/src/openssl/crypto/encode_decode/encoder_lib.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright 2019-2025 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * |
4 | | * Licensed under the Apache License 2.0 (the "License"). You may not use |
5 | | * this file except in compliance with the License. You can obtain a copy |
6 | | * in the file LICENSE in the source distribution or at |
7 | | * https://www.openssl.org/source/license.html |
8 | | */ |
9 | | |
10 | | #include <ctype.h> |
11 | | |
12 | | #include <openssl/core_names.h> |
13 | | #include <openssl/bio.h> |
14 | | #include <openssl/encoder.h> |
15 | | #include <openssl/buffer.h> |
16 | | #include <openssl/params.h> |
17 | | #include <openssl/provider.h> |
18 | | #include <openssl/trace.h> |
19 | | #include <crypto/bn.h> |
20 | | #include "internal/bio.h" |
21 | | #include "internal/ffc.h" |
22 | | #include "internal/provider.h" |
23 | | #include "internal/encoder.h" |
24 | | #include "encoder_local.h" |
25 | | |
26 | | /* Number of octets per line */ |
27 | 0 | #define LABELED_BUF_PRINT_WIDTH 15 |
28 | | |
29 | | # ifdef SIXTY_FOUR_BIT_LONG |
30 | | # define BN_FMTu "%lu" |
31 | | # define BN_FMTx "%lx" |
32 | | # endif |
33 | | |
34 | | # ifdef SIXTY_FOUR_BIT |
35 | | # define BN_FMTu "%llu" |
36 | | # define BN_FMTx "%llx" |
37 | | # endif |
38 | | |
39 | | # ifdef THIRTY_TWO_BIT |
40 | | # define BN_FMTu "%u" |
41 | | # define BN_FMTx "%x" |
42 | | # endif |
43 | | |
44 | | struct encoder_process_data_st { |
45 | | OSSL_ENCODER_CTX *ctx; |
46 | | |
47 | | /* Current BIO */ |
48 | | BIO *bio; |
49 | | |
50 | | /* Index of the current encoder instance to be processed */ |
51 | | int current_encoder_inst_index; |
52 | | |
53 | | /* Processing data passed down through recursion */ |
54 | | int level; /* Recursion level */ |
55 | | OSSL_ENCODER_INSTANCE *next_encoder_inst; |
56 | | int count_output_structure; |
57 | | |
58 | | /* Processing data passed up through recursion */ |
59 | | OSSL_ENCODER_INSTANCE *prev_encoder_inst; |
60 | | unsigned char *running_output; |
61 | | size_t running_output_length; |
62 | | /* Data type = the name of the first succeeding encoder implementation */ |
63 | | const char *data_type; |
64 | | }; |
65 | | |
66 | | static int encoder_process(struct encoder_process_data_st *data); |
67 | | |
68 | | int OSSL_ENCODER_to_bio(OSSL_ENCODER_CTX *ctx, BIO *out) |
69 | 0 | { |
70 | 0 | struct encoder_process_data_st data; |
71 | |
|
72 | 0 | memset(&data, 0, sizeof(data)); |
73 | 0 | data.ctx = ctx; |
74 | 0 | data.bio = out; |
75 | 0 | data.current_encoder_inst_index = OSSL_ENCODER_CTX_get_num_encoders(ctx); |
76 | |
|
77 | 0 | if (data.current_encoder_inst_index == 0) { |
78 | 0 | ERR_raise_data(ERR_LIB_OSSL_ENCODER, OSSL_ENCODER_R_ENCODER_NOT_FOUND, |
79 | 0 | "No encoders were found. For standard encoders you need " |
80 | 0 | "at least one of the default or base providers " |
81 | 0 | "available. Did you forget to load them?"); |
82 | 0 | return 0; |
83 | 0 | } |
84 | | |
85 | 0 | if (ctx->cleanup == NULL || ctx->construct == NULL) { |
86 | 0 | ERR_raise(ERR_LIB_OSSL_ENCODER, ERR_R_INIT_FAIL); |
87 | 0 | return 0; |
88 | 0 | } |
89 | | |
90 | 0 | return encoder_process(&data) > 0; |
91 | 0 | } |
92 | | |
93 | | #ifndef OPENSSL_NO_STDIO |
94 | | static BIO *bio_from_file(FILE *fp) |
95 | 0 | { |
96 | 0 | BIO *b; |
97 | |
|
98 | 0 | if ((b = BIO_new(BIO_s_file())) == NULL) { |
99 | 0 | ERR_raise(ERR_LIB_OSSL_ENCODER, ERR_R_BUF_LIB); |
100 | 0 | return NULL; |
101 | 0 | } |
102 | 0 | BIO_set_fp(b, fp, BIO_NOCLOSE); |
103 | 0 | return b; |
104 | 0 | } |
105 | | |
106 | | int OSSL_ENCODER_to_fp(OSSL_ENCODER_CTX *ctx, FILE *fp) |
107 | 0 | { |
108 | 0 | BIO *b = bio_from_file(fp); |
109 | 0 | int ret = 0; |
110 | |
|
111 | 0 | if (b != NULL) |
112 | 0 | ret = OSSL_ENCODER_to_bio(ctx, b); |
113 | |
|
114 | 0 | BIO_free(b); |
115 | 0 | return ret; |
116 | 0 | } |
117 | | #endif |
118 | | |
119 | | int OSSL_ENCODER_to_data(OSSL_ENCODER_CTX *ctx, unsigned char **pdata, |
120 | | size_t *pdata_len) |
121 | 0 | { |
122 | 0 | BIO *out; |
123 | 0 | BUF_MEM *buf = NULL; |
124 | 0 | int ret = 0; |
125 | |
|
126 | 0 | if (pdata_len == NULL) { |
127 | 0 | ERR_raise(ERR_LIB_OSSL_ENCODER, ERR_R_PASSED_NULL_PARAMETER); |
128 | 0 | return 0; |
129 | 0 | } |
130 | | |
131 | 0 | out = BIO_new(BIO_s_mem()); |
132 | |
|
133 | 0 | if (out != NULL |
134 | 0 | && OSSL_ENCODER_to_bio(ctx, out) |
135 | 0 | && BIO_get_mem_ptr(out, &buf) > 0) { |
136 | 0 | ret = 1; /* Hope for the best. A too small buffer will clear this */ |
137 | |
|
138 | 0 | if (pdata != NULL && *pdata != NULL) { |
139 | 0 | if (*pdata_len < buf->length) |
140 | | /* |
141 | | * It's tempting to do |*pdata_len = (size_t)buf->length| |
142 | | * However, it's believed to be confusing more than helpful, |
143 | | * so we don't. |
144 | | */ |
145 | 0 | ret = 0; |
146 | 0 | else |
147 | 0 | *pdata_len -= buf->length; |
148 | 0 | } else { |
149 | | /* The buffer with the right size is already allocated for us */ |
150 | 0 | *pdata_len = (size_t)buf->length; |
151 | 0 | } |
152 | |
|
153 | 0 | if (ret) { |
154 | 0 | if (pdata != NULL) { |
155 | 0 | if (*pdata != NULL) { |
156 | 0 | memcpy(*pdata, buf->data, buf->length); |
157 | 0 | *pdata += buf->length; |
158 | 0 | } else { |
159 | | /* In this case, we steal the data from BIO_s_mem() */ |
160 | 0 | *pdata = (unsigned char *)buf->data; |
161 | 0 | buf->data = NULL; |
162 | 0 | } |
163 | 0 | } |
164 | 0 | } |
165 | 0 | } |
166 | 0 | BIO_free(out); |
167 | 0 | return ret; |
168 | 0 | } |
169 | | |
170 | | int OSSL_ENCODER_CTX_set_selection(OSSL_ENCODER_CTX *ctx, int selection) |
171 | 0 | { |
172 | 0 | if (!ossl_assert(ctx != NULL)) { |
173 | 0 | ERR_raise(ERR_LIB_OSSL_ENCODER, ERR_R_PASSED_NULL_PARAMETER); |
174 | 0 | return 0; |
175 | 0 | } |
176 | | |
177 | 0 | if (!ossl_assert(selection != 0)) { |
178 | 0 | ERR_raise(ERR_LIB_OSSL_ENCODER, ERR_R_PASSED_INVALID_ARGUMENT); |
179 | 0 | return 0; |
180 | 0 | } |
181 | | |
182 | 0 | ctx->selection = selection; |
183 | 0 | return 1; |
184 | 0 | } |
185 | | |
186 | | int OSSL_ENCODER_CTX_set_output_type(OSSL_ENCODER_CTX *ctx, |
187 | | const char *output_type) |
188 | 0 | { |
189 | 0 | if (!ossl_assert(ctx != NULL) || !ossl_assert(output_type != NULL)) { |
190 | 0 | ERR_raise(ERR_LIB_OSSL_ENCODER, ERR_R_PASSED_NULL_PARAMETER); |
191 | 0 | return 0; |
192 | 0 | } |
193 | | |
194 | 0 | ctx->output_type = output_type; |
195 | 0 | return 1; |
196 | 0 | } |
197 | | |
198 | | int OSSL_ENCODER_CTX_set_output_structure(OSSL_ENCODER_CTX *ctx, |
199 | | const char *output_structure) |
200 | 0 | { |
201 | 0 | if (!ossl_assert(ctx != NULL) || !ossl_assert(output_structure != NULL)) { |
202 | 0 | ERR_raise(ERR_LIB_OSSL_ENCODER, ERR_R_PASSED_NULL_PARAMETER); |
203 | 0 | return 0; |
204 | 0 | } |
205 | | |
206 | 0 | ctx->output_structure = output_structure; |
207 | 0 | return 1; |
208 | 0 | } |
209 | | |
210 | | static OSSL_ENCODER_INSTANCE *ossl_encoder_instance_new(OSSL_ENCODER *encoder, |
211 | | void *encoderctx) |
212 | 0 | { |
213 | 0 | OSSL_ENCODER_INSTANCE *encoder_inst = NULL; |
214 | 0 | const OSSL_PROVIDER *prov; |
215 | 0 | OSSL_LIB_CTX *libctx; |
216 | 0 | const OSSL_PROPERTY_LIST *props; |
217 | 0 | const OSSL_PROPERTY_DEFINITION *prop; |
218 | |
|
219 | 0 | if (!ossl_assert(encoder != NULL)) { |
220 | 0 | ERR_raise(ERR_LIB_OSSL_ENCODER, ERR_R_PASSED_NULL_PARAMETER); |
221 | 0 | return 0; |
222 | 0 | } |
223 | | |
224 | 0 | if ((encoder_inst = OPENSSL_zalloc(sizeof(*encoder_inst))) == NULL) |
225 | 0 | return 0; |
226 | | |
227 | 0 | if (!OSSL_ENCODER_up_ref(encoder)) { |
228 | 0 | ERR_raise(ERR_LIB_OSSL_ENCODER, ERR_R_INTERNAL_ERROR); |
229 | 0 | goto err; |
230 | 0 | } |
231 | | |
232 | 0 | prov = OSSL_ENCODER_get0_provider(encoder); |
233 | 0 | libctx = ossl_provider_libctx(prov); |
234 | 0 | props = ossl_encoder_parsed_properties(encoder); |
235 | 0 | if (props == NULL) { |
236 | 0 | ERR_raise_data(ERR_LIB_OSSL_DECODER, ERR_R_INVALID_PROPERTY_DEFINITION, |
237 | 0 | "there are no property definitions with encoder %s", |
238 | 0 | OSSL_ENCODER_get0_name(encoder)); |
239 | 0 | goto err; |
240 | 0 | } |
241 | | |
242 | | /* The "output" property is mandatory */ |
243 | 0 | prop = ossl_property_find_property(props, libctx, "output"); |
244 | 0 | encoder_inst->output_type = ossl_property_get_string_value(libctx, prop); |
245 | 0 | if (encoder_inst->output_type == NULL) { |
246 | 0 | ERR_raise_data(ERR_LIB_OSSL_DECODER, ERR_R_INVALID_PROPERTY_DEFINITION, |
247 | 0 | "the mandatory 'output' property is missing " |
248 | 0 | "for encoder %s (properties: %s)", |
249 | 0 | OSSL_ENCODER_get0_name(encoder), |
250 | 0 | OSSL_ENCODER_get0_properties(encoder)); |
251 | 0 | goto err; |
252 | 0 | } |
253 | | |
254 | | /* The "structure" property is optional */ |
255 | 0 | prop = ossl_property_find_property(props, libctx, "structure"); |
256 | 0 | if (prop != NULL) |
257 | 0 | encoder_inst->output_structure |
258 | 0 | = ossl_property_get_string_value(libctx, prop); |
259 | |
|
260 | 0 | encoder_inst->encoder = encoder; |
261 | 0 | encoder_inst->encoderctx = encoderctx; |
262 | 0 | return encoder_inst; |
263 | 0 | err: |
264 | 0 | ossl_encoder_instance_free(encoder_inst); |
265 | 0 | return NULL; |
266 | 0 | } |
267 | | |
268 | | void ossl_encoder_instance_free(OSSL_ENCODER_INSTANCE *encoder_inst) |
269 | 0 | { |
270 | 0 | if (encoder_inst != NULL) { |
271 | 0 | if (encoder_inst->encoder != NULL) |
272 | 0 | encoder_inst->encoder->freectx(encoder_inst->encoderctx); |
273 | 0 | encoder_inst->encoderctx = NULL; |
274 | 0 | OSSL_ENCODER_free(encoder_inst->encoder); |
275 | 0 | encoder_inst->encoder = NULL; |
276 | 0 | OPENSSL_free(encoder_inst); |
277 | 0 | } |
278 | 0 | } |
279 | | |
280 | | static int ossl_encoder_ctx_add_encoder_inst(OSSL_ENCODER_CTX *ctx, |
281 | | OSSL_ENCODER_INSTANCE *ei) |
282 | 0 | { |
283 | 0 | int ok; |
284 | |
|
285 | 0 | if (ctx->encoder_insts == NULL |
286 | 0 | && (ctx->encoder_insts = |
287 | 0 | sk_OSSL_ENCODER_INSTANCE_new_null()) == NULL) { |
288 | 0 | ERR_raise(ERR_LIB_OSSL_ENCODER, ERR_R_CRYPTO_LIB); |
289 | 0 | return 0; |
290 | 0 | } |
291 | | |
292 | 0 | ok = (sk_OSSL_ENCODER_INSTANCE_push(ctx->encoder_insts, ei) > 0); |
293 | 0 | if (ok) { |
294 | 0 | OSSL_TRACE_BEGIN(ENCODER) { |
295 | 0 | BIO_printf(trc_out, |
296 | 0 | "(ctx %p) Added encoder instance %p (encoder %p):\n" |
297 | 0 | " %s with %s\n", |
298 | 0 | (void *)ctx, (void *)ei, (void *)ei->encoder, |
299 | 0 | OSSL_ENCODER_get0_name(ei->encoder), |
300 | 0 | OSSL_ENCODER_get0_properties(ei->encoder)); |
301 | 0 | } OSSL_TRACE_END(ENCODER); |
302 | 0 | } |
303 | 0 | return ok; |
304 | 0 | } |
305 | | |
306 | | int OSSL_ENCODER_CTX_add_encoder(OSSL_ENCODER_CTX *ctx, OSSL_ENCODER *encoder) |
307 | 0 | { |
308 | 0 | OSSL_ENCODER_INSTANCE *encoder_inst = NULL; |
309 | 0 | const OSSL_PROVIDER *prov = NULL; |
310 | 0 | void *encoderctx = NULL; |
311 | 0 | void *provctx = NULL; |
312 | |
|
313 | 0 | if (!ossl_assert(ctx != NULL) || !ossl_assert(encoder != NULL)) { |
314 | 0 | ERR_raise(ERR_LIB_OSSL_ENCODER, ERR_R_PASSED_NULL_PARAMETER); |
315 | 0 | return 0; |
316 | 0 | } |
317 | | |
318 | 0 | prov = OSSL_ENCODER_get0_provider(encoder); |
319 | 0 | provctx = OSSL_PROVIDER_get0_provider_ctx(prov); |
320 | |
|
321 | 0 | if ((encoderctx = encoder->newctx(provctx)) == NULL |
322 | 0 | || (encoder_inst = |
323 | 0 | ossl_encoder_instance_new(encoder, encoderctx)) == NULL) |
324 | 0 | goto err; |
325 | | /* Avoid double free of encoderctx on further errors */ |
326 | 0 | encoderctx = NULL; |
327 | |
|
328 | 0 | if (!ossl_encoder_ctx_add_encoder_inst(ctx, encoder_inst)) |
329 | 0 | goto err; |
330 | | |
331 | 0 | return 1; |
332 | 0 | err: |
333 | 0 | ossl_encoder_instance_free(encoder_inst); |
334 | 0 | if (encoderctx != NULL) |
335 | 0 | encoder->freectx(encoderctx); |
336 | 0 | return 0; |
337 | 0 | } |
338 | | |
339 | | int OSSL_ENCODER_CTX_add_extra(OSSL_ENCODER_CTX *ctx, |
340 | | OSSL_LIB_CTX *libctx, const char *propq) |
341 | 0 | { |
342 | 0 | return 1; |
343 | 0 | } |
344 | | |
345 | | int OSSL_ENCODER_CTX_get_num_encoders(OSSL_ENCODER_CTX *ctx) |
346 | 0 | { |
347 | 0 | if (ctx == NULL || ctx->encoder_insts == NULL) |
348 | 0 | return 0; |
349 | 0 | return sk_OSSL_ENCODER_INSTANCE_num(ctx->encoder_insts); |
350 | 0 | } |
351 | | |
352 | | int OSSL_ENCODER_CTX_set_construct(OSSL_ENCODER_CTX *ctx, |
353 | | OSSL_ENCODER_CONSTRUCT *construct) |
354 | 0 | { |
355 | 0 | if (!ossl_assert(ctx != NULL)) { |
356 | 0 | ERR_raise(ERR_LIB_OSSL_ENCODER, ERR_R_PASSED_NULL_PARAMETER); |
357 | 0 | return 0; |
358 | 0 | } |
359 | 0 | ctx->construct = construct; |
360 | 0 | return 1; |
361 | 0 | } |
362 | | |
363 | | int OSSL_ENCODER_CTX_set_construct_data(OSSL_ENCODER_CTX *ctx, |
364 | | void *construct_data) |
365 | 0 | { |
366 | 0 | if (!ossl_assert(ctx != NULL)) { |
367 | 0 | ERR_raise(ERR_LIB_OSSL_ENCODER, ERR_R_PASSED_NULL_PARAMETER); |
368 | 0 | return 0; |
369 | 0 | } |
370 | 0 | ctx->construct_data = construct_data; |
371 | 0 | return 1; |
372 | 0 | } |
373 | | |
374 | | int OSSL_ENCODER_CTX_set_cleanup(OSSL_ENCODER_CTX *ctx, |
375 | | OSSL_ENCODER_CLEANUP *cleanup) |
376 | 0 | { |
377 | 0 | if (!ossl_assert(ctx != NULL)) { |
378 | 0 | ERR_raise(ERR_LIB_OSSL_ENCODER, ERR_R_PASSED_NULL_PARAMETER); |
379 | 0 | return 0; |
380 | 0 | } |
381 | 0 | ctx->cleanup = cleanup; |
382 | 0 | return 1; |
383 | 0 | } |
384 | | |
385 | | OSSL_ENCODER * |
386 | | OSSL_ENCODER_INSTANCE_get_encoder(OSSL_ENCODER_INSTANCE *encoder_inst) |
387 | 0 | { |
388 | 0 | if (encoder_inst == NULL) |
389 | 0 | return NULL; |
390 | 0 | return encoder_inst->encoder; |
391 | 0 | } |
392 | | |
393 | | void * |
394 | | OSSL_ENCODER_INSTANCE_get_encoder_ctx(OSSL_ENCODER_INSTANCE *encoder_inst) |
395 | 0 | { |
396 | 0 | if (encoder_inst == NULL) |
397 | 0 | return NULL; |
398 | 0 | return encoder_inst->encoderctx; |
399 | 0 | } |
400 | | |
401 | | const char * |
402 | | OSSL_ENCODER_INSTANCE_get_output_type(OSSL_ENCODER_INSTANCE *encoder_inst) |
403 | 0 | { |
404 | 0 | if (encoder_inst == NULL) |
405 | 0 | return NULL; |
406 | 0 | return encoder_inst->output_type; |
407 | 0 | } |
408 | | |
409 | | const char * |
410 | | OSSL_ENCODER_INSTANCE_get_output_structure(OSSL_ENCODER_INSTANCE *encoder_inst) |
411 | 0 | { |
412 | 0 | if (encoder_inst == NULL) |
413 | 0 | return NULL; |
414 | 0 | return encoder_inst->output_structure; |
415 | 0 | } |
416 | | |
417 | | static int encoder_process(struct encoder_process_data_st *data) |
418 | 0 | { |
419 | 0 | OSSL_ENCODER_INSTANCE *current_encoder_inst = NULL; |
420 | 0 | OSSL_ENCODER *current_encoder = NULL; |
421 | 0 | OSSL_ENCODER_CTX *current_encoder_ctx = NULL; |
422 | 0 | BIO *allocated_out = NULL; |
423 | 0 | const void *original_data = NULL; |
424 | 0 | OSSL_PARAM abstract[10]; |
425 | 0 | const OSSL_PARAM *current_abstract = NULL; |
426 | 0 | int i; |
427 | 0 | int ok = -1; /* -1 signifies that the lookup loop gave nothing */ |
428 | 0 | int top = 0; |
429 | |
|
430 | 0 | if (data->next_encoder_inst == NULL) { |
431 | | /* First iteration, where we prepare for what is to come */ |
432 | |
|
433 | 0 | data->count_output_structure = |
434 | 0 | data->ctx->output_structure == NULL ? -1 : 0; |
435 | 0 | top = 1; |
436 | 0 | } |
437 | |
|
438 | 0 | for (i = data->current_encoder_inst_index; i-- > 0;) { |
439 | 0 | OSSL_ENCODER *next_encoder = NULL; |
440 | 0 | const char *current_output_type; |
441 | 0 | const char *current_output_structure; |
442 | 0 | struct encoder_process_data_st new_data; |
443 | |
|
444 | 0 | if (!top) |
445 | 0 | next_encoder = |
446 | 0 | OSSL_ENCODER_INSTANCE_get_encoder(data->next_encoder_inst); |
447 | |
|
448 | 0 | current_encoder_inst = |
449 | 0 | sk_OSSL_ENCODER_INSTANCE_value(data->ctx->encoder_insts, i); |
450 | 0 | current_encoder = |
451 | 0 | OSSL_ENCODER_INSTANCE_get_encoder(current_encoder_inst); |
452 | 0 | current_encoder_ctx = |
453 | 0 | OSSL_ENCODER_INSTANCE_get_encoder_ctx(current_encoder_inst); |
454 | 0 | current_output_type = |
455 | 0 | OSSL_ENCODER_INSTANCE_get_output_type(current_encoder_inst); |
456 | 0 | current_output_structure = |
457 | 0 | OSSL_ENCODER_INSTANCE_get_output_structure(current_encoder_inst); |
458 | 0 | memset(&new_data, 0, sizeof(new_data)); |
459 | 0 | new_data.ctx = data->ctx; |
460 | 0 | new_data.current_encoder_inst_index = i; |
461 | 0 | new_data.next_encoder_inst = current_encoder_inst; |
462 | 0 | new_data.count_output_structure = data->count_output_structure; |
463 | 0 | new_data.level = data->level + 1; |
464 | |
|
465 | 0 | OSSL_TRACE_BEGIN(ENCODER) { |
466 | 0 | BIO_printf(trc_out, |
467 | 0 | "[%d] (ctx %p) Considering encoder instance %p (encoder %p)\n", |
468 | 0 | data->level, (void *)data->ctx, |
469 | 0 | (void *)current_encoder_inst, (void *)current_encoder); |
470 | 0 | } OSSL_TRACE_END(ENCODER); |
471 | | |
472 | | /* |
473 | | * If this is the top call, we check if the output type of the current |
474 | | * encoder matches the desired output type. |
475 | | * If this isn't the top call, i.e. this is deeper in the recursion, |
476 | | * we instead check if the output type of the current encoder matches |
477 | | * the name of the next encoder (the one found by the parent call). |
478 | | */ |
479 | 0 | if (top) { |
480 | 0 | if (data->ctx->output_type != NULL |
481 | 0 | && OPENSSL_strcasecmp(current_output_type, |
482 | 0 | data->ctx->output_type) != 0) { |
483 | 0 | OSSL_TRACE_BEGIN(ENCODER) { |
484 | 0 | BIO_printf(trc_out, |
485 | 0 | "[%d] Skipping because current encoder output type (%s) != desired output type (%s)\n", |
486 | 0 | data->level, |
487 | 0 | current_output_type, data->ctx->output_type); |
488 | 0 | } OSSL_TRACE_END(ENCODER); |
489 | 0 | continue; |
490 | 0 | } |
491 | 0 | } else { |
492 | 0 | if (!OSSL_ENCODER_is_a(next_encoder, current_output_type)) { |
493 | 0 | OSSL_TRACE_BEGIN(ENCODER) { |
494 | 0 | BIO_printf(trc_out, |
495 | 0 | "[%d] Skipping because current encoder output type (%s) != name of encoder %p\n", |
496 | 0 | data->level, |
497 | 0 | current_output_type, (void *)next_encoder); |
498 | 0 | } OSSL_TRACE_END(ENCODER); |
499 | 0 | continue; |
500 | 0 | } |
501 | 0 | } |
502 | | |
503 | | /* |
504 | | * If the caller and the current encoder specify an output structure, |
505 | | * Check if they match. If they do, count the match, otherwise skip |
506 | | * the current encoder. |
507 | | */ |
508 | 0 | if (data->ctx->output_structure != NULL |
509 | 0 | && current_output_structure != NULL) { |
510 | 0 | if (OPENSSL_strcasecmp(data->ctx->output_structure, |
511 | 0 | current_output_structure) != 0) { |
512 | 0 | OSSL_TRACE_BEGIN(ENCODER) { |
513 | 0 | BIO_printf(trc_out, |
514 | 0 | "[%d] Skipping because current encoder output structure (%s) != ctx output structure (%s)\n", |
515 | 0 | data->level, |
516 | 0 | current_output_structure, |
517 | 0 | data->ctx->output_structure); |
518 | 0 | } OSSL_TRACE_END(ENCODER); |
519 | 0 | continue; |
520 | 0 | } |
521 | | |
522 | 0 | data->count_output_structure++; |
523 | 0 | } |
524 | | |
525 | | /* |
526 | | * Recurse to process the encoder implementations before the current |
527 | | * one. |
528 | | */ |
529 | 0 | ok = encoder_process(&new_data); |
530 | |
|
531 | 0 | data->prev_encoder_inst = new_data.prev_encoder_inst; |
532 | 0 | data->running_output = new_data.running_output; |
533 | 0 | data->running_output_length = new_data.running_output_length; |
534 | | |
535 | | /* |
536 | | * ok == -1 means that the recursion call above gave no further |
537 | | * encoders, and that the one we're currently at should |
538 | | * be tried. |
539 | | * ok == 0 means that something failed in the recursion call |
540 | | * above, making the result unsuitable for a chain. |
541 | | * In this case, we simply continue to try finding a |
542 | | * suitable encoder at this recursion level. |
543 | | * ok == 1 means that the recursion call was successful, and we |
544 | | * try to use the result at this recursion level. |
545 | | */ |
546 | 0 | if (ok != 0) |
547 | 0 | break; |
548 | | |
549 | 0 | OSSL_TRACE_BEGIN(ENCODER) { |
550 | 0 | BIO_printf(trc_out, |
551 | 0 | "[%d] Skipping because recursion level %d failed\n", |
552 | 0 | data->level, new_data.level); |
553 | 0 | } OSSL_TRACE_END(ENCODER); |
554 | 0 | } |
555 | | |
556 | | /* |
557 | | * If |i < 0|, we didn't find any useful encoder in this recursion, so |
558 | | * we do the rest of the process only if |i >= 0|. |
559 | | */ |
560 | 0 | if (i < 0) { |
561 | 0 | ok = -1; |
562 | |
|
563 | 0 | OSSL_TRACE_BEGIN(ENCODER) { |
564 | 0 | BIO_printf(trc_out, |
565 | 0 | "[%d] (ctx %p) No suitable encoder found\n", |
566 | 0 | data->level, (void *)data->ctx); |
567 | 0 | } OSSL_TRACE_END(ENCODER); |
568 | 0 | } else { |
569 | | /* Preparations */ |
570 | |
|
571 | 0 | switch (ok) { |
572 | 0 | case 0: |
573 | 0 | break; |
574 | 0 | case -1: |
575 | | /* |
576 | | * We have reached the beginning of the encoder instance sequence, |
577 | | * so we prepare the object to be encoded. |
578 | | */ |
579 | | |
580 | | /* |
581 | | * |data->count_output_structure| is one of these values: |
582 | | * |
583 | | * -1 There is no desired output structure |
584 | | * 0 There is a desired output structure, and it wasn't |
585 | | * matched by any of the encoder instances that were |
586 | | * considered |
587 | | * >0 There is a desired output structure, and at least one |
588 | | * of the encoder instances matched it |
589 | | */ |
590 | 0 | if (data->count_output_structure == 0) |
591 | 0 | return 0; |
592 | | |
593 | 0 | original_data = |
594 | 0 | data->ctx->construct(current_encoder_inst, |
595 | 0 | data->ctx->construct_data); |
596 | | |
597 | | /* Also set the data type, using the encoder implementation name */ |
598 | 0 | data->data_type = OSSL_ENCODER_get0_name(current_encoder); |
599 | | |
600 | | /* Assume that the constructor recorded an error */ |
601 | 0 | if (original_data != NULL) |
602 | 0 | ok = 1; |
603 | 0 | else |
604 | 0 | ok = 0; |
605 | 0 | break; |
606 | 0 | case 1: |
607 | 0 | if (!ossl_assert(data->running_output != NULL)) { |
608 | 0 | ERR_raise(ERR_LIB_OSSL_ENCODER, ERR_R_INTERNAL_ERROR); |
609 | 0 | ok = 0; |
610 | 0 | break; |
611 | 0 | } |
612 | | |
613 | 0 | { |
614 | | /* |
615 | | * Create an object abstraction from the latest output, which |
616 | | * was stolen from the previous round. |
617 | | */ |
618 | |
|
619 | 0 | OSSL_PARAM *abstract_p = abstract; |
620 | 0 | const char *prev_output_structure = |
621 | 0 | OSSL_ENCODER_INSTANCE_get_output_structure(data->prev_encoder_inst); |
622 | |
|
623 | 0 | *abstract_p++ = |
624 | 0 | OSSL_PARAM_construct_utf8_string(OSSL_OBJECT_PARAM_DATA_TYPE, |
625 | 0 | (char *)data->data_type, 0); |
626 | 0 | if (prev_output_structure != NULL) |
627 | 0 | *abstract_p++ = |
628 | 0 | OSSL_PARAM_construct_utf8_string(OSSL_OBJECT_PARAM_DATA_STRUCTURE, |
629 | 0 | (char *)prev_output_structure, |
630 | 0 | 0); |
631 | 0 | *abstract_p++ = |
632 | 0 | OSSL_PARAM_construct_octet_string(OSSL_OBJECT_PARAM_DATA, |
633 | 0 | data->running_output, |
634 | 0 | data->running_output_length); |
635 | 0 | *abstract_p = OSSL_PARAM_construct_end(); |
636 | 0 | current_abstract = abstract; |
637 | 0 | } |
638 | 0 | break; |
639 | 0 | } |
640 | | |
641 | | /* Calling the encoder implementation */ |
642 | | |
643 | 0 | if (ok) { |
644 | 0 | OSSL_CORE_BIO *cbio = NULL; |
645 | 0 | BIO *current_out = NULL; |
646 | | |
647 | | /* |
648 | | * If we're at the last encoder instance to use, we're setting up |
649 | | * final output. Otherwise, set up an intermediary memory output. |
650 | | */ |
651 | 0 | if (top) |
652 | 0 | current_out = data->bio; |
653 | 0 | else if ((current_out = allocated_out = BIO_new(BIO_s_mem())) |
654 | 0 | == NULL) |
655 | 0 | ok = 0; /* Assume BIO_new() recorded an error */ |
656 | |
|
657 | 0 | if (ok) |
658 | 0 | ok = (cbio = ossl_core_bio_new_from_bio(current_out)) != NULL; |
659 | 0 | if (ok) { |
660 | 0 | ok = current_encoder->encode(current_encoder_ctx, cbio, |
661 | 0 | original_data, current_abstract, |
662 | 0 | data->ctx->selection, |
663 | 0 | ossl_pw_passphrase_callback_enc, |
664 | 0 | &data->ctx->pwdata); |
665 | 0 | OSSL_TRACE_BEGIN(ENCODER) { |
666 | 0 | BIO_printf(trc_out, |
667 | 0 | "[%d] (ctx %p) Running encoder instance %p => %d\n", |
668 | 0 | data->level, (void *)data->ctx, |
669 | 0 | (void *)current_encoder_inst, ok); |
670 | 0 | } OSSL_TRACE_END(ENCODER); |
671 | 0 | } |
672 | |
|
673 | 0 | ossl_core_bio_free(cbio); |
674 | 0 | data->prev_encoder_inst = current_encoder_inst; |
675 | 0 | } |
676 | 0 | } |
677 | | |
678 | | /* Cleanup and collecting the result */ |
679 | | |
680 | 0 | OPENSSL_free(data->running_output); |
681 | 0 | data->running_output = NULL; |
682 | | |
683 | | /* |
684 | | * Steal the output from the BIO_s_mem, if we did allocate one. |
685 | | * That'll be the data for an object abstraction in the next round. |
686 | | */ |
687 | 0 | if (allocated_out != NULL) { |
688 | 0 | BUF_MEM *buf; |
689 | |
|
690 | 0 | BIO_get_mem_ptr(allocated_out, &buf); |
691 | 0 | data->running_output = (unsigned char *)buf->data; |
692 | 0 | data->running_output_length = buf->length; |
693 | 0 | memset(buf, 0, sizeof(*buf)); |
694 | 0 | } |
695 | |
|
696 | 0 | BIO_free(allocated_out); |
697 | 0 | if (original_data != NULL) |
698 | 0 | data->ctx->cleanup(data->ctx->construct_data); |
699 | 0 | return ok; |
700 | 0 | } |
701 | | |
702 | | int ossl_bio_print_labeled_bignum(BIO *out, const char *label, const BIGNUM *bn) |
703 | 0 | { |
704 | 0 | int ret = 0, use_sep = 0; |
705 | 0 | char *hex_str = NULL, *p; |
706 | 0 | const char spaces[] = " "; |
707 | 0 | const char *post_label_spc = " "; |
708 | |
|
709 | 0 | const char *neg = ""; |
710 | 0 | int bytes; |
711 | |
|
712 | 0 | if (bn == NULL) |
713 | 0 | return 0; |
714 | 0 | if (label == NULL) { |
715 | 0 | label = ""; |
716 | 0 | post_label_spc = ""; |
717 | 0 | } |
718 | |
|
719 | 0 | if (BN_is_zero(bn)) |
720 | 0 | return BIO_printf(out, "%s%s0\n", label, post_label_spc); |
721 | | |
722 | 0 | if (BN_num_bytes(bn) <= BN_BYTES) { |
723 | 0 | BN_ULONG *words = bn_get_words(bn); |
724 | |
|
725 | 0 | if (BN_is_negative(bn)) |
726 | 0 | neg = "-"; |
727 | |
|
728 | 0 | return BIO_printf(out, "%s%s%s" BN_FMTu " (%s0x" BN_FMTx ")\n", |
729 | 0 | label, post_label_spc, neg, words[0], neg, words[0]); |
730 | 0 | } |
731 | | |
732 | 0 | hex_str = BN_bn2hex(bn); |
733 | 0 | if (hex_str == NULL) |
734 | 0 | return 0; |
735 | | |
736 | 0 | p = hex_str; |
737 | 0 | if (*p == '-') { |
738 | 0 | ++p; |
739 | 0 | neg = " (Negative)"; |
740 | 0 | } |
741 | 0 | if (BIO_printf(out, "%s%s\n", label, neg) <= 0) |
742 | 0 | goto err; |
743 | | |
744 | | /* Keep track of how many bytes we have printed out so far */ |
745 | 0 | bytes = 0; |
746 | |
|
747 | 0 | if (BIO_printf(out, "%s", spaces) <= 0) |
748 | 0 | goto err; |
749 | | |
750 | | /* Add a leading 00 if the top bit is set */ |
751 | 0 | if (*p >= '8') { |
752 | 0 | if (BIO_printf(out, "%02x", 0) <= 0) |
753 | 0 | goto err; |
754 | 0 | ++bytes; |
755 | 0 | use_sep = 1; |
756 | 0 | } |
757 | 0 | while (*p != '\0') { |
758 | | /* Do a newline after every 15 hex bytes + add the space indent */ |
759 | 0 | if ((bytes % 15) == 0 && bytes > 0) { |
760 | 0 | if (BIO_printf(out, ":\n%s", spaces) <= 0) |
761 | 0 | goto err; |
762 | 0 | use_sep = 0; /* The first byte on the next line doesn't have a : */ |
763 | 0 | } |
764 | 0 | if (BIO_printf(out, "%s%c%c", use_sep ? ":" : "", |
765 | 0 | tolower((unsigned char)p[0]), |
766 | 0 | tolower((unsigned char)p[1])) <= 0) |
767 | 0 | goto err; |
768 | 0 | ++bytes; |
769 | 0 | p += 2; |
770 | 0 | use_sep = 1; |
771 | 0 | } |
772 | 0 | if (BIO_printf(out, "\n") <= 0) |
773 | 0 | goto err; |
774 | 0 | ret = 1; |
775 | 0 | err: |
776 | 0 | OPENSSL_free(hex_str); |
777 | 0 | return ret; |
778 | 0 | } |
779 | | |
780 | | int ossl_bio_print_labeled_buf(BIO *out, const char *label, |
781 | | const unsigned char *buf, size_t buflen) |
782 | 0 | { |
783 | 0 | size_t i; |
784 | |
|
785 | 0 | if (BIO_printf(out, "%s\n", label) <= 0) |
786 | 0 | return 0; |
787 | | |
788 | 0 | for (i = 0; i < buflen; i++) { |
789 | 0 | if ((i % LABELED_BUF_PRINT_WIDTH) == 0) { |
790 | 0 | if (i > 0 && BIO_printf(out, "\n") <= 0) |
791 | 0 | return 0; |
792 | 0 | if (BIO_printf(out, " ") <= 0) |
793 | 0 | return 0; |
794 | 0 | } |
795 | | |
796 | 0 | if (BIO_printf(out, "%02x%s", buf[i], |
797 | 0 | (i == buflen - 1) ? "" : ":") <= 0) |
798 | 0 | return 0; |
799 | 0 | } |
800 | 0 | if (BIO_printf(out, "\n") <= 0) |
801 | 0 | return 0; |
802 | | |
803 | 0 | return 1; |
804 | 0 | } |
805 | | |
806 | | #if !defined(OPENSSL_NO_DH) || !defined(OPENSSL_NO_DSA) |
807 | | int ossl_bio_print_ffc_params(BIO *out, const FFC_PARAMS *ffc) |
808 | 0 | { |
809 | 0 | if (ffc->nid != NID_undef) { |
810 | 0 | #ifndef OPENSSL_NO_DH |
811 | 0 | const DH_NAMED_GROUP *group = ossl_ffc_uid_to_dh_named_group(ffc->nid); |
812 | 0 | const char *name = ossl_ffc_named_group_get_name(group); |
813 | |
|
814 | 0 | if (name == NULL) |
815 | 0 | goto err; |
816 | 0 | if (BIO_printf(out, "GROUP: %s\n", name) <= 0) |
817 | 0 | goto err; |
818 | 0 | return 1; |
819 | | #else |
820 | | /* How could this be? We should not have a nid in a no-dh build. */ |
821 | | goto err; |
822 | | #endif |
823 | 0 | } |
824 | | |
825 | 0 | if (!ossl_bio_print_labeled_bignum(out, "P: ", ffc->p)) |
826 | 0 | goto err; |
827 | 0 | if (ffc->q != NULL) { |
828 | 0 | if (!ossl_bio_print_labeled_bignum(out, "Q: ", ffc->q)) |
829 | 0 | goto err; |
830 | 0 | } |
831 | 0 | if (!ossl_bio_print_labeled_bignum(out, "G: ", ffc->g)) |
832 | 0 | goto err; |
833 | 0 | if (ffc->j != NULL) { |
834 | 0 | if (!ossl_bio_print_labeled_bignum(out, "J: ", ffc->j)) |
835 | 0 | goto err; |
836 | 0 | } |
837 | 0 | if (ffc->seed != NULL) { |
838 | 0 | if (!ossl_bio_print_labeled_buf(out, "SEED:", ffc->seed, ffc->seedlen)) |
839 | 0 | goto err; |
840 | 0 | } |
841 | 0 | if (ffc->gindex != -1) { |
842 | 0 | if (BIO_printf(out, "gindex: %d\n", ffc->gindex) <= 0) |
843 | 0 | goto err; |
844 | 0 | } |
845 | 0 | if (ffc->pcounter != -1) { |
846 | 0 | if (BIO_printf(out, "pcounter: %d\n", ffc->pcounter) <= 0) |
847 | 0 | goto err; |
848 | 0 | } |
849 | 0 | if (ffc->h != 0) { |
850 | 0 | if (BIO_printf(out, "h: %d\n", ffc->h) <= 0) |
851 | 0 | goto err; |
852 | 0 | } |
853 | 0 | return 1; |
854 | 0 | err: |
855 | 0 | return 0; |
856 | 0 | } |
857 | | |
858 | | #endif |