  | #endif  | 
75  | 0  |     }  | 
76  | 0  |     if (mgf1md == NULL)  | 
77  | 0  |         mgf1md = md;  | 
78  |  | 
  | 
79  |  | #ifdef FIPS_MODULE  | 
80  |  |     /* XOF are approved as standalone; Shake256 in Ed448; MGF */  | 
81  |  |     if (EVP_MD_xof(md)) { | 
82  |  |         ERR_raise(ERR_LIB_RSA, RSA_R_DIGEST_NOT_ALLOWED);  | 
83  |  |         return 0;  | 
84  |  |     }  | 
85  |  |     if (EVP_MD_xof(mgf1md)) { | 
86  |  |         ERR_raise(ERR_LIB_RSA, RSA_R_MGF1_DIGEST_NOT_ALLOWED);  | 
87  |  |         return 0;  | 
88  |  |     }  | 
89  |  | #endif  | 
90  |  | 
  | 
91  | 0  |     mdlen = EVP_MD_get_size(md);  | 
92  | 0  |     if (mdlen <= 0) { | 
93  | 0  |         ERR_raise(ERR_LIB_RSA, RSA_R_INVALID_LENGTH);  | 
94  | 0  |         return 0;  | 
95  | 0  |     }  | 
96  |  |  | 
97  |  |     /* step 2b: check KLen > nLen - 2 HLen - 2 */  | 
98  | 0  |     if (flen > emlen - 2 * mdlen - 1) { | 
99  | 0  |         ERR_raise(ERR_LIB_RSA, RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE);  | 
100  | 0  |         return 0;  | 
101  | 0  |     }  | 
102  |  |  | 
103  | 0  |     if (emlen < 2 * mdlen + 1) { | 
104  | 0  |         ERR_raise(ERR_LIB_RSA, RSA_R_KEY_SIZE_TOO_SMALL);  | 
105  | 0  |         return 0;  | 
106  | 0  |     }  | 
107  |  |  | 
108  |  |     /* step 3i: EM = 00000000 || maskedMGF || maskedDB */  | 
109  | 0  |     to[0] = 0;  | 
110  | 0  |     seed = to + 1;  | 
111  | 0  |     db = to + mdlen + 1;  | 
112  |  |  | 
113  |  |     /* step 3a: hash the additional input */  | 
114  | 0  |     if (!EVP_Digest((void *)param, plen, db, NULL, md, NULL))  | 
115  | 0  |         goto err;  | 
116  |  |     /* step 3b: zero bytes array of length nLen - KLen - 2 HLen -2 */  | 
117  | 0  |     memset(db + mdlen, 0, emlen - flen - 2 * mdlen - 1);  | 
118  |  |     /* step 3c: DB = HA || PS || 00000001 || K */  | 
119  | 0  |     db[emlen - flen - mdlen - 1] = 0x01;  | 
120  | 0  |     memcpy(db + emlen - flen - mdlen, from, (unsigned int)flen);  | 
121  |  |     /* step 3d: generate random byte string */  | 
122  | 0  |     if (RAND_bytes_ex(libctx, seed, mdlen, 0) <= 0)  | 
123  | 0  |         goto err;  | 
124  |  |  | 
125  | 0  |     dbmask_len = emlen - mdlen;  | 
126  | 0  |     dbmask = OPENSSL_malloc(dbmask_len);  | 
127  | 0  |     if (dbmask == NULL)  | 
128  | 0  |         goto err;  | 
129  |  |  | 
130  |  |     /* step 3e: dbMask = MGF(mgfSeed, nLen - HLen - 1) */  | 
131  | 0  |     if (PKCS1_MGF1(dbmask, dbmask_len, seed, mdlen, mgf1md) < 0)  | 
132  | 0  |         goto err;  | 
133  |  |     /* step 3f: maskedDB = DB XOR dbMask */  | 
134  | 0  |     for (i = 0; i < dbmask_len; i++)  | 
135  | 0  |         db[i] ^= dbmask[i];  | 
136  |  |  | 
137  |  |     /* step 3g: mgfSeed = MGF(maskedDB, HLen) */  | 
138  | 0  |     if (PKCS1_MGF1(seedmask, mdlen, db, dbmask_len, mgf1md) < 0)  | 
139  | 0  |         goto err;  | 
140  |  |     /* stepo 3h: maskedMGFSeed = mgfSeed XOR mgfSeedMask */  | 
141  | 0  |     for (i = 0; i < mdlen; i++)  | 
142  | 0  |         seed[i] ^= seedmask[i];  | 
143  | 0  |     rv = 1;  | 
144  |  | 
  | 
145  | 0  |  err:  | 
146  | 0  |     OPENSSL_cleanse(seedmask, sizeof(seedmask));  | 
147  | 0  |     OPENSSL_clear_free(dbmask, dbmask_len);  | 
148  | 0  |     return rv;  | 
149  | 0  | }  | 
150  |  |  | 
151  |  | int RSA_padding_add_PKCS1_OAEP_mgf1(unsigned char *to, int tlen,  | 
152  |  |                                     const unsigned char *from, int flen,  | 
153  |  |                                     const unsigned char *param, int plen,  | 
154  |  |                                     const EVP_MD *md, const EVP_MD *mgf1md)  | 
155  | 0  | { | 
156  | 0  |     return ossl_rsa_padding_add_PKCS1_OAEP_mgf1_ex(NULL, to, tlen, from, flen,  | 
157  | 0  |                                                    param, plen, md, mgf1md);  | 
158  | 0  | }  | 
159  |  |  | 
160  |  | int RSA_padding_check_PKCS1_OAEP(unsigned char *to, int tlen,  | 
161  |  |                                  const unsigned char *from, int flen, int num,  | 
162  |  |                                  const unsigned char *param, int plen)  | 
163  | 0  | { | 
164  | 0  |     return RSA_padding_check_PKCS1_OAEP_mgf1(to, tlen, from, flen, num,  | 
165  | 0  |                                              param, plen, NULL, NULL);  | 
166  | 0  | }  | 
167  |  |  | 
168  |  | int RSA_padding_check_PKCS1_OAEP_mgf1(unsigned char *to, int tlen,  | 
169  |  |                                       const unsigned char *from, int flen,  | 
170  |  |                                       int num, const unsigned char *param,  | 
171  |  |                                       int plen, const EVP_MD *md,  | 
172  |  |                                       const EVP_MD *mgf1md)  | 
173  | 0  | { | 
174  | 0  |     int i, dblen = 0, mlen = -1, one_index = 0, msg_index;  | 
175  | 0  |     unsigned int good = 0, found_one_byte, mask;  | 
176  | 0  |     const unsigned char *maskedseed, *maskeddb;  | 
177  |  |     /*  | 
178  |  |      * |em| is the encoded message, zero-padded to exactly |num| bytes: em =  | 
179  |  |      * Y || maskedSeed || maskedDB  | 
180  |  |      */  | 
181  | 0  |     unsigned char *db = NULL, *em = NULL, seed[EVP_MAX_MD_SIZE],  | 
182  | 0  |         phash[EVP_MAX_MD_SIZE];  | 
183  | 0  |     int mdlen;  | 
184  |  | 
  | 
185  | 0  |     if (md == NULL) { | 
186  | 0  | #ifndef FIPS_MODULE  | 
187  | 0  |         md = EVP_sha1();  | 
188  |  | #else  | 
189  |  |         ERR_raise(ERR_LIB_RSA, ERR_R_PASSED_NULL_PARAMETER);  | 
190  |  |         return -1;  | 
191  |  | #endif  | 
192  | 0  |     }  | 
193  |  | 
  | 
194  | 0  |     if (mgf1md == NULL)  | 
195  | 0  |         mgf1md = md;  | 
196  |  | 
  | 
197  |  | #ifdef FIPS_MODULE  | 
198  |  |     /* XOF are approved as standalone; Shake256 in Ed448; MGF */  | 
199  |  |     if (EVP_MD_xof(md)) { | 
200  |  |         ERR_raise(ERR_LIB_RSA, RSA_R_DIGEST_NOT_ALLOWED);  | 
201  |  |         return -1;  | 
202  |  |     }  | 
203  |  |     if (EVP_MD_xof(mgf1md)) { | 
204  |  |         ERR_raise(ERR_LIB_RSA, RSA_R_MGF1_DIGEST_NOT_ALLOWED);  | 
205  |  |         return -1;  | 
206  |  |     }  | 
207  |  | #endif  | 
208  |  | 
  | 
209  | 0  |     mdlen = EVP_MD_get_size(md);  | 
210  |  | 
  | 
211  | 0  |     if (tlen <= 0 || flen <= 0 || mdlen <= 0)  | 
212  | 0  |         return -1;  | 
213  |  |     /*  | 
214  |  |      * |num| is the length of the modulus; |flen| is the length of the  | 
215  |  |      * encoded message. Therefore, for any |from| that was obtained by  | 
216  |  |      * decrypting a ciphertext, we must have |flen| <= |num|. Similarly,  | 
217  |  |      * |num| >= 2 * |mdlen| + 2 must hold for the modulus irrespective of  | 
218  |  |      * the ciphertext, see PKCS #1 v2.2, section 7.1.2.  | 
219  |  |      * This does not leak any side-channel information.  | 
220  |  |      */  | 
221  | 0  |     if (num < flen || num < 2 * mdlen + 2) { | 
222  | 0  |         ERR_raise(ERR_LIB_RSA, RSA_R_OAEP_DECODING_ERROR);  | 
223  | 0  |         return -1;  | 
224  | 0  |     }  | 
225  |  |  | 
226  | 0  |     dblen = num - mdlen - 1;  | 
227  | 0  |     db = OPENSSL_malloc(dblen);  | 
228  | 0  |     if (db == NULL)  | 
229  | 0  |         goto cleanup;  | 
230  |  |  | 
231  | 0  |     em = OPENSSL_malloc(num);  | 
232  | 0  |     if (em == NULL)  | 
233  | 0  |         goto cleanup;  | 
234  |  |  | 
235  |  |     /*  | 
236  |  |      * Caller is encouraged to pass zero-padded message created with  | 
237  |  |      * BN_bn2binpad. Trouble is that since we can't read out of |from|'s  | 
238  |  |      * bounds, it's impossible to have an invariant memory access pattern  | 
239  |  |      * in case |from| was not zero-padded in advance.  | 
240  |  |      */  | 
241  | 0  |     for (from += flen, em += num, i = 0; i < num; i++) { | 
242  | 0  |         mask = ~constant_time_is_zero(flen);  | 
243  | 0  |         flen -= 1 & mask;  | 
244  | 0  |         from -= 1 & mask;  | 
245  | 0  |         *--em = *from & mask;  | 
246  | 0  |     }  | 
247  |  |  | 
248  |  |     /*  | 
249  |  |      * The first byte must be zero, however we must not leak if this is  | 
250  |  |      * true. See James H. Manger, "A Chosen Ciphertext  Attack on RSA  | 
251  |  |      * Optimal Asymmetric Encryption Padding (OAEP) [...]", CRYPTO 2001).  | 
252  |  |      */  | 
253  | 0  |     good = constant_time_is_zero(em[0]);  | 
254  |  | 
  | 
255  | 0  |     maskedseed = em + 1;  | 
256  | 0  |     maskeddb = em + 1 + mdlen;  | 
257  |  | 
  | 
258  | 0  |     if (PKCS1_MGF1(seed, mdlen, maskeddb, dblen, mgf1md))  | 
259  | 0  |         goto cleanup;  | 
260  | 0  |     for (i = 0; i < mdlen; i++)  | 
261  | 0  |         seed[i] ^= maskedseed[i];  | 
262  |  | 
  | 
263  | 0  |     if (PKCS1_MGF1(db, dblen, seed, mdlen, mgf1md))  | 
264  | 0  |         goto cleanup;  | 
265  | 0  |     for (i = 0; i < dblen; i++)  | 
266  | 0  |         db[i] ^= maskeddb[i];  | 
267  |  | 
  | 
268  | 0  |     if (!EVP_Digest((void *)param, plen, phash, NULL, md, NULL))  | 
269  | 0  |         goto cleanup;  | 
270  |  |  | 
271  | 0  |     good &= constant_time_is_zero(CRYPTO_memcmp(db, phash, mdlen));  | 
272  |  | 
  | 
273  | 0  |     found_one_byte = 0;  | 
274  | 0  |     for (i = mdlen; i < dblen; i++) { | 
275  |  |         /*  | 
276  |  |          * Padding consists of a number of 0-bytes, followed by a 1.  | 
277  |  |          */  | 
278  | 0  |         unsigned int equals1 = constant_time_eq(db[i], 1);  | 
279  | 0  |         unsigned int equals0 = constant_time_is_zero(db[i]);  | 
280  | 0  |         one_index = constant_time_select_int(~found_one_byte & equals1,  | 
281  | 0  |                                              i, one_index);  | 
282  | 0  |         found_one_byte |= equals1;  | 
283  | 0  |         good &= (found_one_byte | equals0);  | 
284  | 0  |     }  | 
285  |  | 
  | 
286  | 0  |     good &= found_one_byte;  | 
287  |  |  | 
288  |  |     /*  | 
289  |  |      * At this point |good| is zero unless the plaintext was valid,  | 
290  |  |      * so plaintext-awareness ensures timing side-channels are no longer a  | 
291  |  |      * concern.  | 
292  |  |      */  | 
293  | 0  |     msg_index = one_index + 1;  | 
294  | 0  |     mlen = dblen - msg_index;  | 
295  |  |  | 
296  |  |     /*  | 
297  |  |      * For good measure, do this check in constant time as well.  | 
298  |  |      */  | 
299  | 0  |     good &= constant_time_ge(tlen, mlen);  | 
300  |  |  | 
301  |  |     /*  | 
302  |  |      * Move the result in-place by |dblen|-|mdlen|-1-|mlen| bytes to the left.  | 
303  |  |      * Then if |good| move |mlen| bytes from |db|+|mdlen|+1 to |to|.  | 
304  |  |      * Otherwise leave |to| unchanged.  | 
305  |  |      * Copy the memory back in a way that does not reveal the size of  | 
306  |  |      * the data being copied via a timing side channel. This requires copying  | 
307  |  |      * parts of the buffer multiple times based on the bits set in the real  | 
308  |  |      * length. Clear bits do a non-copy with identical access pattern.  | 
309  |  |      * The loop below has overall complexity of O(N*log(N)).  | 
310  |  |      */  | 
311  | 0  |     tlen = constant_time_select_int(constant_time_lt(dblen - mdlen - 1, tlen),  | 
312  | 0  |                                     dblen - mdlen - 1, tlen);  | 
313  | 0  |     for (msg_index = 1; msg_index < dblen - mdlen - 1; msg_index <<= 1) { | 
314  | 0  |         mask = ~constant_time_eq(msg_index & (dblen - mdlen - 1 - mlen), 0);  | 
315  | 0  |         for (i = mdlen + 1; i < dblen - msg_index; i++)  | 
316  | 0  |             db[i] = constant_time_select_8(mask, db[i + msg_index], db[i]);  | 
317  | 0  |     }  | 
318  | 0  |     for (i = 0; i < tlen; i++) { | 
319  | 0  |         mask = good & constant_time_lt(i, mlen);  | 
320  | 0  |         to[i] = constant_time_select_8(mask, db[i + mdlen + 1], to[i]);  | 
321  | 0  |     }  | 
322  |  | 
  | 
323  | 0  | #ifndef FIPS_MODULE  | 
324  |  |     /*  | 
325  |  |      * To avoid chosen ciphertext attacks, the error message should not  | 
326  |  |      * reveal which kind of decoding error happened.  | 
327  |  |      *  | 
328  |  |      * This trick doesn't work in the FIPS provider because libcrypto manages  | 
329  |  |      * the error stack. Instead we opt not to put an error on the stack at all  | 
330  |  |      * in case of padding failure in the FIPS provider.  | 
331  |  |      */  | 
332  | 0  |     ERR_raise(ERR_LIB_RSA, RSA_R_OAEP_DECODING_ERROR);  | 
333  | 0  |     err_clear_last_constant_time(1 & good);  | 
334  | 0  | #endif  | 
335  | 0  |  cleanup:  | 
336  | 0  |     OPENSSL_cleanse(seed, sizeof(seed));  | 
337  | 0  |     OPENSSL_clear_free(db, dblen);  | 
338  | 0  |     OPENSSL_clear_free(em, num);  | 
339  |  | 
  | 
340  | 0  |     return constant_time_select_int(good, mlen, -1);  | 
341  | 0  | }  | 
342  |  |  | 
343  |  | /*  | 
344  |  |  * Mask Generation Function corresponding to section 7.2.2.2 of NIST SP 800-56B.  | 
345  |  |  * The variables are named differently to NIST:  | 
346  |  |  *      mask (T) and len (maskLen)are the returned mask.  | 
347  |  |  *      seed (mgfSeed).  | 
348  |  |  * The range checking steps inm the process are performed outside.  | 
349  |  |  */  | 
350  |  | int PKCS1_MGF1(unsigned char *mask, long len,  | 
351  |  |                const unsigned char *seed, long seedlen, const EVP_MD *dgst)  | 
352  | 0  | { | 
353  | 0  |     long i, outlen = 0;  | 
354  | 0  |     unsigned char cnt[4];  | 
355  | 0  |     EVP_MD_CTX *c = EVP_MD_CTX_new();  | 
356  | 0  |     unsigned char md[EVP_MAX_MD_SIZE];  | 
357  | 0  |     int mdlen;  | 
358  | 0  |     int rv = -1;  | 
359  |  | 
  | 
360  | 0  |     if (c == NULL)  | 
361  | 0  |         goto err;  | 
362  | 0  |     mdlen = EVP_MD_get_size(dgst);  | 
363  | 0  |     if (mdlen <= 0)  | 
364  | 0  |         goto err;  | 
365  |  |     /* step 4 */  | 
366  | 0  |     for (i = 0; outlen < len; i++) { | 
367  |  |         /* step 4a: D = I2BS(counter, 4) */  | 
368  | 0  |         cnt[0] = (unsigned char)((i >> 24) & 255);  | 
369  | 0  |         cnt[1] = (unsigned char)((i >> 16) & 255);  | 
370  | 0  |         cnt[2] = (unsigned char)((i >> 8)) & 255;  | 
371  | 0  |         cnt[3] = (unsigned char)(i & 255);  | 
372  |  |         /* step 4b: T =T || hash(mgfSeed || D) */  | 
373  | 0  |         if (!EVP_DigestInit_ex(c, dgst, NULL)  | 
374  | 0  |             || !EVP_DigestUpdate(c, seed, seedlen)  | 
375  | 0  |             || !EVP_DigestUpdate(c, cnt, 4))  | 
376  | 0  |             goto err;  | 
377  | 0  |         if (outlen + mdlen <= len) { | 
378  | 0  |             if (!EVP_DigestFinal_ex(c, mask + outlen, NULL))  | 
379  | 0  |                 goto err;  | 
380  | 0  |             outlen += mdlen;  | 
381  | 0  |         } else { | 
382  | 0  |             if (!EVP_DigestFinal_ex(c, md, NULL))  | 
383  | 0  |                 goto err;  | 
384  | 0  |             memcpy(mask + outlen, md, len - outlen);  | 
385  | 0  |             outlen = len;  | 
386  | 0  |         }  | 
387  | 0  |     }  | 
388  | 0  |     rv = 0;  | 
389  | 0  |  err:  | 
390  | 0  |     OPENSSL_cleanse(md, sizeof(md));  | 
391  | 0  |     EVP_MD_CTX_free(c);  | 
392  | 0  |     return rv;  | 
393  | 0  | }  |