/src/openssl/crypto/o_time.c
Line  | Count  | Source (jump to first uncovered line)  | 
1  |  | /*  | 
2  |  |  * Copyright 2001-2021 The OpenSSL Project Authors. All Rights Reserved.  | 
3  |  |  *  | 
4  |  |  * Licensed under the Apache License 2.0 (the "License").  You may not use  | 
5  |  |  * this file except in compliance with the License.  You can obtain a copy  | 
6  |  |  * in the file LICENSE in the source distribution or at  | 
7  |  |  * https://www.openssl.org/source/license.html  | 
8  |  |  */  | 
9  |  |  | 
10  |  | #include <openssl/e_os2.h>  | 
11  |  | #include <string.h>  | 
12  |  | #include <openssl/crypto.h>  | 
13  |  |  | 
14  |  | struct tm *OPENSSL_gmtime(const time_t *timer, struct tm *result)  | 
15  | 0  | { | 
16  | 0  |     struct tm *ts = NULL;  | 
17  |  | 
  | 
18  |  | #if defined(OPENSSL_THREADS) && defined(OPENSSL_SYS_VMS)  | 
19  |  |     { | 
20  |  |         /*  | 
21  |  |          * On VMS, gmtime_r() takes a 32-bit pointer as second argument.  | 
22  |  |          * Since we can't know that |result| is in a space that can easily  | 
23  |  |          * translate to a 32-bit pointer, we must store temporarily on stack  | 
24  |  |          * and copy the result.  The stack is always reachable with 32-bit  | 
25  |  |          * pointers.  | 
26  |  |          */  | 
27  |  | #if defined(OPENSSL_SYS_VMS) && __INITIAL_POINTER_SIZE  | 
28  |  | # pragma pointer_size save  | 
29  |  | # pragma pointer_size 32  | 
30  |  | #endif  | 
31  |  |         struct tm data, *ts2 = &data;  | 
32  |  | #if defined OPENSSL_SYS_VMS && __INITIAL_POINTER_SIZE  | 
33  |  | # pragma pointer_size restore  | 
34  |  | #endif  | 
35  |  |         if (gmtime_r(timer, ts2) == NULL)  | 
36  |  |             return NULL;  | 
37  |  |         memcpy(result, ts2, sizeof(struct tm));  | 
38  |  |         ts = result;  | 
39  |  |     }  | 
40  |  | #elif defined(OPENSSL_THREADS) && !defined(OPENSSL_SYS_WIN32) && !defined(OPENSSL_SYS_MACOSX)  | 
41  | 0  |     if (gmtime_r(timer, result) == NULL)  | 
42  | 0  |         return NULL;  | 
43  | 0  |     ts = result;  | 
44  |  | #elif defined (OPENSSL_SYS_WINDOWS) && defined(_MSC_VER) && _MSC_VER >= 1400 && !defined(_WIN32_WCE)  | 
45  |  |     if (gmtime_s(result, timer))  | 
46  |  |         return NULL;  | 
47  |  |     ts = result;  | 
48  |  | #else  | 
49  |  |     ts = gmtime(timer);  | 
50  |  |     if (ts == NULL)  | 
51  |  |         return NULL;  | 
52  |  |  | 
53  |  |     memcpy(result, ts, sizeof(struct tm));  | 
54  |  |     ts = result;  | 
55  |  | #endif  | 
56  | 0  |     return ts;  | 
57  | 0  | }  | 
58  |  |  | 
59  |  | /*  | 
60  |  |  * Take a tm structure and add an offset to it. This avoids any OS issues  | 
61  |  |  * with restricted date types and overflows which cause the year 2038  | 
62  |  |  * problem.  | 
63  |  |  */  | 
64  |  |  | 
65  | 0  | #define SECS_PER_DAY (24 * 60 * 60)  | 
66  |  |  | 
67  |  | static long date_to_julian(int y, int m, int d);  | 
68  |  | static void julian_to_date(long jd, int *y, int *m, int *d);  | 
69  |  | static int julian_adj(const struct tm *tm, int off_day, long offset_sec,  | 
70  |  |                       long *pday, int *psec);  | 
71  |  |  | 
72  |  | int OPENSSL_gmtime_adj(struct tm *tm, int off_day, long offset_sec)  | 
73  | 0  | { | 
74  | 0  |     int time_sec, time_year, time_month, time_day;  | 
75  | 0  |     long time_jd;  | 
76  |  |  | 
77  |  |     /* Convert time and offset into Julian day and seconds */  | 
78  | 0  |     if (!julian_adj(tm, off_day, offset_sec, &time_jd, &time_sec))  | 
79  | 0  |         return 0;  | 
80  |  |  | 
81  |  |     /* Convert Julian day back to date */  | 
82  |  |  | 
83  | 0  |     julian_to_date(time_jd, &time_year, &time_month, &time_day);  | 
84  |  | 
  | 
85  | 0  |     if (time_year < 1900 || time_year > 9999)  | 
86  | 0  |         return 0;  | 
87  |  |  | 
88  |  |     /* Update tm structure */  | 
89  |  |  | 
90  | 0  |     tm->tm_year = time_year - 1900;  | 
91  | 0  |     tm->tm_mon = time_month - 1;  | 
92  | 0  |     tm->tm_mday = time_day;  | 
93  |  | 
  | 
94  | 0  |     tm->tm_hour = time_sec / 3600;  | 
95  | 0  |     tm->tm_min = (time_sec / 60) % 60;  | 
96  | 0  |     tm->tm_sec = time_sec % 60;  | 
97  |  | 
  | 
98  | 0  |     return 1;  | 
99  |  | 
  | 
100  | 0  | }  | 
101  |  |  | 
102  |  | int OPENSSL_gmtime_diff(int *pday, int *psec,  | 
103  |  |                         const struct tm *from, const struct tm *to)  | 
104  | 0  | { | 
105  | 0  |     int from_sec, to_sec, diff_sec;  | 
106  | 0  |     long from_jd, to_jd, diff_day;  | 
107  | 0  |     if (!julian_adj(from, 0, 0, &from_jd, &from_sec))  | 
108  | 0  |         return 0;  | 
109  | 0  |     if (!julian_adj(to, 0, 0, &to_jd, &to_sec))  | 
110  | 0  |         return 0;  | 
111  | 0  |     diff_day = to_jd - from_jd;  | 
112  | 0  |     diff_sec = to_sec - from_sec;  | 
113  |  |     /* Adjust differences so both positive or both negative */  | 
114  | 0  |     if (diff_day > 0 && diff_sec < 0) { | 
115  | 0  |         diff_day--;  | 
116  | 0  |         diff_sec += SECS_PER_DAY;  | 
117  | 0  |     }  | 
118  | 0  |     if (diff_day < 0 && diff_sec > 0) { | 
119  | 0  |         diff_day++;  | 
120  | 0  |         diff_sec -= SECS_PER_DAY;  | 
121  | 0  |     }  | 
122  |  | 
  | 
123  | 0  |     if (pday)  | 
124  | 0  |         *pday = (int)diff_day;  | 
125  | 0  |     if (psec)  | 
126  | 0  |         *psec = diff_sec;  | 
127  |  | 
  | 
128  | 0  |     return 1;  | 
129  |  | 
  | 
130  | 0  | }  | 
131  |  |  | 
132  |  | /* Convert tm structure and offset into julian day and seconds */  | 
133  |  | static int julian_adj(const struct tm *tm, int off_day, long offset_sec,  | 
134  |  |                       long *pday, int *psec)  | 
135  | 0  | { | 
136  | 0  |     int offset_hms;  | 
137  | 0  |     long offset_day, time_jd;  | 
138  | 0  |     int time_year, time_month, time_day;  | 
139  |  |     /* split offset into days and day seconds */  | 
140  | 0  |     offset_day = offset_sec / SECS_PER_DAY;  | 
141  |  |     /* Avoid sign issues with % operator */  | 
142  | 0  |     offset_hms = offset_sec - (offset_day * SECS_PER_DAY);  | 
143  | 0  |     offset_day += off_day;  | 
144  |  |     /* Add current time seconds to offset */  | 
145  | 0  |     offset_hms += tm->tm_hour * 3600 + tm->tm_min * 60 + tm->tm_sec;  | 
146  |  |     /* Adjust day seconds if overflow */  | 
147  | 0  |     if (offset_hms >= SECS_PER_DAY) { | 
148  | 0  |         offset_day++;  | 
149  | 0  |         offset_hms -= SECS_PER_DAY;  | 
150  | 0  |     } else if (offset_hms < 0) { | 
151  | 0  |         offset_day--;  | 
152  | 0  |         offset_hms += SECS_PER_DAY;  | 
153  | 0  |     }  | 
154  |  |  | 
155  |  |     /*  | 
156  |  |      * Convert date of time structure into a Julian day number.  | 
157  |  |      */  | 
158  |  | 
  | 
159  | 0  |     time_year = tm->tm_year + 1900;  | 
160  | 0  |     time_month = tm->tm_mon + 1;  | 
161  | 0  |     time_day = tm->tm_mday;  | 
162  |  | 
  | 
163  | 0  |     time_jd = date_to_julian(time_year, time_month, time_day);  | 
164  |  |  | 
165  |  |     /* Work out Julian day of new date */  | 
166  | 0  |     time_jd += offset_day;  | 
167  |  | 
  | 
168  | 0  |     if (time_jd < 0)  | 
169  | 0  |         return 0;  | 
170  |  |  | 
171  | 0  |     *pday = time_jd;  | 
172  | 0  |     *psec = offset_hms;  | 
173  | 0  |     return 1;  | 
174  | 0  | }  | 
175  |  |  | 
176  |  | /*  | 
177  |  |  * Convert date to and from julian day Uses Fliegel & Van Flandern algorithm  | 
178  |  |  */  | 
179  |  | static long date_to_julian(int y, int m, int d)  | 
180  | 0  | { | 
181  | 0  |     return (1461 * (y + 4800 + (m - 14) / 12)) / 4 +  | 
182  | 0  |         (367 * (m - 2 - 12 * ((m - 14) / 12))) / 12 -  | 
183  | 0  |         (3 * ((y + 4900 + (m - 14) / 12) / 100)) / 4 + d - 32075;  | 
184  | 0  | }  | 
185  |  |  | 
186  |  | static void julian_to_date(long jd, int *y, int *m, int *d)  | 
187  | 0  | { | 
188  | 0  |     long L = jd + 68569;  | 
189  | 0  |     long n = (4 * L) / 146097;  | 
190  | 0  |     long i, j;  | 
191  |  | 
  | 
192  | 0  |     L = L - (146097 * n + 3) / 4;  | 
193  | 0  |     i = (4000 * (L + 1)) / 1461001;  | 
194  | 0  |     L = L - (1461 * i) / 4 + 31;  | 
195  | 0  |     j = (80 * L) / 2447;  | 
196  | 0  |     *d = L - (2447 * j) / 80;  | 
197  | 0  |     L = j / 11;  | 
198  | 0  |     *m = j + 2 - (12 * L);  | 
199  | 0  |     *y = 100 * (n - 49) + i + L;  | 
200  | 0  | }  |