Coverage Report

Created: 2025-06-13 06:57

/src/openssl/crypto/ec/ecp_smpl.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 2001-2022 The OpenSSL Project Authors. All Rights Reserved.
3
 * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
4
 *
5
 * Licensed under the Apache License 2.0 (the "License").  You may not use
6
 * this file except in compliance with the License.  You can obtain a copy
7
 * in the file LICENSE in the source distribution or at
8
 * https://www.openssl.org/source/license.html
9
 */
10
11
/*
12
 * ECDSA low-level APIs are deprecated for public use, but still ok for
13
 * internal use.
14
 */
15
#include "internal/deprecated.h"
16
17
#include <openssl/err.h>
18
#include <openssl/symhacks.h>
19
20
#include "ec_local.h"
21
22
const EC_METHOD *EC_GFp_simple_method(void)
23
0
{
24
0
    static const EC_METHOD ret = {
25
0
        EC_FLAGS_DEFAULT_OCT,
26
0
        NID_X9_62_prime_field,
27
0
        ossl_ec_GFp_simple_group_init,
28
0
        ossl_ec_GFp_simple_group_finish,
29
0
        ossl_ec_GFp_simple_group_clear_finish,
30
0
        ossl_ec_GFp_simple_group_copy,
31
0
        ossl_ec_GFp_simple_group_set_curve,
32
0
        ossl_ec_GFp_simple_group_get_curve,
33
0
        ossl_ec_GFp_simple_group_get_degree,
34
0
        ossl_ec_group_simple_order_bits,
35
0
        ossl_ec_GFp_simple_group_check_discriminant,
36
0
        ossl_ec_GFp_simple_point_init,
37
0
        ossl_ec_GFp_simple_point_finish,
38
0
        ossl_ec_GFp_simple_point_clear_finish,
39
0
        ossl_ec_GFp_simple_point_copy,
40
0
        ossl_ec_GFp_simple_point_set_to_infinity,
41
0
        ossl_ec_GFp_simple_point_set_affine_coordinates,
42
0
        ossl_ec_GFp_simple_point_get_affine_coordinates,
43
0
        0, 0, 0,
44
0
        ossl_ec_GFp_simple_add,
45
0
        ossl_ec_GFp_simple_dbl,
46
0
        ossl_ec_GFp_simple_invert,
47
0
        ossl_ec_GFp_simple_is_at_infinity,
48
0
        ossl_ec_GFp_simple_is_on_curve,
49
0
        ossl_ec_GFp_simple_cmp,
50
0
        ossl_ec_GFp_simple_make_affine,
51
0
        ossl_ec_GFp_simple_points_make_affine,
52
0
        0 /* mul */ ,
53
0
        0 /* precompute_mult */ ,
54
0
        0 /* have_precompute_mult */ ,
55
0
        ossl_ec_GFp_simple_field_mul,
56
0
        ossl_ec_GFp_simple_field_sqr,
57
0
        0 /* field_div */ ,
58
0
        ossl_ec_GFp_simple_field_inv,
59
0
        0 /* field_encode */ ,
60
0
        0 /* field_decode */ ,
61
0
        0,                      /* field_set_to_one */
62
0
        ossl_ec_key_simple_priv2oct,
63
0
        ossl_ec_key_simple_oct2priv,
64
0
        0, /* set private */
65
0
        ossl_ec_key_simple_generate_key,
66
0
        ossl_ec_key_simple_check_key,
67
0
        ossl_ec_key_simple_generate_public_key,
68
0
        0, /* keycopy */
69
0
        0, /* keyfinish */
70
0
        ossl_ecdh_simple_compute_key,
71
0
        ossl_ecdsa_simple_sign_setup,
72
0
        ossl_ecdsa_simple_sign_sig,
73
0
        ossl_ecdsa_simple_verify_sig,
74
0
        0, /* field_inverse_mod_ord */
75
0
        ossl_ec_GFp_simple_blind_coordinates,
76
0
        ossl_ec_GFp_simple_ladder_pre,
77
0
        ossl_ec_GFp_simple_ladder_step,
78
0
        ossl_ec_GFp_simple_ladder_post
79
0
    };
80
81
0
    return &ret;
82
0
}
83
84
/*
85
 * Most method functions in this file are designed to work with
86
 * non-trivial representations of field elements if necessary
87
 * (see ecp_mont.c): while standard modular addition and subtraction
88
 * are used, the field_mul and field_sqr methods will be used for
89
 * multiplication, and field_encode and field_decode (if defined)
90
 * will be used for converting between representations.
91
 *
92
 * Functions ec_GFp_simple_points_make_affine() and
93
 * ec_GFp_simple_point_get_affine_coordinates() specifically assume
94
 * that if a non-trivial representation is used, it is a Montgomery
95
 * representation (i.e. 'encoding' means multiplying by some factor R).
96
 */
97
98
int ossl_ec_GFp_simple_group_init(EC_GROUP *group)
99
0
{
100
0
    group->field = BN_new();
101
0
    group->a = BN_new();
102
0
    group->b = BN_new();
103
0
    if (group->field == NULL || group->a == NULL || group->b == NULL) {
104
0
        BN_free(group->field);
105
0
        BN_free(group->a);
106
0
        BN_free(group->b);
107
0
        return 0;
108
0
    }
109
0
    group->a_is_minus3 = 0;
110
0
    return 1;
111
0
}
112
113
void ossl_ec_GFp_simple_group_finish(EC_GROUP *group)
114
0
{
115
0
    BN_free(group->field);
116
0
    BN_free(group->a);
117
0
    BN_free(group->b);
118
0
}
119
120
void ossl_ec_GFp_simple_group_clear_finish(EC_GROUP *group)
121
0
{
122
0
    BN_clear_free(group->field);
123
0
    BN_clear_free(group->a);
124
0
    BN_clear_free(group->b);
125
0
}
126
127
int ossl_ec_GFp_simple_group_copy(EC_GROUP *dest, const EC_GROUP *src)
128
0
{
129
0
    if (!BN_copy(dest->field, src->field))
130
0
        return 0;
131
0
    if (!BN_copy(dest->a, src->a))
132
0
        return 0;
133
0
    if (!BN_copy(dest->b, src->b))
134
0
        return 0;
135
136
0
    dest->a_is_minus3 = src->a_is_minus3;
137
138
0
    return 1;
139
0
}
140
141
int ossl_ec_GFp_simple_group_set_curve(EC_GROUP *group,
142
                                       const BIGNUM *p, const BIGNUM *a,
143
                                       const BIGNUM *b, BN_CTX *ctx)
144
0
{
145
0
    int ret = 0;
146
0
    BN_CTX *new_ctx = NULL;
147
0
    BIGNUM *tmp_a;
148
149
    /* p must be a prime > 3 */
150
0
    if (BN_num_bits(p) <= 2 || !BN_is_odd(p)) {
151
0
        ERR_raise(ERR_LIB_EC, EC_R_INVALID_FIELD);
152
0
        return 0;
153
0
    }
154
155
0
    if (ctx == NULL) {
156
0
        ctx = new_ctx = BN_CTX_new_ex(group->libctx);
157
0
        if (ctx == NULL)
158
0
            return 0;
159
0
    }
160
161
0
    BN_CTX_start(ctx);
162
0
    tmp_a = BN_CTX_get(ctx);
163
0
    if (tmp_a == NULL)
164
0
        goto err;
165
166
    /* group->field */
167
0
    if (!BN_copy(group->field, p))
168
0
        goto err;
169
0
    BN_set_negative(group->field, 0);
170
171
    /* group->a */
172
0
    if (!BN_nnmod(tmp_a, a, p, ctx))
173
0
        goto err;
174
0
    if (group->meth->field_encode != NULL) {
175
0
        if (!group->meth->field_encode(group, group->a, tmp_a, ctx))
176
0
            goto err;
177
0
    } else if (!BN_copy(group->a, tmp_a))
178
0
        goto err;
179
180
    /* group->b */
181
0
    if (!BN_nnmod(group->b, b, p, ctx))
182
0
        goto err;
183
0
    if (group->meth->field_encode != NULL)
184
0
        if (!group->meth->field_encode(group, group->b, group->b, ctx))
185
0
            goto err;
186
187
    /* group->a_is_minus3 */
188
0
    if (!BN_add_word(tmp_a, 3))
189
0
        goto err;
190
0
    group->a_is_minus3 = (0 == BN_cmp(tmp_a, group->field));
191
192
0
    ret = 1;
193
194
0
 err:
195
0
    BN_CTX_end(ctx);
196
0
    BN_CTX_free(new_ctx);
197
0
    return ret;
198
0
}
199
200
int ossl_ec_GFp_simple_group_get_curve(const EC_GROUP *group, BIGNUM *p,
201
                                       BIGNUM *a, BIGNUM *b, BN_CTX *ctx)
202
0
{
203
0
    int ret = 0;
204
0
    BN_CTX *new_ctx = NULL;
205
206
0
    if (p != NULL) {
207
0
        if (!BN_copy(p, group->field))
208
0
            return 0;
209
0
    }
210
211
0
    if (a != NULL || b != NULL) {
212
0
        if (group->meth->field_decode != NULL) {
213
0
            if (ctx == NULL) {
214
0
                ctx = new_ctx = BN_CTX_new_ex(group->libctx);
215
0
                if (ctx == NULL)
216
0
                    return 0;
217
0
            }
218
0
            if (a != NULL) {
219
0
                if (!group->meth->field_decode(group, a, group->a, ctx))
220
0
                    goto err;
221
0
            }
222
0
            if (b != NULL) {
223
0
                if (!group->meth->field_decode(group, b, group->b, ctx))
224
0
                    goto err;
225
0
            }
226
0
        } else {
227
0
            if (a != NULL) {
228
0
                if (!BN_copy(a, group->a))
229
0
                    goto err;
230
0
            }
231
0
            if (b != NULL) {
232
0
                if (!BN_copy(b, group->b))
233
0
                    goto err;
234
0
            }
235
0
        }
236
0
    }
237
238
0
    ret = 1;
239
240
0
 err:
241
0
    BN_CTX_free(new_ctx);
242
0
    return ret;
243
0
}
244
245
int ossl_ec_GFp_simple_group_get_degree(const EC_GROUP *group)
246
0
{
247
0
    return BN_num_bits(group->field);
248
0
}
249
250
int ossl_ec_GFp_simple_group_check_discriminant(const EC_GROUP *group,
251
                                                BN_CTX *ctx)
252
0
{
253
0
    int ret = 0;
254
0
    BIGNUM *a, *b, *order, *tmp_1, *tmp_2;
255
0
    const BIGNUM *p = group->field;
256
0
    BN_CTX *new_ctx = NULL;
257
258
0
    if (ctx == NULL) {
259
0
        ctx = new_ctx = BN_CTX_new_ex(group->libctx);
260
0
        if (ctx == NULL) {
261
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
262
0
            goto err;
263
0
        }
264
0
    }
265
0
    BN_CTX_start(ctx);
266
0
    a = BN_CTX_get(ctx);
267
0
    b = BN_CTX_get(ctx);
268
0
    tmp_1 = BN_CTX_get(ctx);
269
0
    tmp_2 = BN_CTX_get(ctx);
270
0
    order = BN_CTX_get(ctx);
271
0
    if (order == NULL)
272
0
        goto err;
273
274
0
    if (group->meth->field_decode != NULL) {
275
0
        if (!group->meth->field_decode(group, a, group->a, ctx))
276
0
            goto err;
277
0
        if (!group->meth->field_decode(group, b, group->b, ctx))
278
0
            goto err;
279
0
    } else {
280
0
        if (!BN_copy(a, group->a))
281
0
            goto err;
282
0
        if (!BN_copy(b, group->b))
283
0
            goto err;
284
0
    }
285
286
    /*-
287
     * check the discriminant:
288
     * y^2 = x^3 + a*x + b is an elliptic curve <=> 4*a^3 + 27*b^2 != 0 (mod p)
289
     * 0 =< a, b < p
290
     */
291
0
    if (BN_is_zero(a)) {
292
0
        if (BN_is_zero(b))
293
0
            goto err;
294
0
    } else if (!BN_is_zero(b)) {
295
0
        if (!BN_mod_sqr(tmp_1, a, p, ctx))
296
0
            goto err;
297
0
        if (!BN_mod_mul(tmp_2, tmp_1, a, p, ctx))
298
0
            goto err;
299
0
        if (!BN_lshift(tmp_1, tmp_2, 2))
300
0
            goto err;
301
        /* tmp_1 = 4*a^3 */
302
303
0
        if (!BN_mod_sqr(tmp_2, b, p, ctx))
304
0
            goto err;
305
0
        if (!BN_mul_word(tmp_2, 27))
306
0
            goto err;
307
        /* tmp_2 = 27*b^2 */
308
309
0
        if (!BN_mod_add(a, tmp_1, tmp_2, p, ctx))
310
0
            goto err;
311
0
        if (BN_is_zero(a))
312
0
            goto err;
313
0
    }
314
0
    ret = 1;
315
316
0
 err:
317
0
    BN_CTX_end(ctx);
318
0
    BN_CTX_free(new_ctx);
319
0
    return ret;
320
0
}
321
322
int ossl_ec_GFp_simple_point_init(EC_POINT *point)
323
0
{
324
0
    point->X = BN_new();
325
0
    point->Y = BN_new();
326
0
    point->Z = BN_new();
327
0
    point->Z_is_one = 0;
328
329
0
    if (point->X == NULL || point->Y == NULL || point->Z == NULL) {
330
0
        BN_free(point->X);
331
0
        BN_free(point->Y);
332
0
        BN_free(point->Z);
333
0
        return 0;
334
0
    }
335
0
    return 1;
336
0
}
337
338
void ossl_ec_GFp_simple_point_finish(EC_POINT *point)
339
0
{
340
0
    BN_free(point->X);
341
0
    BN_free(point->Y);
342
0
    BN_free(point->Z);
343
0
}
344
345
void ossl_ec_GFp_simple_point_clear_finish(EC_POINT *point)
346
0
{
347
0
    BN_clear_free(point->X);
348
0
    BN_clear_free(point->Y);
349
0
    BN_clear_free(point->Z);
350
0
    point->Z_is_one = 0;
351
0
}
352
353
int ossl_ec_GFp_simple_point_copy(EC_POINT *dest, const EC_POINT *src)
354
0
{
355
0
    if (!BN_copy(dest->X, src->X))
356
0
        return 0;
357
0
    if (!BN_copy(dest->Y, src->Y))
358
0
        return 0;
359
0
    if (!BN_copy(dest->Z, src->Z))
360
0
        return 0;
361
0
    dest->Z_is_one = src->Z_is_one;
362
0
    dest->curve_name = src->curve_name;
363
364
0
    return 1;
365
0
}
366
367
int ossl_ec_GFp_simple_point_set_to_infinity(const EC_GROUP *group,
368
                                             EC_POINT *point)
369
0
{
370
0
    point->Z_is_one = 0;
371
0
    BN_zero(point->Z);
372
0
    return 1;
373
0
}
374
375
int ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(const EC_GROUP *group,
376
                                                       EC_POINT *point,
377
                                                       const BIGNUM *x,
378
                                                       const BIGNUM *y,
379
                                                       const BIGNUM *z,
380
                                                       BN_CTX *ctx)
381
0
{
382
0
    BN_CTX *new_ctx = NULL;
383
0
    int ret = 0;
384
385
0
    if (ctx == NULL) {
386
0
        ctx = new_ctx = BN_CTX_new_ex(group->libctx);
387
0
        if (ctx == NULL)
388
0
            return 0;
389
0
    }
390
391
0
    if (x != NULL) {
392
0
        if (!BN_nnmod(point->X, x, group->field, ctx))
393
0
            goto err;
394
0
        if (group->meth->field_encode) {
395
0
            if (!group->meth->field_encode(group, point->X, point->X, ctx))
396
0
                goto err;
397
0
        }
398
0
    }
399
400
0
    if (y != NULL) {
401
0
        if (!BN_nnmod(point->Y, y, group->field, ctx))
402
0
            goto err;
403
0
        if (group->meth->field_encode) {
404
0
            if (!group->meth->field_encode(group, point->Y, point->Y, ctx))
405
0
                goto err;
406
0
        }
407
0
    }
408
409
0
    if (z != NULL) {
410
0
        int Z_is_one;
411
412
0
        if (!BN_nnmod(point->Z, z, group->field, ctx))
413
0
            goto err;
414
0
        Z_is_one = BN_is_one(point->Z);
415
0
        if (group->meth->field_encode) {
416
0
            if (Z_is_one && (group->meth->field_set_to_one != 0)) {
417
0
                if (!group->meth->field_set_to_one(group, point->Z, ctx))
418
0
                    goto err;
419
0
            } else {
420
0
                if (!group->
421
0
                    meth->field_encode(group, point->Z, point->Z, ctx))
422
0
                    goto err;
423
0
            }
424
0
        }
425
0
        point->Z_is_one = Z_is_one;
426
0
    }
427
428
0
    ret = 1;
429
430
0
 err:
431
0
    BN_CTX_free(new_ctx);
432
0
    return ret;
433
0
}
434
435
int ossl_ec_GFp_simple_get_Jprojective_coordinates_GFp(const EC_GROUP *group,
436
                                                       const EC_POINT *point,
437
                                                       BIGNUM *x, BIGNUM *y,
438
                                                       BIGNUM *z, BN_CTX *ctx)
439
0
{
440
0
    BN_CTX *new_ctx = NULL;
441
0
    int ret = 0;
442
443
0
    if (group->meth->field_decode != NULL) {
444
0
        if (ctx == NULL) {
445
0
            ctx = new_ctx = BN_CTX_new_ex(group->libctx);
446
0
            if (ctx == NULL)
447
0
                return 0;
448
0
        }
449
450
0
        if (x != NULL) {
451
0
            if (!group->meth->field_decode(group, x, point->X, ctx))
452
0
                goto err;
453
0
        }
454
0
        if (y != NULL) {
455
0
            if (!group->meth->field_decode(group, y, point->Y, ctx))
456
0
                goto err;
457
0
        }
458
0
        if (z != NULL) {
459
0
            if (!group->meth->field_decode(group, z, point->Z, ctx))
460
0
                goto err;
461
0
        }
462
0
    } else {
463
0
        if (x != NULL) {
464
0
            if (!BN_copy(x, point->X))
465
0
                goto err;
466
0
        }
467
0
        if (y != NULL) {
468
0
            if (!BN_copy(y, point->Y))
469
0
                goto err;
470
0
        }
471
0
        if (z != NULL) {
472
0
            if (!BN_copy(z, point->Z))
473
0
                goto err;
474
0
        }
475
0
    }
476
477
0
    ret = 1;
478
479
0
 err:
480
0
    BN_CTX_free(new_ctx);
481
0
    return ret;
482
0
}
483
484
int ossl_ec_GFp_simple_point_set_affine_coordinates(const EC_GROUP *group,
485
                                                    EC_POINT *point,
486
                                                    const BIGNUM *x,
487
                                                    const BIGNUM *y, BN_CTX *ctx)
488
0
{
489
0
    if (x == NULL || y == NULL) {
490
        /*
491
         * unlike for projective coordinates, we do not tolerate this
492
         */
493
0
        ERR_raise(ERR_LIB_EC, ERR_R_PASSED_NULL_PARAMETER);
494
0
        return 0;
495
0
    }
496
497
0
    return EC_POINT_set_Jprojective_coordinates_GFp(group, point, x, y,
498
0
                                                    BN_value_one(), ctx);
499
0
}
500
501
int ossl_ec_GFp_simple_point_get_affine_coordinates(const EC_GROUP *group,
502
                                                    const EC_POINT *point,
503
                                                    BIGNUM *x, BIGNUM *y,
504
                                                    BN_CTX *ctx)
505
0
{
506
0
    BN_CTX *new_ctx = NULL;
507
0
    BIGNUM *Z, *Z_1, *Z_2, *Z_3;
508
0
    const BIGNUM *Z_;
509
0
    int ret = 0;
510
511
0
    if (EC_POINT_is_at_infinity(group, point)) {
512
0
        ERR_raise(ERR_LIB_EC, EC_R_POINT_AT_INFINITY);
513
0
        return 0;
514
0
    }
515
516
0
    if (ctx == NULL) {
517
0
        ctx = new_ctx = BN_CTX_new_ex(group->libctx);
518
0
        if (ctx == NULL)
519
0
            return 0;
520
0
    }
521
522
0
    BN_CTX_start(ctx);
523
0
    Z = BN_CTX_get(ctx);
524
0
    Z_1 = BN_CTX_get(ctx);
525
0
    Z_2 = BN_CTX_get(ctx);
526
0
    Z_3 = BN_CTX_get(ctx);
527
0
    if (Z_3 == NULL)
528
0
        goto err;
529
530
    /* transform  (X, Y, Z)  into  (x, y) := (X/Z^2, Y/Z^3) */
531
532
0
    if (group->meth->field_decode != NULL) {
533
0
        if (!group->meth->field_decode(group, Z, point->Z, ctx))
534
0
            goto err;
535
0
        Z_ = Z;
536
0
    } else {
537
0
        Z_ = point->Z;
538
0
    }
539
540
0
    if (BN_is_one(Z_)) {
541
0
        if (group->meth->field_decode != NULL) {
542
0
            if (x != NULL) {
543
0
                if (!group->meth->field_decode(group, x, point->X, ctx))
544
0
                    goto err;
545
0
            }
546
0
            if (y != NULL) {
547
0
                if (!group->meth->field_decode(group, y, point->Y, ctx))
548
0
                    goto err;
549
0
            }
550
0
        } else {
551
0
            if (x != NULL) {
552
0
                if (!BN_copy(x, point->X))
553
0
                    goto err;
554
0
            }
555
0
            if (y != NULL) {
556
0
                if (!BN_copy(y, point->Y))
557
0
                    goto err;
558
0
            }
559
0
        }
560
0
    } else {
561
0
        if (!group->meth->field_inv(group, Z_1, Z_, ctx)) {
562
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
563
0
            goto err;
564
0
        }
565
566
0
        if (group->meth->field_encode == NULL) {
567
            /* field_sqr works on standard representation */
568
0
            if (!group->meth->field_sqr(group, Z_2, Z_1, ctx))
569
0
                goto err;
570
0
        } else {
571
0
            if (!BN_mod_sqr(Z_2, Z_1, group->field, ctx))
572
0
                goto err;
573
0
        }
574
575
0
        if (x != NULL) {
576
            /*
577
             * in the Montgomery case, field_mul will cancel out Montgomery
578
             * factor in X:
579
             */
580
0
            if (!group->meth->field_mul(group, x, point->X, Z_2, ctx))
581
0
                goto err;
582
0
        }
583
584
0
        if (y != NULL) {
585
0
            if (group->meth->field_encode == NULL) {
586
                /*
587
                 * field_mul works on standard representation
588
                 */
589
0
                if (!group->meth->field_mul(group, Z_3, Z_2, Z_1, ctx))
590
0
                    goto err;
591
0
            } else {
592
0
                if (!BN_mod_mul(Z_3, Z_2, Z_1, group->field, ctx))
593
0
                    goto err;
594
0
            }
595
596
            /*
597
             * in the Montgomery case, field_mul will cancel out Montgomery
598
             * factor in Y:
599
             */
600
0
            if (!group->meth->field_mul(group, y, point->Y, Z_3, ctx))
601
0
                goto err;
602
0
        }
603
0
    }
604
605
0
    ret = 1;
606
607
0
 err:
608
0
    BN_CTX_end(ctx);
609
0
    BN_CTX_free(new_ctx);
610
0
    return ret;
611
0
}
612
613
int ossl_ec_GFp_simple_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
614
                           const EC_POINT *b, BN_CTX *ctx)
615
0
{
616
0
    int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *,
617
0
                      const BIGNUM *, BN_CTX *);
618
0
    int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
619
0
    const BIGNUM *p;
620
0
    BN_CTX *new_ctx = NULL;
621
0
    BIGNUM *n0, *n1, *n2, *n3, *n4, *n5, *n6;
622
0
    int ret = 0;
623
624
0
    if (a == b)
625
0
        return EC_POINT_dbl(group, r, a, ctx);
626
0
    if (EC_POINT_is_at_infinity(group, a))
627
0
        return EC_POINT_copy(r, b);
628
0
    if (EC_POINT_is_at_infinity(group, b))
629
0
        return EC_POINT_copy(r, a);
630
631
0
    field_mul = group->meth->field_mul;
632
0
    field_sqr = group->meth->field_sqr;
633
0
    p = group->field;
634
635
0
    if (ctx == NULL) {
636
0
        ctx = new_ctx = BN_CTX_new_ex(group->libctx);
637
0
        if (ctx == NULL)
638
0
            return 0;
639
0
    }
640
641
0
    BN_CTX_start(ctx);
642
0
    n0 = BN_CTX_get(ctx);
643
0
    n1 = BN_CTX_get(ctx);
644
0
    n2 = BN_CTX_get(ctx);
645
0
    n3 = BN_CTX_get(ctx);
646
0
    n4 = BN_CTX_get(ctx);
647
0
    n5 = BN_CTX_get(ctx);
648
0
    n6 = BN_CTX_get(ctx);
649
0
    if (n6 == NULL)
650
0
        goto end;
651
652
    /*
653
     * Note that in this function we must not read components of 'a' or 'b'
654
     * once we have written the corresponding components of 'r'. ('r' might
655
     * be one of 'a' or 'b'.)
656
     */
657
658
    /* n1, n2 */
659
0
    if (b->Z_is_one) {
660
0
        if (!BN_copy(n1, a->X))
661
0
            goto end;
662
0
        if (!BN_copy(n2, a->Y))
663
0
            goto end;
664
        /* n1 = X_a */
665
        /* n2 = Y_a */
666
0
    } else {
667
0
        if (!field_sqr(group, n0, b->Z, ctx))
668
0
            goto end;
669
0
        if (!field_mul(group, n1, a->X, n0, ctx))
670
0
            goto end;
671
        /* n1 = X_a * Z_b^2 */
672
673
0
        if (!field_mul(group, n0, n0, b->Z, ctx))
674
0
            goto end;
675
0
        if (!field_mul(group, n2, a->Y, n0, ctx))
676
0
            goto end;
677
        /* n2 = Y_a * Z_b^3 */
678
0
    }
679
680
    /* n3, n4 */
681
0
    if (a->Z_is_one) {
682
0
        if (!BN_copy(n3, b->X))
683
0
            goto end;
684
0
        if (!BN_copy(n4, b->Y))
685
0
            goto end;
686
        /* n3 = X_b */
687
        /* n4 = Y_b */
688
0
    } else {
689
0
        if (!field_sqr(group, n0, a->Z, ctx))
690
0
            goto end;
691
0
        if (!field_mul(group, n3, b->X, n0, ctx))
692
0
            goto end;
693
        /* n3 = X_b * Z_a^2 */
694
695
0
        if (!field_mul(group, n0, n0, a->Z, ctx))
696
0
            goto end;
697
0
        if (!field_mul(group, n4, b->Y, n0, ctx))
698
0
            goto end;
699
        /* n4 = Y_b * Z_a^3 */
700
0
    }
701
702
    /* n5, n6 */
703
0
    if (!BN_mod_sub_quick(n5, n1, n3, p))
704
0
        goto end;
705
0
    if (!BN_mod_sub_quick(n6, n2, n4, p))
706
0
        goto end;
707
    /* n5 = n1 - n3 */
708
    /* n6 = n2 - n4 */
709
710
0
    if (BN_is_zero(n5)) {
711
0
        if (BN_is_zero(n6)) {
712
            /* a is the same point as b */
713
0
            BN_CTX_end(ctx);
714
0
            ret = EC_POINT_dbl(group, r, a, ctx);
715
0
            ctx = NULL;
716
0
            goto end;
717
0
        } else {
718
            /* a is the inverse of b */
719
0
            BN_zero(r->Z);
720
0
            r->Z_is_one = 0;
721
0
            ret = 1;
722
0
            goto end;
723
0
        }
724
0
    }
725
726
    /* 'n7', 'n8' */
727
0
    if (!BN_mod_add_quick(n1, n1, n3, p))
728
0
        goto end;
729
0
    if (!BN_mod_add_quick(n2, n2, n4, p))
730
0
        goto end;
731
    /* 'n7' = n1 + n3 */
732
    /* 'n8' = n2 + n4 */
733
734
    /* Z_r */
735
0
    if (a->Z_is_one && b->Z_is_one) {
736
0
        if (!BN_copy(r->Z, n5))
737
0
            goto end;
738
0
    } else {
739
0
        if (a->Z_is_one) {
740
0
            if (!BN_copy(n0, b->Z))
741
0
                goto end;
742
0
        } else if (b->Z_is_one) {
743
0
            if (!BN_copy(n0, a->Z))
744
0
                goto end;
745
0
        } else {
746
0
            if (!field_mul(group, n0, a->Z, b->Z, ctx))
747
0
                goto end;
748
0
        }
749
0
        if (!field_mul(group, r->Z, n0, n5, ctx))
750
0
            goto end;
751
0
    }
752
0
    r->Z_is_one = 0;
753
    /* Z_r = Z_a * Z_b * n5 */
754
755
    /* X_r */
756
0
    if (!field_sqr(group, n0, n6, ctx))
757
0
        goto end;
758
0
    if (!field_sqr(group, n4, n5, ctx))
759
0
        goto end;
760
0
    if (!field_mul(group, n3, n1, n4, ctx))
761
0
        goto end;
762
0
    if (!BN_mod_sub_quick(r->X, n0, n3, p))
763
0
        goto end;
764
    /* X_r = n6^2 - n5^2 * 'n7' */
765
766
    /* 'n9' */
767
0
    if (!BN_mod_lshift1_quick(n0, r->X, p))
768
0
        goto end;
769
0
    if (!BN_mod_sub_quick(n0, n3, n0, p))
770
0
        goto end;
771
    /* n9 = n5^2 * 'n7' - 2 * X_r */
772
773
    /* Y_r */
774
0
    if (!field_mul(group, n0, n0, n6, ctx))
775
0
        goto end;
776
0
    if (!field_mul(group, n5, n4, n5, ctx))
777
0
        goto end;               /* now n5 is n5^3 */
778
0
    if (!field_mul(group, n1, n2, n5, ctx))
779
0
        goto end;
780
0
    if (!BN_mod_sub_quick(n0, n0, n1, p))
781
0
        goto end;
782
0
    if (BN_is_odd(n0))
783
0
        if (!BN_add(n0, n0, p))
784
0
            goto end;
785
    /* now  0 <= n0 < 2*p,  and n0 is even */
786
0
    if (!BN_rshift1(r->Y, n0))
787
0
        goto end;
788
    /* Y_r = (n6 * 'n9' - 'n8' * 'n5^3') / 2 */
789
790
0
    ret = 1;
791
792
0
 end:
793
0
    BN_CTX_end(ctx);
794
0
    BN_CTX_free(new_ctx);
795
0
    return ret;
796
0
}
797
798
int ossl_ec_GFp_simple_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
799
                           BN_CTX *ctx)
800
0
{
801
0
    int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *,
802
0
                      const BIGNUM *, BN_CTX *);
803
0
    int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
804
0
    const BIGNUM *p;
805
0
    BN_CTX *new_ctx = NULL;
806
0
    BIGNUM *n0, *n1, *n2, *n3;
807
0
    int ret = 0;
808
809
0
    if (EC_POINT_is_at_infinity(group, a)) {
810
0
        BN_zero(r->Z);
811
0
        r->Z_is_one = 0;
812
0
        return 1;
813
0
    }
814
815
0
    field_mul = group->meth->field_mul;
816
0
    field_sqr = group->meth->field_sqr;
817
0
    p = group->field;
818
819
0
    if (ctx == NULL) {
820
0
        ctx = new_ctx = BN_CTX_new_ex(group->libctx);
821
0
        if (ctx == NULL)
822
0
            return 0;
823
0
    }
824
825
0
    BN_CTX_start(ctx);
826
0
    n0 = BN_CTX_get(ctx);
827
0
    n1 = BN_CTX_get(ctx);
828
0
    n2 = BN_CTX_get(ctx);
829
0
    n3 = BN_CTX_get(ctx);
830
0
    if (n3 == NULL)
831
0
        goto err;
832
833
    /*
834
     * Note that in this function we must not read components of 'a' once we
835
     * have written the corresponding components of 'r'. ('r' might the same
836
     * as 'a'.)
837
     */
838
839
    /* n1 */
840
0
    if (a->Z_is_one) {
841
0
        if (!field_sqr(group, n0, a->X, ctx))
842
0
            goto err;
843
0
        if (!BN_mod_lshift1_quick(n1, n0, p))
844
0
            goto err;
845
0
        if (!BN_mod_add_quick(n0, n0, n1, p))
846
0
            goto err;
847
0
        if (!BN_mod_add_quick(n1, n0, group->a, p))
848
0
            goto err;
849
        /* n1 = 3 * X_a^2 + a_curve */
850
0
    } else if (group->a_is_minus3) {
851
0
        if (!field_sqr(group, n1, a->Z, ctx))
852
0
            goto err;
853
0
        if (!BN_mod_add_quick(n0, a->X, n1, p))
854
0
            goto err;
855
0
        if (!BN_mod_sub_quick(n2, a->X, n1, p))
856
0
            goto err;
857
0
        if (!field_mul(group, n1, n0, n2, ctx))
858
0
            goto err;
859
0
        if (!BN_mod_lshift1_quick(n0, n1, p))
860
0
            goto err;
861
0
        if (!BN_mod_add_quick(n1, n0, n1, p))
862
0
            goto err;
863
        /*-
864
         * n1 = 3 * (X_a + Z_a^2) * (X_a - Z_a^2)
865
         *    = 3 * X_a^2 - 3 * Z_a^4
866
         */
867
0
    } else {
868
0
        if (!field_sqr(group, n0, a->X, ctx))
869
0
            goto err;
870
0
        if (!BN_mod_lshift1_quick(n1, n0, p))
871
0
            goto err;
872
0
        if (!BN_mod_add_quick(n0, n0, n1, p))
873
0
            goto err;
874
0
        if (!field_sqr(group, n1, a->Z, ctx))
875
0
            goto err;
876
0
        if (!field_sqr(group, n1, n1, ctx))
877
0
            goto err;
878
0
        if (!field_mul(group, n1, n1, group->a, ctx))
879
0
            goto err;
880
0
        if (!BN_mod_add_quick(n1, n1, n0, p))
881
0
            goto err;
882
        /* n1 = 3 * X_a^2 + a_curve * Z_a^4 */
883
0
    }
884
885
    /* Z_r */
886
0
    if (a->Z_is_one) {
887
0
        if (!BN_copy(n0, a->Y))
888
0
            goto err;
889
0
    } else {
890
0
        if (!field_mul(group, n0, a->Y, a->Z, ctx))
891
0
            goto err;
892
0
    }
893
0
    if (!BN_mod_lshift1_quick(r->Z, n0, p))
894
0
        goto err;
895
0
    r->Z_is_one = 0;
896
    /* Z_r = 2 * Y_a * Z_a */
897
898
    /* n2 */
899
0
    if (!field_sqr(group, n3, a->Y, ctx))
900
0
        goto err;
901
0
    if (!field_mul(group, n2, a->X, n3, ctx))
902
0
        goto err;
903
0
    if (!BN_mod_lshift_quick(n2, n2, 2, p))
904
0
        goto err;
905
    /* n2 = 4 * X_a * Y_a^2 */
906
907
    /* X_r */
908
0
    if (!BN_mod_lshift1_quick(n0, n2, p))
909
0
        goto err;
910
0
    if (!field_sqr(group, r->X, n1, ctx))
911
0
        goto err;
912
0
    if (!BN_mod_sub_quick(r->X, r->X, n0, p))
913
0
        goto err;
914
    /* X_r = n1^2 - 2 * n2 */
915
916
    /* n3 */
917
0
    if (!field_sqr(group, n0, n3, ctx))
918
0
        goto err;
919
0
    if (!BN_mod_lshift_quick(n3, n0, 3, p))
920
0
        goto err;
921
    /* n3 = 8 * Y_a^4 */
922
923
    /* Y_r */
924
0
    if (!BN_mod_sub_quick(n0, n2, r->X, p))
925
0
        goto err;
926
0
    if (!field_mul(group, n0, n1, n0, ctx))
927
0
        goto err;
928
0
    if (!BN_mod_sub_quick(r->Y, n0, n3, p))
929
0
        goto err;
930
    /* Y_r = n1 * (n2 - X_r) - n3 */
931
932
0
    ret = 1;
933
934
0
 err:
935
0
    BN_CTX_end(ctx);
936
0
    BN_CTX_free(new_ctx);
937
0
    return ret;
938
0
}
939
940
int ossl_ec_GFp_simple_invert(const EC_GROUP *group, EC_POINT *point,
941
                              BN_CTX *ctx)
942
0
{
943
0
    if (EC_POINT_is_at_infinity(group, point) || BN_is_zero(point->Y))
944
        /* point is its own inverse */
945
0
        return 1;
946
947
0
    return BN_usub(point->Y, group->field, point->Y);
948
0
}
949
950
int ossl_ec_GFp_simple_is_at_infinity(const EC_GROUP *group,
951
                                      const EC_POINT *point)
952
0
{
953
0
    return BN_is_zero(point->Z);
954
0
}
955
956
int ossl_ec_GFp_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point,
957
                                   BN_CTX *ctx)
958
0
{
959
0
    int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *,
960
0
                      const BIGNUM *, BN_CTX *);
961
0
    int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
962
0
    const BIGNUM *p;
963
0
    BN_CTX *new_ctx = NULL;
964
0
    BIGNUM *rh, *tmp, *Z4, *Z6;
965
0
    int ret = -1;
966
967
0
    if (EC_POINT_is_at_infinity(group, point))
968
0
        return 1;
969
970
0
    field_mul = group->meth->field_mul;
971
0
    field_sqr = group->meth->field_sqr;
972
0
    p = group->field;
973
974
0
    if (ctx == NULL) {
975
0
        ctx = new_ctx = BN_CTX_new_ex(group->libctx);
976
0
        if (ctx == NULL)
977
0
            return -1;
978
0
    }
979
980
0
    BN_CTX_start(ctx);
981
0
    rh = BN_CTX_get(ctx);
982
0
    tmp = BN_CTX_get(ctx);
983
0
    Z4 = BN_CTX_get(ctx);
984
0
    Z6 = BN_CTX_get(ctx);
985
0
    if (Z6 == NULL)
986
0
        goto err;
987
988
    /*-
989
     * We have a curve defined by a Weierstrass equation
990
     *      y^2 = x^3 + a*x + b.
991
     * The point to consider is given in Jacobian projective coordinates
992
     * where  (X, Y, Z)  represents  (x, y) = (X/Z^2, Y/Z^3).
993
     * Substituting this and multiplying by  Z^6  transforms the above equation into
994
     *      Y^2 = X^3 + a*X*Z^4 + b*Z^6.
995
     * To test this, we add up the right-hand side in 'rh'.
996
     */
997
998
    /* rh := X^2 */
999
0
    if (!field_sqr(group, rh, point->X, ctx))
1000
0
        goto err;
1001
1002
0
    if (!point->Z_is_one) {
1003
0
        if (!field_sqr(group, tmp, point->Z, ctx))
1004
0
            goto err;
1005
0
        if (!field_sqr(group, Z4, tmp, ctx))
1006
0
            goto err;
1007
0
        if (!field_mul(group, Z6, Z4, tmp, ctx))
1008
0
            goto err;
1009
1010
        /* rh := (rh + a*Z^4)*X */
1011
0
        if (group->a_is_minus3) {
1012
0
            if (!BN_mod_lshift1_quick(tmp, Z4, p))
1013
0
                goto err;
1014
0
            if (!BN_mod_add_quick(tmp, tmp, Z4, p))
1015
0
                goto err;
1016
0
            if (!BN_mod_sub_quick(rh, rh, tmp, p))
1017
0
                goto err;
1018
0
            if (!field_mul(group, rh, rh, point->X, ctx))
1019
0
                goto err;
1020
0
        } else {
1021
0
            if (!field_mul(group, tmp, Z4, group->a, ctx))
1022
0
                goto err;
1023
0
            if (!BN_mod_add_quick(rh, rh, tmp, p))
1024
0
                goto err;
1025
0
            if (!field_mul(group, rh, rh, point->X, ctx))
1026
0
                goto err;
1027
0
        }
1028
1029
        /* rh := rh + b*Z^6 */
1030
0
        if (!field_mul(group, tmp, group->b, Z6, ctx))
1031
0
            goto err;
1032
0
        if (!BN_mod_add_quick(rh, rh, tmp, p))
1033
0
            goto err;
1034
0
    } else {
1035
        /* point->Z_is_one */
1036
1037
        /* rh := (rh + a)*X */
1038
0
        if (!BN_mod_add_quick(rh, rh, group->a, p))
1039
0
            goto err;
1040
0
        if (!field_mul(group, rh, rh, point->X, ctx))
1041
0
            goto err;
1042
        /* rh := rh + b */
1043
0
        if (!BN_mod_add_quick(rh, rh, group->b, p))
1044
0
            goto err;
1045
0
    }
1046
1047
    /* 'lh' := Y^2 */
1048
0
    if (!field_sqr(group, tmp, point->Y, ctx))
1049
0
        goto err;
1050
1051
0
    ret = (0 == BN_ucmp(tmp, rh));
1052
1053
0
 err:
1054
0
    BN_CTX_end(ctx);
1055
0
    BN_CTX_free(new_ctx);
1056
0
    return ret;
1057
0
}
1058
1059
int ossl_ec_GFp_simple_cmp(const EC_GROUP *group, const EC_POINT *a,
1060
                           const EC_POINT *b, BN_CTX *ctx)
1061
0
{
1062
    /*-
1063
     * return values:
1064
     *  -1   error
1065
     *   0   equal (in affine coordinates)
1066
     *   1   not equal
1067
     */
1068
1069
0
    int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *,
1070
0
                      const BIGNUM *, BN_CTX *);
1071
0
    int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
1072
0
    BN_CTX *new_ctx = NULL;
1073
0
    BIGNUM *tmp1, *tmp2, *Za23, *Zb23;
1074
0
    const BIGNUM *tmp1_, *tmp2_;
1075
0
    int ret = -1;
1076
1077
0
    if (EC_POINT_is_at_infinity(group, a)) {
1078
0
        return EC_POINT_is_at_infinity(group, b) ? 0 : 1;
1079
0
    }
1080
1081
0
    if (EC_POINT_is_at_infinity(group, b))
1082
0
        return 1;
1083
1084
0
    if (a->Z_is_one && b->Z_is_one) {
1085
0
        return ((BN_cmp(a->X, b->X) == 0) && BN_cmp(a->Y, b->Y) == 0) ? 0 : 1;
1086
0
    }
1087
1088
0
    field_mul = group->meth->field_mul;
1089
0
    field_sqr = group->meth->field_sqr;
1090
1091
0
    if (ctx == NULL) {
1092
0
        ctx = new_ctx = BN_CTX_new_ex(group->libctx);
1093
0
        if (ctx == NULL)
1094
0
            return -1;
1095
0
    }
1096
1097
0
    BN_CTX_start(ctx);
1098
0
    tmp1 = BN_CTX_get(ctx);
1099
0
    tmp2 = BN_CTX_get(ctx);
1100
0
    Za23 = BN_CTX_get(ctx);
1101
0
    Zb23 = BN_CTX_get(ctx);
1102
0
    if (Zb23 == NULL)
1103
0
        goto end;
1104
1105
    /*-
1106
     * We have to decide whether
1107
     *     (X_a/Z_a^2, Y_a/Z_a^3) = (X_b/Z_b^2, Y_b/Z_b^3),
1108
     * or equivalently, whether
1109
     *     (X_a*Z_b^2, Y_a*Z_b^3) = (X_b*Z_a^2, Y_b*Z_a^3).
1110
     */
1111
1112
0
    if (!b->Z_is_one) {
1113
0
        if (!field_sqr(group, Zb23, b->Z, ctx))
1114
0
            goto end;
1115
0
        if (!field_mul(group, tmp1, a->X, Zb23, ctx))
1116
0
            goto end;
1117
0
        tmp1_ = tmp1;
1118
0
    } else
1119
0
        tmp1_ = a->X;
1120
0
    if (!a->Z_is_one) {
1121
0
        if (!field_sqr(group, Za23, a->Z, ctx))
1122
0
            goto end;
1123
0
        if (!field_mul(group, tmp2, b->X, Za23, ctx))
1124
0
            goto end;
1125
0
        tmp2_ = tmp2;
1126
0
    } else
1127
0
        tmp2_ = b->X;
1128
1129
    /* compare  X_a*Z_b^2  with  X_b*Z_a^2 */
1130
0
    if (BN_cmp(tmp1_, tmp2_) != 0) {
1131
0
        ret = 1;                /* points differ */
1132
0
        goto end;
1133
0
    }
1134
1135
0
    if (!b->Z_is_one) {
1136
0
        if (!field_mul(group, Zb23, Zb23, b->Z, ctx))
1137
0
            goto end;
1138
0
        if (!field_mul(group, tmp1, a->Y, Zb23, ctx))
1139
0
            goto end;
1140
        /* tmp1_ = tmp1 */
1141
0
    } else
1142
0
        tmp1_ = a->Y;
1143
0
    if (!a->Z_is_one) {
1144
0
        if (!field_mul(group, Za23, Za23, a->Z, ctx))
1145
0
            goto end;
1146
0
        if (!field_mul(group, tmp2, b->Y, Za23, ctx))
1147
0
            goto end;
1148
        /* tmp2_ = tmp2 */
1149
0
    } else
1150
0
        tmp2_ = b->Y;
1151
1152
    /* compare  Y_a*Z_b^3  with  Y_b*Z_a^3 */
1153
0
    if (BN_cmp(tmp1_, tmp2_) != 0) {
1154
0
        ret = 1;                /* points differ */
1155
0
        goto end;
1156
0
    }
1157
1158
    /* points are equal */
1159
0
    ret = 0;
1160
1161
0
 end:
1162
0
    BN_CTX_end(ctx);
1163
0
    BN_CTX_free(new_ctx);
1164
0
    return ret;
1165
0
}
1166
1167
int ossl_ec_GFp_simple_make_affine(const EC_GROUP *group, EC_POINT *point,
1168
                                   BN_CTX *ctx)
1169
0
{
1170
0
    BN_CTX *new_ctx = NULL;
1171
0
    BIGNUM *x, *y;
1172
0
    int ret = 0;
1173
1174
0
    if (point->Z_is_one || EC_POINT_is_at_infinity(group, point))
1175
0
        return 1;
1176
1177
0
    if (ctx == NULL) {
1178
0
        ctx = new_ctx = BN_CTX_new_ex(group->libctx);
1179
0
        if (ctx == NULL)
1180
0
            return 0;
1181
0
    }
1182
1183
0
    BN_CTX_start(ctx);
1184
0
    x = BN_CTX_get(ctx);
1185
0
    y = BN_CTX_get(ctx);
1186
0
    if (y == NULL)
1187
0
        goto err;
1188
1189
0
    if (!EC_POINT_get_affine_coordinates(group, point, x, y, ctx))
1190
0
        goto err;
1191
0
    if (!EC_POINT_set_affine_coordinates(group, point, x, y, ctx))
1192
0
        goto err;
1193
0
    if (!point->Z_is_one) {
1194
0
        ERR_raise(ERR_LIB_EC, ERR_R_INTERNAL_ERROR);
1195
0
        goto err;
1196
0
    }
1197
1198
0
    ret = 1;
1199
1200
0
 err:
1201
0
    BN_CTX_end(ctx);
1202
0
    BN_CTX_free(new_ctx);
1203
0
    return ret;
1204
0
}
1205
1206
int ossl_ec_GFp_simple_points_make_affine(const EC_GROUP *group, size_t num,
1207
                                          EC_POINT *points[], BN_CTX *ctx)
1208
0
{
1209
0
    BN_CTX *new_ctx = NULL;
1210
0
    BIGNUM *tmp, *tmp_Z;
1211
0
    BIGNUM **prod_Z = NULL;
1212
0
    size_t i;
1213
0
    int ret = 0;
1214
1215
0
    if (num == 0)
1216
0
        return 1;
1217
1218
0
    if (ctx == NULL) {
1219
0
        ctx = new_ctx = BN_CTX_new_ex(group->libctx);
1220
0
        if (ctx == NULL)
1221
0
            return 0;
1222
0
    }
1223
1224
0
    BN_CTX_start(ctx);
1225
0
    tmp = BN_CTX_get(ctx);
1226
0
    tmp_Z = BN_CTX_get(ctx);
1227
0
    if (tmp_Z == NULL)
1228
0
        goto err;
1229
1230
0
    prod_Z = OPENSSL_malloc(num * sizeof(prod_Z[0]));
1231
0
    if (prod_Z == NULL)
1232
0
        goto err;
1233
0
    for (i = 0; i < num; i++) {
1234
0
        prod_Z[i] = BN_new();
1235
0
        if (prod_Z[i] == NULL)
1236
0
            goto err;
1237
0
    }
1238
1239
    /*
1240
     * Set each prod_Z[i] to the product of points[0]->Z .. points[i]->Z,
1241
     * skipping any zero-valued inputs (pretend that they're 1).
1242
     */
1243
1244
0
    if (!BN_is_zero(points[0]->Z)) {
1245
0
        if (!BN_copy(prod_Z[0], points[0]->Z))
1246
0
            goto err;
1247
0
    } else {
1248
0
        if (group->meth->field_set_to_one != 0) {
1249
0
            if (!group->meth->field_set_to_one(group, prod_Z[0], ctx))
1250
0
                goto err;
1251
0
        } else {
1252
0
            if (!BN_one(prod_Z[0]))
1253
0
                goto err;
1254
0
        }
1255
0
    }
1256
1257
0
    for (i = 1; i < num; i++) {
1258
0
        if (!BN_is_zero(points[i]->Z)) {
1259
0
            if (!group->
1260
0
                meth->field_mul(group, prod_Z[i], prod_Z[i - 1], points[i]->Z,
1261
0
                                ctx))
1262
0
                goto err;
1263
0
        } else {
1264
0
            if (!BN_copy(prod_Z[i], prod_Z[i - 1]))
1265
0
                goto err;
1266
0
        }
1267
0
    }
1268
1269
    /*
1270
     * Now use a single explicit inversion to replace every non-zero
1271
     * points[i]->Z by its inverse.
1272
     */
1273
1274
0
    if (!group->meth->field_inv(group, tmp, prod_Z[num - 1], ctx)) {
1275
0
        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1276
0
        goto err;
1277
0
    }
1278
0
    if (group->meth->field_encode != NULL) {
1279
        /*
1280
         * In the Montgomery case, we just turned R*H (representing H) into
1281
         * 1/(R*H), but we need R*(1/H) (representing 1/H); i.e. we need to
1282
         * multiply by the Montgomery factor twice.
1283
         */
1284
0
        if (!group->meth->field_encode(group, tmp, tmp, ctx))
1285
0
            goto err;
1286
0
        if (!group->meth->field_encode(group, tmp, tmp, ctx))
1287
0
            goto err;
1288
0
    }
1289
1290
0
    for (i = num - 1; i > 0; --i) {
1291
        /*
1292
         * Loop invariant: tmp is the product of the inverses of points[0]->Z
1293
         * .. points[i]->Z (zero-valued inputs skipped).
1294
         */
1295
0
        if (!BN_is_zero(points[i]->Z)) {
1296
            /*
1297
             * Set tmp_Z to the inverse of points[i]->Z (as product of Z
1298
             * inverses 0 .. i, Z values 0 .. i - 1).
1299
             */
1300
0
            if (!group->
1301
0
                meth->field_mul(group, tmp_Z, prod_Z[i - 1], tmp, ctx))
1302
0
                goto err;
1303
            /*
1304
             * Update tmp to satisfy the loop invariant for i - 1.
1305
             */
1306
0
            if (!group->meth->field_mul(group, tmp, tmp, points[i]->Z, ctx))
1307
0
                goto err;
1308
            /* Replace points[i]->Z by its inverse. */
1309
0
            if (!BN_copy(points[i]->Z, tmp_Z))
1310
0
                goto err;
1311
0
        }
1312
0
    }
1313
1314
0
    if (!BN_is_zero(points[0]->Z)) {
1315
        /* Replace points[0]->Z by its inverse. */
1316
0
        if (!BN_copy(points[0]->Z, tmp))
1317
0
            goto err;
1318
0
    }
1319
1320
    /* Finally, fix up the X and Y coordinates for all points. */
1321
1322
0
    for (i = 0; i < num; i++) {
1323
0
        EC_POINT *p = points[i];
1324
1325
0
        if (!BN_is_zero(p->Z)) {
1326
            /* turn  (X, Y, 1/Z)  into  (X/Z^2, Y/Z^3, 1) */
1327
1328
0
            if (!group->meth->field_sqr(group, tmp, p->Z, ctx))
1329
0
                goto err;
1330
0
            if (!group->meth->field_mul(group, p->X, p->X, tmp, ctx))
1331
0
                goto err;
1332
1333
0
            if (!group->meth->field_mul(group, tmp, tmp, p->Z, ctx))
1334
0
                goto err;
1335
0
            if (!group->meth->field_mul(group, p->Y, p->Y, tmp, ctx))
1336
0
                goto err;
1337
1338
0
            if (group->meth->field_set_to_one != 0) {
1339
0
                if (!group->meth->field_set_to_one(group, p->Z, ctx))
1340
0
                    goto err;
1341
0
            } else {
1342
0
                if (!BN_one(p->Z))
1343
0
                    goto err;
1344
0
            }
1345
0
            p->Z_is_one = 1;
1346
0
        }
1347
0
    }
1348
1349
0
    ret = 1;
1350
1351
0
 err:
1352
0
    BN_CTX_end(ctx);
1353
0
    BN_CTX_free(new_ctx);
1354
0
    if (prod_Z != NULL) {
1355
0
        for (i = 0; i < num; i++) {
1356
0
            if (prod_Z[i] == NULL)
1357
0
                break;
1358
0
            BN_clear_free(prod_Z[i]);
1359
0
        }
1360
0
        OPENSSL_free(prod_Z);
1361
0
    }
1362
0
    return ret;
1363
0
}
1364
1365
int ossl_ec_GFp_simple_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
1366
                                 const BIGNUM *b, BN_CTX *ctx)
1367
0
{
1368
0
    return BN_mod_mul(r, a, b, group->field, ctx);
1369
0
}
1370
1371
int ossl_ec_GFp_simple_field_sqr(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
1372
                                 BN_CTX *ctx)
1373
0
{
1374
0
    return BN_mod_sqr(r, a, group->field, ctx);
1375
0
}
1376
1377
/*-
1378
 * Computes the multiplicative inverse of a in GF(p), storing the result in r.
1379
 * If a is zero (or equivalent), you'll get an EC_R_CANNOT_INVERT error.
1380
 * Since we don't have a Mont structure here, SCA hardening is with blinding.
1381
 * NB: "a" must be in _decoded_ form. (i.e. field_decode must precede.)
1382
 */
1383
int ossl_ec_GFp_simple_field_inv(const EC_GROUP *group, BIGNUM *r,
1384
                                 const BIGNUM *a, BN_CTX *ctx)
1385
0
{
1386
0
    BIGNUM *e = NULL;
1387
0
    BN_CTX *new_ctx = NULL;
1388
0
    int ret = 0;
1389
1390
0
    if (ctx == NULL
1391
0
            && (ctx = new_ctx = BN_CTX_secure_new_ex(group->libctx)) == NULL)
1392
0
        return 0;
1393
1394
0
    BN_CTX_start(ctx);
1395
0
    if ((e = BN_CTX_get(ctx)) == NULL)
1396
0
        goto err;
1397
1398
0
    do {
1399
0
        if (!BN_priv_rand_range_ex(e, group->field, 0, ctx))
1400
0
        goto err;
1401
0
    } while (BN_is_zero(e));
1402
1403
    /* r := a * e */
1404
0
    if (!group->meth->field_mul(group, r, a, e, ctx))
1405
0
        goto err;
1406
    /* r := 1/(a * e) */
1407
0
    if (!BN_mod_inverse(r, r, group->field, ctx)) {
1408
0
        ERR_raise(ERR_LIB_EC, EC_R_CANNOT_INVERT);
1409
0
        goto err;
1410
0
    }
1411
    /* r := e/(a * e) = 1/a */
1412
0
    if (!group->meth->field_mul(group, r, r, e, ctx))
1413
0
        goto err;
1414
1415
0
    ret = 1;
1416
1417
0
 err:
1418
0
    BN_CTX_end(ctx);
1419
0
    BN_CTX_free(new_ctx);
1420
0
    return ret;
1421
0
}
1422
1423
/*-
1424
 * Apply randomization of EC point projective coordinates:
1425
 *
1426
 *   (X, Y, Z) = (lambda^2*X, lambda^3*Y, lambda*Z)
1427
 *   lambda = [1, group->field)
1428
 *
1429
 */
1430
int ossl_ec_GFp_simple_blind_coordinates(const EC_GROUP *group, EC_POINT *p,
1431
                                         BN_CTX *ctx)
1432
0
{
1433
0
    int ret = 0;
1434
0
    BIGNUM *lambda = NULL;
1435
0
    BIGNUM *temp = NULL;
1436
1437
0
    BN_CTX_start(ctx);
1438
0
    lambda = BN_CTX_get(ctx);
1439
0
    temp = BN_CTX_get(ctx);
1440
0
    if (temp == NULL) {
1441
0
        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1442
0
        goto end;
1443
0
    }
1444
1445
    /*-
1446
     * Make sure lambda is not zero.
1447
     * If the RNG fails, we cannot blind but nevertheless want
1448
     * code to continue smoothly and not clobber the error stack.
1449
     */
1450
0
    do {
1451
0
        ERR_set_mark();
1452
0
        ret = BN_priv_rand_range_ex(lambda, group->field, 0, ctx);
1453
0
        ERR_pop_to_mark();
1454
0
        if (ret == 0) {
1455
0
            ret = 1;
1456
0
            goto end;
1457
0
        }
1458
0
    } while (BN_is_zero(lambda));
1459
1460
    /* if field_encode defined convert between representations */
1461
0
    if ((group->meth->field_encode != NULL
1462
0
         && !group->meth->field_encode(group, lambda, lambda, ctx))
1463
0
        || !group->meth->field_mul(group, p->Z, p->Z, lambda, ctx)
1464
0
        || !group->meth->field_sqr(group, temp, lambda, ctx)
1465
0
        || !group->meth->field_mul(group, p->X, p->X, temp, ctx)
1466
0
        || !group->meth->field_mul(group, temp, temp, lambda, ctx)
1467
0
        || !group->meth->field_mul(group, p->Y, p->Y, temp, ctx))
1468
0
        goto end;
1469
1470
0
    p->Z_is_one = 0;
1471
0
    ret = 1;
1472
1473
0
 end:
1474
0
    BN_CTX_end(ctx);
1475
0
    return ret;
1476
0
}
1477
1478
/*-
1479
 * Input:
1480
 * - p: affine coordinates
1481
 *
1482
 * Output:
1483
 * - s := p, r := 2p: blinded projective (homogeneous) coordinates
1484
 *
1485
 * For doubling we use Formula 3 from Izu-Takagi "A fast parallel elliptic curve
1486
 * multiplication resistant against side channel attacks" appendix, described at
1487
 * https://hyperelliptic.org/EFD/g1p/auto-shortw-xz.html#doubling-dbl-2002-it-2
1488
 * simplified for Z1=1.
1489
 *
1490
 * Blinding uses the equivalence relation (\lambda X, \lambda Y, \lambda Z)
1491
 * for any non-zero \lambda that holds for projective (homogeneous) coords.
1492
 */
1493
int ossl_ec_GFp_simple_ladder_pre(const EC_GROUP *group,
1494
                                  EC_POINT *r, EC_POINT *s,
1495
                                  EC_POINT *p, BN_CTX *ctx)
1496
0
{
1497
0
    BIGNUM *t1, *t2, *t3, *t4, *t5 = NULL;
1498
1499
0
    t1 = s->Z;
1500
0
    t2 = r->Z;
1501
0
    t3 = s->X;
1502
0
    t4 = r->X;
1503
0
    t5 = s->Y;
1504
1505
0
    if (!p->Z_is_one /* r := 2p */
1506
0
        || !group->meth->field_sqr(group, t3, p->X, ctx)
1507
0
        || !BN_mod_sub_quick(t4, t3, group->a, group->field)
1508
0
        || !group->meth->field_sqr(group, t4, t4, ctx)
1509
0
        || !group->meth->field_mul(group, t5, p->X, group->b, ctx)
1510
0
        || !BN_mod_lshift_quick(t5, t5, 3, group->field)
1511
        /* r->X coord output */
1512
0
        || !BN_mod_sub_quick(r->X, t4, t5, group->field)
1513
0
        || !BN_mod_add_quick(t1, t3, group->a, group->field)
1514
0
        || !group->meth->field_mul(group, t2, p->X, t1, ctx)
1515
0
        || !BN_mod_add_quick(t2, group->b, t2, group->field)
1516
        /* r->Z coord output */
1517
0
        || !BN_mod_lshift_quick(r->Z, t2, 2, group->field))
1518
0
        return 0;
1519
1520
    /* make sure lambda (r->Y here for storage) is not zero */
1521
0
    do {
1522
0
        if (!BN_priv_rand_range_ex(r->Y, group->field, 0, ctx))
1523
0
            return 0;
1524
0
    } while (BN_is_zero(r->Y));
1525
1526
    /* make sure lambda (s->Z here for storage) is not zero */
1527
0
    do {
1528
0
        if (!BN_priv_rand_range_ex(s->Z, group->field, 0, ctx))
1529
0
            return 0;
1530
0
    } while (BN_is_zero(s->Z));
1531
1532
    /* if field_encode defined convert between representations */
1533
0
    if (group->meth->field_encode != NULL
1534
0
        && (!group->meth->field_encode(group, r->Y, r->Y, ctx)
1535
0
            || !group->meth->field_encode(group, s->Z, s->Z, ctx)))
1536
0
        return 0;
1537
1538
    /* blind r and s independently */
1539
0
    if (!group->meth->field_mul(group, r->Z, r->Z, r->Y, ctx)
1540
0
        || !group->meth->field_mul(group, r->X, r->X, r->Y, ctx)
1541
0
        || !group->meth->field_mul(group, s->X, p->X, s->Z, ctx)) /* s := p */
1542
0
        return 0;
1543
1544
0
    r->Z_is_one = 0;
1545
0
    s->Z_is_one = 0;
1546
1547
0
    return 1;
1548
0
}
1549
1550
/*-
1551
 * Input:
1552
 * - s, r: projective (homogeneous) coordinates
1553
 * - p: affine coordinates
1554
 *
1555
 * Output:
1556
 * - s := r + s, r := 2r: projective (homogeneous) coordinates
1557
 *
1558
 * Differential addition-and-doubling using Eq. (9) and (10) from Izu-Takagi
1559
 * "A fast parallel elliptic curve multiplication resistant against side channel
1560
 * attacks", as described at
1561
 * https://hyperelliptic.org/EFD/g1p/auto-shortw-xz.html#ladder-mladd-2002-it-4
1562
 */
1563
int ossl_ec_GFp_simple_ladder_step(const EC_GROUP *group,
1564
                                   EC_POINT *r, EC_POINT *s,
1565
                                   EC_POINT *p, BN_CTX *ctx)
1566
0
{
1567
0
    int ret = 0;
1568
0
    BIGNUM *t0, *t1, *t2, *t3, *t4, *t5, *t6 = NULL;
1569
1570
0
    BN_CTX_start(ctx);
1571
0
    t0 = BN_CTX_get(ctx);
1572
0
    t1 = BN_CTX_get(ctx);
1573
0
    t2 = BN_CTX_get(ctx);
1574
0
    t3 = BN_CTX_get(ctx);
1575
0
    t4 = BN_CTX_get(ctx);
1576
0
    t5 = BN_CTX_get(ctx);
1577
0
    t6 = BN_CTX_get(ctx);
1578
1579
0
    if (t6 == NULL
1580
0
        || !group->meth->field_mul(group, t6, r->X, s->X, ctx)
1581
0
        || !group->meth->field_mul(group, t0, r->Z, s->Z, ctx)
1582
0
        || !group->meth->field_mul(group, t4, r->X, s->Z, ctx)
1583
0
        || !group->meth->field_mul(group, t3, r->Z, s->X, ctx)
1584
0
        || !group->meth->field_mul(group, t5, group->a, t0, ctx)
1585
0
        || !BN_mod_add_quick(t5, t6, t5, group->field)
1586
0
        || !BN_mod_add_quick(t6, t3, t4, group->field)
1587
0
        || !group->meth->field_mul(group, t5, t6, t5, ctx)
1588
0
        || !group->meth->field_sqr(group, t0, t0, ctx)
1589
0
        || !BN_mod_lshift_quick(t2, group->b, 2, group->field)
1590
0
        || !group->meth->field_mul(group, t0, t2, t0, ctx)
1591
0
        || !BN_mod_lshift1_quick(t5, t5, group->field)
1592
0
        || !BN_mod_sub_quick(t3, t4, t3, group->field)
1593
        /* s->Z coord output */
1594
0
        || !group->meth->field_sqr(group, s->Z, t3, ctx)
1595
0
        || !group->meth->field_mul(group, t4, s->Z, p->X, ctx)
1596
0
        || !BN_mod_add_quick(t0, t0, t5, group->field)
1597
        /* s->X coord output */
1598
0
        || !BN_mod_sub_quick(s->X, t0, t4, group->field)
1599
0
        || !group->meth->field_sqr(group, t4, r->X, ctx)
1600
0
        || !group->meth->field_sqr(group, t5, r->Z, ctx)
1601
0
        || !group->meth->field_mul(group, t6, t5, group->a, ctx)
1602
0
        || !BN_mod_add_quick(t1, r->X, r->Z, group->field)
1603
0
        || !group->meth->field_sqr(group, t1, t1, ctx)
1604
0
        || !BN_mod_sub_quick(t1, t1, t4, group->field)
1605
0
        || !BN_mod_sub_quick(t1, t1, t5, group->field)
1606
0
        || !BN_mod_sub_quick(t3, t4, t6, group->field)
1607
0
        || !group->meth->field_sqr(group, t3, t3, ctx)
1608
0
        || !group->meth->field_mul(group, t0, t5, t1, ctx)
1609
0
        || !group->meth->field_mul(group, t0, t2, t0, ctx)
1610
        /* r->X coord output */
1611
0
        || !BN_mod_sub_quick(r->X, t3, t0, group->field)
1612
0
        || !BN_mod_add_quick(t3, t4, t6, group->field)
1613
0
        || !group->meth->field_sqr(group, t4, t5, ctx)
1614
0
        || !group->meth->field_mul(group, t4, t4, t2, ctx)
1615
0
        || !group->meth->field_mul(group, t1, t1, t3, ctx)
1616
0
        || !BN_mod_lshift1_quick(t1, t1, group->field)
1617
        /* r->Z coord output */
1618
0
        || !BN_mod_add_quick(r->Z, t4, t1, group->field))
1619
0
        goto err;
1620
1621
0
    ret = 1;
1622
1623
0
 err:
1624
0
    BN_CTX_end(ctx);
1625
0
    return ret;
1626
0
}
1627
1628
/*-
1629
 * Input:
1630
 * - s, r: projective (homogeneous) coordinates
1631
 * - p: affine coordinates
1632
 *
1633
 * Output:
1634
 * - r := (x,y): affine coordinates
1635
 *
1636
 * Recovers the y-coordinate of r using Eq. (8) from Brier-Joye, "Weierstrass
1637
 * Elliptic Curves and Side-Channel Attacks", modified to work in mixed
1638
 * projective coords, i.e. p is affine and (r,s) in projective (homogeneous)
1639
 * coords, and return r in affine coordinates.
1640
 *
1641
 * X4 = two*Y1*X2*Z3*Z2;
1642
 * Y4 = two*b*Z3*SQR(Z2) + Z3*(a*Z2+X1*X2)*(X1*Z2+X2) - X3*SQR(X1*Z2-X2);
1643
 * Z4 = two*Y1*Z3*SQR(Z2);
1644
 *
1645
 * Z4 != 0 because:
1646
 *  - Z2==0 implies r is at infinity (handled by the BN_is_zero(r->Z) branch);
1647
 *  - Z3==0 implies s is at infinity (handled by the BN_is_zero(s->Z) branch);
1648
 *  - Y1==0 implies p has order 2, so either r or s are infinity and handled by
1649
 *    one of the BN_is_zero(...) branches.
1650
 */
1651
int ossl_ec_GFp_simple_ladder_post(const EC_GROUP *group,
1652
                                   EC_POINT *r, EC_POINT *s,
1653
                                   EC_POINT *p, BN_CTX *ctx)
1654
0
{
1655
0
    int ret = 0;
1656
0
    BIGNUM *t0, *t1, *t2, *t3, *t4, *t5, *t6 = NULL;
1657
1658
0
    if (BN_is_zero(r->Z))
1659
0
        return EC_POINT_set_to_infinity(group, r);
1660
1661
0
    if (BN_is_zero(s->Z)) {
1662
0
        if (!EC_POINT_copy(r, p)
1663
0
            || !EC_POINT_invert(group, r, ctx))
1664
0
            return 0;
1665
0
        return 1;
1666
0
    }
1667
1668
0
    BN_CTX_start(ctx);
1669
0
    t0 = BN_CTX_get(ctx);
1670
0
    t1 = BN_CTX_get(ctx);
1671
0
    t2 = BN_CTX_get(ctx);
1672
0
    t3 = BN_CTX_get(ctx);
1673
0
    t4 = BN_CTX_get(ctx);
1674
0
    t5 = BN_CTX_get(ctx);
1675
0
    t6 = BN_CTX_get(ctx);
1676
1677
0
    if (t6 == NULL
1678
0
        || !BN_mod_lshift1_quick(t4, p->Y, group->field)
1679
0
        || !group->meth->field_mul(group, t6, r->X, t4, ctx)
1680
0
        || !group->meth->field_mul(group, t6, s->Z, t6, ctx)
1681
0
        || !group->meth->field_mul(group, t5, r->Z, t6, ctx)
1682
0
        || !BN_mod_lshift1_quick(t1, group->b, group->field)
1683
0
        || !group->meth->field_mul(group, t1, s->Z, t1, ctx)
1684
0
        || !group->meth->field_sqr(group, t3, r->Z, ctx)
1685
0
        || !group->meth->field_mul(group, t2, t3, t1, ctx)
1686
0
        || !group->meth->field_mul(group, t6, r->Z, group->a, ctx)
1687
0
        || !group->meth->field_mul(group, t1, p->X, r->X, ctx)
1688
0
        || !BN_mod_add_quick(t1, t1, t6, group->field)
1689
0
        || !group->meth->field_mul(group, t1, s->Z, t1, ctx)
1690
0
        || !group->meth->field_mul(group, t0, p->X, r->Z, ctx)
1691
0
        || !BN_mod_add_quick(t6, r->X, t0, group->field)
1692
0
        || !group->meth->field_mul(group, t6, t6, t1, ctx)
1693
0
        || !BN_mod_add_quick(t6, t6, t2, group->field)
1694
0
        || !BN_mod_sub_quick(t0, t0, r->X, group->field)
1695
0
        || !group->meth->field_sqr(group, t0, t0, ctx)
1696
0
        || !group->meth->field_mul(group, t0, t0, s->X, ctx)
1697
0
        || !BN_mod_sub_quick(t0, t6, t0, group->field)
1698
0
        || !group->meth->field_mul(group, t1, s->Z, t4, ctx)
1699
0
        || !group->meth->field_mul(group, t1, t3, t1, ctx)
1700
0
        || (group->meth->field_decode != NULL
1701
0
            && !group->meth->field_decode(group, t1, t1, ctx))
1702
0
        || !group->meth->field_inv(group, t1, t1, ctx)
1703
0
        || (group->meth->field_encode != NULL
1704
0
            && !group->meth->field_encode(group, t1, t1, ctx))
1705
0
        || !group->meth->field_mul(group, r->X, t5, t1, ctx)
1706
0
        || !group->meth->field_mul(group, r->Y, t0, t1, ctx))
1707
0
        goto err;
1708
1709
0
    if (group->meth->field_set_to_one != NULL) {
1710
0
        if (!group->meth->field_set_to_one(group, r->Z, ctx))
1711
0
            goto err;
1712
0
    } else {
1713
0
        if (!BN_one(r->Z))
1714
0
            goto err;
1715
0
    }
1716
1717
0
    r->Z_is_one = 1;
1718
0
    ret = 1;
1719
1720
0
 err:
1721
0
    BN_CTX_end(ctx);
1722
0
    return ret;
1723
0
}