Coverage Report

Created: 2025-06-13 06:55

/src/openssl/crypto/ec/ecp_nistp384.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 2023-2024 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
/* Copyright 2023 IBM Corp.
11
 *
12
 * Licensed under the Apache License, Version 2.0 (the "License");
13
 *
14
 * you may not use this file except in compliance with the License.
15
 * You may obtain a copy of the License at
16
 *
17
 *     http://www.apache.org/licenses/LICENSE-2.0
18
 *
19
 *  Unless required by applicable law or agreed to in writing, software
20
 *  distributed under the License is distributed on an "AS IS" BASIS,
21
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
22
 *  See the License for the specific language governing permissions and
23
 *  limitations under the License.
24
 */
25
26
/*
27
 * Designed for 56-bit limbs by Rohan McLure <rohan.mclure@linux.ibm.com>.
28
 * The layout is based on that of ecp_nistp{224,521}.c, allowing even for asm
29
 * acceleration of felem_{square,mul} as supported in these files.
30
 */
31
32
#include <openssl/e_os2.h>
33
34
#include <string.h>
35
#include <openssl/err.h>
36
#include "ec_local.h"
37
38
#include "internal/numbers.h"
39
40
#ifndef INT128_MAX
41
# error "Your compiler doesn't appear to support 128-bit integer types"
42
#endif
43
44
typedef uint8_t u8;
45
typedef uint64_t u64;
46
47
/*
48
 * The underlying field. P384 operates over GF(2^384-2^128-2^96+2^32-1). We
49
 * can serialize an element of this field into 48 bytes. We call this an
50
 * felem_bytearray.
51
 */
52
53
typedef u8 felem_bytearray[48];
54
55
/*
56
 * These are the parameters of P384, taken from FIPS 186-3, section D.1.2.4.
57
 * These values are big-endian.
58
 */
59
static const felem_bytearray nistp384_curve_params[5] = {
60
  {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* p */
61
   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
62
   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF,
63
   0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF},
64
  {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* a = -3 */
65
   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
66
   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF,
67
   0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFC},
68
  {0xB3, 0x31, 0x2F, 0xA7, 0xE2, 0x3E, 0xE7, 0xE4, 0x98, 0x8E, 0x05, 0x6B, /* b */
69
   0xE3, 0xF8, 0x2D, 0x19, 0x18, 0x1D, 0x9C, 0x6E, 0xFE, 0x81, 0x41, 0x12,
70
   0x03, 0x14, 0x08, 0x8F, 0x50, 0x13, 0x87, 0x5A, 0xC6, 0x56, 0x39, 0x8D,
71
   0x8A, 0x2E, 0xD1, 0x9D, 0x2A, 0x85, 0xC8, 0xED, 0xD3, 0xEC, 0x2A, 0xEF},
72
  {0xAA, 0x87, 0xCA, 0x22, 0xBE, 0x8B, 0x05, 0x37, 0x8E, 0xB1, 0xC7, 0x1E, /* x */
73
   0xF3, 0x20, 0xAD, 0x74, 0x6E, 0x1D, 0x3B, 0x62, 0x8B, 0xA7, 0x9B, 0x98,
74
   0x59, 0xF7, 0x41, 0xE0, 0x82, 0x54, 0x2A, 0x38, 0x55, 0x02, 0xF2, 0x5D,
75
   0xBF, 0x55, 0x29, 0x6C, 0x3A, 0x54, 0x5E, 0x38, 0x72, 0x76, 0x0A, 0xB7},
76
  {0x36, 0x17, 0xDE, 0x4A, 0x96, 0x26, 0x2C, 0x6F, 0x5D, 0x9E, 0x98, 0xBF, /* y */
77
   0x92, 0x92, 0xDC, 0x29, 0xF8, 0xF4, 0x1D, 0xBD, 0x28, 0x9A, 0x14, 0x7C,
78
   0xE9, 0xDA, 0x31, 0x13, 0xB5, 0xF0, 0xB8, 0xC0, 0x0A, 0x60, 0xB1, 0xCE,
79
   0x1D, 0x7E, 0x81, 0x9D, 0x7A, 0x43, 0x1D, 0x7C, 0x90, 0xEA, 0x0E, 0x5F},
80
};
81
82
/*-
83
 * The representation of field elements.
84
 * ------------------------------------
85
 *
86
 * We represent field elements with seven values. These values are either 64 or
87
 * 128 bits and the field element represented is:
88
 *   v[0]*2^0 + v[1]*2^56 + v[2]*2^112 + ... + v[6]*2^336  (mod p)
89
 * Each of the seven values is called a 'limb'. Since the limbs are spaced only
90
 * 56 bits apart, but are greater than 56 bits in length, the most significant
91
 * bits of each limb overlap with the least significant bits of the next
92
 *
93
 * This representation is considered to be 'redundant' in the sense that
94
 * intermediate values can each contain more than a 56-bit value in each limb.
95
 * Reduction causes all but the final limb to be reduced to contain a value less
96
 * than 2^56, with the final value represented allowed to be larger than 2^384,
97
 * inasmuch as we can be sure that arithmetic overflow remains impossible. The
98
 * reduced value must of course be congruent to the unreduced value.
99
 *
100
 * A field element with 64-bit limbs is an 'felem'. One with 128-bit limbs is a
101
 * 'widefelem', featuring enough bits to store the result of a multiplication
102
 * and even some further arithmetic without need for immediate reduction.
103
 */
104
105
0
#define NLIMBS 7
106
107
typedef uint64_t limb;
108
typedef uint128_t widelimb;
109
typedef limb limb_aX __attribute((__aligned__(1)));
110
typedef limb felem[NLIMBS];
111
typedef widelimb widefelem[2*NLIMBS-1];
112
113
static const limb bottom56bits = 0xffffffffffffff;
114
115
/* Helper functions (de)serialising reduced field elements in little endian */
116
static void bin48_to_felem(felem out, const u8 in[48])
117
0
{
118
0
    memset(out, 0, 56);
119
0
    out[0] = (*((limb *) & in[0])) & bottom56bits;
120
0
    out[1] = (*((limb_aX *) & in[7])) & bottom56bits;
121
0
    out[2] = (*((limb_aX *) & in[14])) & bottom56bits;
122
0
    out[3] = (*((limb_aX *) & in[21])) & bottom56bits;
123
0
    out[4] = (*((limb_aX *) & in[28])) & bottom56bits;
124
0
    out[5] = (*((limb_aX *) & in[35])) & bottom56bits;
125
0
    memmove(&out[6], &in[42], 6);
126
0
}
127
128
static void felem_to_bin48(u8 out[48], const felem in)
129
0
{
130
0
    memset(out, 0, 48);
131
0
    (*((limb *) & out[0]))     |= (in[0] & bottom56bits);
132
0
    (*((limb_aX *) & out[7]))  |= (in[1] & bottom56bits);
133
0
    (*((limb_aX *) & out[14])) |= (in[2] & bottom56bits);
134
0
    (*((limb_aX *) & out[21])) |= (in[3] & bottom56bits);
135
0
    (*((limb_aX *) & out[28])) |= (in[4] & bottom56bits);
136
0
    (*((limb_aX *) & out[35])) |= (in[5] & bottom56bits);
137
0
    memmove(&out[42], &in[6], 6);
138
0
}
139
140
/* BN_to_felem converts an OpenSSL BIGNUM into an felem */
141
static int BN_to_felem(felem out, const BIGNUM *bn)
142
0
{
143
0
    felem_bytearray b_out;
144
0
    int num_bytes;
145
146
0
    if (BN_is_negative(bn)) {
147
0
        ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE);
148
0
        return 0;
149
0
    }
150
0
    num_bytes = BN_bn2lebinpad(bn, b_out, sizeof(b_out));
151
0
    if (num_bytes < 0) {
152
0
        ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE);
153
0
        return 0;
154
0
    }
155
0
    bin48_to_felem(out, b_out);
156
0
    return 1;
157
0
}
158
159
/* felem_to_BN converts an felem into an OpenSSL BIGNUM */
160
static BIGNUM *felem_to_BN(BIGNUM *out, const felem in)
161
0
{
162
0
    felem_bytearray b_out;
163
164
0
    felem_to_bin48(b_out, in);
165
0
    return BN_lebin2bn(b_out, sizeof(b_out), out);
166
0
}
167
168
/*-
169
 * Field operations
170
 * ----------------
171
 */
172
173
static void felem_one(felem out)
174
0
{
175
0
    out[0] = 1;
176
0
    memset(&out[1], 0, sizeof(limb) * (NLIMBS-1));
177
0
}
178
179
static void felem_assign(felem out, const felem in)
180
0
{
181
0
    memcpy(out, in, sizeof(felem));
182
0
}
183
184
/* felem_sum64 sets out = out + in. */
185
static void felem_sum64(felem out, const felem in)
186
0
{
187
0
    unsigned int i;
188
189
0
    for (i = 0; i < NLIMBS; i++)
190
0
        out[i] += in[i];
191
0
}
192
193
/* felem_scalar sets out = in * scalar */
194
static void felem_scalar(felem out, const felem in, limb scalar)
195
0
{
196
0
    unsigned int i;
197
198
0
    for (i = 0; i < NLIMBS; i++)
199
0
        out[i] = in[i] * scalar;
200
0
}
201
202
/* felem_scalar64 sets out = out * scalar */
203
static void felem_scalar64(felem out, limb scalar)
204
0
{
205
0
    unsigned int i;
206
207
0
    for (i = 0; i < NLIMBS; i++)
208
0
        out[i] *= scalar;
209
0
}
210
211
/* felem_scalar128 sets out = out * scalar */
212
static void felem_scalar128(widefelem out, limb scalar)
213
0
{
214
0
    unsigned int i;
215
216
0
    for (i = 0; i < 2*NLIMBS-1; i++)
217
0
        out[i] *= scalar;
218
0
}
219
220
/*-
221
 * felem_neg sets |out| to |-in|
222
 * On entry:
223
 *   in[i] < 2^60 - 2^29
224
 * On exit:
225
 *   out[i] < 2^60
226
 */
227
static void felem_neg(felem out, const felem in)
228
0
{
229
    /*
230
     * In order to prevent underflow, we add a multiple of p before subtracting.
231
     * Use telescopic sums to represent 2^12 * p redundantly with each limb
232
     * of the form 2^60 + ...
233
     */
234
0
    static const limb two60m52m4 = (((limb) 1) << 60)
235
0
                                 - (((limb) 1) << 52)
236
0
                                 - (((limb) 1) << 4);
237
0
    static const limb two60p44m12 = (((limb) 1) << 60)
238
0
                                  + (((limb) 1) << 44)
239
0
                                  - (((limb) 1) << 12);
240
0
    static const limb two60m28m4 = (((limb) 1) << 60)
241
0
                                 - (((limb) 1) << 28)
242
0
                                 - (((limb) 1) << 4);
243
0
    static const limb two60m4 = (((limb) 1) << 60)
244
0
                              - (((limb) 1) << 4);
245
246
0
    out[0] = two60p44m12 - in[0];
247
0
    out[1] = two60m52m4 - in[1];
248
0
    out[2] = two60m28m4 - in[2];
249
0
    out[3] = two60m4 - in[3];
250
0
    out[4] = two60m4 - in[4];
251
0
    out[5] = two60m4 - in[5];
252
0
    out[6] = two60m4 - in[6];
253
0
}
254
255
#if defined(ECP_NISTP384_ASM)
256
void p384_felem_diff64(felem out, const felem in);
257
void p384_felem_diff128(widefelem out, const widefelem in);
258
void p384_felem_diff_128_64(widefelem out, const felem in);
259
260
# define felem_diff64           p384_felem_diff64
261
# define felem_diff128          p384_felem_diff128
262
# define felem_diff_128_64      p384_felem_diff_128_64
263
264
#else
265
/*-
266
 * felem_diff64 subtracts |in| from |out|
267
 * On entry:
268
 *   in[i] < 2^60 - 2^52 - 2^4
269
 * On exit:
270
 *   out[i] < out_orig[i] + 2^60 + 2^44
271
 */
272
static void felem_diff64(felem out, const felem in)
273
0
{
274
    /*
275
     * In order to prevent underflow, we add a multiple of p before subtracting.
276
     * Use telescopic sums to represent 2^12 * p redundantly with each limb
277
     * of the form 2^60 + ...
278
     */
279
280
0
    static const limb two60m52m4 = (((limb) 1) << 60)
281
0
                                 - (((limb) 1) << 52)
282
0
                                 - (((limb) 1) << 4);
283
0
    static const limb two60p44m12 = (((limb) 1) << 60)
284
0
                                  + (((limb) 1) << 44)
285
0
                                  - (((limb) 1) << 12);
286
0
    static const limb two60m28m4 = (((limb) 1) << 60)
287
0
                                 - (((limb) 1) << 28)
288
0
                                 - (((limb) 1) << 4);
289
0
    static const limb two60m4 = (((limb) 1) << 60)
290
0
                              - (((limb) 1) << 4);
291
292
0
    out[0] += two60p44m12 - in[0];
293
0
    out[1] += two60m52m4 - in[1];
294
0
    out[2] += two60m28m4 - in[2];
295
0
    out[3] += two60m4 - in[3];
296
0
    out[4] += two60m4 - in[4];
297
0
    out[5] += two60m4 - in[5];
298
0
    out[6] += two60m4 - in[6];
299
0
}
300
301
/*
302
 * in[i] < 2^63
303
 * out[i] < out_orig[i] + 2^64 + 2^48
304
 */
305
static void felem_diff_128_64(widefelem out, const felem in)
306
0
{
307
    /*
308
     * In order to prevent underflow, we add a multiple of p before subtracting.
309
     * Use telescopic sums to represent 2^16 * p redundantly with each limb
310
     * of the form 2^64 + ...
311
     */
312
313
0
    static const widelimb two64m56m8 = (((widelimb) 1) << 64)
314
0
                                     - (((widelimb) 1) << 56)
315
0
                                     - (((widelimb) 1) << 8);
316
0
    static const widelimb two64m32m8 = (((widelimb) 1) << 64)
317
0
                                     - (((widelimb) 1) << 32)
318
0
                                     - (((widelimb) 1) << 8);
319
0
    static const widelimb two64m8 = (((widelimb) 1) << 64)
320
0
                                  - (((widelimb) 1) << 8);
321
0
    static const widelimb two64p48m16 = (((widelimb) 1) << 64)
322
0
                                      + (((widelimb) 1) << 48)
323
0
                                      - (((widelimb) 1) << 16);
324
0
    unsigned int i;
325
326
0
    out[0] += two64p48m16;
327
0
    out[1] += two64m56m8;
328
0
    out[2] += two64m32m8;
329
0
    out[3] += two64m8;
330
0
    out[4] += two64m8;
331
0
    out[5] += two64m8;
332
0
    out[6] += two64m8;
333
334
0
    for (i = 0; i < NLIMBS; i++)
335
0
        out[i] -= in[i];
336
0
}
337
338
/*
339
 * in[i] < 2^127 - 2^119 - 2^71
340
 * out[i] < out_orig[i] + 2^127 + 2^111
341
 */
342
static void felem_diff128(widefelem out, const widefelem in)
343
0
{
344
    /*
345
     * In order to prevent underflow, we add a multiple of p before subtracting.
346
     * Use telescopic sums to represent 2^415 * p redundantly with each limb
347
     * of the form 2^127 + ...
348
     */
349
350
0
    static const widelimb two127 = ((widelimb) 1) << 127;
351
0
    static const widelimb two127m71 = (((widelimb) 1) << 127)
352
0
                                    - (((widelimb) 1) << 71);
353
0
    static const widelimb two127p111m79m71 = (((widelimb) 1) << 127)
354
0
                                           + (((widelimb) 1) << 111)
355
0
                                           - (((widelimb) 1) << 79)
356
0
                                           - (((widelimb) 1) << 71);
357
0
    static const widelimb two127m119m71 = (((widelimb) 1) << 127)
358
0
                                        - (((widelimb) 1) << 119)
359
0
                                        - (((widelimb) 1) << 71);
360
0
    static const widelimb two127m95m71 = (((widelimb) 1) << 127)
361
0
                                       - (((widelimb) 1) << 95)
362
0
                                       - (((widelimb) 1) << 71);
363
0
    unsigned int i;
364
365
0
    out[0]  += two127;
366
0
    out[1]  += two127m71;
367
0
    out[2]  += two127m71;
368
0
    out[3]  += two127m71;
369
0
    out[4]  += two127m71;
370
0
    out[5]  += two127m71;
371
0
    out[6]  += two127p111m79m71;
372
0
    out[7]  += two127m119m71;
373
0
    out[8]  += two127m95m71;
374
0
    out[9]  += two127m71;
375
0
    out[10] += two127m71;
376
0
    out[11] += two127m71;
377
0
    out[12] += two127m71;
378
379
0
    for (i = 0; i < 2*NLIMBS-1; i++)
380
0
        out[i] -= in[i];
381
0
}
382
#endif /* ECP_NISTP384_ASM */
383
384
static void felem_square_ref(widefelem out, const felem in)
385
0
{
386
0
    felem inx2;
387
0
    felem_scalar(inx2, in, 2);
388
389
0
    out[0] = ((uint128_t) in[0]) * in[0];
390
391
0
    out[1] = ((uint128_t) in[0]) * inx2[1];
392
393
0
    out[2] = ((uint128_t) in[0]) * inx2[2]
394
0
           + ((uint128_t) in[1]) * in[1];
395
396
0
    out[3] = ((uint128_t) in[0]) * inx2[3]
397
0
           + ((uint128_t) in[1]) * inx2[2];
398
399
0
    out[4] = ((uint128_t) in[0]) * inx2[4]
400
0
           + ((uint128_t) in[1]) * inx2[3]
401
0
           + ((uint128_t) in[2]) * in[2];
402
403
0
    out[5] = ((uint128_t) in[0]) * inx2[5]
404
0
           + ((uint128_t) in[1]) * inx2[4]
405
0
           + ((uint128_t) in[2]) * inx2[3];
406
407
0
    out[6] = ((uint128_t) in[0]) * inx2[6]
408
0
           + ((uint128_t) in[1]) * inx2[5]
409
0
           + ((uint128_t) in[2]) * inx2[4]
410
0
           + ((uint128_t) in[3]) * in[3];
411
412
0
    out[7] = ((uint128_t) in[1]) * inx2[6]
413
0
           + ((uint128_t) in[2]) * inx2[5]
414
0
           + ((uint128_t) in[3]) * inx2[4];
415
416
0
    out[8] = ((uint128_t) in[2]) * inx2[6]
417
0
           + ((uint128_t) in[3]) * inx2[5]
418
0
           + ((uint128_t) in[4]) * in[4];
419
420
0
    out[9] = ((uint128_t) in[3]) * inx2[6]
421
0
           + ((uint128_t) in[4]) * inx2[5];
422
423
0
    out[10] = ((uint128_t) in[4]) * inx2[6]
424
0
            + ((uint128_t) in[5]) * in[5];
425
426
0
    out[11] = ((uint128_t) in[5]) * inx2[6];
427
428
0
    out[12] = ((uint128_t) in[6]) * in[6];
429
0
}
430
431
static void felem_mul_ref(widefelem out, const felem in1, const felem in2)
432
0
{
433
0
    out[0] = ((uint128_t) in1[0]) * in2[0];
434
435
0
    out[1] = ((uint128_t) in1[0]) * in2[1]
436
0
           + ((uint128_t) in1[1]) * in2[0];
437
438
0
    out[2] = ((uint128_t) in1[0]) * in2[2]
439
0
           + ((uint128_t) in1[1]) * in2[1]
440
0
           + ((uint128_t) in1[2]) * in2[0];
441
442
0
    out[3] = ((uint128_t) in1[0]) * in2[3]
443
0
           + ((uint128_t) in1[1]) * in2[2]
444
0
           + ((uint128_t) in1[2]) * in2[1]
445
0
           + ((uint128_t) in1[3]) * in2[0];
446
447
0
    out[4] = ((uint128_t) in1[0]) * in2[4]
448
0
           + ((uint128_t) in1[1]) * in2[3]
449
0
           + ((uint128_t) in1[2]) * in2[2]
450
0
           + ((uint128_t) in1[3]) * in2[1]
451
0
           + ((uint128_t) in1[4]) * in2[0];
452
453
0
    out[5] = ((uint128_t) in1[0]) * in2[5]
454
0
           + ((uint128_t) in1[1]) * in2[4]
455
0
           + ((uint128_t) in1[2]) * in2[3]
456
0
           + ((uint128_t) in1[3]) * in2[2]
457
0
           + ((uint128_t) in1[4]) * in2[1]
458
0
           + ((uint128_t) in1[5]) * in2[0];
459
460
0
    out[6] = ((uint128_t) in1[0]) * in2[6]
461
0
           + ((uint128_t) in1[1]) * in2[5]
462
0
           + ((uint128_t) in1[2]) * in2[4]
463
0
           + ((uint128_t) in1[3]) * in2[3]
464
0
           + ((uint128_t) in1[4]) * in2[2]
465
0
           + ((uint128_t) in1[5]) * in2[1]
466
0
           + ((uint128_t) in1[6]) * in2[0];
467
468
0
    out[7] = ((uint128_t) in1[1]) * in2[6]
469
0
           + ((uint128_t) in1[2]) * in2[5]
470
0
           + ((uint128_t) in1[3]) * in2[4]
471
0
           + ((uint128_t) in1[4]) * in2[3]
472
0
           + ((uint128_t) in1[5]) * in2[2]
473
0
           + ((uint128_t) in1[6]) * in2[1];
474
475
0
    out[8] = ((uint128_t) in1[2]) * in2[6]
476
0
           + ((uint128_t) in1[3]) * in2[5]
477
0
           + ((uint128_t) in1[4]) * in2[4]
478
0
           + ((uint128_t) in1[5]) * in2[3]
479
0
           + ((uint128_t) in1[6]) * in2[2];
480
481
0
    out[9] = ((uint128_t) in1[3]) * in2[6]
482
0
           + ((uint128_t) in1[4]) * in2[5]
483
0
           + ((uint128_t) in1[5]) * in2[4]
484
0
           + ((uint128_t) in1[6]) * in2[3];
485
486
0
    out[10] = ((uint128_t) in1[4]) * in2[6]
487
0
            + ((uint128_t) in1[5]) * in2[5]
488
0
            + ((uint128_t) in1[6]) * in2[4];
489
490
0
    out[11] = ((uint128_t) in1[5]) * in2[6]
491
0
            + ((uint128_t) in1[6]) * in2[5];
492
493
0
    out[12] = ((uint128_t) in1[6]) * in2[6];
494
0
}
495
496
/*-
497
 * Reduce thirteen 128-bit coefficients to seven 64-bit coefficients.
498
 * in[i] < 2^128 - 2^125
499
 * out[i] < 2^56 for i < 6,
500
 * out[6] <= 2^48
501
 *
502
 * The technique in use here stems from the format of the prime modulus:
503
 * P384 = 2^384 - delta
504
 *
505
 * Thus we can reduce numbers of the form (X + 2^384 * Y) by substituting
506
 * them with (X + delta Y), with delta = 2^128 + 2^96 + (-2^32 + 1). These
507
 * coefficients are still quite large, and so we repeatedly apply this
508
 * technique on high-order bits in order to guarantee the desired bounds on
509
 * the size of our output.
510
 *
511
 * The three phases of elimination are as follows:
512
 * [1]: Y = 2^120 (in[12] | in[11] | in[10] | in[9])
513
 * [2]: Y = 2^8 (acc[8] | acc[7])
514
 * [3]: Y = 2^48 (acc[6] >> 48)
515
 * (Where a | b | c | d = (2^56)^3 a + (2^56)^2 b + (2^56) c + d)
516
 */
517
static void felem_reduce_ref(felem out, const widefelem in)
518
0
{
519
    /*
520
     * In order to prevent underflow, we add a multiple of p before subtracting.
521
     * Use telescopic sums to represent 2^76 * p redundantly with each limb
522
     * of the form 2^124 + ...
523
     */
524
0
    static const widelimb two124m68 = (((widelimb) 1) << 124)
525
0
                                    - (((widelimb) 1) << 68);
526
0
    static const widelimb two124m116m68 = (((widelimb) 1) << 124)
527
0
                                        - (((widelimb) 1) << 116)
528
0
                                        - (((widelimb) 1) << 68);
529
0
    static const widelimb two124p108m76 = (((widelimb) 1) << 124)
530
0
                                        + (((widelimb) 1) << 108)
531
0
                                        - (((widelimb) 1) << 76);
532
0
    static const widelimb two124m92m68 = (((widelimb) 1) << 124)
533
0
                                       - (((widelimb) 1) << 92)
534
0
                                       - (((widelimb) 1) << 68);
535
0
    widelimb temp, acc[9];
536
0
    unsigned int i;
537
538
0
    memcpy(acc, in, sizeof(widelimb) * 9);
539
540
0
    acc[0] += two124p108m76;
541
0
    acc[1] += two124m116m68;
542
0
    acc[2] += two124m92m68;
543
0
    acc[3] += two124m68;
544
0
    acc[4] += two124m68;
545
0
    acc[5] += two124m68;
546
0
    acc[6] += two124m68;
547
548
    /* [1]: Eliminate in[9], ..., in[12] */
549
0
    acc[8] += in[12] >> 32;
550
0
    acc[7] += (in[12] & 0xffffffff) << 24;
551
0
    acc[7] += in[12] >> 8;
552
0
    acc[6] += (in[12] & 0xff) << 48;
553
0
    acc[6] -= in[12] >> 16;
554
0
    acc[5] -= (in[12] & 0xffff) << 40;
555
0
    acc[6] += in[12] >> 48;
556
0
    acc[5] += (in[12] & 0xffffffffffff) << 8;
557
558
0
    acc[7] += in[11] >> 32;
559
0
    acc[6] += (in[11] & 0xffffffff) << 24;
560
0
    acc[6] += in[11] >> 8;
561
0
    acc[5] += (in[11] & 0xff) << 48;
562
0
    acc[5] -= in[11] >> 16;
563
0
    acc[4] -= (in[11] & 0xffff) << 40;
564
0
    acc[5] += in[11] >> 48;
565
0
    acc[4] += (in[11] & 0xffffffffffff) << 8;
566
567
0
    acc[6] += in[10] >> 32;
568
0
    acc[5] += (in[10] & 0xffffffff) << 24;
569
0
    acc[5] += in[10] >> 8;
570
0
    acc[4] += (in[10] & 0xff) << 48;
571
0
    acc[4] -= in[10] >> 16;
572
0
    acc[3] -= (in[10] & 0xffff) << 40;
573
0
    acc[4] += in[10] >> 48;
574
0
    acc[3] += (in[10] & 0xffffffffffff) << 8;
575
576
0
    acc[5] += in[9] >> 32;
577
0
    acc[4] += (in[9] & 0xffffffff) << 24;
578
0
    acc[4] += in[9] >> 8;
579
0
    acc[3] += (in[9] & 0xff) << 48;
580
0
    acc[3] -= in[9] >> 16;
581
0
    acc[2] -= (in[9] & 0xffff) << 40;
582
0
    acc[3] += in[9] >> 48;
583
0
    acc[2] += (in[9] & 0xffffffffffff) << 8;
584
585
    /*
586
     * [2]: Eliminate acc[7], acc[8], that is the 7 and eighth limbs, as
587
     * well as the contributions made from eliminating higher limbs.
588
     * acc[7] < in[7] + 2^120 + 2^56 < in[7] + 2^121
589
     * acc[8] < in[8] + 2^96
590
     */
591
0
    acc[4] += acc[8] >> 32;
592
0
    acc[3] += (acc[8] & 0xffffffff) << 24;
593
0
    acc[3] += acc[8] >> 8;
594
0
    acc[2] += (acc[8] & 0xff) << 48;
595
0
    acc[2] -= acc[8] >> 16;
596
0
    acc[1] -= (acc[8] & 0xffff) << 40;
597
0
    acc[2] += acc[8] >> 48;
598
0
    acc[1] += (acc[8] & 0xffffffffffff) << 8;
599
600
0
    acc[3] += acc[7] >> 32;
601
0
    acc[2] += (acc[7] & 0xffffffff) << 24;
602
0
    acc[2] += acc[7] >> 8;
603
0
    acc[1] += (acc[7] & 0xff) << 48;
604
0
    acc[1] -= acc[7] >> 16;
605
0
    acc[0] -= (acc[7] & 0xffff) << 40;
606
0
    acc[1] += acc[7] >> 48;
607
0
    acc[0] += (acc[7] & 0xffffffffffff) << 8;
608
609
    /*-
610
     * acc[k] < in[k] + 2^124 + 2^121
611
     *        < in[k] + 2^125
612
     *        < 2^128, for k <= 6
613
     */
614
615
    /*
616
     * Carry 4 -> 5 -> 6
617
     * This has the effect of ensuring that these more significant limbs
618
     * will be small in value after eliminating high bits from acc[6].
619
     */
620
0
    acc[5] += acc[4] >> 56;
621
0
    acc[4] &= 0x00ffffffffffffff;
622
623
0
    acc[6] += acc[5] >> 56;
624
0
    acc[5] &= 0x00ffffffffffffff;
625
626
    /*-
627
     * acc[6] < in[6] + 2^124 + 2^121 + 2^72 + 2^16
628
     *        < in[6] + 2^125
629
     *        < 2^128
630
     */
631
632
    /* [3]: Eliminate high bits of acc[6] */
633
0
    temp = acc[6] >> 48;
634
0
    acc[6] &= 0x0000ffffffffffff;
635
636
    /* temp < 2^80 */
637
638
0
    acc[3] += temp >> 40;
639
0
    acc[2] += (temp & 0xffffffffff) << 16;
640
0
    acc[2] += temp >> 16;
641
0
    acc[1] += (temp & 0xffff) << 40;
642
0
    acc[1] -= temp >> 24;
643
0
    acc[0] -= (temp & 0xffffff) << 32;
644
0
    acc[0] += temp;
645
646
    /*-
647
     * acc[k] < acc_old[k] + 2^64 + 2^56
648
     *        < in[k] + 2^124 + 2^121 + 2^72 + 2^64 + 2^56 + 2^16 , k < 4
649
     */
650
651
    /* Carry 0 -> 1 -> 2 -> 3 -> 4 -> 5 -> 6 */
652
0
    acc[1] += acc[0] >> 56;   /* acc[1] < acc_old[1] + 2^72 */
653
0
    acc[0] &= 0x00ffffffffffffff;
654
655
0
    acc[2] += acc[1] >> 56;   /* acc[2] < acc_old[2] + 2^72 + 2^16 */
656
0
    acc[1] &= 0x00ffffffffffffff;
657
658
0
    acc[3] += acc[2] >> 56;   /* acc[3] < acc_old[3] + 2^72 + 2^16 */
659
0
    acc[2] &= 0x00ffffffffffffff;
660
661
    /*-
662
     * acc[k] < acc_old[k] + 2^72 + 2^16
663
     *        < in[k] + 2^124 + 2^121 + 2^73 + 2^64 + 2^56 + 2^17
664
     *        < in[k] + 2^125
665
     *        < 2^128 , k < 4
666
     */
667
668
0
    acc[4] += acc[3] >> 56;   /*-
669
                               * acc[4] < acc_old[4] + 2^72 + 2^16
670
                               *        < 2^72 + 2^56 + 2^16
671
                               */
672
0
    acc[3] &= 0x00ffffffffffffff;
673
674
0
    acc[5] += acc[4] >> 56;   /*-
675
                               * acc[5] < acc_old[5] + 2^16 + 1
676
                               *        < 2^56 + 2^16 + 1
677
                               */
678
0
    acc[4] &= 0x00ffffffffffffff;
679
680
0
    acc[6] += acc[5] >> 56;   /* acc[6] < 2^48 + 1 <= 2^48 */
681
0
    acc[5] &= 0x00ffffffffffffff;
682
683
0
    for (i = 0; i < NLIMBS; i++)
684
0
        out[i] = acc[i];
685
0
}
686
687
static ossl_inline void felem_square_reduce_ref(felem out, const felem in)
688
0
{
689
0
    widefelem tmp;
690
691
0
    felem_square_ref(tmp, in);
692
0
    felem_reduce_ref(out, tmp);
693
0
}
694
695
static ossl_inline void felem_mul_reduce_ref(felem out, const felem in1, const felem in2)
696
0
{
697
0
    widefelem tmp;
698
699
0
    felem_mul_ref(tmp, in1, in2);
700
0
    felem_reduce_ref(out, tmp);
701
0
}
702
703
#if defined(ECP_NISTP384_ASM)
704
static void felem_square_wrapper(widefelem out, const felem in);
705
static void felem_mul_wrapper(widefelem out, const felem in1, const felem in2);
706
707
static void (*felem_square_p)(widefelem out, const felem in) =
708
    felem_square_wrapper;
709
static void (*felem_mul_p)(widefelem out, const felem in1, const felem in2) =
710
    felem_mul_wrapper;
711
712
static void (*felem_reduce_p)(felem out, const widefelem in) = felem_reduce_ref;
713
714
static void (*felem_square_reduce_p)(felem out, const felem in) =
715
    felem_square_reduce_ref;
716
static void (*felem_mul_reduce_p)(felem out, const felem in1, const felem in2) =
717
    felem_mul_reduce_ref;
718
719
void p384_felem_square(widefelem out, const felem in);
720
void p384_felem_mul(widefelem out, const felem in1, const felem in2);
721
void p384_felem_reduce(felem out, const widefelem in);
722
723
void p384_felem_square_reduce(felem out, const felem in);
724
void p384_felem_mul_reduce(felem out, const felem in1, const felem in2);
725
726
# if defined(_ARCH_PPC64)
727
#  include "crypto/ppc_arch.h"
728
# endif
729
730
static void felem_select(void)
731
{
732
# if defined(_ARCH_PPC64)
733
    if ((OPENSSL_ppccap_P & PPC_MADD300) && (OPENSSL_ppccap_P & PPC_ALTIVEC)) {
734
        felem_square_p = p384_felem_square;
735
        felem_mul_p = p384_felem_mul;
736
        felem_reduce_p = p384_felem_reduce;
737
        felem_square_reduce_p = p384_felem_square_reduce;
738
        felem_mul_reduce_p = p384_felem_mul_reduce;
739
740
        return;
741
    }
742
# endif
743
744
    /* Default */
745
    felem_square_p = felem_square_ref;
746
    felem_mul_p = felem_mul_ref;
747
    felem_reduce_p = felem_reduce_ref;
748
    felem_square_reduce_p = felem_square_reduce_ref;
749
    felem_mul_reduce_p = felem_mul_reduce_ref;
750
}
751
752
static void felem_square_wrapper(widefelem out, const felem in)
753
{
754
    felem_select();
755
    felem_square_p(out, in);
756
}
757
758
static void felem_mul_wrapper(widefelem out, const felem in1, const felem in2)
759
{
760
    felem_select();
761
    felem_mul_p(out, in1, in2);
762
}
763
764
# define felem_square felem_square_p
765
# define felem_mul felem_mul_p
766
# define felem_reduce felem_reduce_p
767
768
# define felem_square_reduce felem_square_reduce_p
769
# define felem_mul_reduce felem_mul_reduce_p
770
#else
771
0
# define felem_square felem_square_ref
772
0
# define felem_mul felem_mul_ref
773
0
# define felem_reduce felem_reduce_ref
774
775
0
# define felem_square_reduce felem_square_reduce_ref
776
0
# define felem_mul_reduce felem_mul_reduce_ref
777
#endif
778
779
/*-
780
 * felem_inv calculates |out| = |in|^{-1}
781
 *
782
 * Based on Fermat's Little Theorem:
783
 *   a^p = a (mod p)
784
 *   a^{p-1} = 1 (mod p)
785
 *   a^{p-2} = a^{-1} (mod p)
786
 */
787
static void felem_inv(felem out, const felem in)
788
0
{
789
0
    felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, ftmp6;
790
0
    unsigned int i = 0;
791
792
0
    felem_square_reduce(ftmp, in);      /* 2^1 */
793
0
    felem_mul_reduce(ftmp, ftmp, in);   /* 2^1 + 2^0 */
794
0
    felem_assign(ftmp2, ftmp);
795
796
0
    felem_square_reduce(ftmp, ftmp);    /* 2^2 + 2^1 */
797
0
    felem_mul_reduce(ftmp, ftmp, in);   /* 2^2 + 2^1 * 2^0 */
798
0
    felem_assign(ftmp3, ftmp);
799
800
0
    for (i = 0; i < 3; i++)
801
0
        felem_square_reduce(ftmp, ftmp); /* 2^5 + 2^4 + 2^3 */
802
0
    felem_mul_reduce(ftmp, ftmp3, ftmp); /* 2^5 + 2^4 + 2^3 + 2^2 + 2^1 + 2^0 */
803
0
    felem_assign(ftmp4, ftmp);
804
805
0
    for (i = 0; i < 6; i++)
806
0
        felem_square_reduce(ftmp, ftmp); /* 2^11 + ... + 2^6 */
807
0
    felem_mul_reduce(ftmp, ftmp4, ftmp); /* 2^11 + ... + 2^0 */
808
809
0
    for (i = 0; i < 3; i++)
810
0
        felem_square_reduce(ftmp, ftmp); /* 2^14 + ... + 2^3 */
811
0
    felem_mul_reduce(ftmp, ftmp3, ftmp); /* 2^14 + ... + 2^0 */
812
0
    felem_assign(ftmp5, ftmp);
813
814
0
    for (i = 0; i < 15; i++)
815
0
        felem_square_reduce(ftmp, ftmp); /* 2^29 + ... + 2^15 */
816
0
    felem_mul_reduce(ftmp, ftmp5, ftmp); /* 2^29 + ... + 2^0 */
817
0
    felem_assign(ftmp6, ftmp);
818
819
0
    for (i = 0; i < 30; i++)
820
0
        felem_square_reduce(ftmp, ftmp); /* 2^59 + ... + 2^30 */
821
0
    felem_mul_reduce(ftmp, ftmp6, ftmp); /* 2^59 + ... + 2^0 */
822
0
    felem_assign(ftmp4, ftmp);
823
824
0
    for (i = 0; i < 60; i++)
825
0
        felem_square_reduce(ftmp, ftmp); /* 2^119 + ... + 2^60 */
826
0
    felem_mul_reduce(ftmp, ftmp4, ftmp); /* 2^119 + ... + 2^0 */
827
0
    felem_assign(ftmp4, ftmp);
828
829
0
    for (i = 0; i < 120; i++)
830
0
      felem_square_reduce(ftmp, ftmp);   /* 2^239 + ... + 2^120 */
831
0
    felem_mul_reduce(ftmp, ftmp4, ftmp); /* 2^239 + ... + 2^0 */
832
833
0
    for (i = 0; i < 15; i++)
834
0
        felem_square_reduce(ftmp, ftmp); /* 2^254 + ... + 2^15 */
835
0
    felem_mul_reduce(ftmp, ftmp5, ftmp); /* 2^254 + ... + 2^0 */
836
837
0
    for (i = 0; i < 31; i++)
838
0
        felem_square_reduce(ftmp, ftmp); /* 2^285 + ... + 2^31 */
839
0
    felem_mul_reduce(ftmp, ftmp6, ftmp); /* 2^285 + ... + 2^31 + 2^29 + ... + 2^0 */
840
841
0
    for (i = 0; i < 2; i++)
842
0
        felem_square_reduce(ftmp, ftmp); /* 2^287 + ... + 2^33 + 2^31 + ... + 2^2 */
843
0
    felem_mul_reduce(ftmp, ftmp2, ftmp); /* 2^287 + ... + 2^33 + 2^31 + ... + 2^0 */
844
845
0
    for (i = 0; i < 94; i++)
846
0
        felem_square_reduce(ftmp, ftmp); /* 2^381 + ... + 2^127 + 2^125 + ... + 2^94 */
847
0
    felem_mul_reduce(ftmp, ftmp6, ftmp); /* 2^381 + ... + 2^127 + 2^125 + ... + 2^94 + 2^29 + ... + 2^0 */
848
849
0
    for (i = 0; i < 2; i++)
850
0
        felem_square_reduce(ftmp, ftmp); /* 2^383 + ... + 2^129 + 2^127 + ... + 2^96 + 2^31 + ... + 2^2 */
851
0
    felem_mul_reduce(ftmp, in, ftmp);    /* 2^383 + ... + 2^129 + 2^127 + ... + 2^96 + 2^31 + ... + 2^2 + 2^0 */
852
853
0
    memcpy(out, ftmp, sizeof(felem));
854
0
}
855
856
/*
857
 * Zero-check: returns a limb with all bits set if |in| == 0 (mod p)
858
 * and 0 otherwise. We know that field elements are reduced to
859
 * 0 < in < 2p, so we only need to check two cases:
860
 * 0 and 2^384 - 2^128 - 2^96 + 2^32 - 1
861
 *   in[k] < 2^56, k < 6
862
 *   in[6] <= 2^48
863
 */
864
static limb felem_is_zero(const felem in)
865
0
{
866
0
    limb zero, p384;
867
868
0
    zero = in[0] | in[1] | in[2] | in[3] | in[4] | in[5] | in[6];
869
0
    zero = ((int64_t) (zero) - 1) >> 63;
870
0
    p384 = (in[0] ^ 0x000000ffffffff) | (in[1] ^ 0xffff0000000000)
871
0
         | (in[2] ^ 0xfffffffffeffff) | (in[3] ^ 0xffffffffffffff)
872
0
         | (in[4] ^ 0xffffffffffffff) | (in[5] ^ 0xffffffffffffff)
873
0
         | (in[6] ^ 0xffffffffffff);
874
0
    p384 = ((int64_t) (p384) - 1) >> 63;
875
876
0
    return (zero | p384);
877
0
}
878
879
static int felem_is_zero_int(const void *in)
880
0
{
881
0
    return (int)(felem_is_zero(in) & ((limb) 1));
882
0
}
883
884
/*-
885
 * felem_contract converts |in| to its unique, minimal representation.
886
 * Assume we've removed all redundant bits.
887
 * On entry:
888
 *   in[k] < 2^56, k < 6
889
 *   in[6] <= 2^48
890
 */
891
static void felem_contract(felem out, const felem in)
892
0
{
893
0
    static const int64_t two56 = ((limb) 1) << 56;
894
895
    /*
896
     * We know for a fact that 0 <= |in| < 2*p, for p = 2^384 - 2^128 - 2^96 + 2^32 - 1
897
     * Perform two successive, idempotent subtractions to reduce if |in| >= p.
898
     */
899
900
0
    int64_t tmp[NLIMBS], cond[5], a;
901
0
    unsigned int i;
902
903
0
    memcpy(tmp, in, sizeof(felem));
904
905
    /* Case 1: a = 1 iff |in| >= 2^384 */
906
0
    a = (in[6] >> 48);
907
0
    tmp[0] += a;
908
0
    tmp[0] -= a << 32;
909
0
    tmp[1] += a << 40;
910
0
    tmp[2] += a << 16;
911
0
    tmp[6] &= 0x0000ffffffffffff;
912
913
    /*
914
     * eliminate negative coefficients: if tmp[0] is negative, tmp[1] must be
915
     * non-zero, so we only need one step
916
     */
917
918
0
    a = tmp[0] >> 63;
919
0
    tmp[0] += a & two56;
920
0
    tmp[1] -= a & 1;
921
922
    /* Carry 1 -> 2 -> 3 -> 4 -> 5 -> 6 */
923
0
    tmp[2] += tmp[1] >> 56;
924
0
    tmp[1] &= 0x00ffffffffffffff;
925
926
0
    tmp[3] += tmp[2] >> 56;
927
0
    tmp[2] &= 0x00ffffffffffffff;
928
929
0
    tmp[4] += tmp[3] >> 56;
930
0
    tmp[3] &= 0x00ffffffffffffff;
931
932
0
    tmp[5] += tmp[4] >> 56;
933
0
    tmp[4] &= 0x00ffffffffffffff;
934
935
0
    tmp[6] += tmp[5] >> 56; /* tmp[6] < 2^48 */
936
0
    tmp[5] &= 0x00ffffffffffffff;
937
938
    /*
939
     * Case 2: a = all ones if p <= |in| < 2^384, 0 otherwise
940
     */
941
942
    /* 0 iff (2^129..2^383) are all one */
943
0
    cond[0] = ((tmp[6] | 0xff000000000000) & tmp[5] & tmp[4] & tmp[3] & (tmp[2] | 0x0000000001ffff)) + 1;
944
    /* 0 iff 2^128 bit is one */
945
0
    cond[1] = (tmp[2] | ~0x00000000010000) + 1;
946
    /* 0 iff (2^96..2^127) bits are all one */
947
0
    cond[2] = ((tmp[2] | 0xffffffffff0000) & (tmp[1] | 0x0000ffffffffff)) + 1;
948
    /* 0 iff (2^32..2^95) bits are all zero */
949
0
    cond[3] = (tmp[1] & ~0xffff0000000000) | (tmp[0] & ~((int64_t) 0x000000ffffffff));
950
    /* 0 iff (2^0..2^31) bits are all one */
951
0
    cond[4] = (tmp[0] | 0xffffff00000000) + 1;
952
953
    /*
954
     * In effect, invert our conditions, so that 0 values become all 1's,
955
     * any non-zero value in the low-order 56 bits becomes all 0's
956
     */
957
0
    for (i = 0; i < 5; i++)
958
0
       cond[i] = ((cond[i] & 0x00ffffffffffffff) - 1) >> 63;
959
960
    /*
961
     * The condition for determining whether in is greater than our
962
     * prime is given by the following condition.
963
     */
964
965
    /* First subtract 2^384 - 2^129 cheaply */
966
0
    a = cond[0] & (cond[1] | (cond[2] & (~cond[3] | cond[4])));
967
0
    tmp[6] &= ~a;
968
0
    tmp[5] &= ~a;
969
0
    tmp[4] &= ~a;
970
0
    tmp[3] &= ~a;
971
0
    tmp[2] &= ~a | 0x0000000001ffff;
972
973
    /*
974
     * Subtract 2^128 - 2^96 by
975
     * means of disjoint cases.
976
     */
977
978
    /* subtract 2^128 if that bit is present, and add 2^96 */
979
0
    a = cond[0] & cond[1];
980
0
    tmp[2] &= ~a | 0xfffffffffeffff;
981
0
    tmp[1] += a & ((int64_t) 1 << 40);
982
983
    /* otherwise, clear bits 2^127 .. 2^96  */
984
0
    a = cond[0] & ~cond[1] & (cond[2] & (~cond[3] | cond[4]));
985
0
    tmp[2] &= ~a | 0xffffffffff0000;
986
0
    tmp[1] &= ~a | 0x0000ffffffffff;
987
988
    /* finally, subtract the last 2^32 - 1 */
989
0
    a = cond[0] & (cond[1] | (cond[2] & (~cond[3] | cond[4])));
990
0
    tmp[0] += a & (-((int64_t) 1 << 32) + 1);
991
992
    /*
993
     * eliminate negative coefficients: if tmp[0] is negative, tmp[1] must be
994
     * non-zero, so we only need one step
995
     */
996
0
    a = tmp[0] >> 63;
997
0
    tmp[0] += a & two56;
998
0
    tmp[1] -= a & 1;
999
1000
    /* Carry 1 -> 2 -> 3 -> 4 -> 5 -> 6 */
1001
0
    tmp[2] += tmp[1] >> 56;
1002
0
    tmp[1] &= 0x00ffffffffffffff;
1003
1004
0
    tmp[3] += tmp[2] >> 56;
1005
0
    tmp[2] &= 0x00ffffffffffffff;
1006
1007
0
    tmp[4] += tmp[3] >> 56;
1008
0
    tmp[3] &= 0x00ffffffffffffff;
1009
1010
0
    tmp[5] += tmp[4] >> 56;
1011
0
    tmp[4] &= 0x00ffffffffffffff;
1012
1013
0
    tmp[6] += tmp[5] >> 56;
1014
0
    tmp[5] &= 0x00ffffffffffffff;
1015
1016
0
    memcpy(out, tmp, sizeof(felem));
1017
0
}
1018
1019
/*-
1020
 * Group operations
1021
 * ----------------
1022
 *
1023
 * Building on top of the field operations we have the operations on the
1024
 * elliptic curve group itself. Points on the curve are represented in Jacobian
1025
 * coordinates
1026
 */
1027
1028
/*-
1029
 * point_double calculates 2*(x_in, y_in, z_in)
1030
 *
1031
 * The method is taken from:
1032
 *   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
1033
 *
1034
 * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed.
1035
 * while x_out == y_in is not (maybe this works, but it's not tested).
1036
 */
1037
static void
1038
point_double(felem x_out, felem y_out, felem z_out,
1039
             const felem x_in, const felem y_in, const felem z_in)
1040
0
{
1041
0
    widefelem tmp, tmp2;
1042
0
    felem delta, gamma, beta, alpha, ftmp, ftmp2;
1043
1044
0
    felem_assign(ftmp, x_in);
1045
0
    felem_assign(ftmp2, x_in);
1046
1047
    /* delta = z^2 */
1048
0
    felem_square_reduce(delta, z_in);     /* delta[i] < 2^56 */
1049
1050
    /* gamma = y^2 */
1051
0
    felem_square_reduce(gamma, y_in);     /* gamma[i] < 2^56 */
1052
1053
    /* beta = x*gamma */
1054
0
    felem_mul_reduce(beta, x_in, gamma);  /* beta[i] < 2^56 */
1055
1056
    /* alpha = 3*(x-delta)*(x+delta) */
1057
0
    felem_diff64(ftmp, delta);            /* ftmp[i] < 2^60 + 2^58 + 2^44 */
1058
0
    felem_sum64(ftmp2, delta);            /* ftmp2[i] < 2^59 */
1059
0
    felem_scalar64(ftmp2, 3);             /* ftmp2[i] < 2^61 */
1060
0
    felem_mul_reduce(alpha, ftmp, ftmp2); /* alpha[i] < 2^56 */
1061
1062
    /* x' = alpha^2 - 8*beta */
1063
0
    felem_square(tmp, alpha);             /* tmp[i] < 2^115 */
1064
0
    felem_assign(ftmp, beta);             /* ftmp[i] < 2^56 */
1065
0
    felem_scalar64(ftmp, 8);              /* ftmp[i] < 2^59 */
1066
0
    felem_diff_128_64(tmp, ftmp);         /* tmp[i] < 2^115 + 2^64 + 2^48 */
1067
0
    felem_reduce(x_out, tmp);             /* x_out[i] < 2^56 */
1068
1069
    /* z' = (y + z)^2 - gamma - delta */
1070
0
    felem_sum64(delta, gamma);     /* delta[i] < 2^57 */
1071
0
    felem_assign(ftmp, y_in);      /* ftmp[i] < 2^56 */
1072
0
    felem_sum64(ftmp, z_in);       /* ftmp[i] < 2^56 */
1073
0
    felem_square(tmp, ftmp);       /* tmp[i] < 2^115 */
1074
0
    felem_diff_128_64(tmp, delta); /* tmp[i] < 2^115 + 2^64 + 2^48 */
1075
0
    felem_reduce(z_out, tmp);      /* z_out[i] < 2^56 */
1076
1077
    /* y' = alpha*(4*beta - x') - 8*gamma^2 */
1078
0
    felem_scalar64(beta, 4);       /* beta[i] < 2^58 */
1079
0
    felem_diff64(beta, x_out);     /* beta[i] < 2^60 + 2^58 + 2^44 */
1080
0
    felem_mul(tmp, alpha, beta);   /* tmp[i] < 2^119 */
1081
0
    felem_square(tmp2, gamma);     /* tmp2[i] < 2^115 */
1082
0
    felem_scalar128(tmp2, 8);      /* tmp2[i] < 2^118 */
1083
0
    felem_diff128(tmp, tmp2);      /* tmp[i] < 2^127 + 2^119 + 2^111 */
1084
0
    felem_reduce(y_out, tmp);      /* tmp[i] < 2^56 */
1085
0
}
1086
1087
/* copy_conditional copies in to out iff mask is all ones. */
1088
static void copy_conditional(felem out, const felem in, limb mask)
1089
0
{
1090
0
    unsigned int i;
1091
1092
0
    for (i = 0; i < NLIMBS; i++)
1093
0
        out[i] ^= mask & (in[i] ^ out[i]);
1094
0
}
1095
1096
/*-
1097
 * point_add calculates (x1, y1, z1) + (x2, y2, z2)
1098
 *
1099
 * The method is taken from
1100
 *   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl,
1101
 * adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity).
1102
 *
1103
 * This function includes a branch for checking whether the two input points
1104
 * are equal (while not equal to the point at infinity). See comment below
1105
 * on constant-time.
1106
 */
1107
static void point_add(felem x3, felem y3, felem z3,
1108
                      const felem x1, const felem y1, const felem z1,
1109
                      const int mixed, const felem x2, const felem y2,
1110
                      const felem z2)
1111
0
{
1112
0
    felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, ftmp6, x_out, y_out, z_out;
1113
0
    widefelem tmp, tmp2;
1114
0
    limb x_equal, y_equal, z1_is_zero, z2_is_zero;
1115
0
    limb points_equal;
1116
1117
0
    z1_is_zero = felem_is_zero(z1);
1118
0
    z2_is_zero = felem_is_zero(z2);
1119
1120
    /* ftmp = z1z1 = z1**2 */
1121
0
    felem_square_reduce(ftmp, z1);      /* ftmp[i] < 2^56 */
1122
1123
0
    if (!mixed) {
1124
        /* ftmp2 = z2z2 = z2**2 */
1125
0
        felem_square_reduce(ftmp2, z2); /* ftmp2[i] < 2^56 */
1126
1127
        /* u1 = ftmp3 = x1*z2z2 */
1128
0
        felem_mul_reduce(ftmp3, x1, ftmp2); /* ftmp3[i] < 2^56 */
1129
1130
        /* ftmp5 = z1 + z2 */
1131
0
        felem_assign(ftmp5, z1);       /* ftmp5[i] < 2^56 */
1132
0
        felem_sum64(ftmp5, z2);        /* ftmp5[i] < 2^57 */
1133
1134
        /* ftmp5 = (z1 + z2)**2 - z1z1 - z2z2 = 2*z1z2 */
1135
0
        felem_square(tmp, ftmp5);      /* tmp[i] < 2^117 */
1136
0
        felem_diff_128_64(tmp, ftmp);  /* tmp[i] < 2^117 + 2^64 + 2^48 */
1137
0
        felem_diff_128_64(tmp, ftmp2); /* tmp[i] < 2^117 + 2^65 + 2^49 */
1138
0
        felem_reduce(ftmp5, tmp);      /* ftmp5[i] < 2^56 */
1139
1140
        /* ftmp2 = z2 * z2z2 */
1141
0
        felem_mul_reduce(ftmp2, ftmp2, z2); /* ftmp2[i] < 2^56 */
1142
1143
        /* s1 = ftmp6 = y1 * z2**3 */
1144
0
        felem_mul_reduce(ftmp6, y1, ftmp2); /* ftmp6[i] < 2^56 */
1145
0
    } else {
1146
        /*
1147
         * We'll assume z2 = 1 (special case z2 = 0 is handled later)
1148
         */
1149
1150
        /* u1 = ftmp3 = x1*z2z2 */
1151
0
        felem_assign(ftmp3, x1);     /* ftmp3[i] < 2^56 */
1152
1153
        /* ftmp5 = 2*z1z2 */
1154
0
        felem_scalar(ftmp5, z1, 2);  /* ftmp5[i] < 2^57 */
1155
1156
        /* s1 = ftmp6 = y1 * z2**3 */
1157
0
        felem_assign(ftmp6, y1);     /* ftmp6[i] < 2^56 */
1158
0
    }
1159
    /* ftmp3[i] < 2^56, ftmp5[i] < 2^57, ftmp6[i] < 2^56 */
1160
1161
    /* u2 = x2*z1z1 */
1162
0
    felem_mul(tmp, x2, ftmp);        /* tmp[i] < 2^115 */
1163
1164
    /* h = ftmp4 = u2 - u1 */
1165
0
    felem_diff_128_64(tmp, ftmp3);   /* tmp[i] < 2^115 + 2^64 + 2^48 */
1166
0
    felem_reduce(ftmp4, tmp);        /* ftmp[4] < 2^56 */
1167
1168
0
    x_equal = felem_is_zero(ftmp4);
1169
1170
    /* z_out = ftmp5 * h */
1171
0
    felem_mul_reduce(z_out, ftmp5, ftmp4);  /* z_out[i] < 2^56 */
1172
1173
    /* ftmp = z1 * z1z1 */
1174
0
    felem_mul_reduce(ftmp, ftmp, z1);  /* ftmp[i] < 2^56 */
1175
1176
    /* s2 = tmp = y2 * z1**3 */
1177
0
    felem_mul(tmp, y2, ftmp);      /* tmp[i] < 2^115 */
1178
1179
    /* r = ftmp5 = (s2 - s1)*2 */
1180
0
    felem_diff_128_64(tmp, ftmp6); /* tmp[i] < 2^115 + 2^64 + 2^48 */
1181
0
    felem_reduce(ftmp5, tmp);      /* ftmp5[i] < 2^56 */
1182
0
    y_equal = felem_is_zero(ftmp5);
1183
0
    felem_scalar64(ftmp5, 2);      /* ftmp5[i] < 2^57 */
1184
1185
    /*
1186
     * The formulae are incorrect if the points are equal, in affine coordinates
1187
     * (X_1, Y_1) == (X_2, Y_2), so we check for this and do doubling if this
1188
     * happens.
1189
     *
1190
     * We use bitwise operations to avoid potential side-channels introduced by
1191
     * the short-circuiting behaviour of boolean operators.
1192
     *
1193
     * The special case of either point being the point at infinity (z1 and/or
1194
     * z2 are zero), is handled separately later on in this function, so we
1195
     * avoid jumping to point_double here in those special cases.
1196
     *
1197
     * Notice the comment below on the implications of this branching for timing
1198
     * leaks and why it is considered practically irrelevant.
1199
     */
1200
0
    points_equal = (x_equal & y_equal & (~z1_is_zero) & (~z2_is_zero));
1201
1202
0
    if (points_equal) {
1203
        /*
1204
         * This is obviously not constant-time but it will almost-never happen
1205
         * for ECDH / ECDSA.
1206
         */
1207
0
        point_double(x3, y3, z3, x1, y1, z1);
1208
0
        return;
1209
0
    }
1210
1211
    /* I = ftmp = (2h)**2 */
1212
0
    felem_assign(ftmp, ftmp4);        /* ftmp[i] < 2^56 */
1213
0
    felem_scalar64(ftmp, 2);          /* ftmp[i] < 2^57 */
1214
0
    felem_square_reduce(ftmp, ftmp);  /* ftmp[i] < 2^56 */
1215
1216
    /* J = ftmp2 = h * I */
1217
0
    felem_mul_reduce(ftmp2, ftmp4, ftmp); /* ftmp2[i] < 2^56 */
1218
1219
    /* V = ftmp4 = U1 * I */
1220
0
    felem_mul_reduce(ftmp4, ftmp3, ftmp); /* ftmp4[i] < 2^56 */
1221
1222
    /* x_out = r**2 - J - 2V */
1223
0
    felem_square(tmp, ftmp5);      /* tmp[i] < 2^117 */
1224
0
    felem_diff_128_64(tmp, ftmp2); /* tmp[i] < 2^117 + 2^64 + 2^48 */
1225
0
    felem_assign(ftmp3, ftmp4);    /* ftmp3[i] < 2^56 */
1226
0
    felem_scalar64(ftmp4, 2);      /* ftmp4[i] < 2^57 */
1227
0
    felem_diff_128_64(tmp, ftmp4); /* tmp[i] < 2^117 + 2^65 + 2^49 */
1228
0
    felem_reduce(x_out, tmp);      /* x_out[i] < 2^56 */
1229
1230
    /* y_out = r(V-x_out) - 2 * s1 * J */
1231
0
    felem_diff64(ftmp3, x_out);    /* ftmp3[i] < 2^60 + 2^56 + 2^44 */
1232
0
    felem_mul(tmp, ftmp5, ftmp3);  /* tmp[i] < 2^116 */
1233
0
    felem_mul(tmp2, ftmp6, ftmp2); /* tmp2[i] < 2^115 */
1234
0
    felem_scalar128(tmp2, 2);      /* tmp2[i] < 2^116 */
1235
0
    felem_diff128(tmp, tmp2);      /* tmp[i] < 2^127 + 2^116 + 2^111 */
1236
0
    felem_reduce(y_out, tmp);      /* y_out[i] < 2^56 */
1237
1238
0
    copy_conditional(x_out, x2, z1_is_zero);
1239
0
    copy_conditional(x_out, x1, z2_is_zero);
1240
0
    copy_conditional(y_out, y2, z1_is_zero);
1241
0
    copy_conditional(y_out, y1, z2_is_zero);
1242
0
    copy_conditional(z_out, z2, z1_is_zero);
1243
0
    copy_conditional(z_out, z1, z2_is_zero);
1244
0
    felem_assign(x3, x_out);
1245
0
    felem_assign(y3, y_out);
1246
0
    felem_assign(z3, z_out);
1247
0
}
1248
1249
/*-
1250
 * Base point pre computation
1251
 * --------------------------
1252
 *
1253
 * Two different sorts of precomputed tables are used in the following code.
1254
 * Each contain various points on the curve, where each point is three field
1255
 * elements (x, y, z).
1256
 *
1257
 * For the base point table, z is usually 1 (0 for the point at infinity).
1258
 * This table has 16 elements:
1259
 * index | bits    | point
1260
 * ------+---------+------------------------------
1261
 *     0 | 0 0 0 0 | 0G
1262
 *     1 | 0 0 0 1 | 1G
1263
 *     2 | 0 0 1 0 | 2^95G
1264
 *     3 | 0 0 1 1 | (2^95 + 1)G
1265
 *     4 | 0 1 0 0 | 2^190G
1266
 *     5 | 0 1 0 1 | (2^190 + 1)G
1267
 *     6 | 0 1 1 0 | (2^190 + 2^95)G
1268
 *     7 | 0 1 1 1 | (2^190 + 2^95 + 1)G
1269
 *     8 | 1 0 0 0 | 2^285G
1270
 *     9 | 1 0 0 1 | (2^285 + 1)G
1271
 *    10 | 1 0 1 0 | (2^285 + 2^95)G
1272
 *    11 | 1 0 1 1 | (2^285 + 2^95 + 1)G
1273
 *    12 | 1 1 0 0 | (2^285 + 2^190)G
1274
 *    13 | 1 1 0 1 | (2^285 + 2^190 + 1)G
1275
 *    14 | 1 1 1 0 | (2^285 + 2^190 + 2^95)G
1276
 *    15 | 1 1 1 1 | (2^285 + 2^190 + 2^95 + 1)G
1277
 *
1278
 * The reason for this is so that we can clock bits into four different
1279
 * locations when doing simple scalar multiplies against the base point.
1280
 *
1281
 * Tables for other points have table[i] = iG for i in 0 .. 16.
1282
 */
1283
1284
/* gmul is the table of precomputed base points */
1285
static const felem gmul[16][3] = {
1286
{{0, 0, 0, 0, 0, 0, 0},
1287
 {0, 0, 0, 0, 0, 0, 0},
1288
 {0, 0, 0, 0, 0, 0, 0}},
1289
{{0x00545e3872760ab7, 0x00f25dbf55296c3a, 0x00e082542a385502, 0x008ba79b9859f741,
1290
  0x0020ad746e1d3b62, 0x0005378eb1c71ef3, 0x0000aa87ca22be8b},
1291
 {0x00431d7c90ea0e5f, 0x00b1ce1d7e819d7a, 0x0013b5f0b8c00a60, 0x00289a147ce9da31,
1292
  0x0092dc29f8f41dbd, 0x002c6f5d9e98bf92, 0x00003617de4a9626},
1293
 {1, 0, 0, 0, 0, 0, 0}},
1294
{{0x00024711cc902a90, 0x00acb2e579ab4fe1, 0x00af818a4b4d57b1, 0x00a17c7bec49c3de,
1295
  0x004280482d726a8b, 0x00128dd0f0a90f3b, 0x00004387c1c3fa3c},
1296
 {0x002ce76543cf5c3a, 0x00de6cee5ef58f0a, 0x00403e42fa561ca6, 0x00bc54d6f9cb9731,
1297
  0x007155f925fb4ff1, 0x004a9ce731b7b9bc, 0x00002609076bd7b2},
1298
 {1, 0, 0, 0, 0, 0, 0}},
1299
{{0x00e74c9182f0251d, 0x0039bf54bb111974, 0x00b9d2f2eec511d2, 0x0036b1594eb3a6a4,
1300
  0x00ac3bb82d9d564b, 0x00f9313f4615a100, 0x00006716a9a91b10},
1301
 {0x0046698116e2f15c, 0x00f34347067d3d33, 0x008de4ccfdebd002, 0x00e838c6b8e8c97b,
1302
  0x006faf0798def346, 0x007349794a57563c, 0x00002629e7e6ad84},
1303
 {1, 0, 0, 0, 0, 0, 0}},
1304
{{0x0075300e34fd163b, 0x0092e9db4e8d0ad3, 0x00254be9f625f760, 0x00512c518c72ae68,
1305
  0x009bfcf162bede5a, 0x00bf9341566ce311, 0x0000cd6175bd41cf},
1306
 {0x007dfe52af4ac70f, 0x0002159d2d5c4880, 0x00b504d16f0af8d0, 0x0014585e11f5e64c,
1307
  0x0089c6388e030967, 0x00ffb270cbfa5f71, 0x00009a15d92c3947},
1308
 {1, 0, 0, 0, 0, 0, 0}},
1309
{{0x0033fc1278dc4fe5, 0x00d53088c2caa043, 0x0085558827e2db66, 0x00c192bef387b736,
1310
  0x00df6405a2225f2c, 0x0075205aa90fd91a, 0x0000137e3f12349d},
1311
 {0x00ce5b115efcb07e, 0x00abc3308410deeb, 0x005dc6fc1de39904, 0x00907c1c496f36b4,
1312
  0x0008e6ad3926cbe1, 0x00110747b787928c, 0x0000021b9162eb7e},
1313
 {1, 0, 0, 0, 0, 0, 0}},
1314
{{0x008180042cfa26e1, 0x007b826a96254967, 0x0082473694d6b194, 0x007bd6880a45b589,
1315
  0x00c0a5097072d1a3, 0x0019186555e18b4e, 0x000020278190e5ca},
1316
 {0x00b4bef17de61ac0, 0x009535e3c38ed348, 0x002d4aa8e468ceab, 0x00ef40b431036ad3,
1317
  0x00defd52f4542857, 0x0086edbf98234266, 0x00002025b3a7814d},
1318
 {1, 0, 0, 0, 0, 0, 0}},
1319
{{0x00b238aa97b886be, 0x00ef3192d6dd3a32, 0x0079f9e01fd62df8, 0x00742e890daba6c5,
1320
  0x008e5289144408ce, 0x0073bbcc8e0171a5, 0x0000c4fd329d3b52},
1321
 {0x00c6f64a15ee23e7, 0x00dcfb7b171cad8b, 0x00039f6cbd805867, 0x00de024e428d4562,
1322
  0x00be6a594d7c64c5, 0x0078467b70dbcd64, 0x0000251f2ed7079b},
1323
 {1, 0, 0, 0, 0, 0, 0}},
1324
{{0x000e5cc25fc4b872, 0x005ebf10d31ef4e1, 0x0061e0ebd11e8256, 0x0076e026096f5a27,
1325
  0x0013e6fc44662e9a, 0x0042b00289d3597e, 0x000024f089170d88},
1326
 {0x001604d7e0effbe6, 0x0048d77cba64ec2c, 0x008166b16da19e36, 0x006b0d1a0f28c088,
1327
  0x000259fcd47754fd, 0x00cc643e4d725f9a, 0x00007b10f3c79c14},
1328
 {1, 0, 0, 0, 0, 0, 0}},
1329
{{0x00430155e3b908af, 0x00b801e4fec25226, 0x00b0d4bcfe806d26, 0x009fc4014eb13d37,
1330
  0x0066c94e44ec07e8, 0x00d16adc03874ba2, 0x000030c917a0d2a7},
1331
 {0x00edac9e21eb891c, 0x00ef0fb768102eff, 0x00c088cef272a5f3, 0x00cbf782134e2964,
1332
  0x0001044a7ba9a0e3, 0x00e363f5b194cf3c, 0x00009ce85249e372},
1333
 {1, 0, 0, 0, 0, 0, 0}},
1334
{{0x001dd492dda5a7eb, 0x008fd577be539fd1, 0x002ff4b25a5fc3f1, 0x0074a8a1b64df72f,
1335
  0x002ba3d8c204a76c, 0x009d5cff95c8235a, 0x0000e014b9406e0f},
1336
 {0x008c2e4dbfc98aba, 0x00f30bb89f1a1436, 0x00b46f7aea3e259c, 0x009224454ac02f54,
1337
  0x00906401f5645fa2, 0x003a1d1940eabc77, 0x00007c9351d680e6},
1338
 {1, 0, 0, 0, 0, 0, 0}},
1339
{{0x005a35d872ef967c, 0x0049f1b7884e1987, 0x0059d46d7e31f552, 0x00ceb4869d2d0fb6,
1340
  0x00e8e89eee56802a, 0x0049d806a774aaf2, 0x0000147e2af0ae24},
1341
 {0x005fd1bd852c6e5e, 0x00b674b7b3de6885, 0x003b9ea5eb9b6c08, 0x005c9f03babf3ef7,
1342
  0x00605337fecab3c7, 0x009a3f85b11bbcc8, 0x0000455470f330ec},
1343
 {1, 0, 0, 0, 0, 0, 0}},
1344
{{0x002197ff4d55498d, 0x00383e8916c2d8af, 0x00eb203f34d1c6d2, 0x0080367cbd11b542,
1345
  0x00769b3be864e4f5, 0x0081a8458521c7bb, 0x0000c531b34d3539},
1346
 {0x00e2a3d775fa2e13, 0x00534fc379573844, 0x00ff237d2a8db54a, 0x00d301b2335a8882,
1347
  0x000f75ea96103a80, 0x0018fecb3cdd96fa, 0x0000304bf61e94eb},
1348
 {1, 0, 0, 0, 0, 0, 0}},
1349
{{0x00b2afc332a73dbd, 0x0029a0d5bb007bc5, 0x002d628eb210f577, 0x009f59a36dd05f50,
1350
  0x006d339de4eca613, 0x00c75a71addc86bc, 0x000060384c5ea93c},
1351
 {0x00aa9641c32a30b4, 0x00cc73ae8cce565d, 0x00ec911a4df07f61, 0x00aa4b762ea4b264,
1352
  0x0096d395bb393629, 0x004efacfb7632fe0, 0x00006f252f46fa3f},
1353
 {1, 0, 0, 0, 0, 0, 0}},
1354
{{0x00567eec597c7af6, 0x0059ba6795204413, 0x00816d4e6f01196f, 0x004ae6b3eb57951d,
1355
  0x00420f5abdda2108, 0x003401d1f57ca9d9, 0x0000cf5837b0b67a},
1356
 {0x00eaa64b8aeeabf9, 0x00246ddf16bcb4de, 0x000e7e3c3aecd751, 0x0008449f04fed72e,
1357
  0x00307b67ccf09183, 0x0017108c3556b7b1, 0x0000229b2483b3bf},
1358
 {1, 0, 0, 0, 0, 0, 0}},
1359
{{0x00e7c491a7bb78a1, 0x00eafddd1d3049ab, 0x00352c05e2bc7c98, 0x003d6880c165fa5c,
1360
  0x00b6ac61cc11c97d, 0x00beeb54fcf90ce5, 0x0000dc1f0b455edc},
1361
 {0x002db2e7aee34d60, 0x0073b5f415a2d8c0, 0x00dd84e4193e9a0c, 0x00d02d873467c572,
1362
  0x0018baaeda60aee5, 0x0013fb11d697c61e, 0x000083aafcc3a973},
1363
 {1, 0, 0, 0, 0, 0, 0}}
1364
};
1365
1366
/*
1367
 * select_point selects the |idx|th point from a precomputation table and
1368
 * copies it to out.
1369
 *
1370
 * pre_comp below is of the size provided in |size|.
1371
 */
1372
static void select_point(const limb idx, unsigned int size,
1373
                         const felem pre_comp[][3], felem out[3])
1374
0
{
1375
0
    unsigned int i, j;
1376
0
    limb *outlimbs = &out[0][0];
1377
1378
0
    memset(out, 0, sizeof(*out) * 3);
1379
1380
0
    for (i = 0; i < size; i++) {
1381
0
        const limb *inlimbs = &pre_comp[i][0][0];
1382
0
        limb mask = i ^ idx;
1383
1384
0
        mask |= mask >> 4;
1385
0
        mask |= mask >> 2;
1386
0
        mask |= mask >> 1;
1387
0
        mask &= 1;
1388
0
        mask--;
1389
0
        for (j = 0; j < NLIMBS * 3; j++)
1390
0
            outlimbs[j] |= inlimbs[j] & mask;
1391
0
    }
1392
0
}
1393
1394
/* get_bit returns the |i|th bit in |in| */
1395
static char get_bit(const felem_bytearray in, int i)
1396
0
{
1397
0
    if (i < 0 || i >= 384)
1398
0
        return 0;
1399
0
    return (in[i >> 3] >> (i & 7)) & 1;
1400
0
}
1401
1402
/*
1403
 * Interleaved point multiplication using precomputed point multiples: The
1404
 * small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[], the scalars
1405
 * in scalars[]. If g_scalar is non-NULL, we also add this multiple of the
1406
 * generator, using certain (large) precomputed multiples in g_pre_comp.
1407
 * Output point (X, Y, Z) is stored in x_out, y_out, z_out
1408
 */
1409
static void batch_mul(felem x_out, felem y_out, felem z_out,
1410
                      const felem_bytearray scalars[],
1411
                      const unsigned int num_points, const u8 *g_scalar,
1412
                      const int mixed, const felem pre_comp[][17][3],
1413
                      const felem g_pre_comp[16][3])
1414
0
{
1415
0
    int i, skip;
1416
0
    unsigned int num, gen_mul = (g_scalar != NULL);
1417
0
    felem nq[3], tmp[4];
1418
0
    limb bits;
1419
0
    u8 sign, digit;
1420
1421
    /* set nq to the point at infinity */
1422
0
    memset(nq, 0, sizeof(nq));
1423
1424
    /*
1425
     * Loop over all scalars msb-to-lsb, interleaving additions of multiples
1426
     * of the generator (last quarter of rounds) and additions of other
1427
     * points multiples (every 5th round).
1428
     */
1429
0
    skip = 1;                   /* save two point operations in the first
1430
                                 * round */
1431
0
    for (i = (num_points ? 380 : 98); i >= 0; --i) {
1432
        /* double */
1433
0
        if (!skip)
1434
0
            point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
1435
1436
        /* add multiples of the generator */
1437
0
        if (gen_mul && (i <= 98)) {
1438
0
            bits = get_bit(g_scalar, i + 285) << 3;
1439
0
            if (i < 95) {
1440
0
                bits |= get_bit(g_scalar, i + 190) << 2;
1441
0
                bits |= get_bit(g_scalar, i + 95) << 1;
1442
0
                bits |= get_bit(g_scalar, i);
1443
0
            }
1444
            /* select the point to add, in constant time */
1445
0
            select_point(bits, 16, g_pre_comp, tmp);
1446
0
            if (!skip) {
1447
                /* The 1 argument below is for "mixed" */
1448
0
                point_add(nq[0],  nq[1],  nq[2],
1449
0
                          nq[0],  nq[1],  nq[2], 1,
1450
0
                          tmp[0], tmp[1], tmp[2]);
1451
0
            } else {
1452
0
                memcpy(nq, tmp, 3 * sizeof(felem));
1453
0
                skip = 0;
1454
0
            }
1455
0
        }
1456
1457
        /* do other additions every 5 doublings */
1458
0
        if (num_points && (i % 5 == 0)) {
1459
            /* loop over all scalars */
1460
0
            for (num = 0; num < num_points; ++num) {
1461
0
                bits = get_bit(scalars[num], i + 4) << 5;
1462
0
                bits |= get_bit(scalars[num], i + 3) << 4;
1463
0
                bits |= get_bit(scalars[num], i + 2) << 3;
1464
0
                bits |= get_bit(scalars[num], i + 1) << 2;
1465
0
                bits |= get_bit(scalars[num], i) << 1;
1466
0
                bits |= get_bit(scalars[num], i - 1);
1467
0
                ossl_ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
1468
1469
                /*
1470
                 * select the point to add or subtract, in constant time
1471
                 */
1472
0
                select_point(digit, 17, pre_comp[num], tmp);
1473
0
                felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the negative
1474
                                            * point */
1475
0
                copy_conditional(tmp[1], tmp[3], (-(limb) sign));
1476
1477
0
                if (!skip) {
1478
0
                    point_add(nq[0],  nq[1],  nq[2],
1479
0
                              nq[0],  nq[1],  nq[2], mixed,
1480
0
                              tmp[0], tmp[1], tmp[2]);
1481
0
                } else {
1482
0
                    memcpy(nq, tmp, 3 * sizeof(felem));
1483
0
                    skip = 0;
1484
0
                }
1485
0
            }
1486
0
        }
1487
0
    }
1488
0
    felem_assign(x_out, nq[0]);
1489
0
    felem_assign(y_out, nq[1]);
1490
0
    felem_assign(z_out, nq[2]);
1491
0
}
1492
1493
/* Precomputation for the group generator. */
1494
struct nistp384_pre_comp_st {
1495
    felem g_pre_comp[16][3];
1496
    CRYPTO_REF_COUNT references;
1497
};
1498
1499
const EC_METHOD *ossl_ec_GFp_nistp384_method(void)
1500
0
{
1501
0
    static const EC_METHOD ret = {
1502
0
        EC_FLAGS_DEFAULT_OCT,
1503
0
        NID_X9_62_prime_field,
1504
0
        ossl_ec_GFp_nistp384_group_init,
1505
0
        ossl_ec_GFp_simple_group_finish,
1506
0
        ossl_ec_GFp_simple_group_clear_finish,
1507
0
        ossl_ec_GFp_nist_group_copy,
1508
0
        ossl_ec_GFp_nistp384_group_set_curve,
1509
0
        ossl_ec_GFp_simple_group_get_curve,
1510
0
        ossl_ec_GFp_simple_group_get_degree,
1511
0
        ossl_ec_group_simple_order_bits,
1512
0
        ossl_ec_GFp_simple_group_check_discriminant,
1513
0
        ossl_ec_GFp_simple_point_init,
1514
0
        ossl_ec_GFp_simple_point_finish,
1515
0
        ossl_ec_GFp_simple_point_clear_finish,
1516
0
        ossl_ec_GFp_simple_point_copy,
1517
0
        ossl_ec_GFp_simple_point_set_to_infinity,
1518
0
        ossl_ec_GFp_simple_point_set_affine_coordinates,
1519
0
        ossl_ec_GFp_nistp384_point_get_affine_coordinates,
1520
0
        0, /* point_set_compressed_coordinates */
1521
0
        0, /* point2oct */
1522
0
        0, /* oct2point */
1523
0
        ossl_ec_GFp_simple_add,
1524
0
        ossl_ec_GFp_simple_dbl,
1525
0
        ossl_ec_GFp_simple_invert,
1526
0
        ossl_ec_GFp_simple_is_at_infinity,
1527
0
        ossl_ec_GFp_simple_is_on_curve,
1528
0
        ossl_ec_GFp_simple_cmp,
1529
0
        ossl_ec_GFp_simple_make_affine,
1530
0
        ossl_ec_GFp_simple_points_make_affine,
1531
0
        ossl_ec_GFp_nistp384_points_mul,
1532
0
        ossl_ec_GFp_nistp384_precompute_mult,
1533
0
        ossl_ec_GFp_nistp384_have_precompute_mult,
1534
0
        ossl_ec_GFp_nist_field_mul,
1535
0
        ossl_ec_GFp_nist_field_sqr,
1536
0
        0, /* field_div */
1537
0
        ossl_ec_GFp_simple_field_inv,
1538
0
        0, /* field_encode */
1539
0
        0, /* field_decode */
1540
0
        0, /* field_set_to_one */
1541
0
        ossl_ec_key_simple_priv2oct,
1542
0
        ossl_ec_key_simple_oct2priv,
1543
0
        0, /* set private */
1544
0
        ossl_ec_key_simple_generate_key,
1545
0
        ossl_ec_key_simple_check_key,
1546
0
        ossl_ec_key_simple_generate_public_key,
1547
0
        0, /* keycopy */
1548
0
        0, /* keyfinish */
1549
0
        ossl_ecdh_simple_compute_key,
1550
0
        ossl_ecdsa_simple_sign_setup,
1551
0
        ossl_ecdsa_simple_sign_sig,
1552
0
        ossl_ecdsa_simple_verify_sig,
1553
0
        0, /* field_inverse_mod_ord */
1554
0
        0, /* blind_coordinates */
1555
0
        0, /* ladder_pre */
1556
0
        0, /* ladder_step */
1557
0
        0  /* ladder_post */
1558
0
    };
1559
1560
0
    return &ret;
1561
0
}
1562
1563
/******************************************************************************/
1564
/*
1565
 * FUNCTIONS TO MANAGE PRECOMPUTATION
1566
 */
1567
1568
static NISTP384_PRE_COMP *nistp384_pre_comp_new(void)
1569
0
{
1570
0
    NISTP384_PRE_COMP *ret = OPENSSL_zalloc(sizeof(*ret));
1571
1572
0
    if (ret == NULL)
1573
0
        return ret;
1574
1575
0
    if (!CRYPTO_NEW_REF(&ret->references, 1)) {
1576
0
        OPENSSL_free(ret);
1577
0
        return NULL;
1578
0
    }
1579
0
    return ret;
1580
0
}
1581
1582
NISTP384_PRE_COMP *ossl_ec_nistp384_pre_comp_dup(NISTP384_PRE_COMP *p)
1583
0
{
1584
0
    int i;
1585
1586
0
    if (p != NULL)
1587
0
        CRYPTO_UP_REF(&p->references, &i);
1588
0
    return p;
1589
0
}
1590
1591
void ossl_ec_nistp384_pre_comp_free(NISTP384_PRE_COMP *p)
1592
0
{
1593
0
    int i;
1594
1595
0
    if (p == NULL)
1596
0
        return;
1597
1598
0
    CRYPTO_DOWN_REF(&p->references, &i);
1599
0
    REF_PRINT_COUNT("ossl_ec_nistp384", i, p);
1600
0
    if (i > 0)
1601
0
        return;
1602
0
    REF_ASSERT_ISNT(i < 0);
1603
1604
0
    CRYPTO_FREE_REF(&p->references);
1605
0
    OPENSSL_free(p);
1606
0
}
1607
1608
/******************************************************************************/
1609
/*
1610
 * OPENSSL EC_METHOD FUNCTIONS
1611
 */
1612
1613
int ossl_ec_GFp_nistp384_group_init(EC_GROUP *group)
1614
0
{
1615
0
    int ret;
1616
1617
0
    ret = ossl_ec_GFp_simple_group_init(group);
1618
0
    group->a_is_minus3 = 1;
1619
0
    return ret;
1620
0
}
1621
1622
int ossl_ec_GFp_nistp384_group_set_curve(EC_GROUP *group, const BIGNUM *p,
1623
                                         const BIGNUM *a, const BIGNUM *b,
1624
                                         BN_CTX *ctx)
1625
0
{
1626
0
    int ret = 0;
1627
0
    BIGNUM *curve_p, *curve_a, *curve_b;
1628
0
#ifndef FIPS_MODULE
1629
0
    BN_CTX *new_ctx = NULL;
1630
1631
0
    if (ctx == NULL)
1632
0
        ctx = new_ctx = BN_CTX_new();
1633
0
#endif
1634
0
    if (ctx == NULL)
1635
0
        return 0;
1636
1637
0
    BN_CTX_start(ctx);
1638
0
    curve_p = BN_CTX_get(ctx);
1639
0
    curve_a = BN_CTX_get(ctx);
1640
0
    curve_b = BN_CTX_get(ctx);
1641
0
    if (curve_b == NULL)
1642
0
        goto err;
1643
0
    BN_bin2bn(nistp384_curve_params[0], sizeof(felem_bytearray), curve_p);
1644
0
    BN_bin2bn(nistp384_curve_params[1], sizeof(felem_bytearray), curve_a);
1645
0
    BN_bin2bn(nistp384_curve_params[2], sizeof(felem_bytearray), curve_b);
1646
0
    if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || (BN_cmp(curve_b, b))) {
1647
0
        ERR_raise(ERR_LIB_EC, EC_R_WRONG_CURVE_PARAMETERS);
1648
0
        goto err;
1649
0
    }
1650
0
    group->field_mod_func = BN_nist_mod_384;
1651
0
    ret = ossl_ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
1652
0
 err:
1653
0
    BN_CTX_end(ctx);
1654
0
#ifndef FIPS_MODULE
1655
0
    BN_CTX_free(new_ctx);
1656
0
#endif
1657
0
    return ret;
1658
0
}
1659
1660
/*
1661
 * Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') =
1662
 * (X/Z^2, Y/Z^3)
1663
 */
1664
int ossl_ec_GFp_nistp384_point_get_affine_coordinates(const EC_GROUP *group,
1665
                                                      const EC_POINT *point,
1666
                                                      BIGNUM *x, BIGNUM *y,
1667
                                                      BN_CTX *ctx)
1668
0
{
1669
0
    felem z1, z2, x_in, y_in, x_out, y_out;
1670
0
    widefelem tmp;
1671
1672
0
    if (EC_POINT_is_at_infinity(group, point)) {
1673
0
        ERR_raise(ERR_LIB_EC, EC_R_POINT_AT_INFINITY);
1674
0
        return 0;
1675
0
    }
1676
0
    if ((!BN_to_felem(x_in, point->X)) || (!BN_to_felem(y_in, point->Y)) ||
1677
0
        (!BN_to_felem(z1, point->Z)))
1678
0
        return 0;
1679
0
    felem_inv(z2, z1);
1680
0
    felem_square(tmp, z2);
1681
0
    felem_reduce(z1, tmp);
1682
0
    felem_mul(tmp, x_in, z1);
1683
0
    felem_reduce(x_in, tmp);
1684
0
    felem_contract(x_out, x_in);
1685
0
    if (x != NULL) {
1686
0
        if (!felem_to_BN(x, x_out)) {
1687
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1688
0
            return 0;
1689
0
        }
1690
0
    }
1691
0
    felem_mul(tmp, z1, z2);
1692
0
    felem_reduce(z1, tmp);
1693
0
    felem_mul(tmp, y_in, z1);
1694
0
    felem_reduce(y_in, tmp);
1695
0
    felem_contract(y_out, y_in);
1696
0
    if (y != NULL) {
1697
0
        if (!felem_to_BN(y, y_out)) {
1698
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1699
0
            return 0;
1700
0
        }
1701
0
    }
1702
0
    return 1;
1703
0
}
1704
1705
/* points below is of size |num|, and tmp_felems is of size |num+1/ */
1706
static void make_points_affine(size_t num, felem points[][3],
1707
                               felem tmp_felems[])
1708
0
{
1709
    /*
1710
     * Runs in constant time, unless an input is the point at infinity (which
1711
     * normally shouldn't happen).
1712
     */
1713
0
    ossl_ec_GFp_nistp_points_make_affine_internal(num,
1714
0
                                                  points,
1715
0
                                                  sizeof(felem),
1716
0
                                                  tmp_felems,
1717
0
                                                  (void (*)(void *))felem_one,
1718
0
                                                  felem_is_zero_int,
1719
0
                                                  (void (*)(void *, const void *))
1720
0
                                                  felem_assign,
1721
0
                                                  (void (*)(void *, const void *))
1722
0
                                                  felem_square_reduce,
1723
0
                                                  (void (*)(void *, const void *, const void*))
1724
0
                                                  felem_mul_reduce,
1725
0
                                                  (void (*)(void *, const void *))
1726
0
                                                  felem_inv,
1727
0
                                                  (void (*)(void *, const void *))
1728
0
                                                  felem_contract);
1729
0
}
1730
1731
/*
1732
 * Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL
1733
 * values Result is stored in r (r can equal one of the inputs).
1734
 */
1735
int ossl_ec_GFp_nistp384_points_mul(const EC_GROUP *group, EC_POINT *r,
1736
                                    const BIGNUM *scalar, size_t num,
1737
                                    const EC_POINT *points[],
1738
                                    const BIGNUM *scalars[], BN_CTX *ctx)
1739
0
{
1740
0
    int ret = 0;
1741
0
    int j;
1742
0
    int mixed = 0;
1743
0
    BIGNUM *x, *y, *z, *tmp_scalar;
1744
0
    felem_bytearray g_secret;
1745
0
    felem_bytearray *secrets = NULL;
1746
0
    felem (*pre_comp)[17][3] = NULL;
1747
0
    felem *tmp_felems = NULL;
1748
0
    unsigned int i;
1749
0
    int num_bytes;
1750
0
    int have_pre_comp = 0;
1751
0
    size_t num_points = num;
1752
0
    felem x_in, y_in, z_in, x_out, y_out, z_out;
1753
0
    NISTP384_PRE_COMP *pre = NULL;
1754
0
    felem(*g_pre_comp)[3] = NULL;
1755
0
    EC_POINT *generator = NULL;
1756
0
    const EC_POINT *p = NULL;
1757
0
    const BIGNUM *p_scalar = NULL;
1758
1759
0
    BN_CTX_start(ctx);
1760
0
    x = BN_CTX_get(ctx);
1761
0
    y = BN_CTX_get(ctx);
1762
0
    z = BN_CTX_get(ctx);
1763
0
    tmp_scalar = BN_CTX_get(ctx);
1764
0
    if (tmp_scalar == NULL)
1765
0
        goto err;
1766
1767
0
    if (scalar != NULL) {
1768
0
        pre = group->pre_comp.nistp384;
1769
0
        if (pre)
1770
            /* we have precomputation, try to use it */
1771
0
            g_pre_comp = &pre->g_pre_comp[0];
1772
0
        else
1773
            /* try to use the standard precomputation */
1774
0
            g_pre_comp = (felem(*)[3]) gmul;
1775
0
        generator = EC_POINT_new(group);
1776
0
        if (generator == NULL)
1777
0
            goto err;
1778
        /* get the generator from precomputation */
1779
0
        if (!felem_to_BN(x, g_pre_comp[1][0]) ||
1780
0
            !felem_to_BN(y, g_pre_comp[1][1]) ||
1781
0
            !felem_to_BN(z, g_pre_comp[1][2])) {
1782
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1783
0
            goto err;
1784
0
        }
1785
0
        if (!ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group,
1786
0
                                                                generator,
1787
0
                                                                x, y, z, ctx))
1788
0
            goto err;
1789
0
        if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
1790
            /* precomputation matches generator */
1791
0
            have_pre_comp = 1;
1792
0
        else
1793
            /*
1794
             * we don't have valid precomputation: treat the generator as a
1795
             * random point
1796
             */
1797
0
            num_points++;
1798
0
    }
1799
1800
0
    if (num_points > 0) {
1801
0
        if (num_points >= 2) {
1802
            /*
1803
             * unless we precompute multiples for just one point, converting
1804
             * those into affine form is time well spent
1805
             */
1806
0
            mixed = 1;
1807
0
        }
1808
0
        secrets = OPENSSL_zalloc(sizeof(*secrets) * num_points);
1809
0
        pre_comp = OPENSSL_zalloc(sizeof(*pre_comp) * num_points);
1810
0
        if (mixed)
1811
0
            tmp_felems =
1812
0
                OPENSSL_malloc(sizeof(*tmp_felems) * (num_points * 17 + 1));
1813
0
        if ((secrets == NULL) || (pre_comp == NULL)
1814
0
            || (mixed && (tmp_felems == NULL)))
1815
0
            goto err;
1816
1817
        /*
1818
         * we treat NULL scalars as 0, and NULL points as points at infinity,
1819
         * i.e., they contribute nothing to the linear combination
1820
         */
1821
0
        for (i = 0; i < num_points; ++i) {
1822
0
            if (i == num) {
1823
                /*
1824
                 * we didn't have a valid precomputation, so we pick the
1825
                 * generator
1826
                 */
1827
0
                p = EC_GROUP_get0_generator(group);
1828
0
                p_scalar = scalar;
1829
0
            } else {
1830
                /* the i^th point */
1831
0
                p = points[i];
1832
0
                p_scalar = scalars[i];
1833
0
            }
1834
0
            if (p_scalar != NULL && p != NULL) {
1835
                /* reduce scalar to 0 <= scalar < 2^384 */
1836
0
                if ((BN_num_bits(p_scalar) > 384)
1837
0
                    || (BN_is_negative(p_scalar))) {
1838
                    /*
1839
                     * this is an unusual input, and we don't guarantee
1840
                     * constant-timeness
1841
                     */
1842
0
                    if (!BN_nnmod(tmp_scalar, p_scalar, group->order, ctx)) {
1843
0
                        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1844
0
                        goto err;
1845
0
                    }
1846
0
                    num_bytes = BN_bn2lebinpad(tmp_scalar,
1847
0
                                               secrets[i], sizeof(secrets[i]));
1848
0
                } else {
1849
0
                    num_bytes = BN_bn2lebinpad(p_scalar,
1850
0
                                               secrets[i], sizeof(secrets[i]));
1851
0
                }
1852
0
                if (num_bytes < 0) {
1853
0
                    ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1854
0
                    goto err;
1855
0
                }
1856
                /* precompute multiples */
1857
0
                if ((!BN_to_felem(x_out, p->X)) ||
1858
0
                    (!BN_to_felem(y_out, p->Y)) ||
1859
0
                    (!BN_to_felem(z_out, p->Z)))
1860
0
                    goto err;
1861
0
                memcpy(pre_comp[i][1][0], x_out, sizeof(felem));
1862
0
                memcpy(pre_comp[i][1][1], y_out, sizeof(felem));
1863
0
                memcpy(pre_comp[i][1][2], z_out, sizeof(felem));
1864
0
                for (j = 2; j <= 16; ++j) {
1865
0
                    if (j & 1) {
1866
0
                        point_add(pre_comp[i][j][0],     pre_comp[i][j][1],     pre_comp[i][j][2],
1867
0
                                  pre_comp[i][1][0],     pre_comp[i][1][1],     pre_comp[i][1][2], 0,
1868
0
                                  pre_comp[i][j - 1][0], pre_comp[i][j - 1][1], pre_comp[i][j - 1][2]);
1869
0
                    } else {
1870
0
                        point_double(pre_comp[i][j][0],     pre_comp[i][j][1],     pre_comp[i][j][2],
1871
0
                                     pre_comp[i][j / 2][0], pre_comp[i][j / 2][1], pre_comp[i][j / 2][2]);
1872
0
                    }
1873
0
                }
1874
0
            }
1875
0
        }
1876
0
        if (mixed)
1877
0
            make_points_affine(num_points * 17, pre_comp[0], tmp_felems);
1878
0
    }
1879
1880
    /* the scalar for the generator */
1881
0
    if (scalar != NULL && have_pre_comp) {
1882
0
        memset(g_secret, 0, sizeof(g_secret));
1883
        /* reduce scalar to 0 <= scalar < 2^384 */
1884
0
        if ((BN_num_bits(scalar) > 384) || (BN_is_negative(scalar))) {
1885
            /*
1886
             * this is an unusual input, and we don't guarantee
1887
             * constant-timeness
1888
             */
1889
0
            if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) {
1890
0
                ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1891
0
                goto err;
1892
0
            }
1893
0
            num_bytes = BN_bn2lebinpad(tmp_scalar, g_secret, sizeof(g_secret));
1894
0
        } else {
1895
0
            num_bytes = BN_bn2lebinpad(scalar, g_secret, sizeof(g_secret));
1896
0
        }
1897
        /* do the multiplication with generator precomputation */
1898
0
        batch_mul(x_out, y_out, z_out,
1899
0
                  (const felem_bytearray(*))secrets, num_points,
1900
0
                  g_secret,
1901
0
                  mixed, (const felem(*)[17][3])pre_comp,
1902
0
                  (const felem(*)[3])g_pre_comp);
1903
0
    } else {
1904
        /* do the multiplication without generator precomputation */
1905
0
        batch_mul(x_out, y_out, z_out,
1906
0
                  (const felem_bytearray(*))secrets, num_points,
1907
0
                  NULL, mixed, (const felem(*)[17][3])pre_comp, NULL);
1908
0
    }
1909
    /* reduce the output to its unique minimal representation */
1910
0
    felem_contract(x_in, x_out);
1911
0
    felem_contract(y_in, y_out);
1912
0
    felem_contract(z_in, z_out);
1913
0
    if ((!felem_to_BN(x, x_in)) || (!felem_to_BN(y, y_in)) ||
1914
0
        (!felem_to_BN(z, z_in))) {
1915
0
        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1916
0
        goto err;
1917
0
    }
1918
0
    ret = ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group, r, x, y, z,
1919
0
                                                             ctx);
1920
1921
0
 err:
1922
0
    BN_CTX_end(ctx);
1923
0
    EC_POINT_free(generator);
1924
0
    OPENSSL_free(secrets);
1925
0
    OPENSSL_free(pre_comp);
1926
0
    OPENSSL_free(tmp_felems);
1927
0
    return ret;
1928
0
}
1929
1930
int ossl_ec_GFp_nistp384_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
1931
0
{
1932
0
    int ret = 0;
1933
0
    NISTP384_PRE_COMP *pre = NULL;
1934
0
    int i, j;
1935
0
    BIGNUM *x, *y;
1936
0
    EC_POINT *generator = NULL;
1937
0
    felem tmp_felems[16];
1938
0
#ifndef FIPS_MODULE
1939
0
    BN_CTX *new_ctx = NULL;
1940
0
#endif
1941
1942
    /* throw away old precomputation */
1943
0
    EC_pre_comp_free(group);
1944
1945
0
#ifndef FIPS_MODULE
1946
0
    if (ctx == NULL)
1947
0
        ctx = new_ctx = BN_CTX_new();
1948
0
#endif
1949
0
    if (ctx == NULL)
1950
0
        return 0;
1951
1952
0
    BN_CTX_start(ctx);
1953
0
    x = BN_CTX_get(ctx);
1954
0
    y = BN_CTX_get(ctx);
1955
0
    if (y == NULL)
1956
0
        goto err;
1957
    /* get the generator */
1958
0
    if (group->generator == NULL)
1959
0
        goto err;
1960
0
    generator = EC_POINT_new(group);
1961
0
    if (generator == NULL)
1962
0
        goto err;
1963
0
    BN_bin2bn(nistp384_curve_params[3], sizeof(felem_bytearray), x);
1964
0
    BN_bin2bn(nistp384_curve_params[4], sizeof(felem_bytearray), y);
1965
0
    if (!EC_POINT_set_affine_coordinates(group, generator, x, y, ctx))
1966
0
        goto err;
1967
0
    if ((pre = nistp384_pre_comp_new()) == NULL)
1968
0
        goto err;
1969
    /*
1970
     * if the generator is the standard one, use built-in precomputation
1971
     */
1972
0
    if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) {
1973
0
        memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp));
1974
0
        goto done;
1975
0
    }
1976
0
    if ((!BN_to_felem(pre->g_pre_comp[1][0], group->generator->X)) ||
1977
0
        (!BN_to_felem(pre->g_pre_comp[1][1], group->generator->Y)) ||
1978
0
        (!BN_to_felem(pre->g_pre_comp[1][2], group->generator->Z)))
1979
0
        goto err;
1980
    /* compute 2^95*G, 2^190*G, 2^285*G */
1981
0
    for (i = 1; i <= 4; i <<= 1) {
1982
0
        point_double(pre->g_pre_comp[2 * i][0], pre->g_pre_comp[2 * i][1], pre->g_pre_comp[2 * i][2],
1983
0
                     pre->g_pre_comp[i][0],  pre->g_pre_comp[i][1],    pre->g_pre_comp[i][2]);
1984
0
        for (j = 0; j < 94; ++j) {
1985
0
            point_double(pre->g_pre_comp[2 * i][0], pre->g_pre_comp[2 * i][1], pre->g_pre_comp[2 * i][2],
1986
0
                         pre->g_pre_comp[2 * i][0], pre->g_pre_comp[2 * i][1], pre->g_pre_comp[2 * i][2]);
1987
0
        }
1988
0
    }
1989
    /* g_pre_comp[0] is the point at infinity */
1990
0
    memset(pre->g_pre_comp[0], 0, sizeof(pre->g_pre_comp[0]));
1991
    /* the remaining multiples */
1992
    /* 2^95*G + 2^190*G */
1993
0
    point_add(pre->g_pre_comp[6][0],  pre->g_pre_comp[6][1],  pre->g_pre_comp[6][2],
1994
0
              pre->g_pre_comp[4][0],  pre->g_pre_comp[4][1],  pre->g_pre_comp[4][2], 0,
1995
0
              pre->g_pre_comp[2][0],  pre->g_pre_comp[2][1],  pre->g_pre_comp[2][2]);
1996
    /* 2^95*G + 2^285*G */
1997
0
    point_add(pre->g_pre_comp[10][0], pre->g_pre_comp[10][1], pre->g_pre_comp[10][2],
1998
0
              pre->g_pre_comp[8][0],  pre->g_pre_comp[8][1],  pre->g_pre_comp[8][2], 0,
1999
0
              pre->g_pre_comp[2][0],  pre->g_pre_comp[2][1],  pre->g_pre_comp[2][2]);
2000
    /* 2^190*G + 2^285*G */
2001
0
    point_add(pre->g_pre_comp[12][0], pre->g_pre_comp[12][1], pre->g_pre_comp[12][2],
2002
0
              pre->g_pre_comp[8][0],  pre->g_pre_comp[8][1],  pre->g_pre_comp[8][2], 0,
2003
0
              pre->g_pre_comp[4][0],  pre->g_pre_comp[4][1],  pre->g_pre_comp[4][2]);
2004
    /* 2^95*G + 2^190*G + 2^285*G */
2005
0
    point_add(pre->g_pre_comp[14][0], pre->g_pre_comp[14][1], pre->g_pre_comp[14][2],
2006
0
              pre->g_pre_comp[12][0], pre->g_pre_comp[12][1], pre->g_pre_comp[12][2], 0,
2007
0
              pre->g_pre_comp[2][0],  pre->g_pre_comp[2][1],  pre->g_pre_comp[2][2]);
2008
0
    for (i = 1; i < 8; ++i) {
2009
        /* odd multiples: add G */
2010
0
        point_add(pre->g_pre_comp[2 * i + 1][0], pre->g_pre_comp[2 * i + 1][1], pre->g_pre_comp[2 * i + 1][2],
2011
0
                  pre->g_pre_comp[2 * i][0],     pre->g_pre_comp[2 * i][1],     pre->g_pre_comp[2 * i][2], 0,
2012
0
                  pre->g_pre_comp[1][0],         pre->g_pre_comp[1][1],         pre->g_pre_comp[1][2]);
2013
0
    }
2014
0
    make_points_affine(15, &(pre->g_pre_comp[1]), tmp_felems);
2015
2016
0
 done:
2017
0
    SETPRECOMP(group, nistp384, pre);
2018
0
    ret = 1;
2019
0
    pre = NULL;
2020
0
 err:
2021
0
    BN_CTX_end(ctx);
2022
0
    EC_POINT_free(generator);
2023
0
#ifndef FIPS_MODULE
2024
0
    BN_CTX_free(new_ctx);
2025
0
#endif
2026
0
    ossl_ec_nistp384_pre_comp_free(pre);
2027
0
    return ret;
2028
0
}
2029
2030
int ossl_ec_GFp_nistp384_have_precompute_mult(const EC_GROUP *group)
2031
0
{
2032
0
    return HAVEPRECOMP(group, nistp384);
2033
0
}