/src/openssl/crypto/rsa/rsa_lib.c
Line  | Count  | Source (jump to first uncovered line)  | 
1  |  | /*  | 
2  |  |  * Copyright 1995-2024 The OpenSSL Project Authors. All Rights Reserved.  | 
3  |  |  *  | 
4  |  |  * Licensed under the Apache License 2.0 (the "License").  You may not use  | 
5  |  |  * this file except in compliance with the License.  You can obtain a copy  | 
6  |  |  * in the file LICENSE in the source distribution or at  | 
7  |  |  * https://www.openssl.org/source/license.html  | 
8  |  |  */  | 
9  |  |  | 
10  |  | /*  | 
11  |  |  * RSA low level APIs are deprecated for public use, but still ok for  | 
12  |  |  * internal use.  | 
13  |  |  */  | 
14  |  | #include "internal/deprecated.h"  | 
15  |  |  | 
16  |  | #include <openssl/crypto.h>  | 
17  |  | #include <openssl/core_names.h>  | 
18  |  | #ifndef FIPS_MODULE  | 
19  |  | # include <openssl/engine.h>  | 
20  |  | #endif  | 
21  |  | #include <openssl/evp.h>  | 
22  |  | #include <openssl/param_build.h>  | 
23  |  | #include "internal/cryptlib.h"  | 
24  |  | #include "internal/refcount.h"  | 
25  |  | #include "crypto/bn.h"  | 
26  |  | #include "crypto/evp.h"  | 
27  |  | #include "crypto/rsa.h"  | 
28  |  | #include "crypto/security_bits.h"  | 
29  |  | #include "rsa_local.h"  | 
30  |  |  | 
31  |  | static RSA *rsa_new_intern(ENGINE *engine, OSSL_LIB_CTX *libctx);  | 
32  |  |  | 
33  |  | #ifndef FIPS_MODULE  | 
34  |  | RSA *RSA_new(void)  | 
35  | 0  | { | 
36  | 0  |     return rsa_new_intern(NULL, NULL);  | 
37  | 0  | }  | 
38  |  |  | 
39  |  | const RSA_METHOD *RSA_get_method(const RSA *rsa)  | 
40  | 0  | { | 
41  | 0  |     return rsa->meth;  | 
42  | 0  | }  | 
43  |  |  | 
44  |  | int RSA_set_method(RSA *rsa, const RSA_METHOD *meth)  | 
45  | 0  | { | 
46  |  |     /*  | 
47  |  |      * NB: The caller is specifically setting a method, so it's not up to us  | 
48  |  |      * to deal with which ENGINE it comes from.  | 
49  |  |      */  | 
50  | 0  |     const RSA_METHOD *mtmp;  | 
51  | 0  |     mtmp = rsa->meth;  | 
52  | 0  |     if (mtmp->finish)  | 
53  | 0  |         mtmp->finish(rsa);  | 
54  | 0  | #ifndef OPENSSL_NO_ENGINE  | 
55  | 0  |     ENGINE_finish(rsa->engine);  | 
56  | 0  |     rsa->engine = NULL;  | 
57  | 0  | #endif  | 
58  | 0  |     rsa->meth = meth;  | 
59  | 0  |     if (meth->init)  | 
60  | 0  |         meth->init(rsa);  | 
61  | 0  |     return 1;  | 
62  | 0  | }  | 
63  |  |  | 
64  |  | RSA *RSA_new_method(ENGINE *engine)  | 
65  | 0  | { | 
66  | 0  |     return rsa_new_intern(engine, NULL);  | 
67  | 0  | }  | 
68  |  | #endif  | 
69  |  |  | 
70  |  | RSA *ossl_rsa_new_with_ctx(OSSL_LIB_CTX *libctx)  | 
71  | 0  | { | 
72  | 0  |     return rsa_new_intern(NULL, libctx);  | 
73  | 0  | }  | 
74  |  |  | 
75  |  | static RSA *rsa_new_intern(ENGINE *engine, OSSL_LIB_CTX *libctx)  | 
76  | 0  | { | 
77  | 0  |     RSA *ret = OPENSSL_zalloc(sizeof(*ret));  | 
78  |  | 
  | 
79  | 0  |     if (ret == NULL)  | 
80  | 0  |         return NULL;  | 
81  |  |  | 
82  | 0  |     ret->lock = CRYPTO_THREAD_lock_new();  | 
83  | 0  |     if (ret->lock == NULL) { | 
84  | 0  |         ERR_raise(ERR_LIB_RSA, ERR_R_CRYPTO_LIB);  | 
85  | 0  |         OPENSSL_free(ret);  | 
86  | 0  |         return NULL;  | 
87  | 0  |     }  | 
88  |  |  | 
89  | 0  |     if (!CRYPTO_NEW_REF(&ret->references, 1)) { | 
90  | 0  |         CRYPTO_THREAD_lock_free(ret->lock);  | 
91  | 0  |         OPENSSL_free(ret);  | 
92  | 0  |         return NULL;  | 
93  | 0  |     }  | 
94  |  |  | 
95  | 0  |     ret->libctx = libctx;  | 
96  | 0  |     ret->meth = RSA_get_default_method();  | 
97  | 0  | #if !defined(OPENSSL_NO_ENGINE) && !defined(FIPS_MODULE)  | 
98  | 0  |     ret->flags = ret->meth->flags & ~RSA_FLAG_NON_FIPS_ALLOW;  | 
99  | 0  |     if (engine) { | 
100  | 0  |         if (!ENGINE_init(engine)) { | 
101  | 0  |             ERR_raise(ERR_LIB_RSA, ERR_R_ENGINE_LIB);  | 
102  | 0  |             goto err;  | 
103  | 0  |         }  | 
104  | 0  |         ret->engine = engine;  | 
105  | 0  |     } else { | 
106  | 0  |         ret->engine = ENGINE_get_default_RSA();  | 
107  | 0  |     }  | 
108  | 0  |     if (ret->engine) { | 
109  | 0  |         ret->meth = ENGINE_get_RSA(ret->engine);  | 
110  | 0  |         if (ret->meth == NULL) { | 
111  | 0  |             ERR_raise(ERR_LIB_RSA, ERR_R_ENGINE_LIB);  | 
112  | 0  |             goto err;  | 
113  | 0  |         }  | 
114  | 0  |     }  | 
115  | 0  | #endif  | 
116  |  |  | 
117  | 0  |     ret->flags = ret->meth->flags & ~RSA_FLAG_NON_FIPS_ALLOW;  | 
118  | 0  | #ifndef FIPS_MODULE  | 
119  | 0  |     if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_RSA, ret, &ret->ex_data)) { | 
120  | 0  |         goto err;  | 
121  | 0  |     }  | 
122  | 0  | #endif  | 
123  |  |  | 
124  | 0  |     if ((ret->meth->init != NULL) && !ret->meth->init(ret)) { | 
125  | 0  |         ERR_raise(ERR_LIB_RSA, ERR_R_INIT_FAIL);  | 
126  | 0  |         goto err;  | 
127  | 0  |     }  | 
128  |  |  | 
129  | 0  |     return ret;  | 
130  |  |  | 
131  | 0  |  err:  | 
132  | 0  |     RSA_free(ret);  | 
133  | 0  |     return NULL;  | 
134  | 0  | }  | 
135  |  |  | 
136  |  | void RSA_free(RSA *r)  | 
137  | 0  | { | 
138  | 0  |     int i;  | 
139  |  | 
  | 
140  | 0  |     if (r == NULL)  | 
141  | 0  |         return;  | 
142  |  |  | 
143  | 0  |     CRYPTO_DOWN_REF(&r->references, &i);  | 
144  | 0  |     REF_PRINT_COUNT("RSA", i, r); | 
145  | 0  |     if (i > 0)  | 
146  | 0  |         return;  | 
147  | 0  |     REF_ASSERT_ISNT(i < 0);  | 
148  |  | 
  | 
149  | 0  |     if (r->meth != NULL && r->meth->finish != NULL)  | 
150  | 0  |         r->meth->finish(r);  | 
151  | 0  | #if !defined(OPENSSL_NO_ENGINE) && !defined(FIPS_MODULE)  | 
152  | 0  |     ENGINE_finish(r->engine);  | 
153  | 0  | #endif  | 
154  |  | 
  | 
155  | 0  | #ifndef FIPS_MODULE  | 
156  | 0  |     CRYPTO_free_ex_data(CRYPTO_EX_INDEX_RSA, r, &r->ex_data);  | 
157  | 0  | #endif  | 
158  |  | 
  | 
159  | 0  |     CRYPTO_THREAD_lock_free(r->lock);  | 
160  | 0  |     CRYPTO_FREE_REF(&r->references);  | 
161  |  | 
  | 
162  |  | #ifdef OPENSSL_PEDANTIC_ZEROIZATION  | 
163  |  |     BN_clear_free(r->n);  | 
164  |  |     BN_clear_free(r->e);  | 
165  |  | #else  | 
166  | 0  |     BN_free(r->n);  | 
167  | 0  |     BN_free(r->e);  | 
168  | 0  | #endif  | 
169  | 0  |     BN_clear_free(r->d);  | 
170  | 0  |     BN_clear_free(r->p);  | 
171  | 0  |     BN_clear_free(r->q);  | 
172  | 0  |     BN_clear_free(r->dmp1);  | 
173  | 0  |     BN_clear_free(r->dmq1);  | 
174  | 0  |     BN_clear_free(r->iqmp);  | 
175  |  | 
  | 
176  |  | #if defined(FIPS_MODULE) && !defined(OPENSSL_NO_ACVP_TESTS)  | 
177  |  |     ossl_rsa_acvp_test_free(r->acvp_test);  | 
178  |  | #endif  | 
179  |  | 
  | 
180  | 0  | #ifndef FIPS_MODULE  | 
181  | 0  |     RSA_PSS_PARAMS_free(r->pss);  | 
182  | 0  |     sk_RSA_PRIME_INFO_pop_free(r->prime_infos, ossl_rsa_multip_info_free);  | 
183  | 0  | #endif  | 
184  | 0  |     BN_BLINDING_free(r->blinding);  | 
185  | 0  |     BN_BLINDING_free(r->mt_blinding);  | 
186  | 0  |     OPENSSL_free(r);  | 
187  | 0  | }  | 
188  |  |  | 
189  |  | int RSA_up_ref(RSA *r)  | 
190  | 0  | { | 
191  | 0  |     int i;  | 
192  |  | 
  | 
193  | 0  |     if (CRYPTO_UP_REF(&r->references, &i) <= 0)  | 
194  | 0  |         return 0;  | 
195  |  |  | 
196  | 0  |     REF_PRINT_COUNT("RSA", i, r); | 
197  | 0  |     REF_ASSERT_ISNT(i < 2);  | 
198  | 0  |     return i > 1 ? 1 : 0;  | 
199  | 0  | }  | 
200  |  |  | 
201  |  | OSSL_LIB_CTX *ossl_rsa_get0_libctx(RSA *r)  | 
202  | 0  | { | 
203  | 0  |     return r->libctx;  | 
204  | 0  | }  | 
205  |  |  | 
206  |  | void ossl_rsa_set0_libctx(RSA *r, OSSL_LIB_CTX *libctx)  | 
207  | 0  | { | 
208  | 0  |     r->libctx = libctx;  | 
209  | 0  | }  | 
210  |  |  | 
211  |  | #ifndef FIPS_MODULE  | 
212  |  | int RSA_set_ex_data(RSA *r, int idx, void *arg)  | 
213  | 0  | { | 
214  | 0  |     return CRYPTO_set_ex_data(&r->ex_data, idx, arg);  | 
215  | 0  | }  | 
216  |  |  | 
217  |  | void *RSA_get_ex_data(const RSA *r, int idx)  | 
218  | 0  | { | 
219  | 0  |     return CRYPTO_get_ex_data(&r->ex_data, idx);  | 
220  | 0  | }  | 
221  |  | #endif  | 
222  |  |  | 
223  |  | /*  | 
224  |  |  * Define a scaling constant for our fixed point arithmetic.  | 
225  |  |  * This value must be a power of two because the base two logarithm code  | 
226  |  |  * makes this assumption.  The exponent must also be a multiple of three so  | 
227  |  |  * that the scale factor has an exact cube root.  Finally, the scale factor  | 
228  |  |  * should not be so large that a multiplication of two scaled numbers  | 
229  |  |  * overflows a 64 bit unsigned integer.  | 
230  |  |  */  | 
231  |  | static const unsigned int scale = 1 << 18;  | 
232  |  | static const unsigned int cbrt_scale = 1 << (2 * 18 / 3);  | 
233  |  |  | 
234  |  | /* Define some constants, none exceed 32 bits */  | 
235  |  | static const unsigned int log_2  = 0x02c5c8;    /* scale * log(2) */  | 
236  |  | static const unsigned int log_e  = 0x05c551;    /* scale * log2(M_E) */  | 
237  |  | static const unsigned int c1_923 = 0x07b126;    /* scale * 1.923 */  | 
238  |  | static const unsigned int c4_690 = 0x12c28f;    /* scale * 4.690 */  | 
239  |  |  | 
240  |  | /*  | 
241  |  |  * Multiply two scaled integers together and rescale the result.  | 
242  |  |  */  | 
243  |  | static ossl_inline uint64_t mul2(uint64_t a, uint64_t b)  | 
244  | 0  | { | 
245  | 0  |     return a * b / scale;  | 
246  | 0  | }  | 
247  |  |  | 
248  |  | /*  | 
249  |  |  * Calculate the cube root of a 64 bit scaled integer.  | 
250  |  |  * Although the cube root of a 64 bit number does fit into a 32 bit unsigned  | 
251  |  |  * integer, this is not guaranteed after scaling, so this function has a  | 
252  |  |  * 64 bit return.  This uses the shifting nth root algorithm with some  | 
253  |  |  * algebraic simplifications.  | 
254  |  |  */  | 
255  |  | static uint64_t icbrt64(uint64_t x)  | 
256  | 0  | { | 
257  | 0  |     uint64_t r = 0;  | 
258  | 0  |     uint64_t b;  | 
259  | 0  |     int s;  | 
260  |  | 
  | 
261  | 0  |     for (s = 63; s >= 0; s -= 3) { | 
262  | 0  |         r <<= 1;  | 
263  | 0  |         b = 3 * r * (r + 1) + 1;  | 
264  | 0  |         if ((x >> s) >= b) { | 
265  | 0  |             x -= b << s;  | 
266  | 0  |             r++;  | 
267  | 0  |         }  | 
268  | 0  |     }  | 
269  | 0  |     return r * cbrt_scale;  | 
270  | 0  | }  | 
271  |  |  | 
272  |  | /*  | 
273  |  |  * Calculate the natural logarithm of a 64 bit scaled integer.  | 
274  |  |  * This is done by calculating a base two logarithm and scaling.  | 
275  |  |  * The maximum logarithm (base 2) is 64 and this reduces base e, so  | 
276  |  |  * a 32 bit result should not overflow.  The argument passed must be  | 
277  |  |  * greater than unity so we don't need to handle negative results.  | 
278  |  |  */  | 
279  |  | static uint32_t ilog_e(uint64_t v)  | 
280  | 0  | { | 
281  | 0  |     uint32_t i, r = 0;  | 
282  |  |  | 
283  |  |     /*  | 
284  |  |      * Scale down the value into the range 1 .. 2.  | 
285  |  |      *  | 
286  |  |      * If fractional numbers need to be processed, another loop needs  | 
287  |  |      * to go here that checks v < scale and if so multiplies it by 2 and  | 
288  |  |      * reduces r by scale.  This also means making r signed.  | 
289  |  |      */  | 
290  | 0  |     while (v >= 2 * scale) { | 
291  | 0  |         v >>= 1;  | 
292  | 0  |         r += scale;  | 
293  | 0  |     }  | 
294  | 0  |     for (i = scale / 2; i != 0; i /= 2) { | 
295  | 0  |         v = mul2(v, v);  | 
296  | 0  |         if (v >= 2 * scale) { | 
297  | 0  |             v >>= 1;  | 
298  | 0  |             r += i;  | 
299  | 0  |         }  | 
300  | 0  |     }  | 
301  | 0  |     r = (r * (uint64_t)scale) / log_e;  | 
302  | 0  |     return r;  | 
303  | 0  | }  | 
304  |  |  | 
305  |  | /*  | 
306  |  |  * NIST SP 800-56B rev 2 Appendix D: Maximum Security Strength Estimates for IFC  | 
307  |  |  * Modulus Lengths.  | 
308  |  |  *  | 
309  |  |  * Note that this formula is also referred to in SP800-56A rev3 Appendix D:  | 
310  |  |  * for FFC safe prime groups for modp and ffdhe.  | 
311  |  |  * After Table 25 and Table 26 it refers to  | 
312  |  |  * "The maximum security strength estimates were calculated using the formula in  | 
313  |  |  * Section 7.5 of the FIPS 140 IG and rounded to the nearest multiple of eight  | 
314  |  |  * bits".  | 
315  |  |  *  | 
316  |  |  * The formula is:  | 
317  |  |  *  | 
318  |  |  * E = \frac{1.923 \sqrt[3]{nBits \cdot log_e(2)} | 
319  |  |  *           \cdot(log_e(nBits \cdot log_e(2))^{2/3} - 4.69}{log_e(2)} | 
320  |  |  * The two cube roots are merged together here.  | 
321  |  |  */  | 
322  |  | uint16_t ossl_ifc_ffc_compute_security_bits(int n)  | 
323  | 0  | { | 
324  | 0  |     uint64_t x;  | 
325  | 0  |     uint32_t lx;  | 
326  | 0  |     uint16_t y, cap;  | 
327  |  |  | 
328  |  |     /*  | 
329  |  |      * Look for common values as listed in standards.  | 
330  |  |      * These values are not exactly equal to the results from the formulae in  | 
331  |  |      * the standards but are defined to be canonical.  | 
332  |  |      */  | 
333  | 0  |     switch (n) { | 
334  | 0  |     case 2048:      /* SP 800-56B rev 2 Appendix D and FIPS 140-2 IG 7.5 */  | 
335  | 0  |         return 112;  | 
336  | 0  |     case 3072:      /* SP 800-56B rev 2 Appendix D and FIPS 140-2 IG 7.5 */  | 
337  | 0  |         return 128;  | 
338  | 0  |     case 4096:      /* SP 800-56B rev 2 Appendix D */  | 
339  | 0  |         return 152;  | 
340  | 0  |     case 6144:      /* SP 800-56B rev 2 Appendix D */  | 
341  | 0  |         return 176;  | 
342  | 0  |     case 7680:      /* FIPS 140-2 IG 7.5 */  | 
343  | 0  |         return 192;  | 
344  | 0  |     case 8192:      /* SP 800-56B rev 2 Appendix D */  | 
345  | 0  |         return 200;  | 
346  | 0  |     case 15360:     /* FIPS 140-2 IG 7.5 */  | 
347  | 0  |         return 256;  | 
348  | 0  |     }  | 
349  |  |  | 
350  |  |     /*  | 
351  |  |      * The first incorrect result (i.e. not accurate or off by one low) occurs  | 
352  |  |      * for n = 699668.  The true value here is 1200.  Instead of using this n  | 
353  |  |      * as the check threshold, the smallest n such that the correct result is  | 
354  |  |      * 1200 is used instead.  | 
355  |  |      */  | 
356  | 0  |     if (n >= 687737)  | 
357  | 0  |         return 1200;  | 
358  | 0  |     if (n < 8)  | 
359  | 0  |         return 0;  | 
360  |  |  | 
361  |  |     /*  | 
362  |  |      * To ensure that the output is non-decreasing with respect to n,  | 
363  |  |      * a cap needs to be applied to the two values where the function over  | 
364  |  |      * estimates the strength (according to the above fast path).  | 
365  |  |      */  | 
366  | 0  |     if (n <= 7680)  | 
367  | 0  |         cap = 192;  | 
368  | 0  |     else if (n <= 15360)  | 
369  | 0  |         cap = 256;  | 
370  | 0  |     else  | 
371  | 0  |         cap = 1200;  | 
372  |  | 
  | 
373  | 0  |     x = n * (uint64_t)log_2;  | 
374  | 0  |     lx = ilog_e(x);  | 
375  | 0  |     y = (uint16_t)((mul2(c1_923, icbrt64(mul2(mul2(x, lx), lx))) - c4_690)  | 
376  | 0  |                    / log_2);  | 
377  | 0  |     y = (y + 4) & ~7;  | 
378  | 0  |     if (y > cap)  | 
379  | 0  |         y = cap;  | 
380  | 0  |     return y;  | 
381  | 0  | }  | 
382  |  |  | 
383  |  |  | 
384  |  |  | 
385  |  | int RSA_security_bits(const RSA *rsa)  | 
386  | 0  | { | 
387  | 0  |     int bits = BN_num_bits(rsa->n);  | 
388  |  | 
  | 
389  | 0  | #ifndef FIPS_MODULE  | 
390  | 0  |     if (rsa->version == RSA_ASN1_VERSION_MULTI) { | 
391  |  |         /* This ought to mean that we have private key at hand. */  | 
392  | 0  |         int ex_primes = sk_RSA_PRIME_INFO_num(rsa->prime_infos);  | 
393  |  | 
  | 
394  | 0  |         if (ex_primes <= 0 || (ex_primes + 2) > ossl_rsa_multip_cap(bits))  | 
395  | 0  |             return 0;  | 
396  | 0  |     }  | 
397  | 0  | #endif  | 
398  | 0  |     return ossl_ifc_ffc_compute_security_bits(bits);  | 
399  | 0  | }  | 
400  |  |  | 
401  |  | int RSA_set0_key(RSA *r, BIGNUM *n, BIGNUM *e, BIGNUM *d)  | 
402  | 0  | { | 
403  |  |     /* If the fields n and e in r are NULL, the corresponding input  | 
404  |  |      * parameters MUST be non-NULL for n and e.  d may be  | 
405  |  |      * left NULL (in case only the public key is used).  | 
406  |  |      */  | 
407  | 0  |     if ((r->n == NULL && n == NULL)  | 
408  | 0  |         || (r->e == NULL && e == NULL))  | 
409  | 0  |         return 0;  | 
410  |  |  | 
411  | 0  |     if (n != NULL) { | 
412  | 0  |         BN_free(r->n);  | 
413  | 0  |         r->n = n;  | 
414  | 0  |     }  | 
415  | 0  |     if (e != NULL) { | 
416  | 0  |         BN_free(r->e);  | 
417  | 0  |         r->e = e;  | 
418  | 0  |     }  | 
419  | 0  |     if (d != NULL) { | 
420  | 0  |         BN_clear_free(r->d);  | 
421  | 0  |         r->d = d;  | 
422  | 0  |         BN_set_flags(r->d, BN_FLG_CONSTTIME);  | 
423  | 0  |     }  | 
424  | 0  |     r->dirty_cnt++;  | 
425  |  | 
  | 
426  | 0  |     return 1;  | 
427  | 0  | }  | 
428  |  |  | 
429  |  | int RSA_set0_factors(RSA *r, BIGNUM *p, BIGNUM *q)  | 
430  | 0  | { | 
431  |  |     /* If the fields p and q in r are NULL, the corresponding input  | 
432  |  |      * parameters MUST be non-NULL.  | 
433  |  |      */  | 
434  | 0  |     if ((r->p == NULL && p == NULL)  | 
435  | 0  |         || (r->q == NULL && q == NULL))  | 
436  | 0  |         return 0;  | 
437  |  |  | 
438  | 0  |     if (p != NULL) { | 
439  | 0  |         BN_clear_free(r->p);  | 
440  | 0  |         r->p = p;  | 
441  | 0  |         BN_set_flags(r->p, BN_FLG_CONSTTIME);  | 
442  | 0  |     }  | 
443  | 0  |     if (q != NULL) { | 
444  | 0  |         BN_clear_free(r->q);  | 
445  | 0  |         r->q = q;  | 
446  | 0  |         BN_set_flags(r->q, BN_FLG_CONSTTIME);  | 
447  | 0  |     }  | 
448  | 0  |     r->dirty_cnt++;  | 
449  |  | 
  | 
450  | 0  |     return 1;  | 
451  | 0  | }  | 
452  |  |  | 
453  |  | int RSA_set0_crt_params(RSA *r, BIGNUM *dmp1, BIGNUM *dmq1, BIGNUM *iqmp)  | 
454  | 0  | { | 
455  |  |     /* If the fields dmp1, dmq1 and iqmp in r are NULL, the corresponding input  | 
456  |  |      * parameters MUST be non-NULL.  | 
457  |  |      */  | 
458  | 0  |     if ((r->dmp1 == NULL && dmp1 == NULL)  | 
459  | 0  |         || (r->dmq1 == NULL && dmq1 == NULL)  | 
460  | 0  |         || (r->iqmp == NULL && iqmp == NULL))  | 
461  | 0  |         return 0;  | 
462  |  |  | 
463  | 0  |     if (dmp1 != NULL) { | 
464  | 0  |         BN_clear_free(r->dmp1);  | 
465  | 0  |         r->dmp1 = dmp1;  | 
466  | 0  |         BN_set_flags(r->dmp1, BN_FLG_CONSTTIME);  | 
467  | 0  |     }  | 
468  | 0  |     if (dmq1 != NULL) { | 
469  | 0  |         BN_clear_free(r->dmq1);  | 
470  | 0  |         r->dmq1 = dmq1;  | 
471  | 0  |         BN_set_flags(r->dmq1, BN_FLG_CONSTTIME);  | 
472  | 0  |     }  | 
473  | 0  |     if (iqmp != NULL) { | 
474  | 0  |         BN_clear_free(r->iqmp);  | 
475  | 0  |         r->iqmp = iqmp;  | 
476  | 0  |         BN_set_flags(r->iqmp, BN_FLG_CONSTTIME);  | 
477  | 0  |     }  | 
478  | 0  |     r->dirty_cnt++;  | 
479  |  | 
  | 
480  | 0  |     return 1;  | 
481  | 0  | }  | 
482  |  |  | 
483  |  | #ifndef FIPS_MODULE  | 
484  |  | /*  | 
485  |  |  * Is it better to export RSA_PRIME_INFO structure  | 
486  |  |  * and related functions to let user pass a triplet?  | 
487  |  |  */  | 
488  |  | int RSA_set0_multi_prime_params(RSA *r, BIGNUM *primes[], BIGNUM *exps[],  | 
489  |  |                                 BIGNUM *coeffs[], int pnum)  | 
490  | 0  | { | 
491  | 0  |     STACK_OF(RSA_PRIME_INFO) *prime_infos, *old = NULL;  | 
492  | 0  |     RSA_PRIME_INFO *pinfo;  | 
493  | 0  |     int i;  | 
494  |  | 
  | 
495  | 0  |     if (primes == NULL || exps == NULL || coeffs == NULL || pnum == 0)  | 
496  | 0  |         return 0;  | 
497  |  |  | 
498  | 0  |     prime_infos = sk_RSA_PRIME_INFO_new_reserve(NULL, pnum);  | 
499  | 0  |     if (prime_infos == NULL)  | 
500  | 0  |         return 0;  | 
501  |  |  | 
502  | 0  |     if (r->prime_infos != NULL)  | 
503  | 0  |         old = r->prime_infos;  | 
504  |  | 
  | 
505  | 0  |     for (i = 0; i < pnum; i++) { | 
506  | 0  |         pinfo = ossl_rsa_multip_info_new();  | 
507  | 0  |         if (pinfo == NULL)  | 
508  | 0  |             goto err;  | 
509  | 0  |         if (primes[i] != NULL && exps[i] != NULL && coeffs[i] != NULL) { | 
510  | 0  |             BN_clear_free(pinfo->r);  | 
511  | 0  |             BN_clear_free(pinfo->d);  | 
512  | 0  |             BN_clear_free(pinfo->t);  | 
513  | 0  |             pinfo->r = primes[i];  | 
514  | 0  |             pinfo->d = exps[i];  | 
515  | 0  |             pinfo->t = coeffs[i];  | 
516  | 0  |             BN_set_flags(pinfo->r, BN_FLG_CONSTTIME);  | 
517  | 0  |             BN_set_flags(pinfo->d, BN_FLG_CONSTTIME);  | 
518  | 0  |             BN_set_flags(pinfo->t, BN_FLG_CONSTTIME);  | 
519  | 0  |         } else { | 
520  | 0  |             ossl_rsa_multip_info_free(pinfo);  | 
521  | 0  |             goto err;  | 
522  | 0  |         }  | 
523  | 0  |         (void)sk_RSA_PRIME_INFO_push(prime_infos, pinfo);  | 
524  | 0  |     }  | 
525  |  |  | 
526  | 0  |     r->prime_infos = prime_infos;  | 
527  |  | 
  | 
528  | 0  |     if (!ossl_rsa_multip_calc_product(r)) { | 
529  | 0  |         r->prime_infos = old;  | 
530  | 0  |         goto err;  | 
531  | 0  |     }  | 
532  |  |  | 
533  | 0  |     if (old != NULL) { | 
534  |  |         /*  | 
535  |  |          * This is hard to deal with, since the old infos could  | 
536  |  |          * also be set by this function and r, d, t should not  | 
537  |  |          * be freed in that case. So currently, stay consistent  | 
538  |  |          * with other *set0* functions: just free it...  | 
539  |  |          */  | 
540  | 0  |         sk_RSA_PRIME_INFO_pop_free(old, ossl_rsa_multip_info_free);  | 
541  | 0  |     }  | 
542  |  | 
  | 
543  | 0  |     r->version = RSA_ASN1_VERSION_MULTI;  | 
544  | 0  |     r->dirty_cnt++;  | 
545  |  | 
  | 
546  | 0  |     return 1;  | 
547  | 0  |  err:  | 
548  |  |     /* r, d, t should not be freed */  | 
549  | 0  |     sk_RSA_PRIME_INFO_pop_free(prime_infos, ossl_rsa_multip_info_free_ex);  | 
550  | 0  |     return 0;  | 
551  | 0  | }  | 
552  |  | #endif  | 
553  |  |  | 
554  |  | void RSA_get0_key(const RSA *r,  | 
555  |  |                   const BIGNUM **n, const BIGNUM **e, const BIGNUM **d)  | 
556  | 0  | { | 
557  | 0  |     if (n != NULL)  | 
558  | 0  |         *n = r->n;  | 
559  | 0  |     if (e != NULL)  | 
560  | 0  |         *e = r->e;  | 
561  | 0  |     if (d != NULL)  | 
562  | 0  |         *d = r->d;  | 
563  | 0  | }  | 
564  |  |  | 
565  |  | void RSA_get0_factors(const RSA *r, const BIGNUM **p, const BIGNUM **q)  | 
566  | 0  | { | 
567  | 0  |     if (p != NULL)  | 
568  | 0  |         *p = r->p;  | 
569  | 0  |     if (q != NULL)  | 
570  | 0  |         *q = r->q;  | 
571  | 0  | }  | 
572  |  |  | 
573  |  | #ifndef FIPS_MODULE  | 
574  |  | int RSA_get_multi_prime_extra_count(const RSA *r)  | 
575  | 0  | { | 
576  | 0  |     int pnum;  | 
577  |  | 
  | 
578  | 0  |     pnum = sk_RSA_PRIME_INFO_num(r->prime_infos);  | 
579  | 0  |     if (pnum <= 0)  | 
580  | 0  |         pnum = 0;  | 
581  | 0  |     return pnum;  | 
582  | 0  | }  | 
583  |  |  | 
584  |  | int RSA_get0_multi_prime_factors(const RSA *r, const BIGNUM *primes[])  | 
585  | 0  | { | 
586  | 0  |     int pnum, i;  | 
587  | 0  |     RSA_PRIME_INFO *pinfo;  | 
588  |  | 
  | 
589  | 0  |     if ((pnum = RSA_get_multi_prime_extra_count(r)) == 0)  | 
590  | 0  |         return 0;  | 
591  |  |  | 
592  |  |     /*  | 
593  |  |      * return other primes  | 
594  |  |      * it's caller's responsibility to allocate oth_primes[pnum]  | 
595  |  |      */  | 
596  | 0  |     for (i = 0; i < pnum; i++) { | 
597  | 0  |         pinfo = sk_RSA_PRIME_INFO_value(r->prime_infos, i);  | 
598  | 0  |         primes[i] = pinfo->r;  | 
599  | 0  |     }  | 
600  |  | 
  | 
601  | 0  |     return 1;  | 
602  | 0  | }  | 
603  |  | #endif  | 
604  |  |  | 
605  |  | void RSA_get0_crt_params(const RSA *r,  | 
606  |  |                          const BIGNUM **dmp1, const BIGNUM **dmq1,  | 
607  |  |                          const BIGNUM **iqmp)  | 
608  | 0  | { | 
609  | 0  |     if (dmp1 != NULL)  | 
610  | 0  |         *dmp1 = r->dmp1;  | 
611  | 0  |     if (dmq1 != NULL)  | 
612  | 0  |         *dmq1 = r->dmq1;  | 
613  | 0  |     if (iqmp != NULL)  | 
614  | 0  |         *iqmp = r->iqmp;  | 
615  | 0  | }  | 
616  |  |  | 
617  |  | #ifndef FIPS_MODULE  | 
618  |  | int RSA_get0_multi_prime_crt_params(const RSA *r, const BIGNUM *exps[],  | 
619  |  |                                     const BIGNUM *coeffs[])  | 
620  | 0  | { | 
621  | 0  |     int pnum;  | 
622  |  | 
  | 
623  | 0  |     if ((pnum = RSA_get_multi_prime_extra_count(r)) == 0)  | 
624  | 0  |         return 0;  | 
625  |  |  | 
626  |  |     /* return other primes */  | 
627  | 0  |     if (exps != NULL || coeffs != NULL) { | 
628  | 0  |         RSA_PRIME_INFO *pinfo;  | 
629  | 0  |         int i;  | 
630  |  |  | 
631  |  |         /* it's the user's job to guarantee the buffer length */  | 
632  | 0  |         for (i = 0; i < pnum; i++) { | 
633  | 0  |             pinfo = sk_RSA_PRIME_INFO_value(r->prime_infos, i);  | 
634  | 0  |             if (exps != NULL)  | 
635  | 0  |                 exps[i] = pinfo->d;  | 
636  | 0  |             if (coeffs != NULL)  | 
637  | 0  |                 coeffs[i] = pinfo->t;  | 
638  | 0  |         }  | 
639  | 0  |     }  | 
640  |  | 
  | 
641  | 0  |     return 1;  | 
642  | 0  | }  | 
643  |  | #endif  | 
644  |  |  | 
645  |  | const BIGNUM *RSA_get0_n(const RSA *r)  | 
646  | 0  | { | 
647  | 0  |     return r->n;  | 
648  | 0  | }  | 
649  |  |  | 
650  |  | const BIGNUM *RSA_get0_e(const RSA *r)  | 
651  | 0  | { | 
652  | 0  |     return r->e;  | 
653  | 0  | }  | 
654  |  |  | 
655  |  | const BIGNUM *RSA_get0_d(const RSA *r)  | 
656  | 0  | { | 
657  | 0  |     return r->d;  | 
658  | 0  | }  | 
659  |  |  | 
660  |  | const BIGNUM *RSA_get0_p(const RSA *r)  | 
661  | 0  | { | 
662  | 0  |     return r->p;  | 
663  | 0  | }  | 
664  |  |  | 
665  |  | const BIGNUM *RSA_get0_q(const RSA *r)  | 
666  | 0  | { | 
667  | 0  |     return r->q;  | 
668  | 0  | }  | 
669  |  |  | 
670  |  | const BIGNUM *RSA_get0_dmp1(const RSA *r)  | 
671  | 0  | { | 
672  | 0  |     return r->dmp1;  | 
673  | 0  | }  | 
674  |  |  | 
675  |  | const BIGNUM *RSA_get0_dmq1(const RSA *r)  | 
676  | 0  | { | 
677  | 0  |     return r->dmq1;  | 
678  | 0  | }  | 
679  |  |  | 
680  |  | const BIGNUM *RSA_get0_iqmp(const RSA *r)  | 
681  | 0  | { | 
682  | 0  |     return r->iqmp;  | 
683  | 0  | }  | 
684  |  |  | 
685  |  | const RSA_PSS_PARAMS *RSA_get0_pss_params(const RSA *r)  | 
686  | 0  | { | 
687  |  | #ifdef FIPS_MODULE  | 
688  |  |     return NULL;  | 
689  |  | #else  | 
690  | 0  |     return r->pss;  | 
691  | 0  | #endif  | 
692  | 0  | }  | 
693  |  |  | 
694  |  | /* Internal */  | 
695  |  | int ossl_rsa_set0_pss_params(RSA *r, RSA_PSS_PARAMS *pss)  | 
696  | 0  | { | 
697  |  | #ifdef FIPS_MODULE  | 
698  |  |     return 0;  | 
699  |  | #else  | 
700  | 0  |     RSA_PSS_PARAMS_free(r->pss);  | 
701  | 0  |     r->pss = pss;  | 
702  | 0  |     return 1;  | 
703  | 0  | #endif  | 
704  | 0  | }  | 
705  |  |  | 
706  |  | /* Internal */  | 
707  |  | RSA_PSS_PARAMS_30 *ossl_rsa_get0_pss_params_30(RSA *r)  | 
708  | 0  | { | 
709  | 0  |     return &r->pss_params;  | 
710  | 0  | }  | 
711  |  |  | 
712  |  | void RSA_clear_flags(RSA *r, int flags)  | 
713  | 0  | { | 
714  | 0  |     r->flags &= ~flags;  | 
715  | 0  | }  | 
716  |  |  | 
717  |  | int RSA_test_flags(const RSA *r, int flags)  | 
718  | 0  | { | 
719  | 0  |     return r->flags & flags;  | 
720  | 0  | }  | 
721  |  |  | 
722  |  | void RSA_set_flags(RSA *r, int flags)  | 
723  | 0  | { | 
724  | 0  |     r->flags |= flags;  | 
725  | 0  | }  | 
726  |  |  | 
727  |  | int RSA_get_version(RSA *r)  | 
728  | 0  | { | 
729  |  |     /* { two-prime(0), multi(1) } */ | 
730  | 0  |     return r->version;  | 
731  | 0  | }  | 
732  |  |  | 
733  |  | #ifndef FIPS_MODULE  | 
734  |  | ENGINE *RSA_get0_engine(const RSA *r)  | 
735  | 0  | { | 
736  | 0  |     return r->engine;  | 
737  | 0  | }  | 
738  |  |  | 
739  |  | int RSA_pkey_ctx_ctrl(EVP_PKEY_CTX *ctx, int optype, int cmd, int p1, void *p2)  | 
740  | 0  | { | 
741  |  |     /* If key type not RSA or RSA-PSS return error */  | 
742  | 0  |     if (ctx != NULL && ctx->pmeth != NULL  | 
743  | 0  |         && ctx->pmeth->pkey_id != EVP_PKEY_RSA  | 
744  | 0  |         && ctx->pmeth->pkey_id != EVP_PKEY_RSA_PSS)  | 
745  | 0  |         return -1;  | 
746  | 0  |      return EVP_PKEY_CTX_ctrl(ctx, -1, optype, cmd, p1, p2);  | 
747  | 0  | }  | 
748  |  | #endif  | 
749  |  |  | 
750  |  | DEFINE_STACK_OF(BIGNUM)  | 
751  |  |  | 
752  |  | /*  | 
753  |  |  * Note: This function deletes values from the parameter  | 
754  |  |  * stack values as they are consumed and set in the RSA key.  | 
755  |  |  */  | 
756  |  | int ossl_rsa_set0_all_params(RSA *r, STACK_OF(BIGNUM) *primes,  | 
757  |  |                              STACK_OF(BIGNUM) *exps,  | 
758  |  |                              STACK_OF(BIGNUM) *coeffs)  | 
759  | 0  | { | 
760  | 0  | #ifndef FIPS_MODULE  | 
761  | 0  |     STACK_OF(RSA_PRIME_INFO) *prime_infos, *old_infos = NULL;  | 
762  | 0  | #endif  | 
763  | 0  |     int pnum;  | 
764  |  | 
  | 
765  | 0  |     if (primes == NULL || exps == NULL || coeffs == NULL)  | 
766  | 0  |         return 0;  | 
767  |  |  | 
768  | 0  |     pnum = sk_BIGNUM_num(primes);  | 
769  |  |  | 
770  |  |     /* we need at least 2 primes */  | 
771  | 0  |     if (pnum < 2)  | 
772  | 0  |         return 0;  | 
773  |  |  | 
774  | 0  |     if (!RSA_set0_factors(r, sk_BIGNUM_value(primes, 0),  | 
775  | 0  |                           sk_BIGNUM_value(primes, 1)))  | 
776  | 0  |         return 0;  | 
777  |  |  | 
778  |  |     /*  | 
779  |  |      * if we managed to set everything above, remove those elements from the  | 
780  |  |      * stack  | 
781  |  |      * Note, we do this after the above all to ensure that we have taken  | 
782  |  |      * ownership of all the elements in the RSA key to avoid memory leaks  | 
783  |  |      * we also use delete 0 here as we are grabbing items from the end of the  | 
784  |  |      * stack rather than the start, otherwise we could use pop  | 
785  |  |      */  | 
786  | 0  |     sk_BIGNUM_delete(primes, 0);  | 
787  | 0  |     sk_BIGNUM_delete(primes, 0);  | 
788  |  | 
  | 
789  | 0  |     if (pnum == sk_BIGNUM_num(exps)  | 
790  | 0  |         && pnum == sk_BIGNUM_num(coeffs) + 1) { | 
791  |  | 
  | 
792  | 0  |         if (!RSA_set0_crt_params(r, sk_BIGNUM_value(exps, 0),  | 
793  | 0  |                                  sk_BIGNUM_value(exps, 1),  | 
794  | 0  |                                  sk_BIGNUM_value(coeffs, 0)))  | 
795  | 0  |         return 0;  | 
796  |  |  | 
797  |  |         /* as above, once we consume the above params, delete them from the list */  | 
798  | 0  |         sk_BIGNUM_delete(exps, 0);  | 
799  | 0  |         sk_BIGNUM_delete(exps, 0);  | 
800  | 0  |         sk_BIGNUM_delete(coeffs, 0);  | 
801  | 0  |     }  | 
802  |  |  | 
803  | 0  | #ifndef FIPS_MODULE  | 
804  | 0  |     old_infos = r->prime_infos;  | 
805  | 0  | #endif  | 
806  |  | 
  | 
807  | 0  |     if (pnum > 2) { | 
808  | 0  | #ifndef FIPS_MODULE  | 
809  | 0  |         int i;  | 
810  |  | 
  | 
811  | 0  |         prime_infos = sk_RSA_PRIME_INFO_new_reserve(NULL, pnum);  | 
812  | 0  |         if (prime_infos == NULL)  | 
813  | 0  |             return 0;  | 
814  |  |  | 
815  | 0  |         for (i = 2; i < pnum; i++) { | 
816  | 0  |             BIGNUM *prime = sk_BIGNUM_pop(primes);  | 
817  | 0  |             BIGNUM *exp = sk_BIGNUM_pop(exps);  | 
818  | 0  |             BIGNUM *coeff = sk_BIGNUM_pop(coeffs);  | 
819  | 0  |             RSA_PRIME_INFO *pinfo = NULL;  | 
820  |  | 
  | 
821  | 0  |             if (!ossl_assert(prime != NULL && exp != NULL && coeff != NULL))  | 
822  | 0  |                 goto err;  | 
823  |  |  | 
824  |  |             /* Using ossl_rsa_multip_info_new() is wasteful, so allocate directly */  | 
825  | 0  |             if ((pinfo = OPENSSL_zalloc(sizeof(*pinfo))) == NULL)  | 
826  | 0  |                 goto err;  | 
827  |  |  | 
828  | 0  |             pinfo->r = prime;  | 
829  | 0  |             pinfo->d = exp;  | 
830  | 0  |             pinfo->t = coeff;  | 
831  | 0  |             BN_set_flags(pinfo->r, BN_FLG_CONSTTIME);  | 
832  | 0  |             BN_set_flags(pinfo->d, BN_FLG_CONSTTIME);  | 
833  | 0  |             BN_set_flags(pinfo->t, BN_FLG_CONSTTIME);  | 
834  | 0  |             (void)sk_RSA_PRIME_INFO_push(prime_infos, pinfo);  | 
835  | 0  |         }  | 
836  |  |  | 
837  | 0  |         r->prime_infos = prime_infos;  | 
838  |  | 
  | 
839  | 0  |         if (!ossl_rsa_multip_calc_product(r)) { | 
840  | 0  |             r->prime_infos = old_infos;  | 
841  | 0  |             goto err;  | 
842  | 0  |         }  | 
843  |  | #else  | 
844  |  |         return 0;  | 
845  |  | #endif  | 
846  | 0  |     }  | 
847  |  |  | 
848  | 0  | #ifndef FIPS_MODULE  | 
849  | 0  |     if (old_infos != NULL) { | 
850  |  |         /*  | 
851  |  |          * This is hard to deal with, since the old infos could  | 
852  |  |          * also be set by this function and r, d, t should not  | 
853  |  |          * be freed in that case. So currently, stay consistent  | 
854  |  |          * with other *set0* functions: just free it...  | 
855  |  |          */  | 
856  | 0  |         sk_RSA_PRIME_INFO_pop_free(old_infos, ossl_rsa_multip_info_free);  | 
857  | 0  |     }  | 
858  | 0  | #endif  | 
859  |  | 
  | 
860  | 0  |     r->version = pnum > 2 ? RSA_ASN1_VERSION_MULTI : RSA_ASN1_VERSION_DEFAULT;  | 
861  | 0  |     r->dirty_cnt++;  | 
862  |  | 
  | 
863  | 0  |     return 1;  | 
864  | 0  | #ifndef FIPS_MODULE  | 
865  | 0  |  err:  | 
866  |  |     /* r, d, t should not be freed */  | 
867  | 0  |     sk_RSA_PRIME_INFO_pop_free(prime_infos, ossl_rsa_multip_info_free_ex);  | 
868  | 0  |     return 0;  | 
869  | 0  | #endif  | 
870  | 0  | }  | 
871  |  |  | 
872  |  | DEFINE_SPECIAL_STACK_OF_CONST(BIGNUM_const, BIGNUM)  | 
873  |  |  | 
874  |  | int ossl_rsa_get0_all_params(RSA *r, STACK_OF(BIGNUM_const) *primes,  | 
875  |  |                              STACK_OF(BIGNUM_const) *exps,  | 
876  |  |                              STACK_OF(BIGNUM_const) *coeffs)  | 
877  | 0  | { | 
878  | 0  | #ifndef FIPS_MODULE  | 
879  | 0  |     RSA_PRIME_INFO *pinfo;  | 
880  | 0  |     int i, pnum;  | 
881  | 0  | #endif  | 
882  |  | 
  | 
883  | 0  |     if (r == NULL)  | 
884  | 0  |         return 0;  | 
885  |  |  | 
886  |  |     /* If |p| is NULL, there are no CRT parameters */  | 
887  | 0  |     if (RSA_get0_p(r) == NULL)  | 
888  | 0  |         return 1;  | 
889  |  |  | 
890  | 0  |     sk_BIGNUM_const_push(primes, RSA_get0_p(r));  | 
891  | 0  |     sk_BIGNUM_const_push(primes, RSA_get0_q(r));  | 
892  | 0  |     sk_BIGNUM_const_push(exps, RSA_get0_dmp1(r));  | 
893  | 0  |     sk_BIGNUM_const_push(exps, RSA_get0_dmq1(r));  | 
894  | 0  |     sk_BIGNUM_const_push(coeffs, RSA_get0_iqmp(r));  | 
895  |  | 
  | 
896  | 0  | #ifndef FIPS_MODULE  | 
897  | 0  |     pnum = RSA_get_multi_prime_extra_count(r);  | 
898  | 0  |     for (i = 0; i < pnum; i++) { | 
899  | 0  |         pinfo = sk_RSA_PRIME_INFO_value(r->prime_infos, i);  | 
900  | 0  |         sk_BIGNUM_const_push(primes, pinfo->r);  | 
901  | 0  |         sk_BIGNUM_const_push(exps, pinfo->d);  | 
902  | 0  |         sk_BIGNUM_const_push(coeffs, pinfo->t);  | 
903  | 0  |     }  | 
904  | 0  | #endif  | 
905  |  | 
  | 
906  | 0  |     return 1;  | 
907  | 0  | }  | 
908  |  |  | 
909  | 0  | #define safe_BN_num_bits(_k_)  (((_k_) == NULL) ? 0 : BN_num_bits((_k_)))  | 
910  |  | int ossl_rsa_check_factors(RSA *r)  | 
911  | 0  | { | 
912  | 0  |     int valid = 0;  | 
913  | 0  |     int n, i, bits;  | 
914  | 0  |     STACK_OF(BIGNUM_const) *factors = sk_BIGNUM_const_new_null();  | 
915  | 0  |     STACK_OF(BIGNUM_const) *exps = sk_BIGNUM_const_new_null();  | 
916  | 0  |     STACK_OF(BIGNUM_const) *coeffs = sk_BIGNUM_const_new_null();  | 
917  |  | 
  | 
918  | 0  |     if (factors == NULL || exps == NULL || coeffs == NULL)  | 
919  | 0  |         goto done;  | 
920  |  |  | 
921  |  |     /*  | 
922  |  |      * Simple sanity check for RSA key. All RSA key parameters  | 
923  |  |      * must be less-than/equal-to RSA parameter n.  | 
924  |  |      */  | 
925  | 0  |     ossl_rsa_get0_all_params(r, factors, exps, coeffs);  | 
926  | 0  |     n = safe_BN_num_bits(RSA_get0_n(r));  | 
927  |  | 
  | 
928  | 0  |     if (safe_BN_num_bits(RSA_get0_d(r)) > n)  | 
929  | 0  |         goto done;  | 
930  |  |  | 
931  | 0  |     for (i = 0; i < sk_BIGNUM_const_num(exps); i++) { | 
932  | 0  |         bits = safe_BN_num_bits(sk_BIGNUM_const_value(exps, i));  | 
933  | 0  |         if (bits > n)  | 
934  | 0  |             goto done;  | 
935  | 0  |     }  | 
936  |  |  | 
937  | 0  |     for (i = 0; i < sk_BIGNUM_const_num(factors); i++) { | 
938  | 0  |         bits = safe_BN_num_bits(sk_BIGNUM_const_value(factors, i));  | 
939  | 0  |         if (bits > n)  | 
940  | 0  |             goto done;  | 
941  | 0  |     }  | 
942  |  |  | 
943  | 0  |     for (i = 0; i < sk_BIGNUM_const_num(coeffs); i++) { | 
944  | 0  |         bits = safe_BN_num_bits(sk_BIGNUM_const_value(coeffs, i));  | 
945  | 0  |         if (bits > n)  | 
946  | 0  |             goto done;  | 
947  | 0  |     }  | 
948  |  |  | 
949  | 0  |     valid = 1;  | 
950  |  | 
  | 
951  | 0  | done:  | 
952  | 0  |     sk_BIGNUM_const_free(factors);  | 
953  | 0  |     sk_BIGNUM_const_free(exps);  | 
954  | 0  |     sk_BIGNUM_const_free(coeffs);  | 
955  |  | 
  | 
956  | 0  |     return valid;  | 
957  | 0  | }  | 
958  |  |  | 
959  |  | #ifndef FIPS_MODULE  | 
960  |  | /* Helpers to set or get diverse hash algorithm names */  | 
961  |  | static int int_set_rsa_md_name(EVP_PKEY_CTX *ctx,  | 
962  |  |                                /* For checks */  | 
963  |  |                                int keytype, int optype,  | 
964  |  |                                /* For EVP_PKEY_CTX_set_params() */  | 
965  |  |                                const char *mdkey, const char *mdname,  | 
966  |  |                                const char *propkey, const char *mdprops)  | 
967  | 0  | { | 
968  | 0  |     OSSL_PARAM params[3], *p = params;  | 
969  |  | 
  | 
970  | 0  |     if (ctx == NULL || mdname == NULL || (ctx->operation & optype) == 0) { | 
971  | 0  |         ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED);  | 
972  |  |         /* Uses the same return values as EVP_PKEY_CTX_ctrl */  | 
973  | 0  |         return -2;  | 
974  | 0  |     }  | 
975  |  |  | 
976  |  |     /* If key type not RSA return error */  | 
977  | 0  |     switch (keytype) { | 
978  | 0  |     case -1:  | 
979  | 0  |         if (!EVP_PKEY_CTX_is_a(ctx, "RSA")  | 
980  | 0  |             && !EVP_PKEY_CTX_is_a(ctx, "RSA-PSS"))  | 
981  | 0  |             return -1;  | 
982  | 0  |         break;  | 
983  | 0  |     default:  | 
984  | 0  |         if (!EVP_PKEY_CTX_is_a(ctx, evp_pkey_type2name(keytype)))  | 
985  | 0  |             return -1;  | 
986  | 0  |         break;  | 
987  | 0  |     }  | 
988  |  |  | 
989  |  |     /* Cast away the const. This is read only so should be safe */  | 
990  | 0  |     *p++ = OSSL_PARAM_construct_utf8_string(mdkey, (char *)mdname, 0);  | 
991  | 0  |     if (evp_pkey_ctx_is_provided(ctx) && mdprops != NULL) { | 
992  |  |         /* Cast away the const. This is read only so should be safe */  | 
993  | 0  |         *p++ = OSSL_PARAM_construct_utf8_string(propkey, (char *)mdprops, 0);  | 
994  | 0  |     }  | 
995  | 0  |     *p++ = OSSL_PARAM_construct_end();  | 
996  |  | 
  | 
997  | 0  |     return evp_pkey_ctx_set_params_strict(ctx, params);  | 
998  | 0  | }  | 
999  |  |  | 
1000  |  | /* Helpers to set or get diverse hash algorithm names */  | 
1001  |  | static int int_get_rsa_md_name(EVP_PKEY_CTX *ctx,  | 
1002  |  |                                /* For checks */  | 
1003  |  |                                int keytype, int optype,  | 
1004  |  |                                /* For EVP_PKEY_CTX_get_params() */  | 
1005  |  |                                const char *mdkey,  | 
1006  |  |                                char *mdname, size_t mdnamesize)  | 
1007  | 0  | { | 
1008  | 0  |     OSSL_PARAM params[2], *p = params;  | 
1009  |  | 
  | 
1010  | 0  |     if (ctx == NULL || mdname == NULL || (ctx->operation & optype) == 0) { | 
1011  | 0  |         ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED);  | 
1012  |  |         /* Uses the same return values as EVP_PKEY_CTX_ctrl */  | 
1013  | 0  |         return -2;  | 
1014  | 0  |     }  | 
1015  |  |  | 
1016  |  |     /* If key type not RSA return error */  | 
1017  | 0  |     switch (keytype) { | 
1018  | 0  |     case -1:  | 
1019  | 0  |         if (!EVP_PKEY_CTX_is_a(ctx, "RSA")  | 
1020  | 0  |             && !EVP_PKEY_CTX_is_a(ctx, "RSA-PSS"))  | 
1021  | 0  |             return -1;  | 
1022  | 0  |         break;  | 
1023  | 0  |     default:  | 
1024  | 0  |         if (!EVP_PKEY_CTX_is_a(ctx, evp_pkey_type2name(keytype)))  | 
1025  | 0  |             return -1;  | 
1026  | 0  |         break;  | 
1027  | 0  |     }  | 
1028  |  |  | 
1029  |  |     /* Cast away the const. This is read only so should be safe */  | 
1030  | 0  |     *p++ = OSSL_PARAM_construct_utf8_string(mdkey, (char *)mdname, mdnamesize);  | 
1031  | 0  |     *p++ = OSSL_PARAM_construct_end();  | 
1032  |  | 
  | 
1033  | 0  |     return evp_pkey_ctx_get_params_strict(ctx, params);  | 
1034  | 0  | }  | 
1035  |  |  | 
1036  |  | /*  | 
1037  |  |  * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,  | 
1038  |  |  * simply because that's easier.  | 
1039  |  |  */  | 
1040  |  | int EVP_PKEY_CTX_set_rsa_padding(EVP_PKEY_CTX *ctx, int pad_mode)  | 
1041  | 0  | { | 
1042  | 0  |     return RSA_pkey_ctx_ctrl(ctx, -1, EVP_PKEY_CTRL_RSA_PADDING,  | 
1043  | 0  |                              pad_mode, NULL);  | 
1044  | 0  | }  | 
1045  |  |  | 
1046  |  | /*  | 
1047  |  |  * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,  | 
1048  |  |  * simply because that's easier.  | 
1049  |  |  */  | 
1050  |  | int EVP_PKEY_CTX_get_rsa_padding(EVP_PKEY_CTX *ctx, int *pad_mode)  | 
1051  | 0  | { | 
1052  | 0  |     return RSA_pkey_ctx_ctrl(ctx, -1, EVP_PKEY_CTRL_GET_RSA_PADDING,  | 
1053  | 0  |                              0, pad_mode);  | 
1054  | 0  | }  | 
1055  |  |  | 
1056  |  | /*  | 
1057  |  |  * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,  | 
1058  |  |  * simply because that's easier.  | 
1059  |  |  */  | 
1060  |  | int EVP_PKEY_CTX_set_rsa_pss_keygen_md(EVP_PKEY_CTX *ctx, const EVP_MD *md)  | 
1061  | 0  | { | 
1062  | 0  |     return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA_PSS, EVP_PKEY_OP_KEYGEN,  | 
1063  | 0  |                              EVP_PKEY_CTRL_MD, 0, (void *)(md));  | 
1064  | 0  | }  | 
1065  |  |  | 
1066  |  | int EVP_PKEY_CTX_set_rsa_pss_keygen_md_name(EVP_PKEY_CTX *ctx,  | 
1067  |  |                                             const char *mdname,  | 
1068  |  |                                             const char *mdprops)  | 
1069  | 0  | { | 
1070  | 0  |     return int_set_rsa_md_name(ctx, EVP_PKEY_RSA_PSS, EVP_PKEY_OP_KEYGEN,  | 
1071  | 0  |                                OSSL_PKEY_PARAM_RSA_DIGEST, mdname,  | 
1072  | 0  |                                OSSL_PKEY_PARAM_RSA_DIGEST_PROPS, mdprops);  | 
1073  | 0  | }  | 
1074  |  |  | 
1075  |  | /*  | 
1076  |  |  * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,  | 
1077  |  |  * simply because that's easier.  | 
1078  |  |  */  | 
1079  |  | int EVP_PKEY_CTX_set_rsa_oaep_md(EVP_PKEY_CTX *ctx, const EVP_MD *md)  | 
1080  | 0  | { | 
1081  |  |     /* If key type not RSA return error */  | 
1082  | 0  |     if (!EVP_PKEY_CTX_is_a(ctx, "RSA"))  | 
1083  | 0  |         return -1;  | 
1084  |  |  | 
1085  | 0  |     return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_TYPE_CRYPT,  | 
1086  | 0  |                              EVP_PKEY_CTRL_RSA_OAEP_MD, 0, (void *)(md));  | 
1087  | 0  | }  | 
1088  |  |  | 
1089  |  | int EVP_PKEY_CTX_set_rsa_oaep_md_name(EVP_PKEY_CTX *ctx, const char *mdname,  | 
1090  |  |                                       const char *mdprops)  | 
1091  | 0  | { | 
1092  | 0  |     return  | 
1093  | 0  |         int_set_rsa_md_name(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_TYPE_CRYPT,  | 
1094  | 0  |                             OSSL_ASYM_CIPHER_PARAM_OAEP_DIGEST, mdname,  | 
1095  | 0  |                             OSSL_ASYM_CIPHER_PARAM_OAEP_DIGEST_PROPS, mdprops);  | 
1096  | 0  | }  | 
1097  |  |  | 
1098  |  | int EVP_PKEY_CTX_get_rsa_oaep_md_name(EVP_PKEY_CTX *ctx, char *name,  | 
1099  |  |                                       size_t namesize)  | 
1100  | 0  | { | 
1101  | 0  |     return int_get_rsa_md_name(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_TYPE_CRYPT,  | 
1102  | 0  |                                OSSL_ASYM_CIPHER_PARAM_OAEP_DIGEST,  | 
1103  | 0  |                                name, namesize);  | 
1104  | 0  | }  | 
1105  |  |  | 
1106  |  | /*  | 
1107  |  |  * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,  | 
1108  |  |  * simply because that's easier.  | 
1109  |  |  */  | 
1110  |  | int EVP_PKEY_CTX_get_rsa_oaep_md(EVP_PKEY_CTX *ctx, const EVP_MD **md)  | 
1111  | 0  | { | 
1112  |  |     /* If key type not RSA return error */  | 
1113  | 0  |     if (!EVP_PKEY_CTX_is_a(ctx, "RSA"))  | 
1114  | 0  |         return -1;  | 
1115  |  |  | 
1116  | 0  |     return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_TYPE_CRYPT,  | 
1117  | 0  |                              EVP_PKEY_CTRL_GET_RSA_OAEP_MD, 0, (void *)md);  | 
1118  | 0  | }  | 
1119  |  |  | 
1120  |  | /*  | 
1121  |  |  * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,  | 
1122  |  |  * simply because that's easier.  | 
1123  |  |  */  | 
1124  |  | int EVP_PKEY_CTX_set_rsa_mgf1_md(EVP_PKEY_CTX *ctx, const EVP_MD *md)  | 
1125  | 0  | { | 
1126  | 0  |     return RSA_pkey_ctx_ctrl(ctx, EVP_PKEY_OP_TYPE_SIG | EVP_PKEY_OP_TYPE_CRYPT,  | 
1127  | 0  |                              EVP_PKEY_CTRL_RSA_MGF1_MD, 0, (void *)(md));  | 
1128  | 0  | }  | 
1129  |  |  | 
1130  |  | int EVP_PKEY_CTX_set_rsa_mgf1_md_name(EVP_PKEY_CTX *ctx, const char *mdname,  | 
1131  |  |                                       const char *mdprops)  | 
1132  | 0  | { | 
1133  | 0  |     return int_set_rsa_md_name(ctx, -1,  | 
1134  | 0  |                                EVP_PKEY_OP_TYPE_CRYPT | EVP_PKEY_OP_TYPE_SIG,  | 
1135  | 0  |                                OSSL_PKEY_PARAM_MGF1_DIGEST, mdname,  | 
1136  | 0  |                                OSSL_PKEY_PARAM_MGF1_PROPERTIES, mdprops);  | 
1137  | 0  | }  | 
1138  |  |  | 
1139  |  | int EVP_PKEY_CTX_get_rsa_mgf1_md_name(EVP_PKEY_CTX *ctx, char *name,  | 
1140  |  |                                       size_t namesize)  | 
1141  | 0  | { | 
1142  | 0  |     return int_get_rsa_md_name(ctx, -1,  | 
1143  | 0  |                                EVP_PKEY_OP_TYPE_CRYPT | EVP_PKEY_OP_TYPE_SIG,  | 
1144  | 0  |                                OSSL_PKEY_PARAM_MGF1_DIGEST, name, namesize);  | 
1145  | 0  | }  | 
1146  |  |  | 
1147  |  | /*  | 
1148  |  |  * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,  | 
1149  |  |  * simply because that's easier.  | 
1150  |  |  */  | 
1151  |  | int EVP_PKEY_CTX_set_rsa_pss_keygen_mgf1_md(EVP_PKEY_CTX *ctx, const EVP_MD *md)  | 
1152  | 0  | { | 
1153  | 0  |     return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA_PSS, EVP_PKEY_OP_KEYGEN,  | 
1154  | 0  |                              EVP_PKEY_CTRL_RSA_MGF1_MD, 0, (void *)(md));  | 
1155  | 0  | }  | 
1156  |  |  | 
1157  |  | int EVP_PKEY_CTX_set_rsa_pss_keygen_mgf1_md_name(EVP_PKEY_CTX *ctx,  | 
1158  |  |                                                  const char *mdname)  | 
1159  | 0  | { | 
1160  | 0  |     return int_set_rsa_md_name(ctx, EVP_PKEY_RSA_PSS, EVP_PKEY_OP_KEYGEN,  | 
1161  | 0  |                                OSSL_PKEY_PARAM_MGF1_DIGEST, mdname,  | 
1162  | 0  |                                NULL, NULL);  | 
1163  | 0  | }  | 
1164  |  |  | 
1165  |  | /*  | 
1166  |  |  * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,  | 
1167  |  |  * simply because that's easier.  | 
1168  |  |  */  | 
1169  |  | int EVP_PKEY_CTX_get_rsa_mgf1_md(EVP_PKEY_CTX *ctx, const EVP_MD **md)  | 
1170  | 0  | { | 
1171  | 0  |     return RSA_pkey_ctx_ctrl(ctx, EVP_PKEY_OP_TYPE_SIG | EVP_PKEY_OP_TYPE_CRYPT,  | 
1172  | 0  |                              EVP_PKEY_CTRL_GET_RSA_MGF1_MD, 0, (void *)(md));  | 
1173  | 0  | }  | 
1174  |  |  | 
1175  |  | int EVP_PKEY_CTX_set0_rsa_oaep_label(EVP_PKEY_CTX *ctx, void *label, int llen)  | 
1176  | 0  | { | 
1177  | 0  |     OSSL_PARAM rsa_params[2], *p = rsa_params;  | 
1178  | 0  |     const char *empty = "";  | 
1179  |  |     /*  | 
1180  |  |      * Needed as we swap label with empty if it is NULL, and label is  | 
1181  |  |      * freed at the end of this function.  | 
1182  |  |      */  | 
1183  | 0  |     void *plabel = label;  | 
1184  | 0  |     int ret;  | 
1185  |  | 
  | 
1186  | 0  |     if (ctx == NULL || !EVP_PKEY_CTX_IS_ASYM_CIPHER_OP(ctx)) { | 
1187  | 0  |         ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED);  | 
1188  |  |         /* Uses the same return values as EVP_PKEY_CTX_ctrl */  | 
1189  | 0  |         return -2;  | 
1190  | 0  |     }  | 
1191  |  |  | 
1192  |  |     /* If key type not RSA return error */  | 
1193  | 0  |     if (!EVP_PKEY_CTX_is_a(ctx, "RSA"))  | 
1194  | 0  |         return -1;  | 
1195  |  |  | 
1196  |  |     /* Accept NULL for backward compatibility */  | 
1197  | 0  |     if (label == NULL && llen == 0)  | 
1198  | 0  |         plabel = (void *)empty;  | 
1199  |  |  | 
1200  |  |     /* Cast away the const. This is read only so should be safe */  | 
1201  | 0  |     *p++ = OSSL_PARAM_construct_octet_string(OSSL_ASYM_CIPHER_PARAM_OAEP_LABEL,  | 
1202  | 0  |                                              (void *)plabel, (size_t)llen);  | 
1203  | 0  |     *p++ = OSSL_PARAM_construct_end();  | 
1204  |  | 
  | 
1205  | 0  |     ret = evp_pkey_ctx_set_params_strict(ctx, rsa_params);  | 
1206  | 0  |     if (ret <= 0)  | 
1207  | 0  |         return ret;  | 
1208  |  |  | 
1209  |  |     /* Ownership is supposed to be transferred to the callee. */  | 
1210  | 0  |     OPENSSL_free(label);  | 
1211  | 0  |     return 1;  | 
1212  | 0  | }  | 
1213  |  |  | 
1214  |  | int EVP_PKEY_CTX_get0_rsa_oaep_label(EVP_PKEY_CTX *ctx, unsigned char **label)  | 
1215  | 0  | { | 
1216  | 0  |     OSSL_PARAM rsa_params[2], *p = rsa_params;  | 
1217  | 0  |     size_t labellen;  | 
1218  |  | 
  | 
1219  | 0  |     if (ctx == NULL || !EVP_PKEY_CTX_IS_ASYM_CIPHER_OP(ctx)) { | 
1220  | 0  |         ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED);  | 
1221  |  |         /* Uses the same return values as EVP_PKEY_CTX_ctrl */  | 
1222  | 0  |         return -2;  | 
1223  | 0  |     }  | 
1224  |  |  | 
1225  |  |     /* If key type not RSA return error */  | 
1226  | 0  |     if (!EVP_PKEY_CTX_is_a(ctx, "RSA"))  | 
1227  | 0  |         return -1;  | 
1228  |  |  | 
1229  | 0  |     *p++ = OSSL_PARAM_construct_octet_ptr(OSSL_ASYM_CIPHER_PARAM_OAEP_LABEL,  | 
1230  | 0  |                                           (void **)label, 0);  | 
1231  | 0  |     *p++ = OSSL_PARAM_construct_end();  | 
1232  |  | 
  | 
1233  | 0  |     if (!EVP_PKEY_CTX_get_params(ctx, rsa_params))  | 
1234  | 0  |         return -1;  | 
1235  |  |  | 
1236  | 0  |     labellen = rsa_params[0].return_size;  | 
1237  | 0  |     if (labellen > INT_MAX)  | 
1238  | 0  |         return -1;  | 
1239  |  |  | 
1240  | 0  |     return (int)labellen;  | 
1241  | 0  | }  | 
1242  |  |  | 
1243  |  | /*  | 
1244  |  |  * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,  | 
1245  |  |  * simply because that's easier.  | 
1246  |  |  */  | 
1247  |  | int EVP_PKEY_CTX_set_rsa_pss_saltlen(EVP_PKEY_CTX *ctx, int saltlen)  | 
1248  | 0  | { | 
1249  |  |     /*  | 
1250  |  |      * For some reason, the optype was set to this:  | 
1251  |  |      *  | 
1252  |  |      * EVP_PKEY_OP_SIGN|EVP_PKEY_OP_VERIFY  | 
1253  |  |      *  | 
1254  |  |      * However, we do use RSA-PSS with the whole gamut of diverse signature  | 
1255  |  |      * and verification operations, so the optype gets upgraded to this:  | 
1256  |  |      *  | 
1257  |  |      * EVP_PKEY_OP_TYPE_SIG  | 
1258  |  |      */  | 
1259  | 0  |     return RSA_pkey_ctx_ctrl(ctx, EVP_PKEY_OP_TYPE_SIG,  | 
1260  | 0  |                              EVP_PKEY_CTRL_RSA_PSS_SALTLEN, saltlen, NULL);  | 
1261  | 0  | }  | 
1262  |  |  | 
1263  |  | /*  | 
1264  |  |  * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,  | 
1265  |  |  * simply because that's easier.  | 
1266  |  |  */  | 
1267  |  | int EVP_PKEY_CTX_get_rsa_pss_saltlen(EVP_PKEY_CTX *ctx, int *saltlen)  | 
1268  | 0  | { | 
1269  |  |     /*  | 
1270  |  |      * Because of circumstances, the optype is updated from:  | 
1271  |  |      *  | 
1272  |  |      * EVP_PKEY_OP_SIGN|EVP_PKEY_OP_VERIFY  | 
1273  |  |      *  | 
1274  |  |      * to:  | 
1275  |  |      *  | 
1276  |  |      * EVP_PKEY_OP_TYPE_SIG  | 
1277  |  |      */  | 
1278  | 0  |     return RSA_pkey_ctx_ctrl(ctx, EVP_PKEY_OP_TYPE_SIG,  | 
1279  | 0  |                              EVP_PKEY_CTRL_GET_RSA_PSS_SALTLEN, 0, saltlen);  | 
1280  | 0  | }  | 
1281  |  |  | 
1282  |  | int EVP_PKEY_CTX_set_rsa_pss_keygen_saltlen(EVP_PKEY_CTX *ctx, int saltlen)  | 
1283  | 0  | { | 
1284  | 0  |     OSSL_PARAM pad_params[2], *p = pad_params;  | 
1285  |  | 
  | 
1286  | 0  |     if (ctx == NULL || !EVP_PKEY_CTX_IS_GEN_OP(ctx)) { | 
1287  | 0  |         ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED);  | 
1288  |  |         /* Uses the same return values as EVP_PKEY_CTX_ctrl */  | 
1289  | 0  |         return -2;  | 
1290  | 0  |     }  | 
1291  |  |  | 
1292  | 0  |     if (!EVP_PKEY_CTX_is_a(ctx, "RSA-PSS"))  | 
1293  | 0  |         return -1;  | 
1294  |  |  | 
1295  | 0  |     *p++ = OSSL_PARAM_construct_int(OSSL_SIGNATURE_PARAM_PSS_SALTLEN,  | 
1296  | 0  |                                     &saltlen);  | 
1297  | 0  |     *p++ = OSSL_PARAM_construct_end();  | 
1298  |  | 
  | 
1299  | 0  |     return evp_pkey_ctx_set_params_strict(ctx, pad_params);  | 
1300  | 0  | }  | 
1301  |  |  | 
1302  |  | int EVP_PKEY_CTX_set_rsa_keygen_bits(EVP_PKEY_CTX *ctx, int bits)  | 
1303  | 0  | { | 
1304  | 0  |     OSSL_PARAM params[2], *p = params;  | 
1305  | 0  |     size_t bits2 = bits;  | 
1306  |  | 
  | 
1307  | 0  |     if (ctx == NULL || !EVP_PKEY_CTX_IS_GEN_OP(ctx)) { | 
1308  | 0  |         ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED);  | 
1309  |  |         /* Uses the same return values as EVP_PKEY_CTX_ctrl */  | 
1310  | 0  |         return -2;  | 
1311  | 0  |     }  | 
1312  |  |  | 
1313  |  |     /* If key type not RSA return error */  | 
1314  | 0  |     if (!EVP_PKEY_CTX_is_a(ctx, "RSA")  | 
1315  | 0  |         && !EVP_PKEY_CTX_is_a(ctx, "RSA-PSS"))  | 
1316  | 0  |         return -1;  | 
1317  |  |  | 
1318  | 0  |     *p++ = OSSL_PARAM_construct_size_t(OSSL_PKEY_PARAM_RSA_BITS, &bits2);  | 
1319  | 0  |     *p++ = OSSL_PARAM_construct_end();  | 
1320  |  | 
  | 
1321  | 0  |     return evp_pkey_ctx_set_params_strict(ctx, params);  | 
1322  | 0  | }  | 
1323  |  |  | 
1324  |  | int EVP_PKEY_CTX_set_rsa_keygen_pubexp(EVP_PKEY_CTX *ctx, BIGNUM *pubexp)  | 
1325  | 0  | { | 
1326  | 0  |     int ret = RSA_pkey_ctx_ctrl(ctx, EVP_PKEY_OP_KEYGEN,  | 
1327  | 0  |                                 EVP_PKEY_CTRL_RSA_KEYGEN_PUBEXP, 0, pubexp);  | 
1328  |  |  | 
1329  |  |     /*  | 
1330  |  |      * Satisfy memory semantics for pre-3.0 callers of  | 
1331  |  |      * EVP_PKEY_CTX_set_rsa_keygen_pubexp(): their expectation is that input  | 
1332  |  |      * pubexp BIGNUM becomes managed by the EVP_PKEY_CTX on success.  | 
1333  |  |      */  | 
1334  | 0  |     if (ret > 0 && evp_pkey_ctx_is_provided(ctx)) { | 
1335  | 0  |         BN_free(ctx->rsa_pubexp);  | 
1336  | 0  |         ctx->rsa_pubexp = pubexp;  | 
1337  | 0  |     }  | 
1338  |  | 
  | 
1339  | 0  |     return ret;  | 
1340  | 0  | }  | 
1341  |  |  | 
1342  |  | int EVP_PKEY_CTX_set1_rsa_keygen_pubexp(EVP_PKEY_CTX *ctx, BIGNUM *pubexp)  | 
1343  | 0  | { | 
1344  | 0  |     int ret = 0;  | 
1345  |  |  | 
1346  |  |     /*  | 
1347  |  |      * When we're dealing with a provider, there's no need to duplicate  | 
1348  |  |      * pubexp, as it gets copied when transforming to an OSSL_PARAM anyway.  | 
1349  |  |      */  | 
1350  | 0  |     if (evp_pkey_ctx_is_legacy(ctx)) { | 
1351  | 0  |         pubexp = BN_dup(pubexp);  | 
1352  | 0  |         if (pubexp == NULL)  | 
1353  | 0  |             return 0;  | 
1354  | 0  |     }  | 
1355  | 0  |     ret = EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_KEYGEN,  | 
1356  | 0  |                             EVP_PKEY_CTRL_RSA_KEYGEN_PUBEXP, 0, pubexp);  | 
1357  | 0  |     if (evp_pkey_ctx_is_legacy(ctx) && ret <= 0)  | 
1358  | 0  |         BN_free(pubexp);  | 
1359  | 0  |     return ret;  | 
1360  | 0  | }  | 
1361  |  |  | 
1362  |  | int EVP_PKEY_CTX_set_rsa_keygen_primes(EVP_PKEY_CTX *ctx, int primes)  | 
1363  | 0  | { | 
1364  | 0  |     OSSL_PARAM params[2], *p = params;  | 
1365  | 0  |     size_t primes2 = primes;  | 
1366  |  | 
  | 
1367  | 0  |     if (ctx == NULL || !EVP_PKEY_CTX_IS_GEN_OP(ctx)) { | 
1368  | 0  |         ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED);  | 
1369  |  |         /* Uses the same return values as EVP_PKEY_CTX_ctrl */  | 
1370  | 0  |         return -2;  | 
1371  | 0  |     }  | 
1372  |  |  | 
1373  |  |     /* If key type not RSA return error */  | 
1374  | 0  |     if (!EVP_PKEY_CTX_is_a(ctx, "RSA")  | 
1375  | 0  |         && !EVP_PKEY_CTX_is_a(ctx, "RSA-PSS"))  | 
1376  | 0  |         return -1;  | 
1377  |  |  | 
1378  | 0  |     *p++ = OSSL_PARAM_construct_size_t(OSSL_PKEY_PARAM_RSA_PRIMES, &primes2);  | 
1379  | 0  |     *p++ = OSSL_PARAM_construct_end();  | 
1380  |  | 
  | 
1381  | 0  |     return evp_pkey_ctx_set_params_strict(ctx, params);  | 
1382  | 0  | }  | 
1383  |  | #endif  |