Coverage Report

Created: 2025-06-13 06:55

/src/openssl/crypto/bn/bn_sqrt.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 2000-2022 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
#include "internal/cryptlib.h"
11
#include "bn_local.h"
12
13
BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
14
/*
15
 * Returns 'ret' such that ret^2 == a (mod p), using the Tonelli/Shanks
16
 * algorithm (cf. Henri Cohen, "A Course in Algebraic Computational Number
17
 * Theory", algorithm 1.5.1). 'p' must be prime, otherwise an error or
18
 * an incorrect "result" will be returned.
19
 */
20
0
{
21
0
    BIGNUM *ret = in;
22
0
    int err = 1;
23
0
    int r;
24
0
    BIGNUM *A, *b, *q, *t, *x, *y;
25
0
    int e, i, j;
26
0
    int used_ctx = 0;
27
28
0
    if (!BN_is_odd(p) || BN_abs_is_word(p, 1)) {
29
0
        if (BN_abs_is_word(p, 2)) {
30
0
            if (ret == NULL)
31
0
                ret = BN_new();
32
0
            if (ret == NULL)
33
0
                goto end;
34
0
            if (!BN_set_word(ret, BN_is_bit_set(a, 0))) {
35
0
                if (ret != in)
36
0
                    BN_free(ret);
37
0
                return NULL;
38
0
            }
39
0
            bn_check_top(ret);
40
0
            return ret;
41
0
        }
42
43
0
        ERR_raise(ERR_LIB_BN, BN_R_P_IS_NOT_PRIME);
44
0
        return NULL;
45
0
    }
46
47
0
    if (BN_is_zero(a) || BN_is_one(a)) {
48
0
        if (ret == NULL)
49
0
            ret = BN_new();
50
0
        if (ret == NULL)
51
0
            goto end;
52
0
        if (!BN_set_word(ret, BN_is_one(a))) {
53
0
            if (ret != in)
54
0
                BN_free(ret);
55
0
            return NULL;
56
0
        }
57
0
        bn_check_top(ret);
58
0
        return ret;
59
0
    }
60
61
0
    BN_CTX_start(ctx);
62
0
    used_ctx = 1;
63
0
    A = BN_CTX_get(ctx);
64
0
    b = BN_CTX_get(ctx);
65
0
    q = BN_CTX_get(ctx);
66
0
    t = BN_CTX_get(ctx);
67
0
    x = BN_CTX_get(ctx);
68
0
    y = BN_CTX_get(ctx);
69
0
    if (y == NULL)
70
0
        goto end;
71
72
0
    if (ret == NULL)
73
0
        ret = BN_new();
74
0
    if (ret == NULL)
75
0
        goto end;
76
77
    /* A = a mod p */
78
0
    if (!BN_nnmod(A, a, p, ctx))
79
0
        goto end;
80
81
    /* now write  |p| - 1  as  2^e*q  where  q  is odd */
82
0
    e = 1;
83
0
    while (!BN_is_bit_set(p, e))
84
0
        e++;
85
    /* we'll set  q  later (if needed) */
86
87
0
    if (e == 1) {
88
        /*-
89
         * The easy case:  (|p|-1)/2  is odd, so 2 has an inverse
90
         * modulo  (|p|-1)/2,  and square roots can be computed
91
         * directly by modular exponentiation.
92
         * We have
93
         *     2 * (|p|+1)/4 == 1   (mod (|p|-1)/2),
94
         * so we can use exponent  (|p|+1)/4,  i.e.  (|p|-3)/4 + 1.
95
         */
96
0
        if (!BN_rshift(q, p, 2))
97
0
            goto end;
98
0
        q->neg = 0;
99
0
        if (!BN_add_word(q, 1))
100
0
            goto end;
101
0
        if (!BN_mod_exp(ret, A, q, p, ctx))
102
0
            goto end;
103
0
        err = 0;
104
0
        goto vrfy;
105
0
    }
106
107
0
    if (e == 2) {
108
        /*-
109
         * |p| == 5  (mod 8)
110
         *
111
         * In this case  2  is always a non-square since
112
         * Legendre(2,p) = (-1)^((p^2-1)/8)  for any odd prime.
113
         * So if  a  really is a square, then  2*a  is a non-square.
114
         * Thus for
115
         *      b := (2*a)^((|p|-5)/8),
116
         *      i := (2*a)*b^2
117
         * we have
118
         *     i^2 = (2*a)^((1 + (|p|-5)/4)*2)
119
         *         = (2*a)^((p-1)/2)
120
         *         = -1;
121
         * so if we set
122
         *      x := a*b*(i-1),
123
         * then
124
         *     x^2 = a^2 * b^2 * (i^2 - 2*i + 1)
125
         *         = a^2 * b^2 * (-2*i)
126
         *         = a*(-i)*(2*a*b^2)
127
         *         = a*(-i)*i
128
         *         = a.
129
         *
130
         * (This is due to A.O.L. Atkin,
131
         * Subject: Square Roots and Cognate Matters modulo p=8n+5.
132
         * URL: https://listserv.nodak.edu/cgi-bin/wa.exe?A2=ind9211&L=NMBRTHRY&P=4026
133
         * November 1992.)
134
         */
135
136
        /* t := 2*a */
137
0
        if (!BN_mod_lshift1_quick(t, A, p))
138
0
            goto end;
139
140
        /* b := (2*a)^((|p|-5)/8) */
141
0
        if (!BN_rshift(q, p, 3))
142
0
            goto end;
143
0
        q->neg = 0;
144
0
        if (!BN_mod_exp(b, t, q, p, ctx))
145
0
            goto end;
146
147
        /* y := b^2 */
148
0
        if (!BN_mod_sqr(y, b, p, ctx))
149
0
            goto end;
150
151
        /* t := (2*a)*b^2 - 1 */
152
0
        if (!BN_mod_mul(t, t, y, p, ctx))
153
0
            goto end;
154
0
        if (!BN_sub_word(t, 1))
155
0
            goto end;
156
157
        /* x = a*b*t */
158
0
        if (!BN_mod_mul(x, A, b, p, ctx))
159
0
            goto end;
160
0
        if (!BN_mod_mul(x, x, t, p, ctx))
161
0
            goto end;
162
163
0
        if (!BN_copy(ret, x))
164
0
            goto end;
165
0
        err = 0;
166
0
        goto vrfy;
167
0
    }
168
169
    /*
170
     * e > 2, so we really have to use the Tonelli/Shanks algorithm. First,
171
     * find some y that is not a square.
172
     */
173
0
    if (!BN_copy(q, p))
174
0
        goto end;               /* use 'q' as temp */
175
0
    q->neg = 0;
176
0
    i = 2;
177
0
    do {
178
        /*
179
         * For efficiency, try small numbers first; if this fails, try random
180
         * numbers.
181
         */
182
0
        if (i < 22) {
183
0
            if (!BN_set_word(y, i))
184
0
                goto end;
185
0
        } else {
186
0
            if (!BN_priv_rand_ex(y, BN_num_bits(p), 0, 0, 0, ctx))
187
0
                goto end;
188
0
            if (BN_ucmp(y, p) >= 0) {
189
0
                if (!(p->neg ? BN_add : BN_sub) (y, y, p))
190
0
                    goto end;
191
0
            }
192
            /* now 0 <= y < |p| */
193
0
            if (BN_is_zero(y))
194
0
                if (!BN_set_word(y, i))
195
0
                    goto end;
196
0
        }
197
198
0
        r = BN_kronecker(y, q, ctx); /* here 'q' is |p| */
199
0
        if (r < -1)
200
0
            goto end;
201
0
        if (r == 0) {
202
            /* m divides p */
203
0
            ERR_raise(ERR_LIB_BN, BN_R_P_IS_NOT_PRIME);
204
0
            goto end;
205
0
        }
206
0
    }
207
0
    while (r == 1 && ++i < 82);
208
209
0
    if (r != -1) {
210
        /*
211
         * Many rounds and still no non-square -- this is more likely a bug
212
         * than just bad luck. Even if p is not prime, we should have found
213
         * some y such that r == -1.
214
         */
215
0
        ERR_raise(ERR_LIB_BN, BN_R_TOO_MANY_ITERATIONS);
216
0
        goto end;
217
0
    }
218
219
    /* Here's our actual 'q': */
220
0
    if (!BN_rshift(q, q, e))
221
0
        goto end;
222
223
    /*
224
     * Now that we have some non-square, we can find an element of order 2^e
225
     * by computing its q'th power.
226
     */
227
0
    if (!BN_mod_exp(y, y, q, p, ctx))
228
0
        goto end;
229
0
    if (BN_is_one(y)) {
230
0
        ERR_raise(ERR_LIB_BN, BN_R_P_IS_NOT_PRIME);
231
0
        goto end;
232
0
    }
233
234
    /*-
235
     * Now we know that (if  p  is indeed prime) there is an integer
236
     * k,  0 <= k < 2^e,  such that
237
     *
238
     *      a^q * y^k == 1   (mod p).
239
     *
240
     * As  a^q  is a square and  y  is not,  k  must be even.
241
     * q+1  is even, too, so there is an element
242
     *
243
     *     X := a^((q+1)/2) * y^(k/2),
244
     *
245
     * and it satisfies
246
     *
247
     *     X^2 = a^q * a     * y^k
248
     *         = a,
249
     *
250
     * so it is the square root that we are looking for.
251
     */
252
253
    /* t := (q-1)/2  (note that  q  is odd) */
254
0
    if (!BN_rshift1(t, q))
255
0
        goto end;
256
257
    /* x := a^((q-1)/2) */
258
0
    if (BN_is_zero(t)) {        /* special case: p = 2^e + 1 */
259
0
        if (!BN_nnmod(t, A, p, ctx))
260
0
            goto end;
261
0
        if (BN_is_zero(t)) {
262
            /* special case: a == 0  (mod p) */
263
0
            BN_zero(ret);
264
0
            err = 0;
265
0
            goto end;
266
0
        } else if (!BN_one(x))
267
0
            goto end;
268
0
    } else {
269
0
        if (!BN_mod_exp(x, A, t, p, ctx))
270
0
            goto end;
271
0
        if (BN_is_zero(x)) {
272
            /* special case: a == 0  (mod p) */
273
0
            BN_zero(ret);
274
0
            err = 0;
275
0
            goto end;
276
0
        }
277
0
    }
278
279
    /* b := a*x^2  (= a^q) */
280
0
    if (!BN_mod_sqr(b, x, p, ctx))
281
0
        goto end;
282
0
    if (!BN_mod_mul(b, b, A, p, ctx))
283
0
        goto end;
284
285
    /* x := a*x    (= a^((q+1)/2)) */
286
0
    if (!BN_mod_mul(x, x, A, p, ctx))
287
0
        goto end;
288
289
0
    while (1) {
290
        /*-
291
         * Now  b  is  a^q * y^k  for some even  k  (0 <= k < 2^E
292
         * where  E  refers to the original value of  e,  which we
293
         * don't keep in a variable),  and  x  is  a^((q+1)/2) * y^(k/2).
294
         *
295
         * We have  a*b = x^2,
296
         *    y^2^(e-1) = -1,
297
         *    b^2^(e-1) = 1.
298
         */
299
300
0
        if (BN_is_one(b)) {
301
0
            if (!BN_copy(ret, x))
302
0
                goto end;
303
0
            err = 0;
304
0
            goto vrfy;
305
0
        }
306
307
        /* Find the smallest i, 0 < i < e, such that b^(2^i) = 1. */
308
0
        for (i = 1; i < e; i++) {
309
0
            if (i == 1) {
310
0
                if (!BN_mod_sqr(t, b, p, ctx))
311
0
                    goto end;
312
313
0
            } else {
314
0
                if (!BN_mod_mul(t, t, t, p, ctx))
315
0
                    goto end;
316
0
            }
317
0
            if (BN_is_one(t))
318
0
                break;
319
0
        }
320
        /* If not found, a is not a square or p is not prime. */
321
0
        if (i >= e) {
322
0
            ERR_raise(ERR_LIB_BN, BN_R_NOT_A_SQUARE);
323
0
            goto end;
324
0
        }
325
326
        /* t := y^2^(e - i - 1) */
327
0
        if (!BN_copy(t, y))
328
0
            goto end;
329
0
        for (j = e - i - 1; j > 0; j--) {
330
0
            if (!BN_mod_sqr(t, t, p, ctx))
331
0
                goto end;
332
0
        }
333
0
        if (!BN_mod_mul(y, t, t, p, ctx))
334
0
            goto end;
335
0
        if (!BN_mod_mul(x, x, t, p, ctx))
336
0
            goto end;
337
0
        if (!BN_mod_mul(b, b, y, p, ctx))
338
0
            goto end;
339
0
        e = i;
340
0
    }
341
342
0
 vrfy:
343
0
    if (!err) {
344
        /*
345
         * verify the result -- the input might have been not a square (test
346
         * added in 0.9.8)
347
         */
348
349
0
        if (!BN_mod_sqr(x, ret, p, ctx))
350
0
            err = 1;
351
352
0
        if (!err && 0 != BN_cmp(x, A)) {
353
0
            ERR_raise(ERR_LIB_BN, BN_R_NOT_A_SQUARE);
354
0
            err = 1;
355
0
        }
356
0
    }
357
358
0
 end:
359
0
    if (err) {
360
0
        if (ret != in)
361
0
            BN_clear_free(ret);
362
0
        ret = NULL;
363
0
    }
364
0
    if (used_ctx)
365
0
        BN_CTX_end(ctx);
366
0
    bn_check_top(ret);
367
0
    return ret;
368
0
}