/src/openssl/crypto/stack/stack.c
Line  | Count  | Source (jump to first uncovered line)  | 
1  |  | /*  | 
2  |  |  * Copyright 1995-2024 The OpenSSL Project Authors. All Rights Reserved.  | 
3  |  |  *  | 
4  |  |  * Licensed under the Apache License 2.0 (the "License").  You may not use  | 
5  |  |  * this file except in compliance with the License.  You can obtain a copy  | 
6  |  |  * in the file LICENSE in the source distribution or at  | 
7  |  |  * https://www.openssl.org/source/license.html  | 
8  |  |  */  | 
9  |  |  | 
10  |  | #include <stdio.h>  | 
11  |  | #include "internal/cryptlib.h"  | 
12  |  | #include "internal/numbers.h"  | 
13  |  | #include "internal/safe_math.h"  | 
14  |  | #include <openssl/stack.h>  | 
15  |  | #include <errno.h>  | 
16  |  | #include <openssl/e_os2.h>      /* For ossl_inline */  | 
17  |  |  | 
18  |  | OSSL_SAFE_MATH_SIGNED(int, int)  | 
19  |  |  | 
20  |  | /*  | 
21  |  |  * The initial number of nodes in the array.  | 
22  |  |  */  | 
23  |  | static const int min_nodes = 4;  | 
24  |  | static const int max_nodes = SIZE_MAX / sizeof(void *) < INT_MAX  | 
25  |  |     ? (int)(SIZE_MAX / sizeof(void *)) : INT_MAX;  | 
26  |  |  | 
27  |  | struct stack_st { | 
28  |  |     int num;  | 
29  |  |     const void **data;  | 
30  |  |     int sorted;  | 
31  |  |     int num_alloc;  | 
32  |  |     OPENSSL_sk_compfunc comp;  | 
33  |  |     OPENSSL_sk_freefunc_thunk free_thunk;  | 
34  |  | };  | 
35  |  |  | 
36  |  | OPENSSL_sk_compfunc OPENSSL_sk_set_cmp_func(OPENSSL_STACK *sk,  | 
37  |  |                                             OPENSSL_sk_compfunc c)  | 
38  | 0  | { | 
39  | 0  |     OPENSSL_sk_compfunc old = sk->comp;  | 
40  |  | 
  | 
41  | 0  |     if (sk->comp != c)  | 
42  | 0  |         sk->sorted = 0;  | 
43  | 0  |     sk->comp = c;  | 
44  |  | 
  | 
45  | 0  |     return old;  | 
46  | 0  | }  | 
47  |  |  | 
48  |  | OPENSSL_STACK *OPENSSL_sk_dup(const OPENSSL_STACK *sk)  | 
49  | 2  | { | 
50  | 2  |     OPENSSL_STACK *ret;  | 
51  |  |  | 
52  | 2  |     if ((ret = OPENSSL_malloc(sizeof(*ret))) == NULL)  | 
53  | 0  |         goto err;  | 
54  |  |  | 
55  | 2  |     if (sk == NULL) { | 
56  | 2  |         ret->num = 0;  | 
57  | 2  |         ret->sorted = 0;  | 
58  | 2  |         ret->comp = NULL;  | 
59  | 2  |     } else { | 
60  |  |         /* direct structure assignment */  | 
61  | 0  |         *ret = *sk;  | 
62  | 0  |     }  | 
63  |  |  | 
64  | 2  |     if (sk == NULL || sk->num == 0) { | 
65  |  |         /* postpone |ret->data| allocation */  | 
66  | 2  |         ret->data = NULL;  | 
67  | 2  |         ret->num_alloc = 0;  | 
68  | 2  |         return ret;  | 
69  | 2  |     }  | 
70  |  |  | 
71  |  |     /* duplicate |sk->data| content */  | 
72  | 0  |     ret->data = OPENSSL_malloc(sizeof(*ret->data) * sk->num_alloc);  | 
73  | 0  |     if (ret->data == NULL)  | 
74  | 0  |         goto err;  | 
75  | 0  |     memcpy(ret->data, sk->data, sizeof(void *) * sk->num);  | 
76  | 0  |     return ret;  | 
77  |  |  | 
78  | 0  |  err:  | 
79  | 0  |     OPENSSL_sk_free(ret);  | 
80  | 0  |     return NULL;  | 
81  | 0  | }  | 
82  |  |  | 
83  |  | OPENSSL_STACK *OPENSSL_sk_deep_copy(const OPENSSL_STACK *sk,  | 
84  |  |                                     OPENSSL_sk_copyfunc copy_func,  | 
85  |  |                                     OPENSSL_sk_freefunc free_func)  | 
86  | 2  | { | 
87  | 2  |     OPENSSL_STACK *ret;  | 
88  | 2  |     int i;  | 
89  |  |  | 
90  | 2  |     if ((ret = OPENSSL_malloc(sizeof(*ret))) == NULL)  | 
91  | 0  |         goto err;  | 
92  |  |  | 
93  | 2  |     if (sk == NULL) { | 
94  | 2  |         ret->num = 0;  | 
95  | 2  |         ret->sorted = 0;  | 
96  | 2  |         ret->comp = NULL;  | 
97  | 2  |     } else { | 
98  |  |         /* direct structure assignment */  | 
99  | 0  |         *ret = *sk;  | 
100  | 0  |     }  | 
101  |  |  | 
102  | 2  |     if (sk == NULL || sk->num == 0) { | 
103  |  |         /* postpone |ret| data allocation */  | 
104  | 2  |         ret->data = NULL;  | 
105  | 2  |         ret->num_alloc = 0;  | 
106  | 2  |         return ret;  | 
107  | 2  |     }  | 
108  |  |  | 
109  | 0  |     ret->num_alloc = sk->num > min_nodes ? sk->num : min_nodes;  | 
110  | 0  |     ret->data = OPENSSL_zalloc(sizeof(*ret->data) * ret->num_alloc);  | 
111  | 0  |     if (ret->data == NULL)  | 
112  | 0  |         goto err;  | 
113  |  |  | 
114  | 0  |     for (i = 0; i < ret->num; ++i) { | 
115  | 0  |         if (sk->data[i] == NULL)  | 
116  | 0  |             continue;  | 
117  | 0  |         if ((ret->data[i] = copy_func(sk->data[i])) == NULL) { | 
118  | 0  |             while (--i >= 0)  | 
119  | 0  |                 if (ret->data[i] != NULL)  | 
120  | 0  |                     free_func((void *)ret->data[i]);  | 
121  | 0  |             goto err;  | 
122  | 0  |         }  | 
123  | 0  |     }  | 
124  | 0  |     return ret;  | 
125  |  |  | 
126  | 0  |  err:  | 
127  | 0  |     OPENSSL_sk_free(ret);  | 
128  | 0  |     return NULL;  | 
129  | 0  | }  | 
130  |  |  | 
131  |  | OPENSSL_STACK *OPENSSL_sk_new_null(void)  | 
132  | 20  | { | 
133  | 20  |     return OPENSSL_sk_new_reserve(NULL, 0);  | 
134  | 20  | }  | 
135  |  |  | 
136  |  | OPENSSL_STACK *OPENSSL_sk_new(OPENSSL_sk_compfunc c)  | 
137  | 8  | { | 
138  | 8  |     return OPENSSL_sk_new_reserve(c, 0);  | 
139  | 8  | }  | 
140  |  |  | 
141  |  | /*  | 
142  |  |  * Calculate the array growth based on the target size.  | 
143  |  |  *  | 
144  |  |  * The growth factor is a rational number and is defined by a numerator  | 
145  |  |  * and a denominator.  According to Andrew Koenig in his paper "Why Are  | 
146  |  |  * Vectors Efficient?" from JOOP 11(5) 1998, this factor should be less  | 
147  |  |  * than the golden ratio (1.618...).  | 
148  |  |  *  | 
149  |  |  * Considering only the Fibonacci ratios less than the golden ratio, the  | 
150  |  |  * number of steps from the minimum allocation to integer overflow is:  | 
151  |  |  *      factor  decimal    growths  | 
152  |  |  *       3/2     1.5          51  | 
153  |  |  *       8/5     1.6          45  | 
154  |  |  *      21/13    1.615...     44  | 
155  |  |  *  | 
156  |  |  * All larger factors have the same number of growths.  | 
157  |  |  *  | 
158  |  |  * 3/2 and 8/5 have nice power of two shifts, so seem like a good choice.  | 
159  |  |  */  | 
160  |  | static ossl_inline int compute_growth(int target, int current)  | 
161  | 4  | { | 
162  | 4  |     int err = 0;  | 
163  |  |  | 
164  | 8  |     while (current < target) { | 
165  | 4  |         if (current >= max_nodes)  | 
166  | 0  |             return 0;  | 
167  |  |  | 
168  | 4  |         current = safe_muldiv_int(current, 8, 5, &err);  | 
169  | 4  |         if (err != 0)  | 
170  | 0  |             return 0;  | 
171  | 4  |         if (current >= max_nodes)  | 
172  | 0  |             current = max_nodes;  | 
173  | 4  |     }  | 
174  | 4  |     return current;  | 
175  | 4  | }  | 
176  |  |  | 
177  |  | /* internal STACK storage allocation */  | 
178  |  | static int sk_reserve(OPENSSL_STACK *st, int n, int exact)  | 
179  | 36  | { | 
180  | 36  |     const void **tmpdata;  | 
181  | 36  |     int num_alloc;  | 
182  |  |  | 
183  |  |     /* Check to see the reservation isn't exceeding the hard limit */  | 
184  | 36  |     if (n > max_nodes - st->num) { | 
185  | 0  |         ERR_raise(ERR_LIB_CRYPTO, CRYPTO_R_TOO_MANY_RECORDS);  | 
186  | 0  |         return 0;  | 
187  | 0  |     }  | 
188  |  |  | 
189  |  |     /* Figure out the new size */  | 
190  | 36  |     num_alloc = st->num + n;  | 
191  | 36  |     if (num_alloc < min_nodes)  | 
192  | 24  |         num_alloc = min_nodes;  | 
193  |  |  | 
194  |  |     /* If |st->data| allocation was postponed */  | 
195  | 36  |     if (st->data == NULL) { | 
196  |  |         /*  | 
197  |  |          * At this point, |st->num_alloc| and |st->num| are 0;  | 
198  |  |          * so |num_alloc| value is |n| or |min_nodes| if greater than |n|.  | 
199  |  |          */  | 
200  | 12  |         if ((st->data = OPENSSL_zalloc(sizeof(void *) * num_alloc)) == NULL)  | 
201  | 0  |             return 0;  | 
202  | 12  |         st->num_alloc = num_alloc;  | 
203  | 12  |         return 1;  | 
204  | 12  |     }  | 
205  |  |  | 
206  | 24  |     if (!exact) { | 
207  | 24  |         if (num_alloc <= st->num_alloc)  | 
208  | 20  |             return 1;  | 
209  | 4  |         num_alloc = compute_growth(num_alloc, st->num_alloc);  | 
210  | 4  |         if (num_alloc == 0) { | 
211  | 0  |             ERR_raise(ERR_LIB_CRYPTO, CRYPTO_R_TOO_MANY_RECORDS);  | 
212  | 0  |             return 0;  | 
213  | 0  |         }  | 
214  | 4  |     } else if (num_alloc == st->num_alloc) { | 
215  | 0  |         return 1;  | 
216  | 0  |     }  | 
217  |  |  | 
218  | 4  |     tmpdata = OPENSSL_realloc((void *)st->data, sizeof(void *) * num_alloc);  | 
219  | 4  |     if (tmpdata == NULL)  | 
220  | 0  |         return 0;  | 
221  |  |  | 
222  | 4  |     st->data = tmpdata;  | 
223  | 4  |     st->num_alloc = num_alloc;  | 
224  | 4  |     return 1;  | 
225  | 4  | }  | 
226  |  |  | 
227  |  | OPENSSL_STACK *OPENSSL_sk_new_reserve(OPENSSL_sk_compfunc c, int n)  | 
228  | 28  | { | 
229  | 28  |     OPENSSL_STACK *st = OPENSSL_zalloc(sizeof(OPENSSL_STACK));  | 
230  |  |  | 
231  | 28  |     if (st == NULL)  | 
232  | 0  |         return NULL;  | 
233  |  |  | 
234  | 28  |     st->comp = c;  | 
235  |  |  | 
236  | 28  |     if (n <= 0)  | 
237  | 28  |         return st;  | 
238  |  |  | 
239  | 0  |     if (!sk_reserve(st, n, 1)) { | 
240  | 0  |         OPENSSL_sk_free(st);  | 
241  | 0  |         return NULL;  | 
242  | 0  |     }  | 
243  |  |  | 
244  | 0  |     return st;  | 
245  | 0  | }  | 
246  |  |  | 
247  |  | int OPENSSL_sk_reserve(OPENSSL_STACK *st, int n)  | 
248  | 0  | { | 
249  | 0  |     if (st == NULL) { | 
250  | 0  |         ERR_raise(ERR_LIB_CRYPTO, ERR_R_PASSED_NULL_PARAMETER);  | 
251  | 0  |         return 0;  | 
252  | 0  |     }  | 
253  |  |  | 
254  | 0  |     if (n < 0)  | 
255  | 0  |         return 1;  | 
256  | 0  |     return sk_reserve(st, n, 1);  | 
257  | 0  | }  | 
258  |  |  | 
259  |  | OPENSSL_STACK *OPENSSL_sk_set_thunks(OPENSSL_STACK *st, OPENSSL_sk_freefunc_thunk f_thunk)  | 
260  | 58  | { | 
261  | 58  |     if (st != NULL)  | 
262  | 12  |         st->free_thunk = f_thunk;  | 
263  |  |  | 
264  | 58  |     return st;  | 
265  | 58  | }  | 
266  |  |  | 
267  |  | int OPENSSL_sk_insert(OPENSSL_STACK *st, const void *data, int loc)  | 
268  | 36  | { | 
269  | 36  |     if (st == NULL) { | 
270  | 0  |         ERR_raise(ERR_LIB_CRYPTO, ERR_R_PASSED_NULL_PARAMETER);  | 
271  | 0  |         return 0;  | 
272  | 0  |     }  | 
273  | 36  |     if (st->num == max_nodes) { | 
274  | 0  |         ERR_raise(ERR_LIB_CRYPTO, CRYPTO_R_TOO_MANY_RECORDS);  | 
275  | 0  |         return 0;  | 
276  | 0  |     }  | 
277  |  |  | 
278  | 36  |     if (!sk_reserve(st, 1, 0))  | 
279  | 0  |         return 0;  | 
280  |  |  | 
281  | 36  |     if ((loc >= st->num) || (loc < 0)) { | 
282  | 36  |         st->data[st->num] = data;  | 
283  | 36  |     } else { | 
284  | 0  |         memmove(&st->data[loc + 1], &st->data[loc],  | 
285  | 0  |                 sizeof(st->data[0]) * (st->num - loc));  | 
286  | 0  |         st->data[loc] = data;  | 
287  | 0  |     }  | 
288  | 36  |     st->num++;  | 
289  | 36  |     st->sorted = 0;  | 
290  | 36  |     return st->num;  | 
291  | 36  | }  | 
292  |  |  | 
293  |  | static ossl_inline void *internal_delete(OPENSSL_STACK *st, int loc)  | 
294  | 2  | { | 
295  | 2  |     const void *ret = st->data[loc];  | 
296  |  |  | 
297  | 2  |     if (loc != st->num - 1)  | 
298  | 0  |         memmove(&st->data[loc], &st->data[loc + 1],  | 
299  | 0  |                 sizeof(st->data[0]) * (st->num - loc - 1));  | 
300  | 2  |     st->num--;  | 
301  |  |  | 
302  | 2  |     return (void *)ret;  | 
303  | 2  | }  | 
304  |  |  | 
305  |  | void *OPENSSL_sk_delete_ptr(OPENSSL_STACK *st, const void *p)  | 
306  | 0  | { | 
307  | 0  |     int i;  | 
308  |  | 
  | 
309  | 0  |     if (st == NULL)  | 
310  | 0  |         return NULL;  | 
311  |  |  | 
312  | 0  |     for (i = 0; i < st->num; i++)  | 
313  | 0  |         if (st->data[i] == p)  | 
314  | 0  |             return internal_delete(st, i);  | 
315  | 0  |     return NULL;  | 
316  | 0  | }  | 
317  |  |  | 
318  |  | void *OPENSSL_sk_delete(OPENSSL_STACK *st, int loc)  | 
319  | 2  | { | 
320  | 2  |     if (st == NULL || loc < 0 || loc >= st->num)  | 
321  | 0  |         return NULL;  | 
322  |  |  | 
323  | 2  |     return internal_delete(st, loc);  | 
324  | 2  | }  | 
325  |  |  | 
326  |  | static int internal_find(OPENSSL_STACK *st, const void *data,  | 
327  |  |                          int ret_val_options, int *pnum_matched)  | 
328  | 4  | { | 
329  | 4  |     const void *r;  | 
330  | 4  |     int i, count = 0;  | 
331  | 4  |     int *pnum = pnum_matched;  | 
332  |  |  | 
333  | 4  |     if (st == NULL || st->num == 0)  | 
334  | 4  |         return -1;  | 
335  |  |  | 
336  | 0  |     if (pnum == NULL)  | 
337  | 0  |         pnum = &count;  | 
338  |  | 
  | 
339  | 0  |     if (st->comp == NULL) { | 
340  | 0  |         for (i = 0; i < st->num; i++)  | 
341  | 0  |             if (st->data[i] == data) { | 
342  | 0  |                 *pnum = 1;  | 
343  | 0  |                 return i;  | 
344  | 0  |             }  | 
345  | 0  |         *pnum = 0;  | 
346  | 0  |         return -1;  | 
347  | 0  |     }  | 
348  |  |  | 
349  | 0  |     if (data == NULL)  | 
350  | 0  |         return -1;  | 
351  |  |  | 
352  | 0  |     if (!st->sorted) { | 
353  | 0  |         int res = -1;  | 
354  |  | 
  | 
355  | 0  |         for (i = 0; i < st->num; i++)  | 
356  | 0  |             if (st->comp(&data, st->data + i) == 0) { | 
357  | 0  |                 if (res == -1)  | 
358  | 0  |                     res = i;  | 
359  | 0  |                 ++*pnum;  | 
360  |  |                 /* Check if only one result is wanted and exit if so */  | 
361  | 0  |                 if (pnum_matched == NULL)  | 
362  | 0  |                     return i;  | 
363  | 0  |             }  | 
364  | 0  |         if (res == -1)  | 
365  | 0  |             *pnum = 0;  | 
366  | 0  |         return res;  | 
367  | 0  |     }  | 
368  |  |  | 
369  | 0  |     if (pnum_matched != NULL)  | 
370  | 0  |         ret_val_options |= OSSL_BSEARCH_FIRST_VALUE_ON_MATCH;  | 
371  | 0  |     r = ossl_bsearch(&data, st->data, st->num, sizeof(void *), st->comp,  | 
372  | 0  |                      ret_val_options);  | 
373  |  | 
  | 
374  | 0  |     if (pnum_matched != NULL) { | 
375  | 0  |         *pnum = 0;  | 
376  | 0  |         if (r != NULL) { | 
377  | 0  |             const void **p = (const void **)r;  | 
378  |  | 
  | 
379  | 0  |             while (p < st->data + st->num) { | 
380  | 0  |                 if (st->comp(&data, p) != 0)  | 
381  | 0  |                     break;  | 
382  | 0  |                 ++*pnum;  | 
383  | 0  |                 ++p;  | 
384  | 0  |             }  | 
385  | 0  |         }  | 
386  | 0  |     }  | 
387  |  | 
  | 
388  | 0  |     return r == NULL ? -1 : (int)((const void **)r - st->data);  | 
389  | 0  | }  | 
390  |  |  | 
391  |  | int OPENSSL_sk_find(OPENSSL_STACK *st, const void *data)  | 
392  | 4  | { | 
393  | 4  |     return internal_find(st, data, OSSL_BSEARCH_FIRST_VALUE_ON_MATCH, NULL);  | 
394  | 4  | }  | 
395  |  |  | 
396  |  | int OPENSSL_sk_find_ex(OPENSSL_STACK *st, const void *data)  | 
397  | 0  | { | 
398  | 0  |     return internal_find(st, data, OSSL_BSEARCH_VALUE_ON_NOMATCH, NULL);  | 
399  | 0  | }  | 
400  |  |  | 
401  |  | int OPENSSL_sk_find_all(OPENSSL_STACK *st, const void *data, int *pnum)  | 
402  | 0  | { | 
403  | 0  |     return internal_find(st, data, OSSL_BSEARCH_FIRST_VALUE_ON_MATCH, pnum);  | 
404  | 0  | }  | 
405  |  |  | 
406  |  | int OPENSSL_sk_push(OPENSSL_STACK *st, const void *data)  | 
407  | 36  | { | 
408  | 36  |     if (st == NULL)  | 
409  | 0  |         return 0;  | 
410  | 36  |     return OPENSSL_sk_insert(st, data, st->num);  | 
411  | 36  | }  | 
412  |  |  | 
413  |  | int OPENSSL_sk_unshift(OPENSSL_STACK *st, const void *data)  | 
414  | 0  | { | 
415  | 0  |     return OPENSSL_sk_insert(st, data, 0);  | 
416  | 0  | }  | 
417  |  |  | 
418  |  | void *OPENSSL_sk_shift(OPENSSL_STACK *st)  | 
419  | 0  | { | 
420  | 0  |     if (st == NULL || st->num == 0)  | 
421  | 0  |         return NULL;  | 
422  | 0  |     return internal_delete(st, 0);  | 
423  | 0  | }  | 
424  |  |  | 
425  |  | void *OPENSSL_sk_pop(OPENSSL_STACK *st)  | 
426  | 0  | { | 
427  | 0  |     if (st == NULL || st->num == 0)  | 
428  | 0  |         return NULL;  | 
429  | 0  |     return internal_delete(st, st->num - 1);  | 
430  | 0  | }  | 
431  |  |  | 
432  |  | void OPENSSL_sk_zero(OPENSSL_STACK *st)  | 
433  | 0  | { | 
434  | 0  |     if (st == NULL || st->num == 0)  | 
435  | 0  |         return;  | 
436  | 0  |     memset(st->data, 0, sizeof(*st->data) * st->num);  | 
437  | 0  |     st->num = 0;  | 
438  | 0  | }  | 
439  |  |  | 
440  |  | void OPENSSL_sk_pop_free(OPENSSL_STACK *st, OPENSSL_sk_freefunc func)  | 
441  | 56  | { | 
442  | 56  |     int i;  | 
443  |  |  | 
444  | 56  |     if (st == NULL)  | 
445  | 46  |         return;  | 
446  |  |  | 
447  | 12  |     for (i = 0; i < st->num; i++) { | 
448  | 2  |         if (st->data[i] != NULL) { | 
449  | 2  |             if (st->free_thunk != NULL)  | 
450  | 2  |                 st->free_thunk(func, (void *)st->data[i]);  | 
451  | 0  |             else  | 
452  | 0  |                 func((void *)st->data[i]);  | 
453  | 2  |         }  | 
454  | 2  |     }  | 
455  | 10  |     OPENSSL_sk_free(st);  | 
456  | 10  | }  | 
457  |  |  | 
458  |  | void OPENSSL_sk_free(OPENSSL_STACK *st)  | 
459  | 28  | { | 
460  | 28  |     if (st == NULL)  | 
461  | 10  |         return;  | 
462  | 18  |     OPENSSL_free(st->data);  | 
463  | 18  |     OPENSSL_free(st);  | 
464  | 18  | }  | 
465  |  |  | 
466  |  | int OPENSSL_sk_num(const OPENSSL_STACK *st)  | 
467  | 14  | { | 
468  | 14  |     return st == NULL ? -1 : st->num;  | 
469  | 14  | }  | 
470  |  |  | 
471  |  | void *OPENSSL_sk_value(const OPENSSL_STACK *st, int i)  | 
472  | 2  | { | 
473  | 2  |     if (st == NULL || i < 0 || i >= st->num)  | 
474  | 0  |         return NULL;  | 
475  | 2  |     return (void *)st->data[i];  | 
476  | 2  | }  | 
477  |  |  | 
478  |  | void *OPENSSL_sk_set(OPENSSL_STACK *st, int i, const void *data)  | 
479  | 0  | { | 
480  | 0  |     if (st == NULL) { | 
481  | 0  |         ERR_raise(ERR_LIB_CRYPTO, ERR_R_PASSED_NULL_PARAMETER);  | 
482  | 0  |         return NULL;  | 
483  | 0  |     }  | 
484  | 0  |     if (i < 0 || i >= st->num) { | 
485  | 0  |         ERR_raise_data(ERR_LIB_CRYPTO, ERR_R_PASSED_INVALID_ARGUMENT,  | 
486  | 0  |                        "i=%d", i);  | 
487  | 0  |         return NULL;  | 
488  | 0  |     }  | 
489  | 0  |     st->data[i] = data;  | 
490  | 0  |     st->sorted = 0;  | 
491  | 0  |     return (void *)st->data[i];  | 
492  | 0  | }  | 
493  |  |  | 
494  |  | void OPENSSL_sk_sort(OPENSSL_STACK *st)  | 
495  | 2  | { | 
496  | 2  |     if (st != NULL && !st->sorted && st->comp != NULL) { | 
497  | 2  |         if (st->num > 1)  | 
498  | 0  |             qsort(st->data, st->num, sizeof(void *), st->comp);  | 
499  | 2  |         st->sorted = 1; /* empty or single-element stack is considered sorted */  | 
500  | 2  |     }  | 
501  | 2  | }  | 
502  |  |  | 
503  |  | int OPENSSL_sk_is_sorted(const OPENSSL_STACK *st)  | 
504  | 0  | { | 
505  | 0  |     return st == NULL ? 1 : st->sorted;  | 
506  | 0  | }  |