Coverage Report

Created: 2025-06-13 06:57

/src/openssl/crypto/bn/bn_local.h
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 1995-2023 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
#ifndef OSSL_CRYPTO_BN_LOCAL_H
11
# define OSSL_CRYPTO_BN_LOCAL_H
12
13
/*
14
 * The EDK2 build doesn't use bn_conf.h; it sets THIRTY_TWO_BIT or
15
 * SIXTY_FOUR_BIT in its own environment since it doesn't re-run our
16
 * Configure script and needs to support both 32-bit and 64-bit.
17
 */
18
# include <openssl/opensslconf.h>
19
20
# if !defined(OPENSSL_SYS_UEFI)
21
#  include "crypto/bn_conf.h"
22
# endif
23
24
# include "crypto/bn.h"
25
# include "internal/cryptlib.h"
26
# include "internal/numbers.h"
27
28
/*
29
 * These preprocessor symbols control various aspects of the bignum headers
30
 * and library code. They're not defined by any "normal" configuration, as
31
 * they are intended for development and testing purposes. NB: defining
32
 * them can be useful for debugging application code as well as openssl
33
 * itself. BN_DEBUG - turn on various debugging alterations to the bignum
34
 * code BN_RAND_DEBUG - uses random poisoning of unused words to trip up
35
 * mismanagement of bignum internals. Enable BN_RAND_DEBUG is known to
36
 * break some of the OpenSSL tests.
37
 */
38
# if defined(BN_RAND_DEBUG) && !defined(BN_DEBUG)
39
#  define BN_DEBUG
40
# endif
41
# if defined(BN_RAND_DEBUG)
42
#  include <openssl/rand.h>
43
# endif
44
45
/*
46
 * This should limit the stack usage due to alloca to about 4K.
47
 * BN_SOFT_LIMIT is a soft limit equivalent to 2*OPENSSL_RSA_MAX_MODULUS_BITS.
48
 * Beyond that size bn_mul_mont is no longer used, and the constant time
49
 * assembler code is disabled, due to the blatant alloca and bn_mul_mont usage.
50
 * Note that bn_mul_mont does an alloca that is hidden away in assembly.
51
 * It is not recommended to do computations with numbers exceeding this limit,
52
 * since the result will be highly version dependent:
53
 * While the current OpenSSL version will use non-optimized, but safe code,
54
 * previous versions will use optimized code, that may crash due to unexpected
55
 * stack overflow, and future versions may very well turn this into a hard
56
 * limit.
57
 * Note however, that it is possible to override the size limit using
58
 * "./config -DBN_SOFT_LIMIT=<limit>" if necessary, and the O/S specific
59
 * stack limit is known and taken into consideration.
60
 */
61
# ifndef BN_SOFT_LIMIT
62
73.0k
#  define BN_SOFT_LIMIT         (4096 / BN_BYTES)
63
# endif
64
65
# ifndef OPENSSL_SMALL_FOOTPRINT
66
#  define BN_MUL_COMBA
67
#  define BN_SQR_COMBA
68
#  define BN_RECURSION
69
# endif
70
71
/*
72
 * This next option uses the C libraries (2 word)/(1 word) function. If it is
73
 * not defined, I use my C version (which is slower). The reason for this
74
 * flag is that when the particular C compiler library routine is used, and
75
 * the library is linked with a different compiler, the library is missing.
76
 * This mostly happens when the library is built with gcc and then linked
77
 * using normal cc.  This would be a common occurrence because gcc normally
78
 * produces code that is 2 times faster than system compilers for the big
79
 * number stuff. For machines with only one compiler (or shared libraries),
80
 * this should be on.  Again this in only really a problem on machines using
81
 * "long long's", are 32bit, and are not using my assembler code.
82
 */
83
# if defined(OPENSSL_SYS_MSDOS) || defined(OPENSSL_SYS_WINDOWS) || \
84
    defined(OPENSSL_SYS_WIN32) || defined(linux)
85
#  define BN_DIV2W
86
# endif
87
88
/*
89
 * 64-bit processor with LP64 ABI
90
 */
91
# ifdef SIXTY_FOUR_BIT_LONG
92
#  define BN_ULLONG       unsigned long long
93
19.3k
#  define BN_BITS4        32
94
117k
#  define BN_MASK2        (0xffffffffffffffffL)
95
19.3k
#  define BN_MASK2l       (0xffffffffL)
96
0
#  define BN_MASK2h       (0xffffffff00000000L)
97
#  define BN_MASK2h1      (0xffffffff80000000L)
98
0
#  define BN_DEC_CONV     (10000000000000000000UL)
99
0
#  define BN_DEC_NUM      19
100
0
#  define BN_DEC_FMT1     "%lu"
101
0
#  define BN_DEC_FMT2     "%019lu"
102
# endif
103
104
/*
105
 * 64-bit processor other than LP64 ABI
106
 */
107
# ifdef SIXTY_FOUR_BIT
108
#  undef BN_LLONG
109
#  undef BN_ULLONG
110
#  define BN_BITS4        32
111
#  define BN_MASK2        (0xffffffffffffffffLL)
112
#  define BN_MASK2l       (0xffffffffL)
113
#  define BN_MASK2h       (0xffffffff00000000LL)
114
#  define BN_MASK2h1      (0xffffffff80000000LL)
115
#  define BN_DEC_CONV     (10000000000000000000ULL)
116
#  define BN_DEC_NUM      19
117
#  define BN_DEC_FMT1     "%llu"
118
#  define BN_DEC_FMT2     "%019llu"
119
# endif
120
121
# ifdef THIRTY_TWO_BIT
122
#  ifdef BN_LLONG
123
#   if defined(_WIN32) && !defined(__GNUC__)
124
#    define BN_ULLONG     unsigned __int64
125
#   else
126
#    define BN_ULLONG     unsigned long long
127
#   endif
128
#  endif
129
#  define BN_BITS4        16
130
#  define BN_MASK2        (0xffffffffL)
131
#  define BN_MASK2l       (0xffff)
132
#  define BN_MASK2h1      (0xffff8000L)
133
#  define BN_MASK2h       (0xffff0000L)
134
#  define BN_DEC_CONV     (1000000000L)
135
#  define BN_DEC_NUM      9
136
#  define BN_DEC_FMT1     "%u"
137
#  define BN_DEC_FMT2     "%09u"
138
# endif
139
140
141
/*-
142
 * Bignum consistency macros
143
 * There is one "API" macro, bn_fix_top(), for stripping leading zeroes from
144
 * bignum data after direct manipulations on the data. There is also an
145
 * "internal" macro, bn_check_top(), for verifying that there are no leading
146
 * zeroes. Unfortunately, some auditing is required due to the fact that
147
 * bn_fix_top() has become an overabused duct-tape because bignum data is
148
 * occasionally passed around in an inconsistent state. So the following
149
 * changes have been made to sort this out;
150
 * - bn_fix_top()s implementation has been moved to bn_correct_top()
151
 * - if BN_DEBUG isn't defined, bn_fix_top() maps to bn_correct_top(), and
152
 *   bn_check_top() is as before.
153
 * - if BN_DEBUG *is* defined;
154
 *   - bn_check_top() tries to pollute unused words even if the bignum 'top' is
155
 *     consistent. (ed: only if BN_RAND_DEBUG is defined)
156
 *   - bn_fix_top() maps to bn_check_top() rather than "fixing" anything.
157
 * The idea is to have debug builds flag up inconsistent bignums when they
158
 * occur. If that occurs in a bn_fix_top(), we examine the code in question; if
159
 * the use of bn_fix_top() was appropriate (ie. it follows directly after code
160
 * that manipulates the bignum) it is converted to bn_correct_top(), and if it
161
 * was not appropriate, we convert it permanently to bn_check_top() and track
162
 * down the cause of the bug. Eventually, no internal code should be using the
163
 * bn_fix_top() macro. External applications and libraries should try this with
164
 * their own code too, both in terms of building against the openssl headers
165
 * with BN_DEBUG defined *and* linking with a version of OpenSSL built with it
166
 * defined. This not only improves external code, it provides more test
167
 * coverage for openssl's own code.
168
 */
169
170
# ifdef BN_DEBUG
171
/*
172
 * The new BN_FLG_FIXED_TOP flag marks vectors that were not treated with
173
 * bn_correct_top, in other words such vectors are permitted to have zeros
174
 * in most significant limbs. Such vectors are used internally to achieve
175
 * execution time invariance for critical operations with private keys.
176
 * It's BN_DEBUG-only flag, because user application is not supposed to
177
 * observe it anyway. Moreover, optimizing compiler would actually remove
178
 * all operations manipulating the bit in question in non-BN_DEBUG build.
179
 */
180
#  define BN_FLG_FIXED_TOP 0x10000
181
#  ifdef BN_RAND_DEBUG
182
#   define bn_pollute(a) \
183
        do { \
184
            const BIGNUM *_bnum1 = (a); \
185
            if (_bnum1->top < _bnum1->dmax) { \
186
                unsigned char _tmp_char; \
187
                /* We cast away const without the compiler knowing, any \
188
                 * *genuinely* constant variables that aren't mutable \
189
                 * wouldn't be constructed with top!=dmax. */ \
190
                BN_ULONG *_not_const; \
191
                memcpy(&_not_const, &_bnum1->d, sizeof(_not_const)); \
192
                (void)RAND_bytes(&_tmp_char, 1); /* Debug only - safe to ignore error return */\
193
                memset(_not_const + _bnum1->top, _tmp_char, \
194
                       sizeof(*_not_const) * (_bnum1->dmax - _bnum1->top)); \
195
            } \
196
        } while(0)
197
#  else
198
#   define bn_pollute(a)
199
#  endif
200
#  define bn_check_top(a) \
201
        do { \
202
                const BIGNUM *_bnum2 = (a); \
203
                if (_bnum2 != NULL) { \
204
                        int _top = _bnum2->top; \
205
                        (void)ossl_assert((_top == 0 && !_bnum2->neg) || \
206
                                  (_top && ((_bnum2->flags & BN_FLG_FIXED_TOP) \
207
                                            || _bnum2->d[_top - 1] != 0))); \
208
                        bn_pollute(_bnum2); \
209
                } \
210
        } while(0)
211
212
#  define bn_fix_top(a)           bn_check_top(a)
213
214
#  define bn_check_size(bn, bits) bn_wcheck_size(bn, ((bits+BN_BITS2-1))/BN_BITS2)
215
#  define bn_wcheck_size(bn, words) \
216
        do { \
217
                const BIGNUM *_bnum2 = (bn); \
218
                assert((words) <= (_bnum2)->dmax && \
219
                       (words) >= (_bnum2)->top); \
220
                /* avoid unused variable warning with NDEBUG */ \
221
                (void)(_bnum2); \
222
        } while(0)
223
224
# else                          /* !BN_DEBUG */
225
226
65.9k
#  define BN_FLG_FIXED_TOP 0
227
#  define bn_pollute(a)
228
#  define bn_check_top(a)
229
#  define bn_fix_top(a)           bn_correct_top(a)
230
#  define bn_check_size(bn, bits)
231
#  define bn_wcheck_size(bn, words)
232
233
# endif
234
235
BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num,
236
                          BN_ULONG w);
237
BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w);
238
void bn_sqr_words(BN_ULONG *rp, const BN_ULONG *ap, int num);
239
BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d);
240
BN_ULONG bn_add_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
241
                      int num);
242
BN_ULONG bn_sub_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
243
                      int num);
244
245
struct bignum_st {
246
    BN_ULONG *d;                /*
247
                                 * Pointer to an array of 'BN_BITS2' bit
248
                                 * chunks. These chunks are organised in
249
                                 * a least significant chunk first order.
250
                                 */
251
    int top;                    /* Index of last used d +1. */
252
    /* The next are internal book keeping for bn_expand. */
253
    int dmax;                   /* Size of the d array. */
254
    int neg;                    /* one if the number is negative */
255
    int flags;
256
};
257
258
/* Used for montgomery multiplication */
259
struct bn_mont_ctx_st {
260
    int ri;                     /* number of bits in R */
261
    BIGNUM RR;                  /* used to convert to montgomery form,
262
                                   possibly zero-padded */
263
    BIGNUM N;                   /* The modulus */
264
    BIGNUM Ni;                  /* R*(1/R mod N) - N*Ni = 1 (Ni is only
265
                                 * stored for bignum algorithm) */
266
    BN_ULONG n0[2];             /* least significant word(s) of Ni; (type
267
                                 * changed with 0.9.9, was "BN_ULONG n0;"
268
                                 * before) */
269
    int flags;
270
};
271
272
/*
273
 * Used for reciprocal division/mod functions It cannot be shared between
274
 * threads
275
 */
276
struct bn_recp_ctx_st {
277
    BIGNUM N;                   /* the divisor */
278
    BIGNUM Nr;                  /* the reciprocal */
279
    int num_bits;
280
    int shift;
281
    int flags;
282
};
283
284
/* Used for slow "generation" functions. */
285
struct bn_gencb_st {
286
    unsigned int ver;           /* To handle binary (in)compatibility */
287
    void *arg;                  /* callback-specific data */
288
    union {
289
        /* if (ver==1) - handles old style callbacks */
290
        void (*cb_1) (int, int, void *);
291
        /* if (ver==2) - new callback style */
292
        int (*cb_2) (int, int, BN_GENCB *);
293
    } cb;
294
};
295
296
/*-
297
 * BN_window_bits_for_exponent_size -- macro for sliding window mod_exp functions
298
 *
299
 *
300
 * For window size 'w' (w >= 2) and a random 'b' bits exponent,
301
 * the number of multiplications is a constant plus on average
302
 *
303
 *    2^(w-1) + (b-w)/(w+1);
304
 *
305
 * here  2^(w-1)  is for precomputing the table (we actually need
306
 * entries only for windows that have the lowest bit set), and
307
 * (b-w)/(w+1)  is an approximation for the expected number of
308
 * w-bit windows, not counting the first one.
309
 *
310
 * Thus we should use
311
 *
312
 *    w >= 6  if        b > 671
313
 *     w = 5  if  671 > b > 239
314
 *     w = 4  if  239 > b >  79
315
 *     w = 3  if   79 > b >  23
316
 *    w <= 2  if   23 > b
317
 *
318
 * (with draws in between).  Very small exponents are often selected
319
 * with low Hamming weight, so we use  w = 1  for b <= 23.
320
 */
321
# define BN_window_bits_for_exponent_size(b) \
322
0
                ((b) > 671 ? 6 : \
323
0
                 (b) > 239 ? 5 : \
324
0
                 (b) >  79 ? 4 : \
325
0
                 (b) >  23 ? 3 : 1)
326
327
/*
328
 * BN_mod_exp_mont_consttime is based on the assumption that the L1 data cache
329
 * line width of the target processor is at least the following value.
330
 */
331
340
# define MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH      ( 64 )
332
170
# define MOD_EXP_CTIME_MIN_CACHE_LINE_MASK       (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - 1)
333
334
/*
335
 * Window sizes optimized for fixed window size modular exponentiation
336
 * algorithm (BN_mod_exp_mont_consttime). To achieve the security goals of
337
 * BN_mode_exp_mont_consttime, the maximum size of the window must not exceed
338
 * log_2(MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH). Window size thresholds are
339
 * defined for cache line sizes of 32 and 64, cache line sizes where
340
 * log_2(32)=5 and log_2(64)=6 respectively. A window size of 7 should only be
341
 * used on processors that have a 128 byte or greater cache line size.
342
 */
343
# if MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 64
344
345
#  define BN_window_bits_for_ctime_exponent_size(b) \
346
170
                ((b) > 937 ? 6 : \
347
170
                 (b) > 306 ? 5 : \
348
170
                 (b) >  89 ? 4 : \
349
110
                 (b) >  22 ? 3 : 1)
350
#  define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE    (6)
351
352
# elif MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 32
353
354
#  define BN_window_bits_for_ctime_exponent_size(b) \
355
                ((b) > 306 ? 5 : \
356
                 (b) >  89 ? 4 : \
357
                 (b) >  22 ? 3 : 1)
358
#  define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE    (5)
359
360
# endif
361
362
/* Pentium pro 16,16,16,32,64 */
363
/* Alpha       16,16,16,16.64 */
364
187
# define BN_MULL_SIZE_NORMAL                     (16)/* 32 */
365
0
# define BN_MUL_RECURSIVE_SIZE_NORMAL            (16)/* 32 less than */
366
20
# define BN_SQR_RECURSIVE_SIZE_NORMAL            (16)/* 32 */
367
0
# define BN_MUL_LOW_RECURSIVE_SIZE_NORMAL        (32)/* 32 */
368
# define BN_MONT_CTX_SET_SIZE_WORD               (64)/* 32 */
369
370
# if !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM) && !defined(PEDANTIC)
371
/*
372
 * BN_UMULT_HIGH section.
373
 * If the compiler doesn't support 2*N integer type, then you have to
374
 * replace every N*N multiplication with 4 (N/2)*(N/2) accompanied by some
375
 * shifts and additions which unavoidably results in severe performance
376
 * penalties. Of course provided that the hardware is capable of producing
377
 * 2*N result... That's when you normally start considering assembler
378
 * implementation. However! It should be pointed out that some CPUs (e.g.,
379
 * PowerPC, Alpha, and IA-64) provide *separate* instruction calculating
380
 * the upper half of the product placing the result into a general
381
 * purpose register. Now *if* the compiler supports inline assembler,
382
 * then it's not impossible to implement the "bignum" routines (and have
383
 * the compiler optimize 'em) exhibiting "native" performance in C. That's
384
 * what BN_UMULT_HIGH macro is about:-) Note that more recent compilers do
385
 * support 2*64 integer type, which is also used here.
386
 */
387
#  if defined(__SIZEOF_INT128__) && __SIZEOF_INT128__==16 && \
388
      (defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG))
389
#   define BN_UMULT_HIGH(a,b)          (((uint128_t)(a)*(b))>>64)
390
#   define BN_UMULT_LOHI(low,high,a,b) ({       \
391
        uint128_t ret=(uint128_t)(a)*(b);   \
392
        (high)=ret>>64; (low)=ret;      })
393
#  elif defined(__alpha) && (defined(SIXTY_FOUR_BIT_LONG) || defined(SIXTY_FOUR_BIT))
394
#   if defined(__DECC)
395
#    include <c_asm.h>
396
#    define BN_UMULT_HIGH(a,b)   (BN_ULONG)asm("umulh %a0,%a1,%v0",(a),(b))
397
#   elif defined(__GNUC__) && __GNUC__>=2
398
#    define BN_UMULT_HIGH(a,b)   ({     \
399
        register BN_ULONG ret;          \
400
        asm ("umulh     %1,%2,%0"       \
401
             : "=r"(ret)                \
402
             : "r"(a), "r"(b));         \
403
        ret;                      })
404
#   endif                       /* compiler */
405
#  elif defined(_ARCH_PPC64) && defined(SIXTY_FOUR_BIT_LONG)
406
#   if defined(__GNUC__) && __GNUC__>=2
407
#    define BN_UMULT_HIGH(a,b)   ({     \
408
        register BN_ULONG ret;          \
409
        asm ("mulhdu    %0,%1,%2"       \
410
             : "=r"(ret)                \
411
             : "r"(a), "r"(b));         \
412
        ret;                      })
413
#   endif                       /* compiler */
414
#  elif (defined(__x86_64) || defined(__x86_64__)) && \
415
       (defined(SIXTY_FOUR_BIT_LONG) || defined(SIXTY_FOUR_BIT))
416
#   if defined(__GNUC__) && __GNUC__>=2
417
#    define BN_UMULT_HIGH(a,b)   ({     \
418
        register BN_ULONG ret,discard;  \
419
        asm ("mulq      %3"             \
420
             : "=a"(discard),"=d"(ret)  \
421
             : "a"(a), "g"(b)           \
422
             : "cc");                   \
423
        ret;                      })
424
#    define BN_UMULT_LOHI(low,high,a,b) \
425
        asm ("mulq      %3"             \
426
                : "=a"(low),"=d"(high)  \
427
                : "a"(a),"g"(b)         \
428
                : "cc");
429
#   endif
430
#  elif (defined(_M_AMD64) || defined(_M_X64)) && defined(SIXTY_FOUR_BIT)
431
#   if defined(_MSC_VER) && _MSC_VER>=1400
432
unsigned __int64 __umulh(unsigned __int64 a, unsigned __int64 b);
433
unsigned __int64 _umul128(unsigned __int64 a, unsigned __int64 b,
434
                          unsigned __int64 *h);
435
#    pragma intrinsic(__umulh,_umul128)
436
#    define BN_UMULT_HIGH(a,b)           __umulh((a),(b))
437
#    define BN_UMULT_LOHI(low,high,a,b)  ((low)=_umul128((a),(b),&(high)))
438
#   endif
439
#  elif defined(__mips) && (defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG))
440
#   if defined(__GNUC__) && __GNUC__>=2
441
#    define BN_UMULT_HIGH(a,b) ({       \
442
        register BN_ULONG ret;          \
443
        asm ("dmultu    %1,%2"          \
444
             : "=h"(ret)                \
445
             : "r"(a), "r"(b) : "l");   \
446
        ret;                    })
447
#    define BN_UMULT_LOHI(low,high,a,b) \
448
        asm ("dmultu    %2,%3"          \
449
             : "=l"(low),"=h"(high)     \
450
             : "r"(a), "r"(b));
451
#   endif
452
#  elif defined(__aarch64__) && defined(SIXTY_FOUR_BIT_LONG)
453
#   if defined(__GNUC__) && __GNUC__>=2
454
#    define BN_UMULT_HIGH(a,b)   ({     \
455
        register BN_ULONG ret;          \
456
        asm ("umulh     %0,%1,%2"       \
457
             : "=r"(ret)                \
458
             : "r"(a), "r"(b));         \
459
        ret;                      })
460
#   endif
461
#  endif                        /* cpu */
462
# endif                         /* OPENSSL_NO_ASM */
463
464
# ifdef BN_RAND_DEBUG
465
#  define bn_clear_top2max(a) \
466
        { \
467
        int      ind = (a)->dmax - (a)->top; \
468
        BN_ULONG *ftl = &(a)->d[(a)->top-1]; \
469
        for (; ind != 0; ind--) \
470
                *(++ftl) = 0x0; \
471
        }
472
# else
473
#  define bn_clear_top2max(a)
474
# endif
475
476
# ifdef BN_LLONG
477
/*******************************************************************
478
 * Using the long long type, has to be twice as wide as BN_ULONG...
479
 */
480
#  define Lw(t)    (((BN_ULONG)(t))&BN_MASK2)
481
#  define Hw(t)    (((BN_ULONG)((t)>>BN_BITS2))&BN_MASK2)
482
483
#  define mul_add(r,a,w,c) { \
484
        BN_ULLONG t; \
485
        t=(BN_ULLONG)w * (a) + (r) + (c); \
486
        (r)= Lw(t); \
487
        (c)= Hw(t); \
488
        }
489
490
#  define mul(r,a,w,c) { \
491
        BN_ULLONG t; \
492
        t=(BN_ULLONG)w * (a) + (c); \
493
        (r)= Lw(t); \
494
        (c)= Hw(t); \
495
        }
496
497
#  define sqr(r0,r1,a) { \
498
        BN_ULLONG t; \
499
        t=(BN_ULLONG)(a)*(a); \
500
        (r0)=Lw(t); \
501
        (r1)=Hw(t); \
502
        }
503
504
# elif defined(BN_UMULT_LOHI)
505
#  define mul_add(r,a,w,c) {              \
506
        BN_ULONG high,low,ret,tmp=(a);  \
507
        ret =  (r);                     \
508
        BN_UMULT_LOHI(low,high,w,tmp);  \
509
        ret += (c);                     \
510
        (c) =  (ret<(c));               \
511
        (c) += high;                    \
512
        ret += low;                     \
513
        (c) += (ret<low);               \
514
        (r) =  ret;                     \
515
        }
516
517
#  define mul(r,a,w,c)    {               \
518
        BN_ULONG high,low,ret,ta=(a);   \
519
        BN_UMULT_LOHI(low,high,w,ta);   \
520
        ret =  low + (c);               \
521
        (c) =  high;                    \
522
        (c) += (ret<low);               \
523
        (r) =  ret;                     \
524
        }
525
526
#  define sqr(r0,r1,a)    {               \
527
        BN_ULONG tmp=(a);               \
528
        BN_UMULT_LOHI(r0,r1,tmp,tmp);   \
529
        }
530
531
# elif defined(BN_UMULT_HIGH)
532
#  define mul_add(r,a,w,c) {              \
533
        BN_ULONG high,low,ret,tmp=(a);  \
534
        ret =  (r);                     \
535
        high=  BN_UMULT_HIGH(w,tmp);    \
536
        ret += (c);                     \
537
        low =  (w) * tmp;               \
538
        (c) =  (ret<(c));               \
539
        (c) += high;                    \
540
        ret += low;                     \
541
        (c) += (ret<low);               \
542
        (r) =  ret;                     \
543
        }
544
545
#  define mul(r,a,w,c)    {               \
546
        BN_ULONG high,low,ret,ta=(a);   \
547
        low =  (w) * ta;                \
548
        high=  BN_UMULT_HIGH(w,ta);     \
549
        ret =  low + (c);               \
550
        (c) =  high;                    \
551
        (c) += (ret<low);               \
552
        (r) =  ret;                     \
553
        }
554
555
#  define sqr(r0,r1,a)    {               \
556
        BN_ULONG tmp=(a);               \
557
        (r0) = tmp * tmp;               \
558
        (r1) = BN_UMULT_HIGH(tmp,tmp);  \
559
        }
560
561
# else
562
/*************************************************************
563
 * No long long type
564
 */
565
566
7.73k
#  define LBITS(a)        ((a)&BN_MASK2l)
567
11.6k
#  define HBITS(a)        (((a)>>BN_BITS4)&BN_MASK2l)
568
7.73k
#  define L2HBITS(a)      (((a)<<BN_BITS4)&BN_MASK2)
569
570
#  define LLBITS(a)       ((a)&BN_MASKl)
571
#  define LHBITS(a)       (((a)>>BN_BITS2)&BN_MASKl)
572
#  define LL2HBITS(a)     ((BN_ULLONG)((a)&BN_MASKl)<<BN_BITS2)
573
574
#  define mul64(l,h,bl,bh) \
575
3.86k
        { \
576
3.86k
        BN_ULONG m,m1,lt,ht; \
577
3.86k
 \
578
3.86k
        lt=l; \
579
3.86k
        ht=h; \
580
3.86k
        m =(bh)*(lt); \
581
3.86k
        lt=(bl)*(lt); \
582
3.86k
        m1=(bl)*(ht); \
583
3.86k
        ht =(bh)*(ht); \
584
3.86k
        m=(m+m1)&BN_MASK2; ht += L2HBITS((BN_ULONG)(m < m1)); \
585
3.86k
        ht+=HBITS(m); \
586
3.86k
        m1=L2HBITS(m); \
587
3.86k
        lt=(lt+m1)&BN_MASK2; ht += (lt < m1); \
588
3.86k
        (l)=lt; \
589
3.86k
        (h)=ht; \
590
3.86k
        }
591
592
#  define sqr64(lo,ho,in) \
593
        { \
594
        BN_ULONG l,h,m; \
595
 \
596
        h=(in); \
597
        l=LBITS(h); \
598
        h=HBITS(h); \
599
        m =(l)*(h); \
600
        l*=l; \
601
        h*=h; \
602
        h+=(m&BN_MASK2h1)>>(BN_BITS4-1); \
603
        m =(m&BN_MASK2l)<<(BN_BITS4+1); \
604
        l=(l+m)&BN_MASK2; h += (l < m); \
605
        (lo)=l; \
606
        (ho)=h; \
607
        }
608
609
#  define mul_add(r,a,bl,bh,c) { \
610
        BN_ULONG l,h; \
611
 \
612
        h= (a); \
613
        l=LBITS(h); \
614
        h=HBITS(h); \
615
        mul64(l,h,(bl),(bh)); \
616
 \
617
        /* non-multiply part */ \
618
        l=(l+(c))&BN_MASK2; h += (l < (c)); \
619
        (c)=(r); \
620
        l=(l+(c))&BN_MASK2; h += (l < (c)); \
621
        (c)=h&BN_MASK2; \
622
        (r)=l; \
623
        }
624
625
#  define mul(r,a,bl,bh,c) { \
626
        BN_ULONG l,h; \
627
 \
628
        h= (a); \
629
        l=LBITS(h); \
630
        h=HBITS(h); \
631
        mul64(l,h,(bl),(bh)); \
632
 \
633
        /* non-multiply part */ \
634
        l+=(c); h += ((l&BN_MASK2) < (c)); \
635
        (c)=h&BN_MASK2; \
636
        (r)=l&BN_MASK2; \
637
        }
638
# endif                         /* !BN_LLONG */
639
640
void BN_RECP_CTX_init(BN_RECP_CTX *recp);
641
void BN_MONT_CTX_init(BN_MONT_CTX *ctx);
642
643
void bn_init(BIGNUM *a);
644
void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb);
645
void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b);
646
void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b);
647
void bn_sqr_normal(BN_ULONG *r, const BN_ULONG *a, int n, BN_ULONG *tmp);
648
void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a);
649
void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a);
650
int bn_cmp_words(const BN_ULONG *a, const BN_ULONG *b, int n);
651
int bn_cmp_part_words(const BN_ULONG *a, const BN_ULONG *b, int cl, int dl);
652
void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
653
                      int dna, int dnb, BN_ULONG *t);
654
void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b,
655
                           int n, int tna, int tnb, BN_ULONG *t);
656
void bn_sqr_recursive(BN_ULONG *r, const BN_ULONG *a, int n2, BN_ULONG *t);
657
void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n);
658
void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
659
                          BN_ULONG *t);
660
BN_ULONG bn_sub_part_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
661
                           int cl, int dl);
662
int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
663
                const BN_ULONG *np, const BN_ULONG *n0, int num);
664
void bn_correct_top_consttime(BIGNUM *a);
665
BIGNUM *int_bn_mod_inverse(BIGNUM *in,
666
                           const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx,
667
                           int *noinv);
668
669
static ossl_inline BIGNUM *bn_expand(BIGNUM *a, int bits)
670
305
{
671
305
    if (bits > (INT_MAX - BN_BITS2 + 1))
672
0
        return NULL;
673
674
305
    if (((bits+BN_BITS2-1)/BN_BITS2) <= (a)->dmax)
675
17
        return a;
676
677
288
    return bn_expand2((a),(bits+BN_BITS2-1)/BN_BITS2);
678
305
}
Unexecuted instantiation: bn_dh.c:bn_expand
bn_lib.c:bn_expand
Line
Count
Source
670
305
{
671
305
    if (bits > (INT_MAX - BN_BITS2 + 1))
672
0
        return NULL;
673
674
305
    if (((bits+BN_BITS2-1)/BN_BITS2) <= (a)->dmax)
675
17
        return a;
676
677
288
    return bn_expand2((a),(bits+BN_BITS2-1)/BN_BITS2);
678
305
}
Unexecuted instantiation: bn_mont.c:bn_expand
Unexecuted instantiation: bn_mul.c:bn_expand
Unexecuted instantiation: bn_shift.c:bn_expand
Unexecuted instantiation: bn_sqr.c:bn_expand
Unexecuted instantiation: bn_word.c:bn_expand
Unexecuted instantiation: x86_64-gcc.c:bn_expand
Unexecuted instantiation: bn_add.c:bn_expand
Unexecuted instantiation: bn_blind.c:bn_expand
Unexecuted instantiation: bn_conv.c:bn_expand
Unexecuted instantiation: bn_ctx.c:bn_expand
Unexecuted instantiation: bn_div.c:bn_expand
Unexecuted instantiation: bn_exp.c:bn_expand
Unexecuted instantiation: bn_exp2.c:bn_expand
Unexecuted instantiation: bn_gcd.c:bn_expand
Unexecuted instantiation: bn_intern.c:bn_expand
Unexecuted instantiation: bn_kron.c:bn_expand
Unexecuted instantiation: bn_mod.c:bn_expand
Unexecuted instantiation: bn_nist.c:bn_expand
Unexecuted instantiation: bn_prime.c:bn_expand
Unexecuted instantiation: bn_print.c:bn_expand
Unexecuted instantiation: bn_rand.c:bn_expand
Unexecuted instantiation: bn_recp.c:bn_expand
Unexecuted instantiation: bn_rsa_fips186_4.c:bn_expand
Unexecuted instantiation: bn_sqrt.c:bn_expand
Unexecuted instantiation: bn_srp.c:bn_expand
Unexecuted instantiation: rsaz_exp.c:bn_expand
Unexecuted instantiation: rsaz_exp_x2.c:bn_expand
Unexecuted instantiation: bn_gf2m.c:bn_expand
679
680
int ossl_bn_check_prime(const BIGNUM *w, int checks, BN_CTX *ctx,
681
                        int do_trial_division, BN_GENCB *cb);
682
683
#endif