Coverage Report

Created: 2025-06-13 06:56

/src/openssl/crypto/ec/ecp_nistz256.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 2014-2024 The OpenSSL Project Authors. All Rights Reserved.
3
 * Copyright (c) 2014, Intel Corporation. All Rights Reserved.
4
 * Copyright (c) 2015, CloudFlare, Inc.
5
 *
6
 * Licensed under the Apache License 2.0 (the "License").  You may not use
7
 * this file except in compliance with the License.  You can obtain a copy
8
 * in the file LICENSE in the source distribution or at
9
 * https://www.openssl.org/source/license.html
10
 *
11
 * Originally written by Shay Gueron (1, 2), and Vlad Krasnov (1, 3)
12
 * (1) Intel Corporation, Israel Development Center, Haifa, Israel
13
 * (2) University of Haifa, Israel
14
 * (3) CloudFlare, Inc.
15
 *
16
 * Reference:
17
 * S.Gueron and V.Krasnov, "Fast Prime Field Elliptic Curve Cryptography with
18
 *                          256 Bit Primes"
19
 */
20
21
/*
22
 * ECDSA low level APIs are deprecated for public use, but still ok for
23
 * internal use.
24
 */
25
#include "internal/deprecated.h"
26
27
#include <string.h>
28
29
#include "internal/cryptlib.h"
30
#include "crypto/bn.h"
31
#include "ec_local.h"
32
#include "internal/refcount.h"
33
34
#if BN_BITS2 != 64
35
# define TOBN(hi,lo)    lo,hi
36
#else
37
0
# define TOBN(hi,lo)    ((BN_ULONG)hi<<32|lo)
38
#endif
39
40
0
#define ALIGNPTR(p,N)   ((unsigned char *)p+N-(size_t)p%N)
41
0
#define P256_LIMBS      (256/BN_BITS2)
42
43
typedef unsigned short u16;
44
45
typedef struct {
46
    BN_ULONG X[P256_LIMBS];
47
    BN_ULONG Y[P256_LIMBS];
48
    BN_ULONG Z[P256_LIMBS];
49
} P256_POINT;
50
51
typedef struct {
52
    BN_ULONG X[P256_LIMBS];
53
    BN_ULONG Y[P256_LIMBS];
54
} P256_POINT_AFFINE;
55
56
typedef P256_POINT_AFFINE PRECOMP256_ROW[64];
57
58
/* structure for precomputed multiples of the generator */
59
struct nistz256_pre_comp_st {
60
    const EC_GROUP *group;      /* Parent EC_GROUP object */
61
    size_t w;                   /* Window size */
62
    /*
63
     * Constant time access to the X and Y coordinates of the pre-computed,
64
     * generator multiplies, in the Montgomery domain. Pre-calculated
65
     * multiplies are stored in affine form.
66
     */
67
    PRECOMP256_ROW *precomp;
68
    void *precomp_storage;
69
    CRYPTO_REF_COUNT references;
70
};
71
72
/* Functions implemented in assembly */
73
/*
74
 * Most of below mentioned functions *preserve* the property of inputs
75
 * being fully reduced, i.e. being in [0, modulus) range. Simply put if
76
 * inputs are fully reduced, then output is too. Note that reverse is
77
 * not true, in sense that given partially reduced inputs output can be
78
 * either, not unlikely reduced. And "most" in first sentence refers to
79
 * the fact that given the calculations flow one can tolerate that
80
 * addition, 1st function below, produces partially reduced result *if*
81
 * multiplications by 2 and 3, which customarily use addition, fully
82
 * reduce it. This effectively gives two options: a) addition produces
83
 * fully reduced result [as long as inputs are, just like remaining
84
 * functions]; b) addition is allowed to produce partially reduced
85
 * result, but multiplications by 2 and 3 perform additional reduction
86
 * step. Choice between the two can be platform-specific, but it was a)
87
 * in all cases so far...
88
 */
89
/* Modular add: res = a+b mod P   */
90
void ecp_nistz256_add(BN_ULONG res[P256_LIMBS],
91
                      const BN_ULONG a[P256_LIMBS],
92
                      const BN_ULONG b[P256_LIMBS]);
93
/* Modular mul by 2: res = 2*a mod P */
94
void ecp_nistz256_mul_by_2(BN_ULONG res[P256_LIMBS],
95
                           const BN_ULONG a[P256_LIMBS]);
96
/* Modular mul by 3: res = 3*a mod P */
97
void ecp_nistz256_mul_by_3(BN_ULONG res[P256_LIMBS],
98
                           const BN_ULONG a[P256_LIMBS]);
99
100
/* Modular div by 2: res = a/2 mod P */
101
void ecp_nistz256_div_by_2(BN_ULONG res[P256_LIMBS],
102
                           const BN_ULONG a[P256_LIMBS]);
103
/* Modular sub: res = a-b mod P   */
104
void ecp_nistz256_sub(BN_ULONG res[P256_LIMBS],
105
                      const BN_ULONG a[P256_LIMBS],
106
                      const BN_ULONG b[P256_LIMBS]);
107
/* Modular neg: res = -a mod P    */
108
void ecp_nistz256_neg(BN_ULONG res[P256_LIMBS], const BN_ULONG a[P256_LIMBS]);
109
/* Montgomery mul: res = a*b*2^-256 mod P */
110
void ecp_nistz256_mul_mont(BN_ULONG res[P256_LIMBS],
111
                           const BN_ULONG a[P256_LIMBS],
112
                           const BN_ULONG b[P256_LIMBS]);
113
/* Montgomery sqr: res = a*a*2^-256 mod P */
114
void ecp_nistz256_sqr_mont(BN_ULONG res[P256_LIMBS],
115
                           const BN_ULONG a[P256_LIMBS]);
116
/* Convert a number from Montgomery domain, by multiplying with 1 */
117
void ecp_nistz256_from_mont(BN_ULONG res[P256_LIMBS],
118
                            const BN_ULONG in[P256_LIMBS]);
119
/* Convert a number to Montgomery domain, by multiplying with 2^512 mod P*/
120
void ecp_nistz256_to_mont(BN_ULONG res[P256_LIMBS],
121
                          const BN_ULONG in[P256_LIMBS]);
122
/* Functions that perform constant time access to the precomputed tables */
123
void ecp_nistz256_scatter_w5(P256_POINT *val,
124
                             const P256_POINT *in_t, int idx);
125
void ecp_nistz256_gather_w5(P256_POINT *val,
126
                            const P256_POINT *in_t, int idx);
127
void ecp_nistz256_scatter_w7(P256_POINT_AFFINE *val,
128
                             const P256_POINT_AFFINE *in_t, int idx);
129
void ecp_nistz256_gather_w7(P256_POINT_AFFINE *val,
130
                            const P256_POINT_AFFINE *in_t, int idx);
131
132
/* One converted into the Montgomery domain */
133
static const BN_ULONG ONE[P256_LIMBS] = {
134
    TOBN(0x00000000, 0x00000001), TOBN(0xffffffff, 0x00000000),
135
    TOBN(0xffffffff, 0xffffffff), TOBN(0x00000000, 0xfffffffe)
136
};
137
138
static NISTZ256_PRE_COMP *ecp_nistz256_pre_comp_new(const EC_GROUP *group);
139
140
/* Precomputed tables for the default generator */
141
extern const PRECOMP256_ROW ecp_nistz256_precomputed[37];
142
143
/* Recode window to a signed digit, see ecp_nistputil.c for details */
144
static unsigned int _booth_recode_w5(unsigned int in)
145
0
{
146
0
    unsigned int s, d;
147
148
0
    s = ~((in >> 5) - 1);
149
0
    d = (1 << 6) - in - 1;
150
0
    d = (d & s) | (in & ~s);
151
0
    d = (d >> 1) + (d & 1);
152
153
0
    return (d << 1) + (s & 1);
154
0
}
155
156
static unsigned int _booth_recode_w7(unsigned int in)
157
0
{
158
0
    unsigned int s, d;
159
160
0
    s = ~((in >> 7) - 1);
161
0
    d = (1 << 8) - in - 1;
162
0
    d = (d & s) | (in & ~s);
163
0
    d = (d >> 1) + (d & 1);
164
165
0
    return (d << 1) + (s & 1);
166
0
}
167
168
static void copy_conditional(BN_ULONG dst[P256_LIMBS],
169
                             const BN_ULONG src[P256_LIMBS], BN_ULONG move)
170
0
{
171
0
    BN_ULONG mask1 = 0-move;
172
0
    BN_ULONG mask2 = ~mask1;
173
174
0
    dst[0] = (src[0] & mask1) ^ (dst[0] & mask2);
175
0
    dst[1] = (src[1] & mask1) ^ (dst[1] & mask2);
176
0
    dst[2] = (src[2] & mask1) ^ (dst[2] & mask2);
177
0
    dst[3] = (src[3] & mask1) ^ (dst[3] & mask2);
178
0
    if (P256_LIMBS == 8) {
179
0
        dst[4] = (src[4] & mask1) ^ (dst[4] & mask2);
180
0
        dst[5] = (src[5] & mask1) ^ (dst[5] & mask2);
181
0
        dst[6] = (src[6] & mask1) ^ (dst[6] & mask2);
182
0
        dst[7] = (src[7] & mask1) ^ (dst[7] & mask2);
183
0
    }
184
0
}
185
186
static BN_ULONG is_zero(BN_ULONG in)
187
0
{
188
0
    in |= (0 - in);
189
0
    in = ~in;
190
0
    in >>= BN_BITS2 - 1;
191
0
    return in;
192
0
}
193
194
static BN_ULONG is_equal(const BN_ULONG a[P256_LIMBS],
195
                         const BN_ULONG b[P256_LIMBS])
196
0
{
197
0
    BN_ULONG res;
198
199
0
    res = a[0] ^ b[0];
200
0
    res |= a[1] ^ b[1];
201
0
    res |= a[2] ^ b[2];
202
0
    res |= a[3] ^ b[3];
203
0
    if (P256_LIMBS == 8) {
204
0
        res |= a[4] ^ b[4];
205
0
        res |= a[5] ^ b[5];
206
0
        res |= a[6] ^ b[6];
207
0
        res |= a[7] ^ b[7];
208
0
    }
209
210
0
    return is_zero(res);
211
0
}
212
213
static BN_ULONG is_one(const BIGNUM *z)
214
0
{
215
0
    BN_ULONG res = 0;
216
0
    BN_ULONG *a = bn_get_words(z);
217
218
0
    if (bn_get_top(z) == (P256_LIMBS - P256_LIMBS / 8)) {
219
0
        res = a[0] ^ ONE[0];
220
0
        res |= a[1] ^ ONE[1];
221
0
        res |= a[2] ^ ONE[2];
222
0
        res |= a[3] ^ ONE[3];
223
0
        if (P256_LIMBS == 8) {
224
0
            res |= a[4] ^ ONE[4];
225
0
            res |= a[5] ^ ONE[5];
226
0
            res |= a[6] ^ ONE[6];
227
            /*
228
             * no check for a[7] (being zero) on 32-bit platforms,
229
             * because value of "one" takes only 7 limbs.
230
             */
231
0
        }
232
0
        res = is_zero(res);
233
0
    }
234
235
0
    return res;
236
0
}
237
238
/*
239
 * For reference, this macro is used only when new ecp_nistz256 assembly
240
 * module is being developed.  For example, configure with
241
 * -DECP_NISTZ256_REFERENCE_IMPLEMENTATION and implement only functions
242
 * performing simplest arithmetic operations on 256-bit vectors. Then
243
 * work on implementation of higher-level functions performing point
244
 * operations. Then remove ECP_NISTZ256_REFERENCE_IMPLEMENTATION
245
 * and never define it again. (The correct macro denoting presence of
246
 * ecp_nistz256 module is ECP_NISTZ256_ASM.)
247
 */
248
#ifndef ECP_NISTZ256_REFERENCE_IMPLEMENTATION
249
void ecp_nistz256_point_double(P256_POINT *r, const P256_POINT *a);
250
void ecp_nistz256_point_add(P256_POINT *r,
251
                            const P256_POINT *a, const P256_POINT *b);
252
void ecp_nistz256_point_add_affine(P256_POINT *r,
253
                                   const P256_POINT *a,
254
                                   const P256_POINT_AFFINE *b);
255
#else
256
/* Point double: r = 2*a */
257
static void ecp_nistz256_point_double(P256_POINT *r, const P256_POINT *a)
258
{
259
    BN_ULONG S[P256_LIMBS];
260
    BN_ULONG M[P256_LIMBS];
261
    BN_ULONG Zsqr[P256_LIMBS];
262
    BN_ULONG tmp0[P256_LIMBS];
263
264
    const BN_ULONG *in_x = a->X;
265
    const BN_ULONG *in_y = a->Y;
266
    const BN_ULONG *in_z = a->Z;
267
268
    BN_ULONG *res_x = r->X;
269
    BN_ULONG *res_y = r->Y;
270
    BN_ULONG *res_z = r->Z;
271
272
    ecp_nistz256_mul_by_2(S, in_y);
273
274
    ecp_nistz256_sqr_mont(Zsqr, in_z);
275
276
    ecp_nistz256_sqr_mont(S, S);
277
278
    ecp_nistz256_mul_mont(res_z, in_z, in_y);
279
    ecp_nistz256_mul_by_2(res_z, res_z);
280
281
    ecp_nistz256_add(M, in_x, Zsqr);
282
    ecp_nistz256_sub(Zsqr, in_x, Zsqr);
283
284
    ecp_nistz256_sqr_mont(res_y, S);
285
    ecp_nistz256_div_by_2(res_y, res_y);
286
287
    ecp_nistz256_mul_mont(M, M, Zsqr);
288
    ecp_nistz256_mul_by_3(M, M);
289
290
    ecp_nistz256_mul_mont(S, S, in_x);
291
    ecp_nistz256_mul_by_2(tmp0, S);
292
293
    ecp_nistz256_sqr_mont(res_x, M);
294
295
    ecp_nistz256_sub(res_x, res_x, tmp0);
296
    ecp_nistz256_sub(S, S, res_x);
297
298
    ecp_nistz256_mul_mont(S, S, M);
299
    ecp_nistz256_sub(res_y, S, res_y);
300
}
301
302
/* Point addition: r = a+b */
303
static void ecp_nistz256_point_add(P256_POINT *r,
304
                                   const P256_POINT *a, const P256_POINT *b)
305
{
306
    BN_ULONG U2[P256_LIMBS], S2[P256_LIMBS];
307
    BN_ULONG U1[P256_LIMBS], S1[P256_LIMBS];
308
    BN_ULONG Z1sqr[P256_LIMBS];
309
    BN_ULONG Z2sqr[P256_LIMBS];
310
    BN_ULONG H[P256_LIMBS], R[P256_LIMBS];
311
    BN_ULONG Hsqr[P256_LIMBS];
312
    BN_ULONG Rsqr[P256_LIMBS];
313
    BN_ULONG Hcub[P256_LIMBS];
314
315
    BN_ULONG res_x[P256_LIMBS];
316
    BN_ULONG res_y[P256_LIMBS];
317
    BN_ULONG res_z[P256_LIMBS];
318
319
    BN_ULONG in1infty, in2infty;
320
321
    const BN_ULONG *in1_x = a->X;
322
    const BN_ULONG *in1_y = a->Y;
323
    const BN_ULONG *in1_z = a->Z;
324
325
    const BN_ULONG *in2_x = b->X;
326
    const BN_ULONG *in2_y = b->Y;
327
    const BN_ULONG *in2_z = b->Z;
328
329
    /*
330
     * Infinity in encoded as (,,0)
331
     */
332
    in1infty = (in1_z[0] | in1_z[1] | in1_z[2] | in1_z[3]);
333
    if (P256_LIMBS == 8)
334
        in1infty |= (in1_z[4] | in1_z[5] | in1_z[6] | in1_z[7]);
335
336
    in2infty = (in2_z[0] | in2_z[1] | in2_z[2] | in2_z[3]);
337
    if (P256_LIMBS == 8)
338
        in2infty |= (in2_z[4] | in2_z[5] | in2_z[6] | in2_z[7]);
339
340
    in1infty = is_zero(in1infty);
341
    in2infty = is_zero(in2infty);
342
343
    ecp_nistz256_sqr_mont(Z2sqr, in2_z);        /* Z2^2 */
344
    ecp_nistz256_sqr_mont(Z1sqr, in1_z);        /* Z1^2 */
345
346
    ecp_nistz256_mul_mont(S1, Z2sqr, in2_z);    /* S1 = Z2^3 */
347
    ecp_nistz256_mul_mont(S2, Z1sqr, in1_z);    /* S2 = Z1^3 */
348
349
    ecp_nistz256_mul_mont(S1, S1, in1_y);       /* S1 = Y1*Z2^3 */
350
    ecp_nistz256_mul_mont(S2, S2, in2_y);       /* S2 = Y2*Z1^3 */
351
    ecp_nistz256_sub(R, S2, S1);                /* R = S2 - S1 */
352
353
    ecp_nistz256_mul_mont(U1, in1_x, Z2sqr);    /* U1 = X1*Z2^2 */
354
    ecp_nistz256_mul_mont(U2, in2_x, Z1sqr);    /* U2 = X2*Z1^2 */
355
    ecp_nistz256_sub(H, U2, U1);                /* H = U2 - U1 */
356
357
    /*
358
     * The formulae are incorrect if the points are equal so we check for
359
     * this and do doubling if this happens.
360
     *
361
     * Points here are in Jacobian projective coordinates (Xi, Yi, Zi)
362
     * that are bound to the affine coordinates (xi, yi) by the following
363
     * equations:
364
     *     - xi = Xi / (Zi)^2
365
     *     - y1 = Yi / (Zi)^3
366
     *
367
     * For the sake of optimization, the algorithm operates over
368
     * intermediate variables U1, U2 and S1, S2 that are derived from
369
     * the projective coordinates:
370
     *     - U1 = X1 * (Z2)^2 ; U2 = X2 * (Z1)^2
371
     *     - S1 = Y1 * (Z2)^3 ; S2 = Y2 * (Z1)^3
372
     *
373
     * It is easy to prove that is_equal(U1, U2) implies that the affine
374
     * x-coordinates are equal, or either point is at infinity.
375
     * Likewise is_equal(S1, S2) implies that the affine y-coordinates are
376
     * equal, or either point is at infinity.
377
     *
378
     * The special case of either point being the point at infinity (Z1 or Z2
379
     * is zero), is handled separately later on in this function, so we avoid
380
     * jumping to point_double here in those special cases.
381
     *
382
     * When both points are inverse of each other, we know that the affine
383
     * x-coordinates are equal, and the y-coordinates have different sign.
384
     * Therefore since U1 = U2, we know H = 0, and therefore Z3 = H*Z1*Z2
385
     * will equal 0, thus the result is infinity, if we simply let this
386
     * function continue normally.
387
     *
388
     * We use bitwise operations to avoid potential side-channels introduced by
389
     * the short-circuiting behaviour of boolean operators.
390
     */
391
    if (is_equal(U1, U2) & ~in1infty & ~in2infty & is_equal(S1, S2)) {
392
        /*
393
         * This is obviously not constant-time but it should never happen during
394
         * single point multiplication, so there is no timing leak for ECDH or
395
         * ECDSA signing.
396
         */
397
        ecp_nistz256_point_double(r, a);
398
        return;
399
    }
400
401
    ecp_nistz256_sqr_mont(Rsqr, R);             /* R^2 */
402
    ecp_nistz256_mul_mont(res_z, H, in1_z);     /* Z3 = H*Z1*Z2 */
403
    ecp_nistz256_sqr_mont(Hsqr, H);             /* H^2 */
404
    ecp_nistz256_mul_mont(res_z, res_z, in2_z); /* Z3 = H*Z1*Z2 */
405
    ecp_nistz256_mul_mont(Hcub, Hsqr, H);       /* H^3 */
406
407
    ecp_nistz256_mul_mont(U2, U1, Hsqr);        /* U1*H^2 */
408
    ecp_nistz256_mul_by_2(Hsqr, U2);            /* 2*U1*H^2 */
409
410
    ecp_nistz256_sub(res_x, Rsqr, Hsqr);
411
    ecp_nistz256_sub(res_x, res_x, Hcub);
412
413
    ecp_nistz256_sub(res_y, U2, res_x);
414
415
    ecp_nistz256_mul_mont(S2, S1, Hcub);
416
    ecp_nistz256_mul_mont(res_y, R, res_y);
417
    ecp_nistz256_sub(res_y, res_y, S2);
418
419
    copy_conditional(res_x, in2_x, in1infty);
420
    copy_conditional(res_y, in2_y, in1infty);
421
    copy_conditional(res_z, in2_z, in1infty);
422
423
    copy_conditional(res_x, in1_x, in2infty);
424
    copy_conditional(res_y, in1_y, in2infty);
425
    copy_conditional(res_z, in1_z, in2infty);
426
427
    memcpy(r->X, res_x, sizeof(res_x));
428
    memcpy(r->Y, res_y, sizeof(res_y));
429
    memcpy(r->Z, res_z, sizeof(res_z));
430
}
431
432
/* Point addition when b is known to be affine: r = a+b */
433
static void ecp_nistz256_point_add_affine(P256_POINT *r,
434
                                          const P256_POINT *a,
435
                                          const P256_POINT_AFFINE *b)
436
{
437
    BN_ULONG U2[P256_LIMBS], S2[P256_LIMBS];
438
    BN_ULONG Z1sqr[P256_LIMBS];
439
    BN_ULONG H[P256_LIMBS], R[P256_LIMBS];
440
    BN_ULONG Hsqr[P256_LIMBS];
441
    BN_ULONG Rsqr[P256_LIMBS];
442
    BN_ULONG Hcub[P256_LIMBS];
443
444
    BN_ULONG res_x[P256_LIMBS];
445
    BN_ULONG res_y[P256_LIMBS];
446
    BN_ULONG res_z[P256_LIMBS];
447
448
    BN_ULONG in1infty, in2infty;
449
450
    const BN_ULONG *in1_x = a->X;
451
    const BN_ULONG *in1_y = a->Y;
452
    const BN_ULONG *in1_z = a->Z;
453
454
    const BN_ULONG *in2_x = b->X;
455
    const BN_ULONG *in2_y = b->Y;
456
457
    /*
458
     * Infinity in encoded as (,,0)
459
     */
460
    in1infty = (in1_z[0] | in1_z[1] | in1_z[2] | in1_z[3]);
461
    if (P256_LIMBS == 8)
462
        in1infty |= (in1_z[4] | in1_z[5] | in1_z[6] | in1_z[7]);
463
464
    /*
465
     * In affine representation we encode infinity as (0,0), which is
466
     * not on the curve, so it is OK
467
     */
468
    in2infty = (in2_x[0] | in2_x[1] | in2_x[2] | in2_x[3] |
469
                in2_y[0] | in2_y[1] | in2_y[2] | in2_y[3]);
470
    if (P256_LIMBS == 8)
471
        in2infty |= (in2_x[4] | in2_x[5] | in2_x[6] | in2_x[7] |
472
                     in2_y[4] | in2_y[5] | in2_y[6] | in2_y[7]);
473
474
    in1infty = is_zero(in1infty);
475
    in2infty = is_zero(in2infty);
476
477
    ecp_nistz256_sqr_mont(Z1sqr, in1_z);        /* Z1^2 */
478
479
    ecp_nistz256_mul_mont(U2, in2_x, Z1sqr);    /* U2 = X2*Z1^2 */
480
    ecp_nistz256_sub(H, U2, in1_x);             /* H = U2 - U1 */
481
482
    ecp_nistz256_mul_mont(S2, Z1sqr, in1_z);    /* S2 = Z1^3 */
483
484
    ecp_nistz256_mul_mont(res_z, H, in1_z);     /* Z3 = H*Z1*Z2 */
485
486
    ecp_nistz256_mul_mont(S2, S2, in2_y);       /* S2 = Y2*Z1^3 */
487
    ecp_nistz256_sub(R, S2, in1_y);             /* R = S2 - S1 */
488
489
    ecp_nistz256_sqr_mont(Hsqr, H);             /* H^2 */
490
    ecp_nistz256_sqr_mont(Rsqr, R);             /* R^2 */
491
    ecp_nistz256_mul_mont(Hcub, Hsqr, H);       /* H^3 */
492
493
    ecp_nistz256_mul_mont(U2, in1_x, Hsqr);     /* U1*H^2 */
494
    ecp_nistz256_mul_by_2(Hsqr, U2);            /* 2*U1*H^2 */
495
496
    ecp_nistz256_sub(res_x, Rsqr, Hsqr);
497
    ecp_nistz256_sub(res_x, res_x, Hcub);
498
    ecp_nistz256_sub(H, U2, res_x);
499
500
    ecp_nistz256_mul_mont(S2, in1_y, Hcub);
501
    ecp_nistz256_mul_mont(H, H, R);
502
    ecp_nistz256_sub(res_y, H, S2);
503
504
    copy_conditional(res_x, in2_x, in1infty);
505
    copy_conditional(res_x, in1_x, in2infty);
506
507
    copy_conditional(res_y, in2_y, in1infty);
508
    copy_conditional(res_y, in1_y, in2infty);
509
510
    copy_conditional(res_z, ONE, in1infty);
511
    copy_conditional(res_z, in1_z, in2infty);
512
513
    memcpy(r->X, res_x, sizeof(res_x));
514
    memcpy(r->Y, res_y, sizeof(res_y));
515
    memcpy(r->Z, res_z, sizeof(res_z));
516
}
517
#endif
518
519
/* r = in^-1 mod p */
520
static void ecp_nistz256_mod_inverse(BN_ULONG r[P256_LIMBS],
521
                                     const BN_ULONG in[P256_LIMBS])
522
0
{
523
    /*
524
     * The poly is ffffffff 00000001 00000000 00000000 00000000 ffffffff
525
     * ffffffff ffffffff We use FLT and used poly-2 as exponent
526
     */
527
0
    BN_ULONG p2[P256_LIMBS];
528
0
    BN_ULONG p4[P256_LIMBS];
529
0
    BN_ULONG p8[P256_LIMBS];
530
0
    BN_ULONG p16[P256_LIMBS];
531
0
    BN_ULONG p32[P256_LIMBS];
532
0
    BN_ULONG res[P256_LIMBS];
533
0
    int i;
534
535
0
    ecp_nistz256_sqr_mont(res, in);
536
0
    ecp_nistz256_mul_mont(p2, res, in);         /* 3*p */
537
538
0
    ecp_nistz256_sqr_mont(res, p2);
539
0
    ecp_nistz256_sqr_mont(res, res);
540
0
    ecp_nistz256_mul_mont(p4, res, p2);         /* f*p */
541
542
0
    ecp_nistz256_sqr_mont(res, p4);
543
0
    ecp_nistz256_sqr_mont(res, res);
544
0
    ecp_nistz256_sqr_mont(res, res);
545
0
    ecp_nistz256_sqr_mont(res, res);
546
0
    ecp_nistz256_mul_mont(p8, res, p4);         /* ff*p */
547
548
0
    ecp_nistz256_sqr_mont(res, p8);
549
0
    for (i = 0; i < 7; i++)
550
0
        ecp_nistz256_sqr_mont(res, res);
551
0
    ecp_nistz256_mul_mont(p16, res, p8);        /* ffff*p */
552
553
0
    ecp_nistz256_sqr_mont(res, p16);
554
0
    for (i = 0; i < 15; i++)
555
0
        ecp_nistz256_sqr_mont(res, res);
556
0
    ecp_nistz256_mul_mont(p32, res, p16);       /* ffffffff*p */
557
558
0
    ecp_nistz256_sqr_mont(res, p32);
559
0
    for (i = 0; i < 31; i++)
560
0
        ecp_nistz256_sqr_mont(res, res);
561
0
    ecp_nistz256_mul_mont(res, res, in);
562
563
0
    for (i = 0; i < 32 * 4; i++)
564
0
        ecp_nistz256_sqr_mont(res, res);
565
0
    ecp_nistz256_mul_mont(res, res, p32);
566
567
0
    for (i = 0; i < 32; i++)
568
0
        ecp_nistz256_sqr_mont(res, res);
569
0
    ecp_nistz256_mul_mont(res, res, p32);
570
571
0
    for (i = 0; i < 16; i++)
572
0
        ecp_nistz256_sqr_mont(res, res);
573
0
    ecp_nistz256_mul_mont(res, res, p16);
574
575
0
    for (i = 0; i < 8; i++)
576
0
        ecp_nistz256_sqr_mont(res, res);
577
0
    ecp_nistz256_mul_mont(res, res, p8);
578
579
0
    ecp_nistz256_sqr_mont(res, res);
580
0
    ecp_nistz256_sqr_mont(res, res);
581
0
    ecp_nistz256_sqr_mont(res, res);
582
0
    ecp_nistz256_sqr_mont(res, res);
583
0
    ecp_nistz256_mul_mont(res, res, p4);
584
585
0
    ecp_nistz256_sqr_mont(res, res);
586
0
    ecp_nistz256_sqr_mont(res, res);
587
0
    ecp_nistz256_mul_mont(res, res, p2);
588
589
0
    ecp_nistz256_sqr_mont(res, res);
590
0
    ecp_nistz256_sqr_mont(res, res);
591
0
    ecp_nistz256_mul_mont(res, res, in);
592
593
0
    memcpy(r, res, sizeof(res));
594
0
}
595
596
/*
597
 * ecp_nistz256_bignum_to_field_elem copies the contents of |in| to |out| and
598
 * returns one if it fits. Otherwise it returns zero.
599
 */
600
__owur static int ecp_nistz256_bignum_to_field_elem(BN_ULONG out[P256_LIMBS],
601
                                                    const BIGNUM *in)
602
0
{
603
0
    return bn_copy_words(out, in, P256_LIMBS);
604
0
}
605
606
/* r = sum(scalar[i]*point[i]) */
607
__owur static int ecp_nistz256_windowed_mul(const EC_GROUP *group,
608
                                            P256_POINT *r,
609
                                            const BIGNUM **scalar,
610
                                            const EC_POINT **point,
611
                                            size_t num, BN_CTX *ctx)
612
0
{
613
0
    size_t i;
614
0
    int j, ret = 0;
615
0
    unsigned int idx;
616
0
    unsigned char (*p_str)[33] = NULL;
617
0
    const unsigned int window_size = 5;
618
0
    const unsigned int mask = (1 << (window_size + 1)) - 1;
619
0
    unsigned int wvalue;
620
0
    P256_POINT *temp;           /* place for 5 temporary points */
621
0
    const BIGNUM **scalars = NULL;
622
0
    P256_POINT (*table)[16] = NULL;
623
0
    void *table_storage = NULL;
624
625
0
    if ((num * 16 + 6) > OPENSSL_MALLOC_MAX_NELEMS(P256_POINT)
626
0
        || (table_storage =
627
0
            OPENSSL_malloc((num * 16 + 5) * sizeof(P256_POINT) + 64)) == NULL
628
0
        || (p_str =
629
0
            OPENSSL_malloc(num * 33 * sizeof(unsigned char))) == NULL
630
0
        || (scalars = OPENSSL_malloc(num * sizeof(BIGNUM *))) == NULL)
631
0
        goto err;
632
633
0
    table = (void *)ALIGNPTR(table_storage, 64);
634
0
    temp = (P256_POINT *)(table + num);
635
636
0
    for (i = 0; i < num; i++) {
637
0
        P256_POINT *row = table[i];
638
639
        /* This is an unusual input, we don't guarantee constant-timeness. */
640
0
        if ((BN_num_bits(scalar[i]) > 256) || BN_is_negative(scalar[i])) {
641
0
            BIGNUM *mod;
642
643
0
            if ((mod = BN_CTX_get(ctx)) == NULL)
644
0
                goto err;
645
0
            if (!BN_nnmod(mod, scalar[i], group->order, ctx)) {
646
0
                ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
647
0
                goto err;
648
0
            }
649
0
            scalars[i] = mod;
650
0
        } else
651
0
            scalars[i] = scalar[i];
652
653
0
        for (j = 0; j < bn_get_top(scalars[i]) * BN_BYTES; j += BN_BYTES) {
654
0
            BN_ULONG d = bn_get_words(scalars[i])[j / BN_BYTES];
655
656
0
            p_str[i][j + 0] = (unsigned char)d;
657
0
            p_str[i][j + 1] = (unsigned char)(d >> 8);
658
0
            p_str[i][j + 2] = (unsigned char)(d >> 16);
659
0
            p_str[i][j + 3] = (unsigned char)(d >>= 24);
660
0
            if (BN_BYTES == 8) {
661
0
                d >>= 8;
662
0
                p_str[i][j + 4] = (unsigned char)d;
663
0
                p_str[i][j + 5] = (unsigned char)(d >> 8);
664
0
                p_str[i][j + 6] = (unsigned char)(d >> 16);
665
0
                p_str[i][j + 7] = (unsigned char)(d >> 24);
666
0
            }
667
0
        }
668
0
        for (; j < 33; j++)
669
0
            p_str[i][j] = 0;
670
671
0
        if (!ecp_nistz256_bignum_to_field_elem(temp[0].X, point[i]->X)
672
0
            || !ecp_nistz256_bignum_to_field_elem(temp[0].Y, point[i]->Y)
673
0
            || !ecp_nistz256_bignum_to_field_elem(temp[0].Z, point[i]->Z)) {
674
0
            ERR_raise(ERR_LIB_EC, EC_R_COORDINATES_OUT_OF_RANGE);
675
0
            goto err;
676
0
        }
677
678
        /*
679
         * row[0] is implicitly (0,0,0) (the point at infinity), therefore it
680
         * is not stored. All other values are actually stored with an offset
681
         * of -1 in table.
682
         */
683
684
0
        ecp_nistz256_scatter_w5  (row, &temp[0], 1);
685
0
        ecp_nistz256_point_double(&temp[1], &temp[0]);              /*1+1=2  */
686
0
        ecp_nistz256_scatter_w5  (row, &temp[1], 2);
687
0
        ecp_nistz256_point_add   (&temp[2], &temp[1], &temp[0]);    /*2+1=3  */
688
0
        ecp_nistz256_scatter_w5  (row, &temp[2], 3);
689
0
        ecp_nistz256_point_double(&temp[1], &temp[1]);              /*2*2=4  */
690
0
        ecp_nistz256_scatter_w5  (row, &temp[1], 4);
691
0
        ecp_nistz256_point_double(&temp[2], &temp[2]);              /*2*3=6  */
692
0
        ecp_nistz256_scatter_w5  (row, &temp[2], 6);
693
0
        ecp_nistz256_point_add   (&temp[3], &temp[1], &temp[0]);    /*4+1=5  */
694
0
        ecp_nistz256_scatter_w5  (row, &temp[3], 5);
695
0
        ecp_nistz256_point_add   (&temp[4], &temp[2], &temp[0]);    /*6+1=7  */
696
0
        ecp_nistz256_scatter_w5  (row, &temp[4], 7);
697
0
        ecp_nistz256_point_double(&temp[1], &temp[1]);              /*2*4=8  */
698
0
        ecp_nistz256_scatter_w5  (row, &temp[1], 8);
699
0
        ecp_nistz256_point_double(&temp[2], &temp[2]);              /*2*6=12 */
700
0
        ecp_nistz256_scatter_w5  (row, &temp[2], 12);
701
0
        ecp_nistz256_point_double(&temp[3], &temp[3]);              /*2*5=10 */
702
0
        ecp_nistz256_scatter_w5  (row, &temp[3], 10);
703
0
        ecp_nistz256_point_double(&temp[4], &temp[4]);              /*2*7=14 */
704
0
        ecp_nistz256_scatter_w5  (row, &temp[4], 14);
705
0
        ecp_nistz256_point_add   (&temp[2], &temp[2], &temp[0]);    /*12+1=13*/
706
0
        ecp_nistz256_scatter_w5  (row, &temp[2], 13);
707
0
        ecp_nistz256_point_add   (&temp[3], &temp[3], &temp[0]);    /*10+1=11*/
708
0
        ecp_nistz256_scatter_w5  (row, &temp[3], 11);
709
0
        ecp_nistz256_point_add   (&temp[4], &temp[4], &temp[0]);    /*14+1=15*/
710
0
        ecp_nistz256_scatter_w5  (row, &temp[4], 15);
711
0
        ecp_nistz256_point_add   (&temp[2], &temp[1], &temp[0]);    /*8+1=9  */
712
0
        ecp_nistz256_scatter_w5  (row, &temp[2], 9);
713
0
        ecp_nistz256_point_double(&temp[1], &temp[1]);              /*2*8=16 */
714
0
        ecp_nistz256_scatter_w5  (row, &temp[1], 16);
715
0
    }
716
717
0
    idx = 255;
718
719
0
    wvalue = p_str[0][(idx - 1) / 8];
720
0
    wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
721
722
    /*
723
     * We gather to temp[0], because we know it's position relative
724
     * to table
725
     */
726
0
    ecp_nistz256_gather_w5(&temp[0], table[0], _booth_recode_w5(wvalue) >> 1);
727
0
    memcpy(r, &temp[0], sizeof(temp[0]));
728
729
0
    while (idx >= 5) {
730
0
        for (i = (idx == 255 ? 1 : 0); i < num; i++) {
731
0
            unsigned int off = (idx - 1) / 8;
732
733
0
            wvalue = p_str[i][off] | p_str[i][off + 1] << 8;
734
0
            wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
735
736
0
            wvalue = _booth_recode_w5(wvalue);
737
738
0
            ecp_nistz256_gather_w5(&temp[0], table[i], wvalue >> 1);
739
740
0
            ecp_nistz256_neg(temp[1].Y, temp[0].Y);
741
0
            copy_conditional(temp[0].Y, temp[1].Y, (wvalue & 1));
742
743
0
            ecp_nistz256_point_add(r, r, &temp[0]);
744
0
        }
745
746
0
        idx -= window_size;
747
748
0
        ecp_nistz256_point_double(r, r);
749
0
        ecp_nistz256_point_double(r, r);
750
0
        ecp_nistz256_point_double(r, r);
751
0
        ecp_nistz256_point_double(r, r);
752
0
        ecp_nistz256_point_double(r, r);
753
0
    }
754
755
    /* Final window */
756
0
    for (i = 0; i < num; i++) {
757
0
        wvalue = p_str[i][0];
758
0
        wvalue = (wvalue << 1) & mask;
759
760
0
        wvalue = _booth_recode_w5(wvalue);
761
762
0
        ecp_nistz256_gather_w5(&temp[0], table[i], wvalue >> 1);
763
764
0
        ecp_nistz256_neg(temp[1].Y, temp[0].Y);
765
0
        copy_conditional(temp[0].Y, temp[1].Y, wvalue & 1);
766
767
0
        ecp_nistz256_point_add(r, r, &temp[0]);
768
0
    }
769
770
0
    ret = 1;
771
0
 err:
772
0
    OPENSSL_free(table_storage);
773
0
    OPENSSL_free(p_str);
774
0
    OPENSSL_free(scalars);
775
0
    return ret;
776
0
}
777
778
/* Coordinates of G, for which we have precomputed tables */
779
static const BN_ULONG def_xG[P256_LIMBS] = {
780
    TOBN(0x79e730d4, 0x18a9143c), TOBN(0x75ba95fc, 0x5fedb601),
781
    TOBN(0x79fb732b, 0x77622510), TOBN(0x18905f76, 0xa53755c6)
782
};
783
784
static const BN_ULONG def_yG[P256_LIMBS] = {
785
    TOBN(0xddf25357, 0xce95560a), TOBN(0x8b4ab8e4, 0xba19e45c),
786
    TOBN(0xd2e88688, 0xdd21f325), TOBN(0x8571ff18, 0x25885d85)
787
};
788
789
/*
790
 * ecp_nistz256_is_affine_G returns one if |generator| is the standard, P-256
791
 * generator.
792
 */
793
static int ecp_nistz256_is_affine_G(const EC_POINT *generator)
794
0
{
795
0
    return (bn_get_top(generator->X) == P256_LIMBS) &&
796
0
        (bn_get_top(generator->Y) == P256_LIMBS) &&
797
0
        is_equal(bn_get_words(generator->X), def_xG) &&
798
0
        is_equal(bn_get_words(generator->Y), def_yG) &&
799
0
        is_one(generator->Z);
800
0
}
801
802
__owur static int ecp_nistz256_mult_precompute(EC_GROUP *group, BN_CTX *ctx)
803
0
{
804
    /*
805
     * We precompute a table for a Booth encoded exponent (wNAF) based
806
     * computation. Each table holds 64 values for safe access, with an
807
     * implicit value of infinity at index zero. We use window of size 7, and
808
     * therefore require ceil(256/7) = 37 tables.
809
     */
810
0
    const BIGNUM *order;
811
0
    EC_POINT *P = NULL, *T = NULL;
812
0
    const EC_POINT *generator;
813
0
    NISTZ256_PRE_COMP *pre_comp;
814
0
    BN_CTX *new_ctx = NULL;
815
0
    int i, j, k, ret = 0;
816
0
    size_t w;
817
818
0
    PRECOMP256_ROW *preComputedTable = NULL;
819
0
    unsigned char *precomp_storage = NULL;
820
821
    /* if there is an old NISTZ256_PRE_COMP object, throw it away */
822
0
    EC_pre_comp_free(group);
823
0
    generator = EC_GROUP_get0_generator(group);
824
0
    if (generator == NULL) {
825
0
        ERR_raise(ERR_LIB_EC, EC_R_UNDEFINED_GENERATOR);
826
0
        return 0;
827
0
    }
828
829
0
    if (ecp_nistz256_is_affine_G(generator)) {
830
        /*
831
         * No need to calculate tables for the standard generator because we
832
         * have them statically.
833
         */
834
0
        return 1;
835
0
    }
836
837
0
    if ((pre_comp = ecp_nistz256_pre_comp_new(group)) == NULL)
838
0
        return 0;
839
840
0
    if (ctx == NULL) {
841
0
        ctx = new_ctx = BN_CTX_new_ex(group->libctx);
842
0
        if (ctx == NULL)
843
0
            goto err;
844
0
    }
845
846
0
    BN_CTX_start(ctx);
847
848
0
    order = EC_GROUP_get0_order(group);
849
0
    if (order == NULL)
850
0
        goto err;
851
852
0
    if (BN_is_zero(order)) {
853
0
        ERR_raise(ERR_LIB_EC, EC_R_UNKNOWN_ORDER);
854
0
        goto err;
855
0
    }
856
857
0
    w = 7;
858
859
0
    if ((precomp_storage =
860
0
         OPENSSL_malloc(37 * 64 * sizeof(P256_POINT_AFFINE) + 64)) == NULL)
861
0
        goto err;
862
863
0
    preComputedTable = (void *)ALIGNPTR(precomp_storage, 64);
864
865
0
    P = EC_POINT_new(group);
866
0
    T = EC_POINT_new(group);
867
0
    if (P == NULL || T == NULL)
868
0
        goto err;
869
870
    /*
871
     * The zero entry is implicitly infinity, and we skip it, storing other
872
     * values with -1 offset.
873
     */
874
0
    if (!EC_POINT_copy(T, generator))
875
0
        goto err;
876
877
0
    for (k = 0; k < 64; k++) {
878
0
        if (!EC_POINT_copy(P, T))
879
0
            goto err;
880
0
        for (j = 0; j < 37; j++) {
881
0
            P256_POINT_AFFINE temp;
882
            /*
883
             * It would be faster to use EC_POINTs_make_affine and
884
             * make multiple points affine at the same time.
885
             */
886
0
            if (group->meth->make_affine == NULL
887
0
                || !group->meth->make_affine(group, P, ctx))
888
0
                goto err;
889
0
            if (!ecp_nistz256_bignum_to_field_elem(temp.X, P->X) ||
890
0
                !ecp_nistz256_bignum_to_field_elem(temp.Y, P->Y)) {
891
0
                ERR_raise(ERR_LIB_EC, EC_R_COORDINATES_OUT_OF_RANGE);
892
0
                goto err;
893
0
            }
894
0
            ecp_nistz256_scatter_w7(preComputedTable[j], &temp, k);
895
0
            for (i = 0; i < 7; i++) {
896
0
                if (!EC_POINT_dbl(group, P, P, ctx))
897
0
                    goto err;
898
0
            }
899
0
        }
900
0
        if (!EC_POINT_add(group, T, T, generator, ctx))
901
0
            goto err;
902
0
    }
903
904
0
    pre_comp->group = group;
905
0
    pre_comp->w = w;
906
0
    pre_comp->precomp = preComputedTable;
907
0
    pre_comp->precomp_storage = precomp_storage;
908
0
    precomp_storage = NULL;
909
0
    SETPRECOMP(group, nistz256, pre_comp);
910
0
    pre_comp = NULL;
911
0
    ret = 1;
912
913
0
 err:
914
0
    BN_CTX_end(ctx);
915
0
    BN_CTX_free(new_ctx);
916
917
0
    EC_nistz256_pre_comp_free(pre_comp);
918
0
    OPENSSL_free(precomp_storage);
919
0
    EC_POINT_free(P);
920
0
    EC_POINT_free(T);
921
0
    return ret;
922
0
}
923
924
__owur static int ecp_nistz256_set_from_affine(EC_POINT *out, const EC_GROUP *group,
925
                                               const P256_POINT_AFFINE *in,
926
                                               BN_CTX *ctx)
927
0
{
928
0
    int ret = 0;
929
930
0
    if ((ret = bn_set_words(out->X, in->X, P256_LIMBS))
931
0
        && (ret = bn_set_words(out->Y, in->Y, P256_LIMBS))
932
0
        && (ret = bn_set_words(out->Z, ONE, P256_LIMBS)))
933
0
        out->Z_is_one = 1;
934
935
0
    return ret;
936
0
}
937
938
/* r = scalar*G + sum(scalars[i]*points[i]) */
939
__owur static int ecp_nistz256_points_mul(const EC_GROUP *group,
940
                                          EC_POINT *r,
941
                                          const BIGNUM *scalar,
942
                                          size_t num,
943
                                          const EC_POINT *points[],
944
                                          const BIGNUM *scalars[], BN_CTX *ctx)
945
0
{
946
0
    int i = 0, ret = 0, no_precomp_for_generator = 0, p_is_infinity = 0;
947
0
    unsigned char p_str[33] = { 0 };
948
0
    const PRECOMP256_ROW *preComputedTable = NULL;
949
0
    const NISTZ256_PRE_COMP *pre_comp = NULL;
950
0
    const EC_POINT *generator = NULL;
951
0
    const BIGNUM **new_scalars = NULL;
952
0
    const EC_POINT **new_points = NULL;
953
0
    unsigned int idx = 0;
954
0
    const unsigned int window_size = 7;
955
0
    const unsigned int mask = (1 << (window_size + 1)) - 1;
956
0
    unsigned int wvalue;
957
0
    ALIGN32 union {
958
0
        P256_POINT p;
959
0
        P256_POINT_AFFINE a;
960
0
    } t, p;
961
0
    BIGNUM *tmp_scalar;
962
963
0
    if ((num + 1) == 0 || (num + 1) > OPENSSL_MALLOC_MAX_NELEMS(void *)) {
964
0
        ERR_raise(ERR_LIB_EC, ERR_R_PASSED_INVALID_ARGUMENT);
965
0
        return 0;
966
0
    }
967
968
0
    memset(&p, 0, sizeof(p));
969
0
    BN_CTX_start(ctx);
970
971
0
    if (scalar) {
972
0
        generator = EC_GROUP_get0_generator(group);
973
0
        if (generator == NULL) {
974
0
            ERR_raise(ERR_LIB_EC, EC_R_UNDEFINED_GENERATOR);
975
0
            goto err;
976
0
        }
977
978
        /* look if we can use precomputed multiples of generator */
979
0
        pre_comp = group->pre_comp.nistz256;
980
981
0
        if (pre_comp) {
982
            /*
983
             * If there is a precomputed table for the generator, check that
984
             * it was generated with the same generator.
985
             */
986
0
            EC_POINT *pre_comp_generator = EC_POINT_new(group);
987
0
            if (pre_comp_generator == NULL)
988
0
                goto err;
989
990
0
            ecp_nistz256_gather_w7(&p.a, pre_comp->precomp[0], 1);
991
0
            if (!ecp_nistz256_set_from_affine(pre_comp_generator,
992
0
                                              group, &p.a, ctx)) {
993
0
                EC_POINT_free(pre_comp_generator);
994
0
                goto err;
995
0
            }
996
997
0
            if (0 == EC_POINT_cmp(group, generator, pre_comp_generator, ctx))
998
0
                preComputedTable = (const PRECOMP256_ROW *)pre_comp->precomp;
999
1000
0
            EC_POINT_free(pre_comp_generator);
1001
0
        }
1002
1003
0
        if (preComputedTable == NULL && ecp_nistz256_is_affine_G(generator)) {
1004
            /*
1005
             * If there is no precomputed data, but the generator is the
1006
             * default, a hardcoded table of precomputed data is used. This
1007
             * is because applications, such as Apache, do not use
1008
             * EC_KEY_precompute_mult.
1009
             */
1010
0
            preComputedTable = ecp_nistz256_precomputed;
1011
0
        }
1012
1013
0
        if (preComputedTable) {
1014
0
            BN_ULONG infty;
1015
1016
0
            if ((BN_num_bits(scalar) > 256)
1017
0
                || BN_is_negative(scalar)) {
1018
0
                if ((tmp_scalar = BN_CTX_get(ctx)) == NULL)
1019
0
                    goto err;
1020
1021
0
                if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) {
1022
0
                    ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1023
0
                    goto err;
1024
0
                }
1025
0
                scalar = tmp_scalar;
1026
0
            }
1027
1028
0
            for (i = 0; i < bn_get_top(scalar) * BN_BYTES; i += BN_BYTES) {
1029
0
                BN_ULONG d = bn_get_words(scalar)[i / BN_BYTES];
1030
1031
0
                p_str[i + 0] = (unsigned char)d;
1032
0
                p_str[i + 1] = (unsigned char)(d >> 8);
1033
0
                p_str[i + 2] = (unsigned char)(d >> 16);
1034
0
                p_str[i + 3] = (unsigned char)(d >>= 24);
1035
0
                if (BN_BYTES == 8) {
1036
0
                    d >>= 8;
1037
0
                    p_str[i + 4] = (unsigned char)d;
1038
0
                    p_str[i + 5] = (unsigned char)(d >> 8);
1039
0
                    p_str[i + 6] = (unsigned char)(d >> 16);
1040
0
                    p_str[i + 7] = (unsigned char)(d >> 24);
1041
0
                }
1042
0
            }
1043
1044
0
            for (; i < 33; i++)
1045
0
                p_str[i] = 0;
1046
1047
            /* First window */
1048
0
            wvalue = (p_str[0] << 1) & mask;
1049
0
            idx += window_size;
1050
1051
0
            wvalue = _booth_recode_w7(wvalue);
1052
1053
0
            ecp_nistz256_gather_w7(&p.a, preComputedTable[0],
1054
0
                                   wvalue >> 1);
1055
1056
0
            ecp_nistz256_neg(p.p.Z, p.p.Y);
1057
0
            copy_conditional(p.p.Y, p.p.Z, wvalue & 1);
1058
1059
            /*
1060
             * Since affine infinity is encoded as (0,0) and
1061
             * Jacobian is (,,0), we need to harmonize them
1062
             * by assigning "one" or zero to Z.
1063
             */
1064
0
            infty = (p.p.X[0] | p.p.X[1] | p.p.X[2] | p.p.X[3] |
1065
0
                     p.p.Y[0] | p.p.Y[1] | p.p.Y[2] | p.p.Y[3]);
1066
0
            if (P256_LIMBS == 8)
1067
0
                infty |= (p.p.X[4] | p.p.X[5] | p.p.X[6] | p.p.X[7] |
1068
0
                          p.p.Y[4] | p.p.Y[5] | p.p.Y[6] | p.p.Y[7]);
1069
1070
0
            infty = 0 - is_zero(infty);
1071
0
            infty = ~infty;
1072
1073
0
            p.p.Z[0] = ONE[0] & infty;
1074
0
            p.p.Z[1] = ONE[1] & infty;
1075
0
            p.p.Z[2] = ONE[2] & infty;
1076
0
            p.p.Z[3] = ONE[3] & infty;
1077
0
            if (P256_LIMBS == 8) {
1078
0
                p.p.Z[4] = ONE[4] & infty;
1079
0
                p.p.Z[5] = ONE[5] & infty;
1080
0
                p.p.Z[6] = ONE[6] & infty;
1081
0
                p.p.Z[7] = ONE[7] & infty;
1082
0
            }
1083
1084
0
            for (i = 1; i < 37; i++) {
1085
0
                unsigned int off = (idx - 1) / 8;
1086
0
                wvalue = p_str[off] | p_str[off + 1] << 8;
1087
0
                wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
1088
0
                idx += window_size;
1089
1090
0
                wvalue = _booth_recode_w7(wvalue);
1091
1092
0
                ecp_nistz256_gather_w7(&t.a,
1093
0
                                       preComputedTable[i], wvalue >> 1);
1094
1095
0
                ecp_nistz256_neg(t.p.Z, t.a.Y);
1096
0
                copy_conditional(t.a.Y, t.p.Z, wvalue & 1);
1097
1098
0
                ecp_nistz256_point_add_affine(&p.p, &p.p, &t.a);
1099
0
            }
1100
0
        } else {
1101
0
            p_is_infinity = 1;
1102
0
            no_precomp_for_generator = 1;
1103
0
        }
1104
0
    } else
1105
0
        p_is_infinity = 1;
1106
1107
0
    if (no_precomp_for_generator) {
1108
        /*
1109
         * Without a precomputed table for the generator, it has to be
1110
         * handled like a normal point.
1111
         */
1112
0
        new_scalars = OPENSSL_malloc((num + 1) * sizeof(BIGNUM *));
1113
0
        if (new_scalars == NULL)
1114
0
            goto err;
1115
1116
0
        new_points = OPENSSL_malloc((num + 1) * sizeof(EC_POINT *));
1117
0
        if (new_points == NULL)
1118
0
            goto err;
1119
1120
0
        memcpy(new_scalars, scalars, num * sizeof(BIGNUM *));
1121
0
        new_scalars[num] = scalar;
1122
0
        memcpy(new_points, points, num * sizeof(EC_POINT *));
1123
0
        new_points[num] = generator;
1124
1125
0
        scalars = new_scalars;
1126
0
        points = new_points;
1127
0
        num++;
1128
0
    }
1129
1130
0
    if (num) {
1131
0
        P256_POINT *out = &t.p;
1132
0
        if (p_is_infinity)
1133
0
            out = &p.p;
1134
1135
0
        if (!ecp_nistz256_windowed_mul(group, out, scalars, points, num, ctx))
1136
0
            goto err;
1137
1138
0
        if (!p_is_infinity)
1139
0
            ecp_nistz256_point_add(&p.p, &p.p, out);
1140
0
    }
1141
1142
    /* Not constant-time, but we're only operating on the public output. */
1143
0
    if (!bn_set_words(r->X, p.p.X, P256_LIMBS) ||
1144
0
        !bn_set_words(r->Y, p.p.Y, P256_LIMBS) ||
1145
0
        !bn_set_words(r->Z, p.p.Z, P256_LIMBS)) {
1146
0
        goto err;
1147
0
    }
1148
0
    r->Z_is_one = is_one(r->Z) & 1;
1149
1150
0
    ret = 1;
1151
1152
0
err:
1153
0
    BN_CTX_end(ctx);
1154
0
    OPENSSL_free(new_points);
1155
0
    OPENSSL_free(new_scalars);
1156
0
    return ret;
1157
0
}
1158
1159
__owur static int ecp_nistz256_get_affine(const EC_GROUP *group,
1160
                                          const EC_POINT *point,
1161
                                          BIGNUM *x, BIGNUM *y, BN_CTX *ctx)
1162
0
{
1163
0
    BN_ULONG z_inv2[P256_LIMBS];
1164
0
    BN_ULONG z_inv3[P256_LIMBS];
1165
0
    BN_ULONG x_aff[P256_LIMBS];
1166
0
    BN_ULONG y_aff[P256_LIMBS];
1167
0
    BN_ULONG point_x[P256_LIMBS], point_y[P256_LIMBS], point_z[P256_LIMBS];
1168
0
    BN_ULONG x_ret[P256_LIMBS], y_ret[P256_LIMBS];
1169
1170
0
    if (EC_POINT_is_at_infinity(group, point)) {
1171
0
        ERR_raise(ERR_LIB_EC, EC_R_POINT_AT_INFINITY);
1172
0
        return 0;
1173
0
    }
1174
1175
0
    if (!ecp_nistz256_bignum_to_field_elem(point_x, point->X) ||
1176
0
        !ecp_nistz256_bignum_to_field_elem(point_y, point->Y) ||
1177
0
        !ecp_nistz256_bignum_to_field_elem(point_z, point->Z)) {
1178
0
        ERR_raise(ERR_LIB_EC, EC_R_COORDINATES_OUT_OF_RANGE);
1179
0
        return 0;
1180
0
    }
1181
1182
0
    ecp_nistz256_mod_inverse(z_inv3, point_z);
1183
0
    ecp_nistz256_sqr_mont(z_inv2, z_inv3);
1184
0
    ecp_nistz256_mul_mont(x_aff, z_inv2, point_x);
1185
1186
0
    if (x != NULL) {
1187
0
        ecp_nistz256_from_mont(x_ret, x_aff);
1188
0
        if (!bn_set_words(x, x_ret, P256_LIMBS))
1189
0
            return 0;
1190
0
    }
1191
1192
0
    if (y != NULL) {
1193
0
        ecp_nistz256_mul_mont(z_inv3, z_inv3, z_inv2);
1194
0
        ecp_nistz256_mul_mont(y_aff, z_inv3, point_y);
1195
0
        ecp_nistz256_from_mont(y_ret, y_aff);
1196
0
        if (!bn_set_words(y, y_ret, P256_LIMBS))
1197
0
            return 0;
1198
0
    }
1199
1200
0
    return 1;
1201
0
}
1202
1203
static NISTZ256_PRE_COMP *ecp_nistz256_pre_comp_new(const EC_GROUP *group)
1204
0
{
1205
0
    NISTZ256_PRE_COMP *ret = NULL;
1206
1207
0
    if (!group)
1208
0
        return NULL;
1209
1210
0
    ret = OPENSSL_zalloc(sizeof(*ret));
1211
1212
0
    if (ret == NULL)
1213
0
        return ret;
1214
1215
0
    ret->group = group;
1216
0
    ret->w = 6;                 /* default */
1217
1218
0
    if (!CRYPTO_NEW_REF(&ret->references, 1)) {
1219
0
        OPENSSL_free(ret);
1220
0
        return NULL;
1221
0
    }
1222
0
    return ret;
1223
0
}
1224
1225
NISTZ256_PRE_COMP *EC_nistz256_pre_comp_dup(NISTZ256_PRE_COMP *p)
1226
0
{
1227
0
    int i;
1228
0
    if (p != NULL)
1229
0
        CRYPTO_UP_REF(&p->references, &i);
1230
0
    return p;
1231
0
}
1232
1233
void EC_nistz256_pre_comp_free(NISTZ256_PRE_COMP *pre)
1234
0
{
1235
0
    int i;
1236
1237
0
    if (pre == NULL)
1238
0
        return;
1239
1240
0
    CRYPTO_DOWN_REF(&pre->references, &i);
1241
0
    REF_PRINT_COUNT("EC_nistz256", i, pre);
1242
0
    if (i > 0)
1243
0
        return;
1244
0
    REF_ASSERT_ISNT(i < 0);
1245
1246
0
    OPENSSL_free(pre->precomp_storage);
1247
0
    CRYPTO_FREE_REF(&pre->references);
1248
0
    OPENSSL_free(pre);
1249
0
}
1250
1251
1252
static int ecp_nistz256_window_have_precompute_mult(const EC_GROUP *group)
1253
0
{
1254
    /* There is a hard-coded table for the default generator. */
1255
0
    const EC_POINT *generator = EC_GROUP_get0_generator(group);
1256
1257
0
    if (generator != NULL && ecp_nistz256_is_affine_G(generator)) {
1258
        /* There is a hard-coded table for the default generator. */
1259
0
        return 1;
1260
0
    }
1261
1262
0
    return HAVEPRECOMP(group, nistz256);
1263
0
}
1264
1265
#if defined(__x86_64) || defined(__x86_64__) || \
1266
    defined(_M_AMD64) || defined(_M_X64) || \
1267
    defined(__powerpc64__) || defined(_ARCH_PP64) || \
1268
    defined(__aarch64__)
1269
/*
1270
 * Montgomery mul modulo Order(P): res = a*b*2^-256 mod Order(P)
1271
 */
1272
void ecp_nistz256_ord_mul_mont(BN_ULONG res[P256_LIMBS],
1273
                               const BN_ULONG a[P256_LIMBS],
1274
                               const BN_ULONG b[P256_LIMBS]);
1275
void ecp_nistz256_ord_sqr_mont(BN_ULONG res[P256_LIMBS],
1276
                               const BN_ULONG a[P256_LIMBS],
1277
                               BN_ULONG rep);
1278
1279
static int ecp_nistz256_inv_mod_ord(const EC_GROUP *group, BIGNUM *r,
1280
                                    const BIGNUM *x, BN_CTX *ctx)
1281
0
{
1282
    /* RR = 2^512 mod ord(p256) */
1283
0
    static const BN_ULONG RR[P256_LIMBS]  = {
1284
0
        TOBN(0x83244c95,0xbe79eea2), TOBN(0x4699799c,0x49bd6fa6),
1285
0
        TOBN(0x2845b239,0x2b6bec59), TOBN(0x66e12d94,0xf3d95620)
1286
0
    };
1287
    /* The constant 1 (unlike ONE that is one in Montgomery representation) */
1288
0
    static const BN_ULONG one[P256_LIMBS] = {
1289
0
        TOBN(0,1), TOBN(0,0), TOBN(0,0), TOBN(0,0)
1290
0
    };
1291
    /*
1292
     * We don't use entry 0 in the table, so we omit it and address
1293
     * with -1 offset.
1294
     */
1295
0
    BN_ULONG table[15][P256_LIMBS];
1296
0
    BN_ULONG out[P256_LIMBS], t[P256_LIMBS];
1297
0
    int i, ret = 0;
1298
0
    enum {
1299
0
        i_1 = 0, i_10,     i_11,     i_101, i_111, i_1010, i_1111,
1300
0
        i_10101, i_101010, i_101111, i_x6,  i_x8,  i_x16,  i_x32
1301
0
    };
1302
1303
    /*
1304
     * Catch allocation failure early.
1305
     */
1306
0
    if (bn_wexpand(r, P256_LIMBS) == NULL) {
1307
0
        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1308
0
        goto err;
1309
0
    }
1310
1311
0
    if ((BN_num_bits(x) > 256) || BN_is_negative(x)) {
1312
0
        BIGNUM *tmp;
1313
1314
0
        if ((tmp = BN_CTX_get(ctx)) == NULL
1315
0
            || !BN_nnmod(tmp, x, group->order, ctx)) {
1316
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1317
0
            goto err;
1318
0
        }
1319
0
        x = tmp;
1320
0
    }
1321
1322
0
    if (!ecp_nistz256_bignum_to_field_elem(t, x)) {
1323
0
        ERR_raise(ERR_LIB_EC, EC_R_COORDINATES_OUT_OF_RANGE);
1324
0
        goto err;
1325
0
    }
1326
1327
0
    ecp_nistz256_ord_mul_mont(table[0], t, RR);
1328
#if 0
1329
    /*
1330
     * Original sparse-then-fixed-window algorithm, retained for reference.
1331
     */
1332
    for (i = 2; i < 16; i += 2) {
1333
        ecp_nistz256_ord_sqr_mont(table[i-1], table[i/2-1], 1);
1334
        ecp_nistz256_ord_mul_mont(table[i], table[i-1], table[0]);
1335
    }
1336
1337
    /*
1338
     * The top 128bit of the exponent are highly redudndant, so we
1339
     * perform an optimized flow
1340
     */
1341
    ecp_nistz256_ord_sqr_mont(t, table[15-1], 4);   /* f0 */
1342
    ecp_nistz256_ord_mul_mont(t, t, table[15-1]);   /* ff */
1343
1344
    ecp_nistz256_ord_sqr_mont(out, t, 8);           /* ff00 */
1345
    ecp_nistz256_ord_mul_mont(out, out, t);         /* ffff */
1346
1347
    ecp_nistz256_ord_sqr_mont(t, out, 16);          /* ffff0000 */
1348
    ecp_nistz256_ord_mul_mont(t, t, out);           /* ffffffff */
1349
1350
    ecp_nistz256_ord_sqr_mont(out, t, 64);          /* ffffffff0000000000000000 */
1351
    ecp_nistz256_ord_mul_mont(out, out, t);         /* ffffffff00000000ffffffff */
1352
1353
    ecp_nistz256_ord_sqr_mont(out, out, 32);        /* ffffffff00000000ffffffff00000000 */
1354
    ecp_nistz256_ord_mul_mont(out, out, t);         /* ffffffff00000000ffffffffffffffff */
1355
1356
    /*
1357
     * The bottom 128 bit of the exponent are processed with fixed 4-bit window
1358
     */
1359
    for (i = 0; i < 32; i++) {
1360
        /* expLo - the low 128 bits of the exponent we use (ord(p256) - 2),
1361
         * split into nibbles */
1362
        static const unsigned char expLo[32]  = {
1363
            0xb,0xc,0xe,0x6,0xf,0xa,0xa,0xd,0xa,0x7,0x1,0x7,0x9,0xe,0x8,0x4,
1364
            0xf,0x3,0xb,0x9,0xc,0xa,0xc,0x2,0xf,0xc,0x6,0x3,0x2,0x5,0x4,0xf
1365
        };
1366
1367
        ecp_nistz256_ord_sqr_mont(out, out, 4);
1368
        /* The exponent is public, no need in constant-time access */
1369
        ecp_nistz256_ord_mul_mont(out, out, table[expLo[i]-1]);
1370
    }
1371
#else
1372
    /*
1373
     * https://briansmith.org/ecc-inversion-addition-chains-01#p256_scalar_inversion
1374
     *
1375
     * Even though this code path spares 12 squarings, 4.5%, and 13
1376
     * multiplications, 25%, on grand scale sign operation is not that
1377
     * much faster, not more that 2%...
1378
     */
1379
1380
    /* pre-calculate powers */
1381
0
    ecp_nistz256_ord_sqr_mont(table[i_10], table[i_1], 1);
1382
1383
0
    ecp_nistz256_ord_mul_mont(table[i_11], table[i_1], table[i_10]);
1384
1385
0
    ecp_nistz256_ord_mul_mont(table[i_101], table[i_11], table[i_10]);
1386
1387
0
    ecp_nistz256_ord_mul_mont(table[i_111], table[i_101], table[i_10]);
1388
1389
0
    ecp_nistz256_ord_sqr_mont(table[i_1010], table[i_101], 1);
1390
1391
0
    ecp_nistz256_ord_mul_mont(table[i_1111], table[i_1010], table[i_101]);
1392
1393
0
    ecp_nistz256_ord_sqr_mont(table[i_10101], table[i_1010], 1);
1394
0
    ecp_nistz256_ord_mul_mont(table[i_10101], table[i_10101], table[i_1]);
1395
1396
0
    ecp_nistz256_ord_sqr_mont(table[i_101010], table[i_10101], 1);
1397
1398
0
    ecp_nistz256_ord_mul_mont(table[i_101111], table[i_101010], table[i_101]);
1399
1400
0
    ecp_nistz256_ord_mul_mont(table[i_x6], table[i_101010], table[i_10101]);
1401
1402
0
    ecp_nistz256_ord_sqr_mont(table[i_x8], table[i_x6], 2);
1403
0
    ecp_nistz256_ord_mul_mont(table[i_x8], table[i_x8], table[i_11]);
1404
1405
0
    ecp_nistz256_ord_sqr_mont(table[i_x16], table[i_x8], 8);
1406
0
    ecp_nistz256_ord_mul_mont(table[i_x16], table[i_x16], table[i_x8]);
1407
1408
0
    ecp_nistz256_ord_sqr_mont(table[i_x32], table[i_x16], 16);
1409
0
    ecp_nistz256_ord_mul_mont(table[i_x32], table[i_x32], table[i_x16]);
1410
1411
    /* calculations */
1412
0
    ecp_nistz256_ord_sqr_mont(out, table[i_x32], 64);
1413
0
    ecp_nistz256_ord_mul_mont(out, out, table[i_x32]);
1414
1415
0
    for (i = 0; i < 27; i++) {
1416
0
        static const struct { unsigned char p, i; } chain[27] = {
1417
0
            { 32, i_x32 }, { 6,  i_101111 }, { 5,  i_111    },
1418
0
            { 4,  i_11  }, { 5,  i_1111   }, { 5,  i_10101  },
1419
0
            { 4,  i_101 }, { 3,  i_101    }, { 3,  i_101    },
1420
0
            { 5,  i_111 }, { 9,  i_101111 }, { 6,  i_1111   },
1421
0
            { 2,  i_1   }, { 5,  i_1      }, { 6,  i_1111   },
1422
0
            { 5,  i_111 }, { 4,  i_111    }, { 5,  i_111    },
1423
0
            { 5,  i_101 }, { 3,  i_11     }, { 10, i_101111 },
1424
0
            { 2,  i_11  }, { 5,  i_11     }, { 5,  i_11     },
1425
0
            { 3,  i_1   }, { 7,  i_10101  }, { 6,  i_1111   }
1426
0
        };
1427
1428
0
        ecp_nistz256_ord_sqr_mont(out, out, chain[i].p);
1429
0
        ecp_nistz256_ord_mul_mont(out, out, table[chain[i].i]);
1430
0
    }
1431
0
#endif
1432
0
    ecp_nistz256_ord_mul_mont(out, out, one);
1433
1434
    /*
1435
     * Can't fail, but check return code to be consistent anyway.
1436
     */
1437
0
    if (!bn_set_words(r, out, P256_LIMBS))
1438
0
        goto err;
1439
1440
0
    ret = 1;
1441
0
err:
1442
0
    return ret;
1443
0
}
1444
#else
1445
# define ecp_nistz256_inv_mod_ord NULL
1446
#endif
1447
1448
static int ecp_nistz256group_full_init(EC_GROUP *group,
1449
0
                                       const unsigned char *params) {
1450
0
    BN_CTX *ctx = NULL;
1451
0
    BN_MONT_CTX *mont = NULL, *ordmont = NULL;
1452
0
    const int param_len = 32;
1453
0
    const int seed_len = 20;
1454
0
    int ok = 0;
1455
0
    uint32_t hi_order_n = 0xccd1c8aa;
1456
0
    uint32_t lo_order_n = 0xee00bc4f;
1457
0
    BIGNUM *p = NULL, *a = NULL, *b = NULL, *x = NULL, *y = NULL, *one = NULL,
1458
0
        *order = NULL;
1459
0
    EC_POINT *P = NULL;
1460
1461
0
    if ((ctx = BN_CTX_new_ex(group->libctx)) == NULL) {
1462
0
        ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
1463
0
        return 0;
1464
0
    }
1465
1466
0
    if (!EC_GROUP_set_seed(group, params, seed_len)) {
1467
0
        ERR_raise(ERR_LIB_EC, ERR_R_EC_LIB);
1468
0
        goto err;
1469
0
    }
1470
0
    params += seed_len;
1471
1472
0
    if ((p = BN_bin2bn(params + 0 * param_len, param_len, NULL)) == NULL
1473
0
        || (a = BN_bin2bn(params + 1 * param_len, param_len, NULL)) == NULL
1474
0
        || (b = BN_bin2bn(params + 2 * param_len, param_len, NULL)) == NULL) {
1475
0
        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1476
0
        goto err;
1477
0
    }
1478
1479
    /*
1480
     * Set up curve params and montgomery for field
1481
     * Start by setting up montgomery and one
1482
     */
1483
0
    mont = BN_MONT_CTX_new();
1484
0
    if (mont == NULL)
1485
0
        goto err;
1486
1487
0
    if (!ossl_bn_mont_ctx_set(mont, p, 256, params + 6 * param_len, param_len,
1488
0
                              1, 0))
1489
0
        goto err;
1490
1491
0
    one = BN_new();
1492
0
    if (one == NULL) {
1493
0
        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1494
0
        goto err;
1495
0
    }
1496
0
    if (!BN_to_montgomery(one, BN_value_one(), mont, ctx)){
1497
0
        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1498
0
        goto err;
1499
0
    }
1500
0
    group->field_data1 = mont;
1501
0
    mont = NULL;
1502
0
    group->field_data2 = one;
1503
0
    one = NULL;
1504
1505
0
    if (!ossl_ec_GFp_simple_group_set_curve(group, p, a, b, ctx)) {
1506
0
         ERR_raise(ERR_LIB_EC, ERR_R_EC_LIB);
1507
0
        goto err;
1508
0
    }
1509
1510
0
    if ((P = EC_POINT_new(group)) == NULL) {
1511
0
        ERR_raise(ERR_LIB_EC, ERR_R_EC_LIB);
1512
0
        goto err;
1513
0
    }
1514
1515
0
    if ((x = BN_bin2bn(params + 3 * param_len, param_len, NULL)) == NULL
1516
0
        || (y = BN_bin2bn(params + 4 * param_len, param_len, NULL)) == NULL) {
1517
0
        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1518
0
        goto err;
1519
0
    }
1520
0
    if (!EC_POINT_set_affine_coordinates(group, P, x, y, ctx)) {
1521
0
        ERR_raise(ERR_LIB_EC, ERR_R_EC_LIB);
1522
0
        goto err;
1523
0
    }
1524
0
    if ((order = BN_bin2bn(params + 5 * param_len, param_len, NULL)) == NULL
1525
0
        || !BN_set_word(x, (BN_ULONG)1)) { /* cofactor is 1 */
1526
0
        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1527
0
        goto err;
1528
0
    }
1529
1530
    /*
1531
     * Set up generator and order and montgomery data
1532
     */
1533
0
    group->generator = EC_POINT_new(group);
1534
0
    if (group->generator == NULL){
1535
0
        ERR_raise(ERR_LIB_EC, ERR_R_EC_LIB);
1536
0
        goto err;
1537
0
    }
1538
0
    if (!EC_POINT_copy(group->generator, P))
1539
0
        goto err;
1540
0
    if (!BN_copy(group->order, order))
1541
0
        goto err;
1542
0
    if (!BN_set_word(group->cofactor, 1))
1543
0
        goto err;
1544
1545
0
    ordmont = BN_MONT_CTX_new();
1546
0
    if (ordmont  == NULL)
1547
0
        goto err;
1548
0
    if (!ossl_bn_mont_ctx_set(ordmont, order, 256, params + 7 * param_len,
1549
0
                              param_len, lo_order_n, hi_order_n))
1550
0
        goto err;
1551
1552
0
    group->mont_data = ordmont;
1553
0
    ordmont = NULL;
1554
1555
0
    ok = 1;
1556
1557
0
 err:
1558
0
    EC_POINT_free(P);
1559
0
    BN_CTX_free(ctx);
1560
0
    BN_MONT_CTX_free(mont);
1561
0
    BN_MONT_CTX_free(ordmont);
1562
0
    BN_free(p);
1563
0
    BN_free(one);
1564
0
    BN_free(a);
1565
0
    BN_free(b);
1566
0
    BN_free(order);
1567
0
    BN_free(x);
1568
0
    BN_free(y);
1569
1570
0
    return ok;
1571
0
}
1572
1573
const EC_METHOD *EC_GFp_nistz256_method(void)
1574
0
{
1575
0
    static const EC_METHOD ret = {
1576
0
        EC_FLAGS_DEFAULT_OCT,
1577
0
        NID_X9_62_prime_field,
1578
0
        ossl_ec_GFp_mont_group_init,
1579
0
        ossl_ec_GFp_mont_group_finish,
1580
0
        ossl_ec_GFp_mont_group_clear_finish,
1581
0
        ossl_ec_GFp_mont_group_copy,
1582
0
        ossl_ec_GFp_mont_group_set_curve,
1583
0
        ossl_ec_GFp_simple_group_get_curve,
1584
0
        ossl_ec_GFp_simple_group_get_degree,
1585
0
        ossl_ec_group_simple_order_bits,
1586
0
        ossl_ec_GFp_simple_group_check_discriminant,
1587
0
        ossl_ec_GFp_simple_point_init,
1588
0
        ossl_ec_GFp_simple_point_finish,
1589
0
        ossl_ec_GFp_simple_point_clear_finish,
1590
0
        ossl_ec_GFp_simple_point_copy,
1591
0
        ossl_ec_GFp_simple_point_set_to_infinity,
1592
0
        ossl_ec_GFp_simple_point_set_affine_coordinates,
1593
0
        ecp_nistz256_get_affine,
1594
0
        0, 0, 0,
1595
0
        ossl_ec_GFp_simple_add,
1596
0
        ossl_ec_GFp_simple_dbl,
1597
0
        ossl_ec_GFp_simple_invert,
1598
0
        ossl_ec_GFp_simple_is_at_infinity,
1599
0
        ossl_ec_GFp_simple_is_on_curve,
1600
0
        ossl_ec_GFp_simple_cmp,
1601
0
        ossl_ec_GFp_simple_make_affine,
1602
0
        ossl_ec_GFp_simple_points_make_affine,
1603
0
        ecp_nistz256_points_mul,                    /* mul */
1604
0
        ecp_nistz256_mult_precompute,               /* precompute_mult */
1605
0
        ecp_nistz256_window_have_precompute_mult,   /* have_precompute_mult */
1606
0
        ossl_ec_GFp_mont_field_mul,
1607
0
        ossl_ec_GFp_mont_field_sqr,
1608
0
        0,                                          /* field_div */
1609
0
        ossl_ec_GFp_mont_field_inv,
1610
0
        ossl_ec_GFp_mont_field_encode,
1611
0
        ossl_ec_GFp_mont_field_decode,
1612
0
        ossl_ec_GFp_mont_field_set_to_one,
1613
0
        ossl_ec_key_simple_priv2oct,
1614
0
        ossl_ec_key_simple_oct2priv,
1615
0
        0, /* set private */
1616
0
        ossl_ec_key_simple_generate_key,
1617
0
        ossl_ec_key_simple_check_key,
1618
0
        ossl_ec_key_simple_generate_public_key,
1619
0
        0, /* keycopy */
1620
0
        0, /* keyfinish */
1621
0
        ossl_ecdh_simple_compute_key,
1622
0
        ossl_ecdsa_simple_sign_setup,
1623
0
        ossl_ecdsa_simple_sign_sig,
1624
0
        ossl_ecdsa_simple_verify_sig,
1625
0
        ecp_nistz256_inv_mod_ord,                   /* can be #define-d NULL */
1626
0
        0,                                          /* blind_coordinates */
1627
0
        0,                                          /* ladder_pre */
1628
0
        0,                                          /* ladder_step */
1629
0
        0,                                          /* ladder_post */
1630
0
        ecp_nistz256group_full_init
1631
0
    };
1632
1633
0
    return &ret;
1634
0
}