/src/openssl/crypto/stack/stack.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright 1995-2024 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * |
4 | | * Licensed under the Apache License 2.0 (the "License"). You may not use |
5 | | * this file except in compliance with the License. You can obtain a copy |
6 | | * in the file LICENSE in the source distribution or at |
7 | | * https://www.openssl.org/source/license.html |
8 | | */ |
9 | | |
10 | | #include <stdio.h> |
11 | | #include "internal/cryptlib.h" |
12 | | #include "internal/numbers.h" |
13 | | #include "internal/safe_math.h" |
14 | | #include <openssl/stack.h> |
15 | | #include <errno.h> |
16 | | #include <openssl/e_os2.h> /* For ossl_inline */ |
17 | | |
18 | | OSSL_SAFE_MATH_SIGNED(int, int) |
19 | | |
20 | | /* |
21 | | * The initial number of nodes in the array. |
22 | | */ |
23 | | static const int min_nodes = 4; |
24 | | static const int max_nodes = SIZE_MAX / sizeof(void *) < INT_MAX |
25 | | ? (int)(SIZE_MAX / sizeof(void *)) : INT_MAX; |
26 | | |
27 | | struct stack_st { |
28 | | int num; |
29 | | const void **data; |
30 | | int sorted; |
31 | | int num_alloc; |
32 | | OPENSSL_sk_compfunc comp; |
33 | | OPENSSL_sk_freefunc_thunk free_thunk; |
34 | | }; |
35 | | |
36 | | OPENSSL_sk_compfunc OPENSSL_sk_set_cmp_func(OPENSSL_STACK *sk, |
37 | | OPENSSL_sk_compfunc c) |
38 | 0 | { |
39 | 0 | OPENSSL_sk_compfunc old = sk->comp; |
40 | |
|
41 | 0 | if (sk->comp != c) |
42 | 0 | sk->sorted = 0; |
43 | 0 | sk->comp = c; |
44 | |
|
45 | 0 | return old; |
46 | 0 | } |
47 | | |
48 | | OPENSSL_STACK *OPENSSL_sk_dup(const OPENSSL_STACK *sk) |
49 | 848 | { |
50 | 848 | OPENSSL_STACK *ret; |
51 | | |
52 | 848 | if ((ret = OPENSSL_malloc(sizeof(*ret))) == NULL) |
53 | 0 | goto err; |
54 | | |
55 | 848 | if (sk == NULL) { |
56 | 1 | ret->num = 0; |
57 | 1 | ret->sorted = 0; |
58 | 1 | ret->comp = NULL; |
59 | 847 | } else { |
60 | | /* direct structure assignment */ |
61 | 847 | *ret = *sk; |
62 | 847 | } |
63 | | |
64 | 848 | if (sk == NULL || sk->num == 0) { |
65 | | /* postpone |ret->data| allocation */ |
66 | 1 | ret->data = NULL; |
67 | 1 | ret->num_alloc = 0; |
68 | 1 | return ret; |
69 | 1 | } |
70 | | |
71 | | /* duplicate |sk->data| content */ |
72 | 847 | ret->data = OPENSSL_malloc(sizeof(*ret->data) * sk->num_alloc); |
73 | 847 | if (ret->data == NULL) |
74 | 0 | goto err; |
75 | 847 | memcpy(ret->data, sk->data, sizeof(void *) * sk->num); |
76 | 847 | return ret; |
77 | | |
78 | 0 | err: |
79 | 0 | OPENSSL_sk_free(ret); |
80 | 0 | return NULL; |
81 | 847 | } |
82 | | |
83 | | OPENSSL_STACK *OPENSSL_sk_deep_copy(const OPENSSL_STACK *sk, |
84 | | OPENSSL_sk_copyfunc copy_func, |
85 | | OPENSSL_sk_freefunc free_func) |
86 | 1 | { |
87 | 1 | OPENSSL_STACK *ret; |
88 | 1 | int i; |
89 | | |
90 | 1 | if ((ret = OPENSSL_malloc(sizeof(*ret))) == NULL) |
91 | 0 | goto err; |
92 | | |
93 | 1 | if (sk == NULL) { |
94 | 1 | ret->num = 0; |
95 | 1 | ret->sorted = 0; |
96 | 1 | ret->comp = NULL; |
97 | 1 | } else { |
98 | | /* direct structure assignment */ |
99 | 0 | *ret = *sk; |
100 | 0 | } |
101 | | |
102 | 1 | if (sk == NULL || sk->num == 0) { |
103 | | /* postpone |ret| data allocation */ |
104 | 1 | ret->data = NULL; |
105 | 1 | ret->num_alloc = 0; |
106 | 1 | return ret; |
107 | 1 | } |
108 | | |
109 | 0 | ret->num_alloc = sk->num > min_nodes ? sk->num : min_nodes; |
110 | 0 | ret->data = OPENSSL_zalloc(sizeof(*ret->data) * ret->num_alloc); |
111 | 0 | if (ret->data == NULL) |
112 | 0 | goto err; |
113 | | |
114 | 0 | for (i = 0; i < ret->num; ++i) { |
115 | 0 | if (sk->data[i] == NULL) |
116 | 0 | continue; |
117 | 0 | if ((ret->data[i] = copy_func(sk->data[i])) == NULL) { |
118 | 0 | while (--i >= 0) |
119 | 0 | if (ret->data[i] != NULL) |
120 | 0 | free_func((void *)ret->data[i]); |
121 | 0 | goto err; |
122 | 0 | } |
123 | 0 | } |
124 | 0 | return ret; |
125 | | |
126 | 0 | err: |
127 | 0 | OPENSSL_sk_free(ret); |
128 | 0 | return NULL; |
129 | 0 | } |
130 | | |
131 | | OPENSSL_STACK *OPENSSL_sk_new_null(void) |
132 | 660 | { |
133 | 660 | return OPENSSL_sk_new_reserve(NULL, 0); |
134 | 660 | } |
135 | | |
136 | | OPENSSL_STACK *OPENSSL_sk_new(OPENSSL_sk_compfunc c) |
137 | 35 | { |
138 | 35 | return OPENSSL_sk_new_reserve(c, 0); |
139 | 35 | } |
140 | | |
141 | | /* |
142 | | * Calculate the array growth based on the target size. |
143 | | * |
144 | | * The growth factor is a rational number and is defined by a numerator |
145 | | * and a denominator. According to Andrew Koenig in his paper "Why Are |
146 | | * Vectors Efficient?" from JOOP 11(5) 1998, this factor should be less |
147 | | * than the golden ratio (1.618...). |
148 | | * |
149 | | * Considering only the Fibonacci ratios less than the golden ratio, the |
150 | | * number of steps from the minimum allocation to integer overflow is: |
151 | | * factor decimal growths |
152 | | * 3/2 1.5 51 |
153 | | * 8/5 1.6 45 |
154 | | * 21/13 1.615... 44 |
155 | | * |
156 | | * All larger factors have the same number of growths. |
157 | | * |
158 | | * 3/2 and 8/5 have nice power of two shifts, so seem like a good choice. |
159 | | */ |
160 | | static ossl_inline int compute_growth(int target, int current) |
161 | 17 | { |
162 | 17 | int err = 0; |
163 | | |
164 | 34 | while (current < target) { |
165 | 17 | if (current >= max_nodes) |
166 | 0 | return 0; |
167 | | |
168 | 17 | current = safe_muldiv_int(current, 8, 5, &err); |
169 | 17 | if (err != 0) |
170 | 0 | return 0; |
171 | 17 | if (current >= max_nodes) |
172 | 0 | current = max_nodes; |
173 | 17 | } |
174 | 17 | return current; |
175 | 17 | } |
176 | | |
177 | | /* internal STACK storage allocation */ |
178 | | static int sk_reserve(OPENSSL_STACK *st, int n, int exact) |
179 | 1.39k | { |
180 | 1.39k | const void **tmpdata; |
181 | 1.39k | int num_alloc; |
182 | | |
183 | | /* Check to see the reservation isn't exceeding the hard limit */ |
184 | 1.39k | if (n > max_nodes - st->num) { |
185 | 0 | ERR_raise(ERR_LIB_CRYPTO, CRYPTO_R_TOO_MANY_RECORDS); |
186 | 0 | return 0; |
187 | 0 | } |
188 | | |
189 | | /* Figure out the new size */ |
190 | 1.39k | num_alloc = st->num + n; |
191 | 1.39k | if (num_alloc < min_nodes) |
192 | 1.07k | num_alloc = min_nodes; |
193 | | |
194 | | /* If |st->data| allocation was postponed */ |
195 | 1.39k | if (st->data == NULL) { |
196 | | /* |
197 | | * At this point, |st->num_alloc| and |st->num| are 0; |
198 | | * so |num_alloc| value is |n| or |min_nodes| if greater than |n|. |
199 | | */ |
200 | 660 | if ((st->data = OPENSSL_zalloc(sizeof(void *) * num_alloc)) == NULL) |
201 | 0 | return 0; |
202 | 660 | st->num_alloc = num_alloc; |
203 | 660 | return 1; |
204 | 660 | } |
205 | | |
206 | 732 | if (!exact) { |
207 | 732 | if (num_alloc <= st->num_alloc) |
208 | 715 | return 1; |
209 | 17 | num_alloc = compute_growth(num_alloc, st->num_alloc); |
210 | 17 | if (num_alloc == 0) { |
211 | 0 | ERR_raise(ERR_LIB_CRYPTO, CRYPTO_R_TOO_MANY_RECORDS); |
212 | 0 | return 0; |
213 | 0 | } |
214 | 17 | } else if (num_alloc == st->num_alloc) { |
215 | 0 | return 1; |
216 | 0 | } |
217 | | |
218 | 17 | tmpdata = OPENSSL_realloc((void *)st->data, sizeof(void *) * num_alloc); |
219 | 17 | if (tmpdata == NULL) |
220 | 0 | return 0; |
221 | | |
222 | 17 | st->data = tmpdata; |
223 | 17 | st->num_alloc = num_alloc; |
224 | 17 | return 1; |
225 | 17 | } |
226 | | |
227 | | OPENSSL_STACK *OPENSSL_sk_new_reserve(OPENSSL_sk_compfunc c, int n) |
228 | 695 | { |
229 | 695 | OPENSSL_STACK *st = OPENSSL_zalloc(sizeof(OPENSSL_STACK)); |
230 | | |
231 | 695 | if (st == NULL) |
232 | 0 | return NULL; |
233 | | |
234 | 695 | st->comp = c; |
235 | | |
236 | 695 | if (n <= 0) |
237 | 695 | return st; |
238 | | |
239 | 0 | if (!sk_reserve(st, n, 1)) { |
240 | 0 | OPENSSL_sk_free(st); |
241 | 0 | return NULL; |
242 | 0 | } |
243 | | |
244 | 0 | return st; |
245 | 0 | } |
246 | | |
247 | | int OPENSSL_sk_reserve(OPENSSL_STACK *st, int n) |
248 | 0 | { |
249 | 0 | if (st == NULL) { |
250 | 0 | ERR_raise(ERR_LIB_CRYPTO, ERR_R_PASSED_NULL_PARAMETER); |
251 | 0 | return 0; |
252 | 0 | } |
253 | | |
254 | 0 | if (n < 0) |
255 | 0 | return 1; |
256 | 0 | return sk_reserve(st, n, 1); |
257 | 0 | } |
258 | | |
259 | | OPENSSL_STACK *OPENSSL_sk_set_thunks(OPENSSL_STACK *st, OPENSSL_sk_freefunc_thunk f_thunk) |
260 | 1.00k | { |
261 | 1.00k | if (st != NULL) |
262 | 342 | st->free_thunk = f_thunk; |
263 | | |
264 | 1.00k | return st; |
265 | 1.00k | } |
266 | | |
267 | | int OPENSSL_sk_insert(OPENSSL_STACK *st, const void *data, int loc) |
268 | 1.39k | { |
269 | 1.39k | if (st == NULL) { |
270 | 0 | ERR_raise(ERR_LIB_CRYPTO, ERR_R_PASSED_NULL_PARAMETER); |
271 | 0 | return 0; |
272 | 0 | } |
273 | 1.39k | if (st->num == max_nodes) { |
274 | 0 | ERR_raise(ERR_LIB_CRYPTO, CRYPTO_R_TOO_MANY_RECORDS); |
275 | 0 | return 0; |
276 | 0 | } |
277 | | |
278 | 1.39k | if (!sk_reserve(st, 1, 0)) |
279 | 0 | return 0; |
280 | | |
281 | 1.39k | if ((loc >= st->num) || (loc < 0)) { |
282 | 1.39k | st->data[st->num] = data; |
283 | 1.39k | } else { |
284 | 0 | memmove(&st->data[loc + 1], &st->data[loc], |
285 | 0 | sizeof(st->data[0]) * (st->num - loc)); |
286 | 0 | st->data[loc] = data; |
287 | 0 | } |
288 | 1.39k | st->num++; |
289 | 1.39k | st->sorted = 0; |
290 | 1.39k | return st->num; |
291 | 1.39k | } |
292 | | |
293 | | static ossl_inline void *internal_delete(OPENSSL_STACK *st, int loc) |
294 | 253 | { |
295 | 253 | const void *ret = st->data[loc]; |
296 | | |
297 | 253 | if (loc != st->num - 1) |
298 | 0 | memmove(&st->data[loc], &st->data[loc + 1], |
299 | 0 | sizeof(st->data[0]) * (st->num - loc - 1)); |
300 | 253 | st->num--; |
301 | | |
302 | 253 | return (void *)ret; |
303 | 253 | } |
304 | | |
305 | | void *OPENSSL_sk_delete_ptr(OPENSSL_STACK *st, const void *p) |
306 | 0 | { |
307 | 0 | int i; |
308 | |
|
309 | 0 | if (st == NULL) |
310 | 0 | return NULL; |
311 | | |
312 | 0 | for (i = 0; i < st->num; i++) |
313 | 0 | if (st->data[i] == p) |
314 | 0 | return internal_delete(st, i); |
315 | 0 | return NULL; |
316 | 0 | } |
317 | | |
318 | | void *OPENSSL_sk_delete(OPENSSL_STACK *st, int loc) |
319 | 1 | { |
320 | 1 | if (st == NULL || loc < 0 || loc >= st->num) |
321 | 0 | return NULL; |
322 | | |
323 | 1 | return internal_delete(st, loc); |
324 | 1 | } |
325 | | |
326 | | static int internal_find(OPENSSL_STACK *st, const void *data, |
327 | | int ret_val_options, int *pnum_matched) |
328 | 3 | { |
329 | 3 | const void *r; |
330 | 3 | int i, count = 0; |
331 | 3 | int *pnum = pnum_matched; |
332 | | |
333 | 3 | if (st == NULL || st->num == 0) |
334 | 0 | return -1; |
335 | | |
336 | 3 | if (pnum == NULL) |
337 | 3 | pnum = &count; |
338 | | |
339 | 3 | if (st->comp == NULL) { |
340 | 0 | for (i = 0; i < st->num; i++) |
341 | 0 | if (st->data[i] == data) { |
342 | 0 | *pnum = 1; |
343 | 0 | return i; |
344 | 0 | } |
345 | 0 | *pnum = 0; |
346 | 0 | return -1; |
347 | 0 | } |
348 | | |
349 | 3 | if (data == NULL) |
350 | 0 | return -1; |
351 | | |
352 | 3 | if (!st->sorted) { |
353 | 0 | int res = -1; |
354 | |
|
355 | 0 | for (i = 0; i < st->num; i++) |
356 | 0 | if (st->comp(&data, st->data + i) == 0) { |
357 | 0 | if (res == -1) |
358 | 0 | res = i; |
359 | 0 | ++*pnum; |
360 | | /* Check if only one result is wanted and exit if so */ |
361 | 0 | if (pnum_matched == NULL) |
362 | 0 | return i; |
363 | 0 | } |
364 | 0 | if (res == -1) |
365 | 0 | *pnum = 0; |
366 | 0 | return res; |
367 | 0 | } |
368 | | |
369 | 3 | if (pnum_matched != NULL) |
370 | 0 | ret_val_options |= OSSL_BSEARCH_FIRST_VALUE_ON_MATCH; |
371 | 3 | r = ossl_bsearch(&data, st->data, st->num, sizeof(void *), st->comp, |
372 | 3 | ret_val_options); |
373 | | |
374 | 3 | if (pnum_matched != NULL) { |
375 | 0 | *pnum = 0; |
376 | 0 | if (r != NULL) { |
377 | 0 | const void **p = (const void **)r; |
378 | |
|
379 | 0 | while (p < st->data + st->num) { |
380 | 0 | if (st->comp(&data, p) != 0) |
381 | 0 | break; |
382 | 0 | ++*pnum; |
383 | 0 | ++p; |
384 | 0 | } |
385 | 0 | } |
386 | 0 | } |
387 | | |
388 | 3 | return r == NULL ? -1 : (int)((const void **)r - st->data); |
389 | 3 | } |
390 | | |
391 | | int OPENSSL_sk_find(OPENSSL_STACK *st, const void *data) |
392 | 3 | { |
393 | 3 | return internal_find(st, data, OSSL_BSEARCH_FIRST_VALUE_ON_MATCH, NULL); |
394 | 3 | } |
395 | | |
396 | | int OPENSSL_sk_find_ex(OPENSSL_STACK *st, const void *data) |
397 | 0 | { |
398 | 0 | return internal_find(st, data, OSSL_BSEARCH_VALUE_ON_NOMATCH, NULL); |
399 | 0 | } |
400 | | |
401 | | int OPENSSL_sk_find_all(OPENSSL_STACK *st, const void *data, int *pnum) |
402 | 0 | { |
403 | 0 | return internal_find(st, data, OSSL_BSEARCH_FIRST_VALUE_ON_MATCH, pnum); |
404 | 0 | } |
405 | | |
406 | | int OPENSSL_sk_push(OPENSSL_STACK *st, const void *data) |
407 | 1.39k | { |
408 | 1.39k | if (st == NULL) |
409 | 0 | return 0; |
410 | 1.39k | return OPENSSL_sk_insert(st, data, st->num); |
411 | 1.39k | } |
412 | | |
413 | | int OPENSSL_sk_unshift(OPENSSL_STACK *st, const void *data) |
414 | 0 | { |
415 | 0 | return OPENSSL_sk_insert(st, data, 0); |
416 | 0 | } |
417 | | |
418 | | void *OPENSSL_sk_shift(OPENSSL_STACK *st) |
419 | 0 | { |
420 | 0 | if (st == NULL || st->num == 0) |
421 | 0 | return NULL; |
422 | 0 | return internal_delete(st, 0); |
423 | 0 | } |
424 | | |
425 | | void *OPENSSL_sk_pop(OPENSSL_STACK *st) |
426 | 252 | { |
427 | 252 | if (st == NULL || st->num == 0) |
428 | 0 | return NULL; |
429 | 252 | return internal_delete(st, st->num - 1); |
430 | 252 | } |
431 | | |
432 | | void OPENSSL_sk_zero(OPENSSL_STACK *st) |
433 | 0 | { |
434 | 0 | if (st == NULL || st->num == 0) |
435 | 0 | return; |
436 | 0 | memset(st->data, 0, sizeof(*st->data) * st->num); |
437 | 0 | st->num = 0; |
438 | 0 | } |
439 | | |
440 | | void OPENSSL_sk_pop_free(OPENSSL_STACK *st, OPENSSL_sk_freefunc func) |
441 | 1.86k | { |
442 | 1.86k | int i; |
443 | | |
444 | 1.86k | if (st == NULL) |
445 | 1.30k | return; |
446 | | |
447 | 1.69k | for (i = 0; i < st->num; i++) { |
448 | 1.13k | if (st->data[i] != NULL) { |
449 | 1.13k | if (st->free_thunk != NULL) |
450 | 530 | st->free_thunk(func, (void *)st->data[i]); |
451 | 600 | else |
452 | 600 | func((void *)st->data[i]); |
453 | 1.13k | } |
454 | 1.13k | } |
455 | 567 | OPENSSL_sk_free(st); |
456 | 567 | } |
457 | | |
458 | | void OPENSSL_sk_free(OPENSSL_STACK *st) |
459 | 2.18k | { |
460 | 2.18k | if (st == NULL) |
461 | 644 | return; |
462 | 1.54k | OPENSSL_free(st->data); |
463 | 1.54k | OPENSSL_free(st); |
464 | 1.54k | } |
465 | | |
466 | | int OPENSSL_sk_num(const OPENSSL_STACK *st) |
467 | 5.78k | { |
468 | 5.78k | return st == NULL ? -1 : st->num; |
469 | 5.78k | } |
470 | | |
471 | | void *OPENSSL_sk_value(const OPENSSL_STACK *st, int i) |
472 | 3.81k | { |
473 | 3.81k | if (st == NULL || i < 0 || i >= st->num) |
474 | 0 | return NULL; |
475 | 3.81k | return (void *)st->data[i]; |
476 | 3.81k | } |
477 | | |
478 | | void *OPENSSL_sk_set(OPENSSL_STACK *st, int i, const void *data) |
479 | 0 | { |
480 | 0 | if (st == NULL) { |
481 | 0 | ERR_raise(ERR_LIB_CRYPTO, ERR_R_PASSED_NULL_PARAMETER); |
482 | 0 | return NULL; |
483 | 0 | } |
484 | 0 | if (i < 0 || i >= st->num) { |
485 | 0 | ERR_raise_data(ERR_LIB_CRYPTO, ERR_R_PASSED_INVALID_ARGUMENT, |
486 | 0 | "i=%d", i); |
487 | 0 | return NULL; |
488 | 0 | } |
489 | 0 | st->data[i] = data; |
490 | 0 | st->sorted = 0; |
491 | 0 | return (void *)st->data[i]; |
492 | 0 | } |
493 | | |
494 | | void OPENSSL_sk_sort(OPENSSL_STACK *st) |
495 | 36 | { |
496 | 36 | if (st != NULL && !st->sorted && st->comp != NULL) { |
497 | 34 | if (st->num > 1) |
498 | 0 | qsort(st->data, st->num, sizeof(void *), st->comp); |
499 | 34 | st->sorted = 1; /* empty or single-element stack is considered sorted */ |
500 | 34 | } |
501 | 36 | } |
502 | | |
503 | | int OPENSSL_sk_is_sorted(const OPENSSL_STACK *st) |
504 | 0 | { |
505 | 0 | return st == NULL ? 1 : st->sorted; |
506 | 0 | } |