Coverage Report

Created: 2025-06-13 06:55

/src/openssl/crypto/ec/ecp_nistp224.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 2010-2023 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
/* Copyright 2011 Google Inc.
11
 *
12
 * Licensed under the Apache License, Version 2.0 (the "License");
13
 *
14
 * you may not use this file except in compliance with the License.
15
 * You may obtain a copy of the License at
16
 *
17
 *     http://www.apache.org/licenses/LICENSE-2.0
18
 *
19
 *  Unless required by applicable law or agreed to in writing, software
20
 *  distributed under the License is distributed on an "AS IS" BASIS,
21
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
22
 *  See the License for the specific language governing permissions and
23
 *  limitations under the License.
24
 */
25
26
/*
27
 * ECDSA low level APIs are deprecated for public use, but still ok for
28
 * internal use.
29
 */
30
#include "internal/deprecated.h"
31
32
/*
33
 * A 64-bit implementation of the NIST P-224 elliptic curve point multiplication
34
 *
35
 * Inspired by Daniel J. Bernstein's public domain nistp224 implementation
36
 * and Adam Langley's public domain 64-bit C implementation of curve25519
37
 */
38
39
#include <openssl/opensslconf.h>
40
41
#include <stdint.h>
42
#include <string.h>
43
#include <openssl/err.h>
44
#include "ec_local.h"
45
46
#include "internal/numbers.h"
47
48
#ifndef INT128_MAX
49
# error "Your compiler doesn't appear to support 128-bit integer types"
50
#endif
51
52
typedef uint8_t u8;
53
typedef uint64_t u64;
54
55
/******************************************************************************/
56
/*-
57
 * INTERNAL REPRESENTATION OF FIELD ELEMENTS
58
 *
59
 * Field elements are represented as a_0 + 2^56*a_1 + 2^112*a_2 + 2^168*a_3
60
 * using 64-bit coefficients called 'limbs',
61
 * and sometimes (for multiplication results) as
62
 * b_0 + 2^56*b_1 + 2^112*b_2 + 2^168*b_3 + 2^224*b_4 + 2^280*b_5 + 2^336*b_6
63
 * using 128-bit coefficients called 'widelimbs'.
64
 * A 4-limb representation is an 'felem';
65
 * a 7-widelimb representation is a 'widefelem'.
66
 * Even within felems, bits of adjacent limbs overlap, and we don't always
67
 * reduce the representations: we ensure that inputs to each felem
68
 * multiplication satisfy a_i < 2^60, so outputs satisfy b_i < 4*2^60*2^60,
69
 * and fit into a 128-bit word without overflow. The coefficients are then
70
 * again partially reduced to obtain an felem satisfying a_i < 2^57.
71
 * We only reduce to the unique minimal representation at the end of the
72
 * computation.
73
 */
74
75
typedef uint64_t limb;
76
typedef uint64_t limb_aX __attribute((__aligned__(1)));
77
typedef uint128_t widelimb;
78
79
typedef limb felem[4];
80
typedef widelimb widefelem[7];
81
82
/*
83
 * Field element represented as a byte array. 28*8 = 224 bits is also the
84
 * group order size for the elliptic curve, and we also use this type for
85
 * scalars for point multiplication.
86
 */
87
typedef u8 felem_bytearray[28];
88
89
static const felem_bytearray nistp224_curve_params[5] = {
90
    {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* p */
91
     0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00,
92
     0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01},
93
    {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* a */
94
     0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF,
95
     0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE},
96
    {0xB4, 0x05, 0x0A, 0x85, 0x0C, 0x04, 0xB3, 0xAB, 0xF5, 0x41, /* b */
97
     0x32, 0x56, 0x50, 0x44, 0xB0, 0xB7, 0xD7, 0xBF, 0xD8, 0xBA,
98
     0x27, 0x0B, 0x39, 0x43, 0x23, 0x55, 0xFF, 0xB4},
99
    {0xB7, 0x0E, 0x0C, 0xBD, 0x6B, 0xB4, 0xBF, 0x7F, 0x32, 0x13, /* x */
100
     0x90, 0xB9, 0x4A, 0x03, 0xC1, 0xD3, 0x56, 0xC2, 0x11, 0x22,
101
     0x34, 0x32, 0x80, 0xD6, 0x11, 0x5C, 0x1D, 0x21},
102
    {0xbd, 0x37, 0x63, 0x88, 0xb5, 0xf7, 0x23, 0xfb, 0x4c, 0x22, /* y */
103
     0xdf, 0xe6, 0xcd, 0x43, 0x75, 0xa0, 0x5a, 0x07, 0x47, 0x64,
104
     0x44, 0xd5, 0x81, 0x99, 0x85, 0x00, 0x7e, 0x34}
105
};
106
107
/*-
108
 * Precomputed multiples of the standard generator
109
 * Points are given in coordinates (X, Y, Z) where Z normally is 1
110
 * (0 for the point at infinity).
111
 * For each field element, slice a_0 is word 0, etc.
112
 *
113
 * The table has 2 * 16 elements, starting with the following:
114
 * index | bits    | point
115
 * ------+---------+------------------------------
116
 *     0 | 0 0 0 0 | 0G
117
 *     1 | 0 0 0 1 | 1G
118
 *     2 | 0 0 1 0 | 2^56G
119
 *     3 | 0 0 1 1 | (2^56 + 1)G
120
 *     4 | 0 1 0 0 | 2^112G
121
 *     5 | 0 1 0 1 | (2^112 + 1)G
122
 *     6 | 0 1 1 0 | (2^112 + 2^56)G
123
 *     7 | 0 1 1 1 | (2^112 + 2^56 + 1)G
124
 *     8 | 1 0 0 0 | 2^168G
125
 *     9 | 1 0 0 1 | (2^168 + 1)G
126
 *    10 | 1 0 1 0 | (2^168 + 2^56)G
127
 *    11 | 1 0 1 1 | (2^168 + 2^56 + 1)G
128
 *    12 | 1 1 0 0 | (2^168 + 2^112)G
129
 *    13 | 1 1 0 1 | (2^168 + 2^112 + 1)G
130
 *    14 | 1 1 1 0 | (2^168 + 2^112 + 2^56)G
131
 *    15 | 1 1 1 1 | (2^168 + 2^112 + 2^56 + 1)G
132
 * followed by a copy of this with each element multiplied by 2^28.
133
 *
134
 * The reason for this is so that we can clock bits into four different
135
 * locations when doing simple scalar multiplies against the base point,
136
 * and then another four locations using the second 16 elements.
137
 */
138
static const felem gmul[2][16][3] = {
139
{{{0, 0, 0, 0},
140
  {0, 0, 0, 0},
141
  {0, 0, 0, 0}},
142
 {{0x3280d6115c1d21, 0xc1d356c2112234, 0x7f321390b94a03, 0xb70e0cbd6bb4bf},
143
  {0xd5819985007e34, 0x75a05a07476444, 0xfb4c22dfe6cd43, 0xbd376388b5f723},
144
  {1, 0, 0, 0}},
145
 {{0xfd9675666ebbe9, 0xbca7664d40ce5e, 0x2242df8d8a2a43, 0x1f49bbb0f99bc5},
146
  {0x29e0b892dc9c43, 0xece8608436e662, 0xdc858f185310d0, 0x9812dd4eb8d321},
147
  {1, 0, 0, 0}},
148
 {{0x6d3e678d5d8eb8, 0x559eed1cb362f1, 0x16e9a3bbce8a3f, 0xeedcccd8c2a748},
149
  {0xf19f90ed50266d, 0xabf2b4bf65f9df, 0x313865468fafec, 0x5cb379ba910a17},
150
  {1, 0, 0, 0}},
151
 {{0x0641966cab26e3, 0x91fb2991fab0a0, 0xefec27a4e13a0b, 0x0499aa8a5f8ebe},
152
  {0x7510407766af5d, 0x84d929610d5450, 0x81d77aae82f706, 0x6916f6d4338c5b},
153
  {1, 0, 0, 0}},
154
 {{0xea95ac3b1f15c6, 0x086000905e82d4, 0xdd323ae4d1c8b1, 0x932b56be7685a3},
155
  {0x9ef93dea25dbbf, 0x41665960f390f0, 0xfdec76dbe2a8a7, 0x523e80f019062a},
156
  {1, 0, 0, 0}},
157
 {{0x822fdd26732c73, 0xa01c83531b5d0f, 0x363f37347c1ba4, 0xc391b45c84725c},
158
  {0xbbd5e1b2d6ad24, 0xddfbcde19dfaec, 0xc393da7e222a7f, 0x1efb7890ede244},
159
  {1, 0, 0, 0}},
160
 {{0x4c9e90ca217da1, 0xd11beca79159bb, 0xff8d33c2c98b7c, 0x2610b39409f849},
161
  {0x44d1352ac64da0, 0xcdbb7b2c46b4fb, 0x966c079b753c89, 0xfe67e4e820b112},
162
  {1, 0, 0, 0}},
163
 {{0xe28cae2df5312d, 0xc71b61d16f5c6e, 0x79b7619a3e7c4c, 0x05c73240899b47},
164
  {0x9f7f6382c73e3a, 0x18615165c56bda, 0x641fab2116fd56, 0x72855882b08394},
165
  {1, 0, 0, 0}},
166
 {{0x0469182f161c09, 0x74a98ca8d00fb5, 0xb89da93489a3e0, 0x41c98768fb0c1d},
167
  {0xe5ea05fb32da81, 0x3dce9ffbca6855, 0x1cfe2d3fbf59e6, 0x0e5e03408738a7},
168
  {1, 0, 0, 0}},
169
 {{0xdab22b2333e87f, 0x4430137a5dd2f6, 0xe03ab9f738beb8, 0xcb0c5d0dc34f24},
170
  {0x764a7df0c8fda5, 0x185ba5c3fa2044, 0x9281d688bcbe50, 0xc40331df893881},
171
  {1, 0, 0, 0}},
172
 {{0xb89530796f0f60, 0xade92bd26909a3, 0x1a0c83fb4884da, 0x1765bf22a5a984},
173
  {0x772a9ee75db09e, 0x23bc6c67cec16f, 0x4c1edba8b14e2f, 0xe2a215d9611369},
174
  {1, 0, 0, 0}},
175
 {{0x571e509fb5efb3, 0xade88696410552, 0xc8ae85fada74fe, 0x6c7e4be83bbde3},
176
  {0xff9f51160f4652, 0xb47ce2495a6539, 0xa2946c53b582f4, 0x286d2db3ee9a60},
177
  {1, 0, 0, 0}},
178
 {{0x40bbd5081a44af, 0x0995183b13926c, 0xbcefba6f47f6d0, 0x215619e9cc0057},
179
  {0x8bc94d3b0df45e, 0xf11c54a3694f6f, 0x8631b93cdfe8b5, 0xe7e3f4b0982db9},
180
  {1, 0, 0, 0}},
181
 {{0xb17048ab3e1c7b, 0xac38f36ff8a1d8, 0x1c29819435d2c6, 0xc813132f4c07e9},
182
  {0x2891425503b11f, 0x08781030579fea, 0xf5426ba5cc9674, 0x1e28ebf18562bc},
183
  {1, 0, 0, 0}},
184
 {{0x9f31997cc864eb, 0x06cd91d28b5e4c, 0xff17036691a973, 0xf1aef351497c58},
185
  {0xdd1f2d600564ff, 0xdead073b1402db, 0x74a684435bd693, 0xeea7471f962558},
186
  {1, 0, 0, 0}}},
187
{{{0, 0, 0, 0},
188
  {0, 0, 0, 0},
189
  {0, 0, 0, 0}},
190
 {{0x9665266dddf554, 0x9613d78b60ef2d, 0xce27a34cdba417, 0xd35ab74d6afc31},
191
  {0x85ccdd22deb15e, 0x2137e5783a6aab, 0xa141cffd8c93c6, 0x355a1830e90f2d},
192
  {1, 0, 0, 0}},
193
 {{0x1a494eadaade65, 0xd6da4da77fe53c, 0xe7992996abec86, 0x65c3553c6090e3},
194
  {0xfa610b1fb09346, 0xf1c6540b8a4aaf, 0xc51a13ccd3cbab, 0x02995b1b18c28a},
195
  {1, 0, 0, 0}},
196
 {{0x7874568e7295ef, 0x86b419fbe38d04, 0xdc0690a7550d9a, 0xd3966a44beac33},
197
  {0x2b7280ec29132f, 0xbeaa3b6a032df3, 0xdc7dd88ae41200, 0xd25e2513e3a100},
198
  {1, 0, 0, 0}},
199
 {{0x924857eb2efafd, 0xac2bce41223190, 0x8edaa1445553fc, 0x825800fd3562d5},
200
  {0x8d79148ea96621, 0x23a01c3dd9ed8d, 0xaf8b219f9416b5, 0xd8db0cc277daea},
201
  {1, 0, 0, 0}},
202
 {{0x76a9c3b1a700f0, 0xe9acd29bc7e691, 0x69212d1a6b0327, 0x6322e97fe154be},
203
  {0x469fc5465d62aa, 0x8d41ed18883b05, 0x1f8eae66c52b88, 0xe4fcbe9325be51},
204
  {1, 0, 0, 0}},
205
 {{0x825fdf583cac16, 0x020b857c7b023a, 0x683c17744b0165, 0x14ffd0a2daf2f1},
206
  {0x323b36184218f9, 0x4944ec4e3b47d4, 0xc15b3080841acf, 0x0bced4b01a28bb},
207
  {1, 0, 0, 0}},
208
 {{0x92ac22230df5c4, 0x52f33b4063eda8, 0xcb3f19870c0c93, 0x40064f2ba65233},
209
  {0xfe16f0924f8992, 0x012da25af5b517, 0x1a57bb24f723a6, 0x06f8bc76760def},
210
  {1, 0, 0, 0}},
211
 {{0x4a7084f7817cb9, 0xbcab0738ee9a78, 0x3ec11e11d9c326, 0xdc0fe90e0f1aae},
212
  {0xcf639ea5f98390, 0x5c350aa22ffb74, 0x9afae98a4047b7, 0x956ec2d617fc45},
213
  {1, 0, 0, 0}},
214
 {{0x4306d648c1be6a, 0x9247cd8bc9a462, 0xf5595e377d2f2e, 0xbd1c3caff1a52e},
215
  {0x045e14472409d0, 0x29f3e17078f773, 0x745a602b2d4f7d, 0x191837685cdfbb},
216
  {1, 0, 0, 0}},
217
 {{0x5b6ee254a8cb79, 0x4953433f5e7026, 0xe21faeb1d1def4, 0xc4c225785c09de},
218
  {0x307ce7bba1e518, 0x31b125b1036db8, 0x47e91868839e8f, 0xc765866e33b9f3},
219
  {1, 0, 0, 0}},
220
 {{0x3bfece24f96906, 0x4794da641e5093, 0xde5df64f95db26, 0x297ecd89714b05},
221
  {0x701bd3ebb2c3aa, 0x7073b4f53cb1d5, 0x13c5665658af16, 0x9895089d66fe58},
222
  {1, 0, 0, 0}},
223
 {{0x0fef05f78c4790, 0x2d773633b05d2e, 0x94229c3a951c94, 0xbbbd70df4911bb},
224
  {0xb2c6963d2c1168, 0x105f47a72b0d73, 0x9fdf6111614080, 0x7b7e94b39e67b0},
225
  {1, 0, 0, 0}},
226
 {{0xad1a7d6efbe2b3, 0xf012482c0da69d, 0x6b3bdf12438345, 0x40d7558d7aa4d9},
227
  {0x8a09fffb5c6d3d, 0x9a356e5d9ffd38, 0x5973f15f4f9b1c, 0xdcd5f59f63c3ea},
228
  {1, 0, 0, 0}},
229
 {{0xacf39f4c5ca7ab, 0x4c8071cc5fd737, 0xc64e3602cd1184, 0x0acd4644c9abba},
230
  {0x6c011a36d8bf6e, 0xfecd87ba24e32a, 0x19f6f56574fad8, 0x050b204ced9405},
231
  {1, 0, 0, 0}},
232
 {{0xed4f1cae7d9a96, 0x5ceef7ad94c40a, 0x778e4a3bf3ef9b, 0x7405783dc3b55e},
233
  {0x32477c61b6e8c6, 0xb46a97570f018b, 0x91176d0a7e95d1, 0x3df90fbc4c7d0e},
234
  {1, 0, 0, 0}}}
235
};
236
237
/* Precomputation for the group generator. */
238
struct nistp224_pre_comp_st {
239
    felem g_pre_comp[2][16][3];
240
    CRYPTO_REF_COUNT references;
241
};
242
243
const EC_METHOD *EC_GFp_nistp224_method(void)
244
0
{
245
0
    static const EC_METHOD ret = {
246
0
        EC_FLAGS_DEFAULT_OCT,
247
0
        NID_X9_62_prime_field,
248
0
        ossl_ec_GFp_nistp224_group_init,
249
0
        ossl_ec_GFp_simple_group_finish,
250
0
        ossl_ec_GFp_simple_group_clear_finish,
251
0
        ossl_ec_GFp_nist_group_copy,
252
0
        ossl_ec_GFp_nistp224_group_set_curve,
253
0
        ossl_ec_GFp_simple_group_get_curve,
254
0
        ossl_ec_GFp_simple_group_get_degree,
255
0
        ossl_ec_group_simple_order_bits,
256
0
        ossl_ec_GFp_simple_group_check_discriminant,
257
0
        ossl_ec_GFp_simple_point_init,
258
0
        ossl_ec_GFp_simple_point_finish,
259
0
        ossl_ec_GFp_simple_point_clear_finish,
260
0
        ossl_ec_GFp_simple_point_copy,
261
0
        ossl_ec_GFp_simple_point_set_to_infinity,
262
0
        ossl_ec_GFp_simple_point_set_affine_coordinates,
263
0
        ossl_ec_GFp_nistp224_point_get_affine_coordinates,
264
0
        0 /* point_set_compressed_coordinates */ ,
265
0
        0 /* point2oct */ ,
266
0
        0 /* oct2point */ ,
267
0
        ossl_ec_GFp_simple_add,
268
0
        ossl_ec_GFp_simple_dbl,
269
0
        ossl_ec_GFp_simple_invert,
270
0
        ossl_ec_GFp_simple_is_at_infinity,
271
0
        ossl_ec_GFp_simple_is_on_curve,
272
0
        ossl_ec_GFp_simple_cmp,
273
0
        ossl_ec_GFp_simple_make_affine,
274
0
        ossl_ec_GFp_simple_points_make_affine,
275
0
        ossl_ec_GFp_nistp224_points_mul,
276
0
        ossl_ec_GFp_nistp224_precompute_mult,
277
0
        ossl_ec_GFp_nistp224_have_precompute_mult,
278
0
        ossl_ec_GFp_nist_field_mul,
279
0
        ossl_ec_GFp_nist_field_sqr,
280
0
        0 /* field_div */ ,
281
0
        ossl_ec_GFp_simple_field_inv,
282
0
        0 /* field_encode */ ,
283
0
        0 /* field_decode */ ,
284
0
        0,                      /* field_set_to_one */
285
0
        ossl_ec_key_simple_priv2oct,
286
0
        ossl_ec_key_simple_oct2priv,
287
0
        0, /* set private */
288
0
        ossl_ec_key_simple_generate_key,
289
0
        ossl_ec_key_simple_check_key,
290
0
        ossl_ec_key_simple_generate_public_key,
291
0
        0, /* keycopy */
292
0
        0, /* keyfinish */
293
0
        ossl_ecdh_simple_compute_key,
294
0
        ossl_ecdsa_simple_sign_setup,
295
0
        ossl_ecdsa_simple_sign_sig,
296
0
        ossl_ecdsa_simple_verify_sig,
297
0
        0, /* field_inverse_mod_ord */
298
0
        0, /* blind_coordinates */
299
0
        0, /* ladder_pre */
300
0
        0, /* ladder_step */
301
0
        0  /* ladder_post */
302
0
    };
303
304
0
    return &ret;
305
0
}
306
307
/*
308
 * Helper functions to convert field elements to/from internal representation
309
 */
310
static void bin28_to_felem(felem out, const u8 in[28])
311
0
{
312
0
    out[0] = *((const limb *)(in)) & 0x00ffffffffffffff;
313
0
    out[1] = (*((const limb_aX *)(in + 7))) & 0x00ffffffffffffff;
314
0
    out[2] = (*((const limb_aX *)(in + 14))) & 0x00ffffffffffffff;
315
0
    out[3] = (*((const limb_aX *)(in + 20))) >> 8;
316
0
}
317
318
static void felem_to_bin28(u8 out[28], const felem in)
319
0
{
320
0
    unsigned i;
321
0
    for (i = 0; i < 7; ++i) {
322
0
        out[i] = in[0] >> (8 * i);
323
0
        out[i + 7] = in[1] >> (8 * i);
324
0
        out[i + 14] = in[2] >> (8 * i);
325
0
        out[i + 21] = in[3] >> (8 * i);
326
0
    }
327
0
}
328
329
/* From OpenSSL BIGNUM to internal representation */
330
static int BN_to_felem(felem out, const BIGNUM *bn)
331
0
{
332
0
    felem_bytearray b_out;
333
0
    int num_bytes;
334
335
0
    if (BN_is_negative(bn)) {
336
0
        ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE);
337
0
        return 0;
338
0
    }
339
0
    num_bytes = BN_bn2lebinpad(bn, b_out, sizeof(b_out));
340
0
    if (num_bytes < 0) {
341
0
        ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE);
342
0
        return 0;
343
0
    }
344
0
    bin28_to_felem(out, b_out);
345
0
    return 1;
346
0
}
347
348
/* From internal representation to OpenSSL BIGNUM */
349
static BIGNUM *felem_to_BN(BIGNUM *out, const felem in)
350
0
{
351
0
    felem_bytearray b_out;
352
0
    felem_to_bin28(b_out, in);
353
0
    return BN_lebin2bn(b_out, sizeof(b_out), out);
354
0
}
355
356
/******************************************************************************/
357
/*-
358
 *                              FIELD OPERATIONS
359
 *
360
 * Field operations, using the internal representation of field elements.
361
 * NB! These operations are specific to our point multiplication and cannot be
362
 * expected to be correct in general - e.g., multiplication with a large scalar
363
 * will cause an overflow.
364
 *
365
 */
366
367
static void felem_one(felem out)
368
0
{
369
0
    out[0] = 1;
370
0
    out[1] = 0;
371
0
    out[2] = 0;
372
0
    out[3] = 0;
373
0
}
374
375
static void felem_assign(felem out, const felem in)
376
0
{
377
0
    out[0] = in[0];
378
0
    out[1] = in[1];
379
0
    out[2] = in[2];
380
0
    out[3] = in[3];
381
0
}
382
383
/* Sum two field elements: out += in */
384
static void felem_sum(felem out, const felem in)
385
0
{
386
0
    out[0] += in[0];
387
0
    out[1] += in[1];
388
0
    out[2] += in[2];
389
0
    out[3] += in[3];
390
0
}
391
392
/* Subtract field elements: out -= in */
393
/* Assumes in[i] < 2^57 */
394
static void felem_diff(felem out, const felem in)
395
0
{
396
0
    static const limb two58p2 = (((limb) 1) << 58) + (((limb) 1) << 2);
397
0
    static const limb two58m2 = (((limb) 1) << 58) - (((limb) 1) << 2);
398
0
    static const limb two58m42m2 = (((limb) 1) << 58) -
399
0
        (((limb) 1) << 42) - (((limb) 1) << 2);
400
401
    /* Add 0 mod 2^224-2^96+1 to ensure out > in */
402
0
    out[0] += two58p2;
403
0
    out[1] += two58m42m2;
404
0
    out[2] += two58m2;
405
0
    out[3] += two58m2;
406
407
0
    out[0] -= in[0];
408
0
    out[1] -= in[1];
409
0
    out[2] -= in[2];
410
0
    out[3] -= in[3];
411
0
}
412
413
/* Subtract in unreduced 128-bit mode: out -= in */
414
/* Assumes in[i] < 2^119 */
415
static void widefelem_diff(widefelem out, const widefelem in)
416
0
{
417
0
    static const widelimb two120 = ((widelimb) 1) << 120;
418
0
    static const widelimb two120m64 = (((widelimb) 1) << 120) -
419
0
        (((widelimb) 1) << 64);
420
0
    static const widelimb two120m104m64 = (((widelimb) 1) << 120) -
421
0
        (((widelimb) 1) << 104) - (((widelimb) 1) << 64);
422
423
    /* Add 0 mod 2^224-2^96+1 to ensure out > in */
424
0
    out[0] += two120;
425
0
    out[1] += two120m64;
426
0
    out[2] += two120m64;
427
0
    out[3] += two120;
428
0
    out[4] += two120m104m64;
429
0
    out[5] += two120m64;
430
0
    out[6] += two120m64;
431
432
0
    out[0] -= in[0];
433
0
    out[1] -= in[1];
434
0
    out[2] -= in[2];
435
0
    out[3] -= in[3];
436
0
    out[4] -= in[4];
437
0
    out[5] -= in[5];
438
0
    out[6] -= in[6];
439
0
}
440
441
/* Subtract in mixed mode: out128 -= in64 */
442
/* in[i] < 2^63 */
443
static void felem_diff_128_64(widefelem out, const felem in)
444
0
{
445
0
    static const widelimb two64p8 = (((widelimb) 1) << 64) +
446
0
        (((widelimb) 1) << 8);
447
0
    static const widelimb two64m8 = (((widelimb) 1) << 64) -
448
0
        (((widelimb) 1) << 8);
449
0
    static const widelimb two64m48m8 = (((widelimb) 1) << 64) -
450
0
        (((widelimb) 1) << 48) - (((widelimb) 1) << 8);
451
452
    /* Add 0 mod 2^224-2^96+1 to ensure out > in */
453
0
    out[0] += two64p8;
454
0
    out[1] += two64m48m8;
455
0
    out[2] += two64m8;
456
0
    out[3] += two64m8;
457
458
0
    out[0] -= in[0];
459
0
    out[1] -= in[1];
460
0
    out[2] -= in[2];
461
0
    out[3] -= in[3];
462
0
}
463
464
/*
465
 * Multiply a field element by a scalar: out = out * scalar The scalars we
466
 * actually use are small, so results fit without overflow
467
 */
468
static void felem_scalar(felem out, const limb scalar)
469
0
{
470
0
    out[0] *= scalar;
471
0
    out[1] *= scalar;
472
0
    out[2] *= scalar;
473
0
    out[3] *= scalar;
474
0
}
475
476
/*
477
 * Multiply an unreduced field element by a scalar: out = out * scalar The
478
 * scalars we actually use are small, so results fit without overflow
479
 */
480
static void widefelem_scalar(widefelem out, const widelimb scalar)
481
0
{
482
0
    out[0] *= scalar;
483
0
    out[1] *= scalar;
484
0
    out[2] *= scalar;
485
0
    out[3] *= scalar;
486
0
    out[4] *= scalar;
487
0
    out[5] *= scalar;
488
0
    out[6] *= scalar;
489
0
}
490
491
/* Square a field element: out = in^2 */
492
static void felem_square(widefelem out, const felem in)
493
0
{
494
0
    limb tmp0, tmp1, tmp2;
495
0
    tmp0 = 2 * in[0];
496
0
    tmp1 = 2 * in[1];
497
0
    tmp2 = 2 * in[2];
498
0
    out[0] = ((widelimb) in[0]) * in[0];
499
0
    out[1] = ((widelimb) in[0]) * tmp1;
500
0
    out[2] = ((widelimb) in[0]) * tmp2 + ((widelimb) in[1]) * in[1];
501
0
    out[3] = ((widelimb) in[3]) * tmp0 + ((widelimb) in[1]) * tmp2;
502
0
    out[4] = ((widelimb) in[3]) * tmp1 + ((widelimb) in[2]) * in[2];
503
0
    out[5] = ((widelimb) in[3]) * tmp2;
504
0
    out[6] = ((widelimb) in[3]) * in[3];
505
0
}
506
507
/* Multiply two field elements: out = in1 * in2 */
508
static void felem_mul(widefelem out, const felem in1, const felem in2)
509
0
{
510
0
    out[0] = ((widelimb) in1[0]) * in2[0];
511
0
    out[1] = ((widelimb) in1[0]) * in2[1] + ((widelimb) in1[1]) * in2[0];
512
0
    out[2] = ((widelimb) in1[0]) * in2[2] + ((widelimb) in1[1]) * in2[1] +
513
0
             ((widelimb) in1[2]) * in2[0];
514
0
    out[3] = ((widelimb) in1[0]) * in2[3] + ((widelimb) in1[1]) * in2[2] +
515
0
             ((widelimb) in1[2]) * in2[1] + ((widelimb) in1[3]) * in2[0];
516
0
    out[4] = ((widelimb) in1[1]) * in2[3] + ((widelimb) in1[2]) * in2[2] +
517
0
             ((widelimb) in1[3]) * in2[1];
518
0
    out[5] = ((widelimb) in1[2]) * in2[3] + ((widelimb) in1[3]) * in2[2];
519
0
    out[6] = ((widelimb) in1[3]) * in2[3];
520
0
}
521
522
/*-
523
 * Reduce seven 128-bit coefficients to four 64-bit coefficients.
524
 * Requires in[i] < 2^126,
525
 * ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16 */
526
static void felem_reduce(felem out, const widefelem in)
527
0
{
528
0
    static const widelimb two127p15 = (((widelimb) 1) << 127) +
529
0
        (((widelimb) 1) << 15);
530
0
    static const widelimb two127m71 = (((widelimb) 1) << 127) -
531
0
        (((widelimb) 1) << 71);
532
0
    static const widelimb two127m71m55 = (((widelimb) 1) << 127) -
533
0
        (((widelimb) 1) << 71) - (((widelimb) 1) << 55);
534
0
    widelimb output[5];
535
536
    /* Add 0 mod 2^224-2^96+1 to ensure all differences are positive */
537
0
    output[0] = in[0] + two127p15;
538
0
    output[1] = in[1] + two127m71m55;
539
0
    output[2] = in[2] + two127m71;
540
0
    output[3] = in[3];
541
0
    output[4] = in[4];
542
543
    /* Eliminate in[4], in[5], in[6] */
544
0
    output[4] += in[6] >> 16;
545
0
    output[3] += (in[6] & 0xffff) << 40;
546
0
    output[2] -= in[6];
547
548
0
    output[3] += in[5] >> 16;
549
0
    output[2] += (in[5] & 0xffff) << 40;
550
0
    output[1] -= in[5];
551
552
0
    output[2] += output[4] >> 16;
553
0
    output[1] += (output[4] & 0xffff) << 40;
554
0
    output[0] -= output[4];
555
556
    /* Carry 2 -> 3 -> 4 */
557
0
    output[3] += output[2] >> 56;
558
0
    output[2] &= 0x00ffffffffffffff;
559
560
0
    output[4] = output[3] >> 56;
561
0
    output[3] &= 0x00ffffffffffffff;
562
563
    /* Now output[2] < 2^56, output[3] < 2^56, output[4] < 2^72 */
564
565
    /* Eliminate output[4] */
566
0
    output[2] += output[4] >> 16;
567
    /* output[2] < 2^56 + 2^56 = 2^57 */
568
0
    output[1] += (output[4] & 0xffff) << 40;
569
0
    output[0] -= output[4];
570
571
    /* Carry 0 -> 1 -> 2 -> 3 */
572
0
    output[1] += output[0] >> 56;
573
0
    out[0] = output[0] & 0x00ffffffffffffff;
574
575
0
    output[2] += output[1] >> 56;
576
    /* output[2] < 2^57 + 2^72 */
577
0
    out[1] = output[1] & 0x00ffffffffffffff;
578
0
    output[3] += output[2] >> 56;
579
    /* output[3] <= 2^56 + 2^16 */
580
0
    out[2] = output[2] & 0x00ffffffffffffff;
581
582
    /*-
583
     * out[0] < 2^56, out[1] < 2^56, out[2] < 2^56,
584
     * out[3] <= 2^56 + 2^16 (due to final carry),
585
     * so out < 2*p
586
     */
587
0
    out[3] = output[3];
588
0
}
589
590
static void felem_square_reduce(felem out, const felem in)
591
0
{
592
0
    widefelem tmp;
593
0
    felem_square(tmp, in);
594
0
    felem_reduce(out, tmp);
595
0
}
596
597
static void felem_mul_reduce(felem out, const felem in1, const felem in2)
598
0
{
599
0
    widefelem tmp;
600
0
    felem_mul(tmp, in1, in2);
601
0
    felem_reduce(out, tmp);
602
0
}
603
604
/*
605
 * Reduce to unique minimal representation. Requires 0 <= in < 2*p (always
606
 * call felem_reduce first)
607
 */
608
static void felem_contract(felem out, const felem in)
609
0
{
610
0
    static const int64_t two56 = ((limb) 1) << 56;
611
    /* 0 <= in < 2*p, p = 2^224 - 2^96 + 1 */
612
    /* if in > p , reduce in = in - 2^224 + 2^96 - 1 */
613
0
    int64_t tmp[4], a;
614
0
    tmp[0] = in[0];
615
0
    tmp[1] = in[1];
616
0
    tmp[2] = in[2];
617
0
    tmp[3] = in[3];
618
    /* Case 1: a = 1 iff in >= 2^224 */
619
0
    a = (in[3] >> 56);
620
0
    tmp[0] -= a;
621
0
    tmp[1] += a << 40;
622
0
    tmp[3] &= 0x00ffffffffffffff;
623
    /*
624
     * Case 2: a = 0 iff p <= in < 2^224, i.e., the high 128 bits are all 1
625
     * and the lower part is non-zero
626
     */
627
0
    a = ((in[3] & in[2] & (in[1] | 0x000000ffffffffff)) + 1) |
628
0
        (((int64_t) (in[0] + (in[1] & 0x000000ffffffffff)) - 1) >> 63);
629
0
    a &= 0x00ffffffffffffff;
630
    /* turn a into an all-one mask (if a = 0) or an all-zero mask */
631
0
    a = (a - 1) >> 63;
632
    /* subtract 2^224 - 2^96 + 1 if a is all-one */
633
0
    tmp[3] &= a ^ 0xffffffffffffffff;
634
0
    tmp[2] &= a ^ 0xffffffffffffffff;
635
0
    tmp[1] &= (a ^ 0xffffffffffffffff) | 0x000000ffffffffff;
636
0
    tmp[0] -= 1 & a;
637
638
    /*
639
     * eliminate negative coefficients: if tmp[0] is negative, tmp[1] must be
640
     * non-zero, so we only need one step
641
     */
642
0
    a = tmp[0] >> 63;
643
0
    tmp[0] += two56 & a;
644
0
    tmp[1] -= 1 & a;
645
646
    /* carry 1 -> 2 -> 3 */
647
0
    tmp[2] += tmp[1] >> 56;
648
0
    tmp[1] &= 0x00ffffffffffffff;
649
650
0
    tmp[3] += tmp[2] >> 56;
651
0
    tmp[2] &= 0x00ffffffffffffff;
652
653
    /* Now 0 <= out < p */
654
0
    out[0] = tmp[0];
655
0
    out[1] = tmp[1];
656
0
    out[2] = tmp[2];
657
0
    out[3] = tmp[3];
658
0
}
659
660
/*
661
 * Get negative value: out = -in
662
 * Requires in[i] < 2^63,
663
 * ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16
664
 */
665
static void felem_neg(felem out, const felem in)
666
0
{
667
0
    widefelem tmp;
668
669
0
    memset(tmp, 0, sizeof(tmp));
670
0
    felem_diff_128_64(tmp, in);
671
0
    felem_reduce(out, tmp);
672
0
}
673
674
/*
675
 * Zero-check: returns 1 if input is 0, and 0 otherwise. We know that field
676
 * elements are reduced to in < 2^225, so we only need to check three cases:
677
 * 0, 2^224 - 2^96 + 1, and 2^225 - 2^97 + 2
678
 */
679
static limb felem_is_zero(const felem in)
680
0
{
681
0
    limb zero, two224m96p1, two225m97p2;
682
683
0
    zero = in[0] | in[1] | in[2] | in[3];
684
0
    zero = (((int64_t) (zero) - 1) >> 63) & 1;
685
0
    two224m96p1 = (in[0] ^ 1) | (in[1] ^ 0x00ffff0000000000)
686
0
        | (in[2] ^ 0x00ffffffffffffff) | (in[3] ^ 0x00ffffffffffffff);
687
0
    two224m96p1 = (((int64_t) (two224m96p1) - 1) >> 63) & 1;
688
0
    two225m97p2 = (in[0] ^ 2) | (in[1] ^ 0x00fffe0000000000)
689
0
        | (in[2] ^ 0x00ffffffffffffff) | (in[3] ^ 0x01ffffffffffffff);
690
0
    two225m97p2 = (((int64_t) (two225m97p2) - 1) >> 63) & 1;
691
0
    return (zero | two224m96p1 | two225m97p2);
692
0
}
693
694
static int felem_is_zero_int(const void *in)
695
0
{
696
0
    return (int)(felem_is_zero(in) & ((limb) 1));
697
0
}
698
699
/* Invert a field element */
700
/* Computation chain copied from djb's code */
701
static void felem_inv(felem out, const felem in)
702
0
{
703
0
    felem ftmp, ftmp2, ftmp3, ftmp4;
704
0
    widefelem tmp;
705
0
    unsigned i;
706
707
0
    felem_square(tmp, in);
708
0
    felem_reduce(ftmp, tmp);    /* 2 */
709
0
    felem_mul(tmp, in, ftmp);
710
0
    felem_reduce(ftmp, tmp);    /* 2^2 - 1 */
711
0
    felem_square(tmp, ftmp);
712
0
    felem_reduce(ftmp, tmp);    /* 2^3 - 2 */
713
0
    felem_mul(tmp, in, ftmp);
714
0
    felem_reduce(ftmp, tmp);    /* 2^3 - 1 */
715
0
    felem_square(tmp, ftmp);
716
0
    felem_reduce(ftmp2, tmp);   /* 2^4 - 2 */
717
0
    felem_square(tmp, ftmp2);
718
0
    felem_reduce(ftmp2, tmp);   /* 2^5 - 4 */
719
0
    felem_square(tmp, ftmp2);
720
0
    felem_reduce(ftmp2, tmp);   /* 2^6 - 8 */
721
0
    felem_mul(tmp, ftmp2, ftmp);
722
0
    felem_reduce(ftmp, tmp);    /* 2^6 - 1 */
723
0
    felem_square(tmp, ftmp);
724
0
    felem_reduce(ftmp2, tmp);   /* 2^7 - 2 */
725
0
    for (i = 0; i < 5; ++i) {   /* 2^12 - 2^6 */
726
0
        felem_square(tmp, ftmp2);
727
0
        felem_reduce(ftmp2, tmp);
728
0
    }
729
0
    felem_mul(tmp, ftmp2, ftmp);
730
0
    felem_reduce(ftmp2, tmp);   /* 2^12 - 1 */
731
0
    felem_square(tmp, ftmp2);
732
0
    felem_reduce(ftmp3, tmp);   /* 2^13 - 2 */
733
0
    for (i = 0; i < 11; ++i) {  /* 2^24 - 2^12 */
734
0
        felem_square(tmp, ftmp3);
735
0
        felem_reduce(ftmp3, tmp);
736
0
    }
737
0
    felem_mul(tmp, ftmp3, ftmp2);
738
0
    felem_reduce(ftmp2, tmp);   /* 2^24 - 1 */
739
0
    felem_square(tmp, ftmp2);
740
0
    felem_reduce(ftmp3, tmp);   /* 2^25 - 2 */
741
0
    for (i = 0; i < 23; ++i) {  /* 2^48 - 2^24 */
742
0
        felem_square(tmp, ftmp3);
743
0
        felem_reduce(ftmp3, tmp);
744
0
    }
745
0
    felem_mul(tmp, ftmp3, ftmp2);
746
0
    felem_reduce(ftmp3, tmp);   /* 2^48 - 1 */
747
0
    felem_square(tmp, ftmp3);
748
0
    felem_reduce(ftmp4, tmp);   /* 2^49 - 2 */
749
0
    for (i = 0; i < 47; ++i) {  /* 2^96 - 2^48 */
750
0
        felem_square(tmp, ftmp4);
751
0
        felem_reduce(ftmp4, tmp);
752
0
    }
753
0
    felem_mul(tmp, ftmp3, ftmp4);
754
0
    felem_reduce(ftmp3, tmp);   /* 2^96 - 1 */
755
0
    felem_square(tmp, ftmp3);
756
0
    felem_reduce(ftmp4, tmp);   /* 2^97 - 2 */
757
0
    for (i = 0; i < 23; ++i) {  /* 2^120 - 2^24 */
758
0
        felem_square(tmp, ftmp4);
759
0
        felem_reduce(ftmp4, tmp);
760
0
    }
761
0
    felem_mul(tmp, ftmp2, ftmp4);
762
0
    felem_reduce(ftmp2, tmp);   /* 2^120 - 1 */
763
0
    for (i = 0; i < 6; ++i) {   /* 2^126 - 2^6 */
764
0
        felem_square(tmp, ftmp2);
765
0
        felem_reduce(ftmp2, tmp);
766
0
    }
767
0
    felem_mul(tmp, ftmp2, ftmp);
768
0
    felem_reduce(ftmp, tmp);    /* 2^126 - 1 */
769
0
    felem_square(tmp, ftmp);
770
0
    felem_reduce(ftmp, tmp);    /* 2^127 - 2 */
771
0
    felem_mul(tmp, ftmp, in);
772
0
    felem_reduce(ftmp, tmp);    /* 2^127 - 1 */
773
0
    for (i = 0; i < 97; ++i) {  /* 2^224 - 2^97 */
774
0
        felem_square(tmp, ftmp);
775
0
        felem_reduce(ftmp, tmp);
776
0
    }
777
0
    felem_mul(tmp, ftmp, ftmp3);
778
0
    felem_reduce(out, tmp);     /* 2^224 - 2^96 - 1 */
779
0
}
780
781
/*
782
 * Copy in constant time: if icopy == 1, copy in to out, if icopy == 0, copy
783
 * out to itself.
784
 */
785
static void copy_conditional(felem out, const felem in, limb icopy)
786
0
{
787
0
    unsigned i;
788
    /*
789
     * icopy is a (64-bit) 0 or 1, so copy is either all-zero or all-one
790
     */
791
0
    const limb copy = -icopy;
792
0
    for (i = 0; i < 4; ++i) {
793
0
        const limb tmp = copy & (in[i] ^ out[i]);
794
0
        out[i] ^= tmp;
795
0
    }
796
0
}
797
798
/******************************************************************************/
799
/*-
800
 *                       ELLIPTIC CURVE POINT OPERATIONS
801
 *
802
 * Points are represented in Jacobian projective coordinates:
803
 * (X, Y, Z) corresponds to the affine point (X/Z^2, Y/Z^3),
804
 * or to the point at infinity if Z == 0.
805
 *
806
 */
807
808
/*-
809
 * Double an elliptic curve point:
810
 * (X', Y', Z') = 2 * (X, Y, Z), where
811
 * X' = (3 * (X - Z^2) * (X + Z^2))^2 - 8 * X * Y^2
812
 * Y' = 3 * (X - Z^2) * (X + Z^2) * (4 * X * Y^2 - X') - 8 * Y^4
813
 * Z' = (Y + Z)^2 - Y^2 - Z^2 = 2 * Y * Z
814
 * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed,
815
 * while x_out == y_in is not (maybe this works, but it's not tested).
816
 */
817
static void
818
point_double(felem x_out, felem y_out, felem z_out,
819
             const felem x_in, const felem y_in, const felem z_in)
820
0
{
821
0
    widefelem tmp, tmp2;
822
0
    felem delta, gamma, beta, alpha, ftmp, ftmp2;
823
824
0
    felem_assign(ftmp, x_in);
825
0
    felem_assign(ftmp2, x_in);
826
827
    /* delta = z^2 */
828
0
    felem_square(tmp, z_in);
829
0
    felem_reduce(delta, tmp);
830
831
    /* gamma = y^2 */
832
0
    felem_square(tmp, y_in);
833
0
    felem_reduce(gamma, tmp);
834
835
    /* beta = x*gamma */
836
0
    felem_mul(tmp, x_in, gamma);
837
0
    felem_reduce(beta, tmp);
838
839
    /* alpha = 3*(x-delta)*(x+delta) */
840
0
    felem_diff(ftmp, delta);
841
    /* ftmp[i] < 2^57 + 2^58 + 2 < 2^59 */
842
0
    felem_sum(ftmp2, delta);
843
    /* ftmp2[i] < 2^57 + 2^57 = 2^58 */
844
0
    felem_scalar(ftmp2, 3);
845
    /* ftmp2[i] < 3 * 2^58 < 2^60 */
846
0
    felem_mul(tmp, ftmp, ftmp2);
847
    /* tmp[i] < 2^60 * 2^59 * 4 = 2^121 */
848
0
    felem_reduce(alpha, tmp);
849
850
    /* x' = alpha^2 - 8*beta */
851
0
    felem_square(tmp, alpha);
852
    /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
853
0
    felem_assign(ftmp, beta);
854
0
    felem_scalar(ftmp, 8);
855
    /* ftmp[i] < 8 * 2^57 = 2^60 */
856
0
    felem_diff_128_64(tmp, ftmp);
857
    /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
858
0
    felem_reduce(x_out, tmp);
859
860
    /* z' = (y + z)^2 - gamma - delta */
861
0
    felem_sum(delta, gamma);
862
    /* delta[i] < 2^57 + 2^57 = 2^58 */
863
0
    felem_assign(ftmp, y_in);
864
0
    felem_sum(ftmp, z_in);
865
    /* ftmp[i] < 2^57 + 2^57 = 2^58 */
866
0
    felem_square(tmp, ftmp);
867
    /* tmp[i] < 4 * 2^58 * 2^58 = 2^118 */
868
0
    felem_diff_128_64(tmp, delta);
869
    /* tmp[i] < 2^118 + 2^64 + 8 < 2^119 */
870
0
    felem_reduce(z_out, tmp);
871
872
    /* y' = alpha*(4*beta - x') - 8*gamma^2 */
873
0
    felem_scalar(beta, 4);
874
    /* beta[i] < 4 * 2^57 = 2^59 */
875
0
    felem_diff(beta, x_out);
876
    /* beta[i] < 2^59 + 2^58 + 2 < 2^60 */
877
0
    felem_mul(tmp, alpha, beta);
878
    /* tmp[i] < 4 * 2^57 * 2^60 = 2^119 */
879
0
    felem_square(tmp2, gamma);
880
    /* tmp2[i] < 4 * 2^57 * 2^57 = 2^116 */
881
0
    widefelem_scalar(tmp2, 8);
882
    /* tmp2[i] < 8 * 2^116 = 2^119 */
883
0
    widefelem_diff(tmp, tmp2);
884
    /* tmp[i] < 2^119 + 2^120 < 2^121 */
885
0
    felem_reduce(y_out, tmp);
886
0
}
887
888
/*-
889
 * Add two elliptic curve points:
890
 * (X_1, Y_1, Z_1) + (X_2, Y_2, Z_2) = (X_3, Y_3, Z_3), where
891
 * X_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1)^2 - (Z_1^2 * X_2 - Z_2^2 * X_1)^3 -
892
 * 2 * Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2
893
 * Y_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1) * (Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2 - X_3) -
894
 *        Z_2^3 * Y_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^3
895
 * Z_3 = (Z_1^2 * X_2 - Z_2^2 * X_1) * (Z_1 * Z_2)
896
 *
897
 * This runs faster if 'mixed' is set, which requires Z_2 = 1 or Z_2 = 0.
898
 */
899
900
/*
901
 * This function is not entirely constant-time: it includes a branch for
902
 * checking whether the two input points are equal, (while not equal to the
903
 * point at infinity). This case never happens during single point
904
 * multiplication, so there is no timing leak for ECDH or ECDSA signing.
905
 */
906
static void point_add(felem x3, felem y3, felem z3,
907
                      const felem x1, const felem y1, const felem z1,
908
                      const int mixed, const felem x2, const felem y2,
909
                      const felem z2)
910
0
{
911
0
    felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, x_out, y_out, z_out;
912
0
    widefelem tmp, tmp2;
913
0
    limb z1_is_zero, z2_is_zero, x_equal, y_equal;
914
0
    limb points_equal;
915
916
0
    if (!mixed) {
917
        /* ftmp2 = z2^2 */
918
0
        felem_square(tmp, z2);
919
0
        felem_reduce(ftmp2, tmp);
920
921
        /* ftmp4 = z2^3 */
922
0
        felem_mul(tmp, ftmp2, z2);
923
0
        felem_reduce(ftmp4, tmp);
924
925
        /* ftmp4 = z2^3*y1 */
926
0
        felem_mul(tmp2, ftmp4, y1);
927
0
        felem_reduce(ftmp4, tmp2);
928
929
        /* ftmp2 = z2^2*x1 */
930
0
        felem_mul(tmp2, ftmp2, x1);
931
0
        felem_reduce(ftmp2, tmp2);
932
0
    } else {
933
        /*
934
         * We'll assume z2 = 1 (special case z2 = 0 is handled later)
935
         */
936
937
        /* ftmp4 = z2^3*y1 */
938
0
        felem_assign(ftmp4, y1);
939
940
        /* ftmp2 = z2^2*x1 */
941
0
        felem_assign(ftmp2, x1);
942
0
    }
943
944
    /* ftmp = z1^2 */
945
0
    felem_square(tmp, z1);
946
0
    felem_reduce(ftmp, tmp);
947
948
    /* ftmp3 = z1^3 */
949
0
    felem_mul(tmp, ftmp, z1);
950
0
    felem_reduce(ftmp3, tmp);
951
952
    /* tmp = z1^3*y2 */
953
0
    felem_mul(tmp, ftmp3, y2);
954
    /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
955
956
    /* ftmp3 = z1^3*y2 - z2^3*y1 */
957
0
    felem_diff_128_64(tmp, ftmp4);
958
    /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
959
0
    felem_reduce(ftmp3, tmp);
960
961
    /* tmp = z1^2*x2 */
962
0
    felem_mul(tmp, ftmp, x2);
963
    /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
964
965
    /* ftmp = z1^2*x2 - z2^2*x1 */
966
0
    felem_diff_128_64(tmp, ftmp2);
967
    /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
968
0
    felem_reduce(ftmp, tmp);
969
970
    /*
971
     * The formulae are incorrect if the points are equal, in affine coordinates
972
     * (X_1, Y_1) == (X_2, Y_2), so we check for this and do doubling if this
973
     * happens.
974
     *
975
     * We use bitwise operations to avoid potential side-channels introduced by
976
     * the short-circuiting behaviour of boolean operators.
977
     */
978
0
    x_equal = felem_is_zero(ftmp);
979
0
    y_equal = felem_is_zero(ftmp3);
980
    /*
981
     * The special case of either point being the point at infinity (z1 and/or
982
     * z2 are zero), is handled separately later on in this function, so we
983
     * avoid jumping to point_double here in those special cases.
984
     */
985
0
    z1_is_zero = felem_is_zero(z1);
986
0
    z2_is_zero = felem_is_zero(z2);
987
988
    /*
989
     * Compared to `ecp_nistp256.c` and `ecp_nistp521.c`, in this
990
     * specific implementation `felem_is_zero()` returns truth as `0x1`
991
     * (rather than `0xff..ff`).
992
     *
993
     * This implies that `~true` in this implementation becomes
994
     * `0xff..fe` (rather than `0x0`): for this reason, to be used in
995
     * the if expression, we mask out only the last bit in the next
996
     * line.
997
     */
998
0
    points_equal = (x_equal & y_equal & (~z1_is_zero) & (~z2_is_zero)) & 1;
999
1000
0
    if (points_equal) {
1001
        /*
1002
         * This is obviously not constant-time but, as mentioned before, this
1003
         * case never happens during single point multiplication, so there is no
1004
         * timing leak for ECDH or ECDSA signing.
1005
         */
1006
0
        point_double(x3, y3, z3, x1, y1, z1);
1007
0
        return;
1008
0
    }
1009
1010
    /* ftmp5 = z1*z2 */
1011
0
    if (!mixed) {
1012
0
        felem_mul(tmp, z1, z2);
1013
0
        felem_reduce(ftmp5, tmp);
1014
0
    } else {
1015
        /* special case z2 = 0 is handled later */
1016
0
        felem_assign(ftmp5, z1);
1017
0
    }
1018
1019
    /* z_out = (z1^2*x2 - z2^2*x1)*(z1*z2) */
1020
0
    felem_mul(tmp, ftmp, ftmp5);
1021
0
    felem_reduce(z_out, tmp);
1022
1023
    /* ftmp = (z1^2*x2 - z2^2*x1)^2 */
1024
0
    felem_assign(ftmp5, ftmp);
1025
0
    felem_square(tmp, ftmp);
1026
0
    felem_reduce(ftmp, tmp);
1027
1028
    /* ftmp5 = (z1^2*x2 - z2^2*x1)^3 */
1029
0
    felem_mul(tmp, ftmp, ftmp5);
1030
0
    felem_reduce(ftmp5, tmp);
1031
1032
    /* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */
1033
0
    felem_mul(tmp, ftmp2, ftmp);
1034
0
    felem_reduce(ftmp2, tmp);
1035
1036
    /* tmp = z2^3*y1*(z1^2*x2 - z2^2*x1)^3 */
1037
0
    felem_mul(tmp, ftmp4, ftmp5);
1038
    /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
1039
1040
    /* tmp2 = (z1^3*y2 - z2^3*y1)^2 */
1041
0
    felem_square(tmp2, ftmp3);
1042
    /* tmp2[i] < 4 * 2^57 * 2^57 < 2^116 */
1043
1044
    /* tmp2 = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 */
1045
0
    felem_diff_128_64(tmp2, ftmp5);
1046
    /* tmp2[i] < 2^116 + 2^64 + 8 < 2^117 */
1047
1048
    /* ftmp5 = 2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */
1049
0
    felem_assign(ftmp5, ftmp2);
1050
0
    felem_scalar(ftmp5, 2);
1051
    /* ftmp5[i] < 2 * 2^57 = 2^58 */
1052
1053
    /*-
1054
     * x_out = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 -
1055
     *  2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2
1056
     */
1057
0
    felem_diff_128_64(tmp2, ftmp5);
1058
    /* tmp2[i] < 2^117 + 2^64 + 8 < 2^118 */
1059
0
    felem_reduce(x_out, tmp2);
1060
1061
    /* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out */
1062
0
    felem_diff(ftmp2, x_out);
1063
    /* ftmp2[i] < 2^57 + 2^58 + 2 < 2^59 */
1064
1065
    /*
1066
     * tmp2 = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out)
1067
     */
1068
0
    felem_mul(tmp2, ftmp3, ftmp2);
1069
    /* tmp2[i] < 4 * 2^57 * 2^59 = 2^118 */
1070
1071
    /*-
1072
     * y_out = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out) -
1073
     *  z2^3*y1*(z1^2*x2 - z2^2*x1)^3
1074
     */
1075
0
    widefelem_diff(tmp2, tmp);
1076
    /* tmp2[i] < 2^118 + 2^120 < 2^121 */
1077
0
    felem_reduce(y_out, tmp2);
1078
1079
    /*
1080
     * the result (x_out, y_out, z_out) is incorrect if one of the inputs is
1081
     * the point at infinity, so we need to check for this separately
1082
     */
1083
1084
    /*
1085
     * if point 1 is at infinity, copy point 2 to output, and vice versa
1086
     */
1087
0
    copy_conditional(x_out, x2, z1_is_zero);
1088
0
    copy_conditional(x_out, x1, z2_is_zero);
1089
0
    copy_conditional(y_out, y2, z1_is_zero);
1090
0
    copy_conditional(y_out, y1, z2_is_zero);
1091
0
    copy_conditional(z_out, z2, z1_is_zero);
1092
0
    copy_conditional(z_out, z1, z2_is_zero);
1093
0
    felem_assign(x3, x_out);
1094
0
    felem_assign(y3, y_out);
1095
0
    felem_assign(z3, z_out);
1096
0
}
1097
1098
/*
1099
 * select_point selects the |idx|th point from a precomputation table and
1100
 * copies it to out.
1101
 * The pre_comp array argument should be size of |size| argument
1102
 */
1103
static void select_point(const u64 idx, unsigned int size,
1104
                         const felem pre_comp[][3], felem out[3])
1105
0
{
1106
0
    unsigned i, j;
1107
0
    limb *outlimbs = &out[0][0];
1108
1109
0
    memset(out, 0, sizeof(*out) * 3);
1110
0
    for (i = 0; i < size; i++) {
1111
0
        const limb *inlimbs = &pre_comp[i][0][0];
1112
0
        u64 mask = i ^ idx;
1113
0
        mask |= mask >> 4;
1114
0
        mask |= mask >> 2;
1115
0
        mask |= mask >> 1;
1116
0
        mask &= 1;
1117
0
        mask--;
1118
0
        for (j = 0; j < 4 * 3; j++)
1119
0
            outlimbs[j] |= inlimbs[j] & mask;
1120
0
    }
1121
0
}
1122
1123
/* get_bit returns the |i|th bit in |in| */
1124
static char get_bit(const felem_bytearray in, unsigned i)
1125
0
{
1126
0
    if (i >= 224)
1127
0
        return 0;
1128
0
    return (in[i >> 3] >> (i & 7)) & 1;
1129
0
}
1130
1131
/*
1132
 * Interleaved point multiplication using precomputed point multiples: The
1133
 * small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[], the scalars
1134
 * in scalars[]. If g_scalar is non-NULL, we also add this multiple of the
1135
 * generator, using certain (large) precomputed multiples in g_pre_comp.
1136
 * Output point (X, Y, Z) is stored in x_out, y_out, z_out
1137
 */
1138
static void batch_mul(felem x_out, felem y_out, felem z_out,
1139
                      const felem_bytearray scalars[],
1140
                      const unsigned num_points, const u8 *g_scalar,
1141
                      const int mixed, const felem pre_comp[][17][3],
1142
                      const felem g_pre_comp[2][16][3])
1143
0
{
1144
0
    int i, skip;
1145
0
    unsigned num;
1146
0
    unsigned gen_mul = (g_scalar != NULL);
1147
0
    felem nq[3], tmp[4];
1148
0
    u64 bits;
1149
0
    u8 sign, digit;
1150
1151
    /* set nq to the point at infinity */
1152
0
    memset(nq, 0, sizeof(nq));
1153
1154
    /*
1155
     * Loop over all scalars msb-to-lsb, interleaving additions of multiples
1156
     * of the generator (two in each of the last 28 rounds) and additions of
1157
     * other points multiples (every 5th round).
1158
     */
1159
0
    skip = 1;                   /* save two point operations in the first
1160
                                 * round */
1161
0
    for (i = (num_points ? 220 : 27); i >= 0; --i) {
1162
        /* double */
1163
0
        if (!skip)
1164
0
            point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
1165
1166
        /* add multiples of the generator */
1167
0
        if (gen_mul && (i <= 27)) {
1168
            /* first, look 28 bits upwards */
1169
0
            bits = get_bit(g_scalar, i + 196) << 3;
1170
0
            bits |= get_bit(g_scalar, i + 140) << 2;
1171
0
            bits |= get_bit(g_scalar, i + 84) << 1;
1172
0
            bits |= get_bit(g_scalar, i + 28);
1173
            /* select the point to add, in constant time */
1174
0
            select_point(bits, 16, g_pre_comp[1], tmp);
1175
1176
0
            if (!skip) {
1177
                /* value 1 below is argument for "mixed" */
1178
0
                point_add(nq[0], nq[1], nq[2],
1179
0
                          nq[0], nq[1], nq[2], 1, tmp[0], tmp[1], tmp[2]);
1180
0
            } else {
1181
0
                memcpy(nq, tmp, 3 * sizeof(felem));
1182
0
                skip = 0;
1183
0
            }
1184
1185
            /* second, look at the current position */
1186
0
            bits = get_bit(g_scalar, i + 168) << 3;
1187
0
            bits |= get_bit(g_scalar, i + 112) << 2;
1188
0
            bits |= get_bit(g_scalar, i + 56) << 1;
1189
0
            bits |= get_bit(g_scalar, i);
1190
            /* select the point to add, in constant time */
1191
0
            select_point(bits, 16, g_pre_comp[0], tmp);
1192
0
            point_add(nq[0], nq[1], nq[2],
1193
0
                      nq[0], nq[1], nq[2],
1194
0
                      1 /* mixed */ , tmp[0], tmp[1], tmp[2]);
1195
0
        }
1196
1197
        /* do other additions every 5 doublings */
1198
0
        if (num_points && (i % 5 == 0)) {
1199
            /* loop over all scalars */
1200
0
            for (num = 0; num < num_points; ++num) {
1201
0
                bits = get_bit(scalars[num], i + 4) << 5;
1202
0
                bits |= get_bit(scalars[num], i + 3) << 4;
1203
0
                bits |= get_bit(scalars[num], i + 2) << 3;
1204
0
                bits |= get_bit(scalars[num], i + 1) << 2;
1205
0
                bits |= get_bit(scalars[num], i) << 1;
1206
0
                bits |= get_bit(scalars[num], i - 1);
1207
0
                ossl_ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
1208
1209
                /* select the point to add or subtract */
1210
0
                select_point(digit, 17, pre_comp[num], tmp);
1211
0
                felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the negative
1212
                                            * point */
1213
0
                copy_conditional(tmp[1], tmp[3], sign);
1214
1215
0
                if (!skip) {
1216
0
                    point_add(nq[0], nq[1], nq[2],
1217
0
                              nq[0], nq[1], nq[2],
1218
0
                              mixed, tmp[0], tmp[1], tmp[2]);
1219
0
                } else {
1220
0
                    memcpy(nq, tmp, 3 * sizeof(felem));
1221
0
                    skip = 0;
1222
0
                }
1223
0
            }
1224
0
        }
1225
0
    }
1226
0
    felem_assign(x_out, nq[0]);
1227
0
    felem_assign(y_out, nq[1]);
1228
0
    felem_assign(z_out, nq[2]);
1229
0
}
1230
1231
/******************************************************************************/
1232
/*
1233
 * FUNCTIONS TO MANAGE PRECOMPUTATION
1234
 */
1235
1236
static NISTP224_PRE_COMP *nistp224_pre_comp_new(void)
1237
0
{
1238
0
    NISTP224_PRE_COMP *ret = OPENSSL_zalloc(sizeof(*ret));
1239
1240
0
    if (ret == NULL)
1241
0
        return ret;
1242
1243
1244
0
    if (!CRYPTO_NEW_REF(&ret->references, 1)) {
1245
0
        OPENSSL_free(ret);
1246
0
        return NULL;
1247
0
    }
1248
0
    return ret;
1249
0
}
1250
1251
NISTP224_PRE_COMP *EC_nistp224_pre_comp_dup(NISTP224_PRE_COMP *p)
1252
0
{
1253
0
    int i;
1254
0
    if (p != NULL)
1255
0
        CRYPTO_UP_REF(&p->references, &i);
1256
0
    return p;
1257
0
}
1258
1259
void EC_nistp224_pre_comp_free(NISTP224_PRE_COMP *p)
1260
0
{
1261
0
    int i;
1262
1263
0
    if (p == NULL)
1264
0
        return;
1265
1266
0
    CRYPTO_DOWN_REF(&p->references, &i);
1267
0
    REF_PRINT_COUNT("EC_nistp224", i, p);
1268
0
    if (i > 0)
1269
0
        return;
1270
0
    REF_ASSERT_ISNT(i < 0);
1271
1272
0
    CRYPTO_FREE_REF(&p->references);
1273
0
    OPENSSL_free(p);
1274
0
}
1275
1276
/******************************************************************************/
1277
/*
1278
 * OPENSSL EC_METHOD FUNCTIONS
1279
 */
1280
1281
int ossl_ec_GFp_nistp224_group_init(EC_GROUP *group)
1282
0
{
1283
0
    int ret;
1284
0
    ret = ossl_ec_GFp_simple_group_init(group);
1285
0
    group->a_is_minus3 = 1;
1286
0
    return ret;
1287
0
}
1288
1289
int ossl_ec_GFp_nistp224_group_set_curve(EC_GROUP *group, const BIGNUM *p,
1290
                                         const BIGNUM *a, const BIGNUM *b,
1291
                                         BN_CTX *ctx)
1292
0
{
1293
0
    int ret = 0;
1294
0
    BIGNUM *curve_p, *curve_a, *curve_b;
1295
0
#ifndef FIPS_MODULE
1296
0
    BN_CTX *new_ctx = NULL;
1297
1298
0
    if (ctx == NULL)
1299
0
        ctx = new_ctx = BN_CTX_new();
1300
0
#endif
1301
0
    if (ctx == NULL)
1302
0
        return 0;
1303
1304
0
    BN_CTX_start(ctx);
1305
0
    curve_p = BN_CTX_get(ctx);
1306
0
    curve_a = BN_CTX_get(ctx);
1307
0
    curve_b = BN_CTX_get(ctx);
1308
0
    if (curve_b == NULL)
1309
0
        goto err;
1310
0
    BN_bin2bn(nistp224_curve_params[0], sizeof(felem_bytearray), curve_p);
1311
0
    BN_bin2bn(nistp224_curve_params[1], sizeof(felem_bytearray), curve_a);
1312
0
    BN_bin2bn(nistp224_curve_params[2], sizeof(felem_bytearray), curve_b);
1313
0
    if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || (BN_cmp(curve_b, b))) {
1314
0
        ERR_raise(ERR_LIB_EC, EC_R_WRONG_CURVE_PARAMETERS);
1315
0
        goto err;
1316
0
    }
1317
0
    group->field_mod_func = BN_nist_mod_224;
1318
0
    ret = ossl_ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
1319
0
 err:
1320
0
    BN_CTX_end(ctx);
1321
0
#ifndef FIPS_MODULE
1322
0
    BN_CTX_free(new_ctx);
1323
0
#endif
1324
0
    return ret;
1325
0
}
1326
1327
/*
1328
 * Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') =
1329
 * (X/Z^2, Y/Z^3)
1330
 */
1331
int ossl_ec_GFp_nistp224_point_get_affine_coordinates(const EC_GROUP *group,
1332
                                                      const EC_POINT *point,
1333
                                                      BIGNUM *x, BIGNUM *y,
1334
                                                      BN_CTX *ctx)
1335
0
{
1336
0
    felem z1, z2, x_in, y_in, x_out, y_out;
1337
0
    widefelem tmp;
1338
1339
0
    if (EC_POINT_is_at_infinity(group, point)) {
1340
0
        ERR_raise(ERR_LIB_EC, EC_R_POINT_AT_INFINITY);
1341
0
        return 0;
1342
0
    }
1343
0
    if ((!BN_to_felem(x_in, point->X)) || (!BN_to_felem(y_in, point->Y)) ||
1344
0
        (!BN_to_felem(z1, point->Z)))
1345
0
        return 0;
1346
0
    felem_inv(z2, z1);
1347
0
    felem_square(tmp, z2);
1348
0
    felem_reduce(z1, tmp);
1349
0
    felem_mul(tmp, x_in, z1);
1350
0
    felem_reduce(x_in, tmp);
1351
0
    felem_contract(x_out, x_in);
1352
0
    if (x != NULL) {
1353
0
        if (!felem_to_BN(x, x_out)) {
1354
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1355
0
            return 0;
1356
0
        }
1357
0
    }
1358
0
    felem_mul(tmp, z1, z2);
1359
0
    felem_reduce(z1, tmp);
1360
0
    felem_mul(tmp, y_in, z1);
1361
0
    felem_reduce(y_in, tmp);
1362
0
    felem_contract(y_out, y_in);
1363
0
    if (y != NULL) {
1364
0
        if (!felem_to_BN(y, y_out)) {
1365
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1366
0
            return 0;
1367
0
        }
1368
0
    }
1369
0
    return 1;
1370
0
}
1371
1372
static void make_points_affine(size_t num, felem points[ /* num */ ][3],
1373
                               felem tmp_felems[ /* num+1 */ ])
1374
0
{
1375
    /*
1376
     * Runs in constant time, unless an input is the point at infinity (which
1377
     * normally shouldn't happen).
1378
     */
1379
0
    ossl_ec_GFp_nistp_points_make_affine_internal(num,
1380
0
                                                  points,
1381
0
                                                  sizeof(felem),
1382
0
                                                  tmp_felems,
1383
0
                                                  (void (*)(void *))felem_one,
1384
0
                                                  felem_is_zero_int,
1385
0
                                                  (void (*)(void *, const void *))
1386
0
                                                  felem_assign,
1387
0
                                                  (void (*)(void *, const void *))
1388
0
                                                  felem_square_reduce, (void (*)
1389
0
                                                                        (void *,
1390
0
                                                                         const void
1391
0
                                                                         *,
1392
0
                                                                         const void
1393
0
                                                                         *))
1394
0
                                                  felem_mul_reduce,
1395
0
                                                  (void (*)(void *, const void *))
1396
0
                                                  felem_inv,
1397
0
                                                  (void (*)(void *, const void *))
1398
0
                                                  felem_contract);
1399
0
}
1400
1401
/*
1402
 * Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL
1403
 * values Result is stored in r (r can equal one of the inputs).
1404
 */
1405
int ossl_ec_GFp_nistp224_points_mul(const EC_GROUP *group, EC_POINT *r,
1406
                                    const BIGNUM *scalar, size_t num,
1407
                                    const EC_POINT *points[],
1408
                                    const BIGNUM *scalars[], BN_CTX *ctx)
1409
0
{
1410
0
    int ret = 0;
1411
0
    int j;
1412
0
    unsigned i;
1413
0
    int mixed = 0;
1414
0
    BIGNUM *x, *y, *z, *tmp_scalar;
1415
0
    felem_bytearray g_secret;
1416
0
    felem_bytearray *secrets = NULL;
1417
0
    felem (*pre_comp)[17][3] = NULL;
1418
0
    felem *tmp_felems = NULL;
1419
0
    int num_bytes;
1420
0
    int have_pre_comp = 0;
1421
0
    size_t num_points = num;
1422
0
    felem x_in, y_in, z_in, x_out, y_out, z_out;
1423
0
    NISTP224_PRE_COMP *pre = NULL;
1424
0
    const felem(*g_pre_comp)[16][3] = NULL;
1425
0
    EC_POINT *generator = NULL;
1426
0
    const EC_POINT *p = NULL;
1427
0
    const BIGNUM *p_scalar = NULL;
1428
1429
0
    BN_CTX_start(ctx);
1430
0
    x = BN_CTX_get(ctx);
1431
0
    y = BN_CTX_get(ctx);
1432
0
    z = BN_CTX_get(ctx);
1433
0
    tmp_scalar = BN_CTX_get(ctx);
1434
0
    if (tmp_scalar == NULL)
1435
0
        goto err;
1436
1437
0
    if (scalar != NULL) {
1438
0
        pre = group->pre_comp.nistp224;
1439
0
        if (pre)
1440
            /* we have precomputation, try to use it */
1441
0
            g_pre_comp = (const felem(*)[16][3])pre->g_pre_comp;
1442
0
        else
1443
            /* try to use the standard precomputation */
1444
0
            g_pre_comp = &gmul[0];
1445
0
        generator = EC_POINT_new(group);
1446
0
        if (generator == NULL)
1447
0
            goto err;
1448
        /* get the generator from precomputation */
1449
0
        if (!felem_to_BN(x, g_pre_comp[0][1][0]) ||
1450
0
            !felem_to_BN(y, g_pre_comp[0][1][1]) ||
1451
0
            !felem_to_BN(z, g_pre_comp[0][1][2])) {
1452
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1453
0
            goto err;
1454
0
        }
1455
0
        if (!ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group,
1456
0
                                                                generator,
1457
0
                                                                x, y, z, ctx))
1458
0
            goto err;
1459
0
        if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
1460
            /* precomputation matches generator */
1461
0
            have_pre_comp = 1;
1462
0
        else
1463
            /*
1464
             * we don't have valid precomputation: treat the generator as a
1465
             * random point
1466
             */
1467
0
            num_points = num_points + 1;
1468
0
    }
1469
1470
0
    if (num_points > 0) {
1471
0
        if (num_points >= 3) {
1472
            /*
1473
             * unless we precompute multiples for just one or two points,
1474
             * converting those into affine form is time well spent
1475
             */
1476
0
            mixed = 1;
1477
0
        }
1478
0
        secrets = OPENSSL_zalloc(sizeof(*secrets) * num_points);
1479
0
        pre_comp = OPENSSL_zalloc(sizeof(*pre_comp) * num_points);
1480
0
        if (mixed)
1481
0
            tmp_felems =
1482
0
                OPENSSL_malloc(sizeof(felem) * (num_points * 17 + 1));
1483
0
        if ((secrets == NULL) || (pre_comp == NULL)
1484
0
            || (mixed && (tmp_felems == NULL)))
1485
0
            goto err;
1486
1487
        /*
1488
         * we treat NULL scalars as 0, and NULL points as points at infinity,
1489
         * i.e., they contribute nothing to the linear combination
1490
         */
1491
0
        for (i = 0; i < num_points; ++i) {
1492
0
            if (i == num) {
1493
                /* the generator */
1494
0
                p = EC_GROUP_get0_generator(group);
1495
0
                p_scalar = scalar;
1496
0
            } else {
1497
                /* the i^th point */
1498
0
                p = points[i];
1499
0
                p_scalar = scalars[i];
1500
0
            }
1501
0
            if ((p_scalar != NULL) && (p != NULL)) {
1502
                /* reduce scalar to 0 <= scalar < 2^224 */
1503
0
                if ((BN_num_bits(p_scalar) > 224)
1504
0
                    || (BN_is_negative(p_scalar))) {
1505
                    /*
1506
                     * this is an unusual input, and we don't guarantee
1507
                     * constant-timeness
1508
                     */
1509
0
                    if (!BN_nnmod(tmp_scalar, p_scalar, group->order, ctx)) {
1510
0
                        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1511
0
                        goto err;
1512
0
                    }
1513
0
                    num_bytes = BN_bn2lebinpad(tmp_scalar,
1514
0
                                               secrets[i], sizeof(secrets[i]));
1515
0
                } else {
1516
0
                    num_bytes = BN_bn2lebinpad(p_scalar,
1517
0
                                               secrets[i], sizeof(secrets[i]));
1518
0
                }
1519
0
                if (num_bytes < 0) {
1520
0
                    ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1521
0
                    goto err;
1522
0
                }
1523
                /* precompute multiples */
1524
0
                if ((!BN_to_felem(x_out, p->X)) ||
1525
0
                    (!BN_to_felem(y_out, p->Y)) ||
1526
0
                    (!BN_to_felem(z_out, p->Z)))
1527
0
                    goto err;
1528
0
                felem_assign(pre_comp[i][1][0], x_out);
1529
0
                felem_assign(pre_comp[i][1][1], y_out);
1530
0
                felem_assign(pre_comp[i][1][2], z_out);
1531
0
                for (j = 2; j <= 16; ++j) {
1532
0
                    if (j & 1) {
1533
0
                        point_add(pre_comp[i][j][0], pre_comp[i][j][1],
1534
0
                                  pre_comp[i][j][2], pre_comp[i][1][0],
1535
0
                                  pre_comp[i][1][1], pre_comp[i][1][2], 0,
1536
0
                                  pre_comp[i][j - 1][0],
1537
0
                                  pre_comp[i][j - 1][1],
1538
0
                                  pre_comp[i][j - 1][2]);
1539
0
                    } else {
1540
0
                        point_double(pre_comp[i][j][0], pre_comp[i][j][1],
1541
0
                                     pre_comp[i][j][2], pre_comp[i][j / 2][0],
1542
0
                                     pre_comp[i][j / 2][1],
1543
0
                                     pre_comp[i][j / 2][2]);
1544
0
                    }
1545
0
                }
1546
0
            }
1547
0
        }
1548
0
        if (mixed)
1549
0
            make_points_affine(num_points * 17, pre_comp[0], tmp_felems);
1550
0
    }
1551
1552
    /* the scalar for the generator */
1553
0
    if ((scalar != NULL) && (have_pre_comp)) {
1554
0
        memset(g_secret, 0, sizeof(g_secret));
1555
        /* reduce scalar to 0 <= scalar < 2^224 */
1556
0
        if ((BN_num_bits(scalar) > 224) || (BN_is_negative(scalar))) {
1557
            /*
1558
             * this is an unusual input, and we don't guarantee
1559
             * constant-timeness
1560
             */
1561
0
            if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) {
1562
0
                ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1563
0
                goto err;
1564
0
            }
1565
0
            num_bytes = BN_bn2lebinpad(tmp_scalar, g_secret, sizeof(g_secret));
1566
0
        } else {
1567
0
            num_bytes = BN_bn2lebinpad(scalar, g_secret, sizeof(g_secret));
1568
0
        }
1569
        /* do the multiplication with generator precomputation */
1570
0
        batch_mul(x_out, y_out, z_out,
1571
0
                  (const felem_bytearray(*))secrets, num_points,
1572
0
                  g_secret,
1573
0
                  mixed, (const felem(*)[17][3])pre_comp, g_pre_comp);
1574
0
    } else {
1575
        /* do the multiplication without generator precomputation */
1576
0
        batch_mul(x_out, y_out, z_out,
1577
0
                  (const felem_bytearray(*))secrets, num_points,
1578
0
                  NULL, mixed, (const felem(*)[17][3])pre_comp, NULL);
1579
0
    }
1580
    /* reduce the output to its unique minimal representation */
1581
0
    felem_contract(x_in, x_out);
1582
0
    felem_contract(y_in, y_out);
1583
0
    felem_contract(z_in, z_out);
1584
0
    if ((!felem_to_BN(x, x_in)) || (!felem_to_BN(y, y_in)) ||
1585
0
        (!felem_to_BN(z, z_in))) {
1586
0
        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1587
0
        goto err;
1588
0
    }
1589
0
    ret = ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group, r, x, y, z,
1590
0
                                                             ctx);
1591
1592
0
 err:
1593
0
    BN_CTX_end(ctx);
1594
0
    EC_POINT_free(generator);
1595
0
    OPENSSL_free(secrets);
1596
0
    OPENSSL_free(pre_comp);
1597
0
    OPENSSL_free(tmp_felems);
1598
0
    return ret;
1599
0
}
1600
1601
int ossl_ec_GFp_nistp224_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
1602
0
{
1603
0
    int ret = 0;
1604
0
    NISTP224_PRE_COMP *pre = NULL;
1605
0
    int i, j;
1606
0
    BIGNUM *x, *y;
1607
0
    EC_POINT *generator = NULL;
1608
0
    felem tmp_felems[32];
1609
0
#ifndef FIPS_MODULE
1610
0
    BN_CTX *new_ctx = NULL;
1611
0
#endif
1612
1613
    /* throw away old precomputation */
1614
0
    EC_pre_comp_free(group);
1615
1616
0
#ifndef FIPS_MODULE
1617
0
    if (ctx == NULL)
1618
0
        ctx = new_ctx = BN_CTX_new();
1619
0
#endif
1620
0
    if (ctx == NULL)
1621
0
        return 0;
1622
1623
0
    BN_CTX_start(ctx);
1624
0
    x = BN_CTX_get(ctx);
1625
0
    y = BN_CTX_get(ctx);
1626
0
    if (y == NULL)
1627
0
        goto err;
1628
    /* get the generator */
1629
0
    if (group->generator == NULL)
1630
0
        goto err;
1631
0
    generator = EC_POINT_new(group);
1632
0
    if (generator == NULL)
1633
0
        goto err;
1634
0
    BN_bin2bn(nistp224_curve_params[3], sizeof(felem_bytearray), x);
1635
0
    BN_bin2bn(nistp224_curve_params[4], sizeof(felem_bytearray), y);
1636
0
    if (!EC_POINT_set_affine_coordinates(group, generator, x, y, ctx))
1637
0
        goto err;
1638
0
    if ((pre = nistp224_pre_comp_new()) == NULL)
1639
0
        goto err;
1640
    /*
1641
     * if the generator is the standard one, use built-in precomputation
1642
     */
1643
0
    if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) {
1644
0
        memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp));
1645
0
        goto done;
1646
0
    }
1647
0
    if ((!BN_to_felem(pre->g_pre_comp[0][1][0], group->generator->X)) ||
1648
0
        (!BN_to_felem(pre->g_pre_comp[0][1][1], group->generator->Y)) ||
1649
0
        (!BN_to_felem(pre->g_pre_comp[0][1][2], group->generator->Z)))
1650
0
        goto err;
1651
    /*
1652
     * compute 2^56*G, 2^112*G, 2^168*G for the first table, 2^28*G, 2^84*G,
1653
     * 2^140*G, 2^196*G for the second one
1654
     */
1655
0
    for (i = 1; i <= 8; i <<= 1) {
1656
0
        point_double(pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1],
1657
0
                     pre->g_pre_comp[1][i][2], pre->g_pre_comp[0][i][0],
1658
0
                     pre->g_pre_comp[0][i][1], pre->g_pre_comp[0][i][2]);
1659
0
        for (j = 0; j < 27; ++j) {
1660
0
            point_double(pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1],
1661
0
                         pre->g_pre_comp[1][i][2], pre->g_pre_comp[1][i][0],
1662
0
                         pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]);
1663
0
        }
1664
0
        if (i == 8)
1665
0
            break;
1666
0
        point_double(pre->g_pre_comp[0][2 * i][0],
1667
0
                     pre->g_pre_comp[0][2 * i][1],
1668
0
                     pre->g_pre_comp[0][2 * i][2], pre->g_pre_comp[1][i][0],
1669
0
                     pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]);
1670
0
        for (j = 0; j < 27; ++j) {
1671
0
            point_double(pre->g_pre_comp[0][2 * i][0],
1672
0
                         pre->g_pre_comp[0][2 * i][1],
1673
0
                         pre->g_pre_comp[0][2 * i][2],
1674
0
                         pre->g_pre_comp[0][2 * i][0],
1675
0
                         pre->g_pre_comp[0][2 * i][1],
1676
0
                         pre->g_pre_comp[0][2 * i][2]);
1677
0
        }
1678
0
    }
1679
0
    for (i = 0; i < 2; i++) {
1680
        /* g_pre_comp[i][0] is the point at infinity */
1681
0
        memset(pre->g_pre_comp[i][0], 0, sizeof(pre->g_pre_comp[i][0]));
1682
        /* the remaining multiples */
1683
        /* 2^56*G + 2^112*G resp. 2^84*G + 2^140*G */
1684
0
        point_add(pre->g_pre_comp[i][6][0], pre->g_pre_comp[i][6][1],
1685
0
                  pre->g_pre_comp[i][6][2], pre->g_pre_comp[i][4][0],
1686
0
                  pre->g_pre_comp[i][4][1], pre->g_pre_comp[i][4][2],
1687
0
                  0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
1688
0
                  pre->g_pre_comp[i][2][2]);
1689
        /* 2^56*G + 2^168*G resp. 2^84*G + 2^196*G */
1690
0
        point_add(pre->g_pre_comp[i][10][0], pre->g_pre_comp[i][10][1],
1691
0
                  pre->g_pre_comp[i][10][2], pre->g_pre_comp[i][8][0],
1692
0
                  pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2],
1693
0
                  0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
1694
0
                  pre->g_pre_comp[i][2][2]);
1695
        /* 2^112*G + 2^168*G resp. 2^140*G + 2^196*G */
1696
0
        point_add(pre->g_pre_comp[i][12][0], pre->g_pre_comp[i][12][1],
1697
0
                  pre->g_pre_comp[i][12][2], pre->g_pre_comp[i][8][0],
1698
0
                  pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2],
1699
0
                  0, pre->g_pre_comp[i][4][0], pre->g_pre_comp[i][4][1],
1700
0
                  pre->g_pre_comp[i][4][2]);
1701
        /*
1702
         * 2^56*G + 2^112*G + 2^168*G resp. 2^84*G + 2^140*G + 2^196*G
1703
         */
1704
0
        point_add(pre->g_pre_comp[i][14][0], pre->g_pre_comp[i][14][1],
1705
0
                  pre->g_pre_comp[i][14][2], pre->g_pre_comp[i][12][0],
1706
0
                  pre->g_pre_comp[i][12][1], pre->g_pre_comp[i][12][2],
1707
0
                  0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
1708
0
                  pre->g_pre_comp[i][2][2]);
1709
0
        for (j = 1; j < 8; ++j) {
1710
            /* odd multiples: add G resp. 2^28*G */
1711
0
            point_add(pre->g_pre_comp[i][2 * j + 1][0],
1712
0
                      pre->g_pre_comp[i][2 * j + 1][1],
1713
0
                      pre->g_pre_comp[i][2 * j + 1][2],
1714
0
                      pre->g_pre_comp[i][2 * j][0],
1715
0
                      pre->g_pre_comp[i][2 * j][1],
1716
0
                      pre->g_pre_comp[i][2 * j][2], 0,
1717
0
                      pre->g_pre_comp[i][1][0], pre->g_pre_comp[i][1][1],
1718
0
                      pre->g_pre_comp[i][1][2]);
1719
0
        }
1720
0
    }
1721
0
    make_points_affine(31, &(pre->g_pre_comp[0][1]), tmp_felems);
1722
1723
0
 done:
1724
0
    SETPRECOMP(group, nistp224, pre);
1725
0
    pre = NULL;
1726
0
    ret = 1;
1727
0
 err:
1728
0
    BN_CTX_end(ctx);
1729
0
    EC_POINT_free(generator);
1730
0
#ifndef FIPS_MODULE
1731
0
    BN_CTX_free(new_ctx);
1732
0
#endif
1733
0
    EC_nistp224_pre_comp_free(pre);
1734
0
    return ret;
1735
0
}
1736
1737
int ossl_ec_GFp_nistp224_have_precompute_mult(const EC_GROUP *group)
1738
0
{
1739
0
    return HAVEPRECOMP(group, nistp224);
1740
0
}