Coverage Report

Created: 2025-06-13 06:56

/src/openssl/crypto/ec/ecp_nistp521.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 2011-2023 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
/* Copyright 2011 Google Inc.
11
 *
12
 * Licensed under the Apache License, Version 2.0 (the "License");
13
 *
14
 * you may not use this file except in compliance with the License.
15
 * You may obtain a copy of the License at
16
 *
17
 *     http://www.apache.org/licenses/LICENSE-2.0
18
 *
19
 *  Unless required by applicable law or agreed to in writing, software
20
 *  distributed under the License is distributed on an "AS IS" BASIS,
21
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
22
 *  See the License for the specific language governing permissions and
23
 *  limitations under the License.
24
 */
25
26
/*
27
 * ECDSA low level APIs are deprecated for public use, but still ok for
28
 * internal use.
29
 */
30
#include "internal/deprecated.h"
31
32
/*
33
 * A 64-bit implementation of the NIST P-521 elliptic curve point multiplication
34
 *
35
 * OpenSSL integration was taken from Emilia Kasper's work in ecp_nistp224.c.
36
 * Otherwise based on Emilia's P224 work, which was inspired by my curve25519
37
 * work which got its smarts from Daniel J. Bernstein's work on the same.
38
 */
39
40
#include <openssl/e_os2.h>
41
42
#include <string.h>
43
#include <openssl/err.h>
44
#include "ec_local.h"
45
46
#include "internal/numbers.h"
47
48
#ifndef INT128_MAX
49
# error "Your compiler doesn't appear to support 128-bit integer types"
50
#endif
51
52
typedef uint8_t u8;
53
typedef uint64_t u64;
54
55
/*
56
 * The underlying field. P521 operates over GF(2^521-1). We can serialize an
57
 * element of this field into 66 bytes where the most significant byte
58
 * contains only a single bit. We call this an felem_bytearray.
59
 */
60
61
typedef u8 felem_bytearray[66];
62
63
/*
64
 * These are the parameters of P521, taken from FIPS 186-3, section D.1.2.5.
65
 * These values are big-endian.
66
 */
67
static const felem_bytearray nistp521_curve_params[5] = {
68
    {0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* p */
69
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
70
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
71
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
72
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
73
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
74
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
75
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
76
     0xff, 0xff},
77
    {0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* a = -3 */
78
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
79
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
80
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
81
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
82
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
83
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
84
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
85
     0xff, 0xfc},
86
    {0x00, 0x51, 0x95, 0x3e, 0xb9, 0x61, 0x8e, 0x1c, /* b */
87
     0x9a, 0x1f, 0x92, 0x9a, 0x21, 0xa0, 0xb6, 0x85,
88
     0x40, 0xee, 0xa2, 0xda, 0x72, 0x5b, 0x99, 0xb3,
89
     0x15, 0xf3, 0xb8, 0xb4, 0x89, 0x91, 0x8e, 0xf1,
90
     0x09, 0xe1, 0x56, 0x19, 0x39, 0x51, 0xec, 0x7e,
91
     0x93, 0x7b, 0x16, 0x52, 0xc0, 0xbd, 0x3b, 0xb1,
92
     0xbf, 0x07, 0x35, 0x73, 0xdf, 0x88, 0x3d, 0x2c,
93
     0x34, 0xf1, 0xef, 0x45, 0x1f, 0xd4, 0x6b, 0x50,
94
     0x3f, 0x00},
95
    {0x00, 0xc6, 0x85, 0x8e, 0x06, 0xb7, 0x04, 0x04, /* x */
96
     0xe9, 0xcd, 0x9e, 0x3e, 0xcb, 0x66, 0x23, 0x95,
97
     0xb4, 0x42, 0x9c, 0x64, 0x81, 0x39, 0x05, 0x3f,
98
     0xb5, 0x21, 0xf8, 0x28, 0xaf, 0x60, 0x6b, 0x4d,
99
     0x3d, 0xba, 0xa1, 0x4b, 0x5e, 0x77, 0xef, 0xe7,
100
     0x59, 0x28, 0xfe, 0x1d, 0xc1, 0x27, 0xa2, 0xff,
101
     0xa8, 0xde, 0x33, 0x48, 0xb3, 0xc1, 0x85, 0x6a,
102
     0x42, 0x9b, 0xf9, 0x7e, 0x7e, 0x31, 0xc2, 0xe5,
103
     0xbd, 0x66},
104
    {0x01, 0x18, 0x39, 0x29, 0x6a, 0x78, 0x9a, 0x3b, /* y */
105
     0xc0, 0x04, 0x5c, 0x8a, 0x5f, 0xb4, 0x2c, 0x7d,
106
     0x1b, 0xd9, 0x98, 0xf5, 0x44, 0x49, 0x57, 0x9b,
107
     0x44, 0x68, 0x17, 0xaf, 0xbd, 0x17, 0x27, 0x3e,
108
     0x66, 0x2c, 0x97, 0xee, 0x72, 0x99, 0x5e, 0xf4,
109
     0x26, 0x40, 0xc5, 0x50, 0xb9, 0x01, 0x3f, 0xad,
110
     0x07, 0x61, 0x35, 0x3c, 0x70, 0x86, 0xa2, 0x72,
111
     0xc2, 0x40, 0x88, 0xbe, 0x94, 0x76, 0x9f, 0xd1,
112
     0x66, 0x50}
113
};
114
115
/*-
116
 * The representation of field elements.
117
 * ------------------------------------
118
 *
119
 * We represent field elements with nine values. These values are either 64 or
120
 * 128 bits and the field element represented is:
121
 *   v[0]*2^0 + v[1]*2^58 + v[2]*2^116 + ... + v[8]*2^464  (mod p)
122
 * Each of the nine values is called a 'limb'. Since the limbs are spaced only
123
 * 58 bits apart, but are greater than 58 bits in length, the most significant
124
 * bits of each limb overlap with the least significant bits of the next.
125
 *
126
 * A field element with 64-bit limbs is an 'felem'. One with 128-bit limbs is a
127
 * 'largefelem' */
128
129
0
#define NLIMBS 9
130
131
typedef uint64_t limb;
132
typedef limb limb_aX __attribute((__aligned__(1)));
133
typedef limb felem[NLIMBS];
134
typedef uint128_t largefelem[NLIMBS];
135
136
static const limb bottom57bits = 0x1ffffffffffffff;
137
static const limb bottom58bits = 0x3ffffffffffffff;
138
139
/*
140
 * bin66_to_felem takes a little-endian byte array and converts it into felem
141
 * form. This assumes that the CPU is little-endian.
142
 */
143
static void bin66_to_felem(felem out, const u8 in[66])
144
51
{
145
51
    out[0] = (*((limb *) & in[0])) & bottom58bits;
146
51
    out[1] = (*((limb_aX *) & in[7]) >> 2) & bottom58bits;
147
51
    out[2] = (*((limb_aX *) & in[14]) >> 4) & bottom58bits;
148
51
    out[3] = (*((limb_aX *) & in[21]) >> 6) & bottom58bits;
149
51
    out[4] = (*((limb_aX *) & in[29])) & bottom58bits;
150
51
    out[5] = (*((limb_aX *) & in[36]) >> 2) & bottom58bits;
151
51
    out[6] = (*((limb_aX *) & in[43]) >> 4) & bottom58bits;
152
51
    out[7] = (*((limb_aX *) & in[50]) >> 6) & bottom58bits;
153
51
    out[8] = (*((limb_aX *) & in[58])) & bottom57bits;
154
51
}
155
156
/*
157
 * felem_to_bin66 takes an felem and serializes into a little endian, 66 byte
158
 * array. This assumes that the CPU is little-endian.
159
 */
160
static void felem_to_bin66(u8 out[66], const felem in)
161
34
{
162
34
    memset(out, 0, 66);
163
34
    (*((limb *) & out[0])) = in[0];
164
34
    (*((limb_aX *) & out[7])) |= in[1] << 2;
165
34
    (*((limb_aX *) & out[14])) |= in[2] << 4;
166
34
    (*((limb_aX *) & out[21])) |= in[3] << 6;
167
34
    (*((limb_aX *) & out[29])) = in[4];
168
34
    (*((limb_aX *) & out[36])) |= in[5] << 2;
169
34
    (*((limb_aX *) & out[43])) |= in[6] << 4;
170
34
    (*((limb_aX *) & out[50])) |= in[7] << 6;
171
34
    (*((limb_aX *) & out[58])) = in[8];
172
34
}
173
174
/* BN_to_felem converts an OpenSSL BIGNUM into an felem */
175
static int BN_to_felem(felem out, const BIGNUM *bn)
176
51
{
177
51
    felem_bytearray b_out;
178
51
    int num_bytes;
179
180
51
    if (BN_is_negative(bn)) {
181
0
        ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE);
182
0
        return 0;
183
0
    }
184
51
    num_bytes = BN_bn2lebinpad(bn, b_out, sizeof(b_out));
185
51
    if (num_bytes < 0) {
186
0
        ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE);
187
0
        return 0;
188
0
    }
189
51
    bin66_to_felem(out, b_out);
190
51
    return 1;
191
51
}
192
193
/* felem_to_BN converts an felem into an OpenSSL BIGNUM */
194
static BIGNUM *felem_to_BN(BIGNUM *out, const felem in)
195
34
{
196
34
    felem_bytearray b_out;
197
34
    felem_to_bin66(b_out, in);
198
34
    return BN_lebin2bn(b_out, sizeof(b_out), out);
199
34
}
200
201
/*-
202
 * Field operations
203
 * ----------------
204
 */
205
206
static void felem_one(felem out)
207
0
{
208
0
    out[0] = 1;
209
0
    out[1] = 0;
210
0
    out[2] = 0;
211
0
    out[3] = 0;
212
0
    out[4] = 0;
213
0
    out[5] = 0;
214
0
    out[6] = 0;
215
0
    out[7] = 0;
216
0
    out[8] = 0;
217
0
}
218
219
static void felem_assign(felem out, const felem in)
220
170
{
221
170
    out[0] = in[0];
222
170
    out[1] = in[1];
223
170
    out[2] = in[2];
224
170
    out[3] = in[3];
225
170
    out[4] = in[4];
226
170
    out[5] = in[5];
227
170
    out[6] = in[6];
228
170
    out[7] = in[7];
229
170
    out[8] = in[8];
230
170
}
231
232
/* felem_sum64 sets out = out + in. */
233
static void felem_sum64(felem out, const felem in)
234
0
{
235
0
    out[0] += in[0];
236
0
    out[1] += in[1];
237
0
    out[2] += in[2];
238
0
    out[3] += in[3];
239
0
    out[4] += in[4];
240
0
    out[5] += in[5];
241
0
    out[6] += in[6];
242
0
    out[7] += in[7];
243
0
    out[8] += in[8];
244
0
}
245
246
/* felem_scalar sets out = in * scalar */
247
static void felem_scalar(felem out, const felem in, limb scalar)
248
18.0k
{
249
18.0k
    out[0] = in[0] * scalar;
250
18.0k
    out[1] = in[1] * scalar;
251
18.0k
    out[2] = in[2] * scalar;
252
18.0k
    out[3] = in[3] * scalar;
253
18.0k
    out[4] = in[4] * scalar;
254
18.0k
    out[5] = in[5] * scalar;
255
18.0k
    out[6] = in[6] * scalar;
256
18.0k
    out[7] = in[7] * scalar;
257
18.0k
    out[8] = in[8] * scalar;
258
18.0k
}
259
260
/* felem_scalar64 sets out = out * scalar */
261
static void felem_scalar64(felem out, limb scalar)
262
0
{
263
0
    out[0] *= scalar;
264
0
    out[1] *= scalar;
265
0
    out[2] *= scalar;
266
0
    out[3] *= scalar;
267
0
    out[4] *= scalar;
268
0
    out[5] *= scalar;
269
0
    out[6] *= scalar;
270
0
    out[7] *= scalar;
271
0
    out[8] *= scalar;
272
0
}
273
274
/* felem_scalar128 sets out = out * scalar */
275
static void felem_scalar128(largefelem out, limb scalar)
276
0
{
277
0
    out[0] *= scalar;
278
0
    out[1] *= scalar;
279
0
    out[2] *= scalar;
280
0
    out[3] *= scalar;
281
0
    out[4] *= scalar;
282
0
    out[5] *= scalar;
283
0
    out[6] *= scalar;
284
0
    out[7] *= scalar;
285
0
    out[8] *= scalar;
286
0
}
287
288
/*-
289
 * felem_neg sets |out| to |-in|
290
 * On entry:
291
 *   in[i] < 2^59 + 2^14
292
 * On exit:
293
 *   out[i] < 2^62
294
 */
295
static void felem_neg(felem out, const felem in)
296
0
{
297
    /* In order to prevent underflow, we subtract from 0 mod p. */
298
0
    static const limb two62m3 = (((limb) 1) << 62) - (((limb) 1) << 5);
299
0
    static const limb two62m2 = (((limb) 1) << 62) - (((limb) 1) << 4);
300
301
0
    out[0] = two62m3 - in[0];
302
0
    out[1] = two62m2 - in[1];
303
0
    out[2] = two62m2 - in[2];
304
0
    out[3] = two62m2 - in[3];
305
0
    out[4] = two62m2 - in[4];
306
0
    out[5] = two62m2 - in[5];
307
0
    out[6] = two62m2 - in[6];
308
0
    out[7] = two62m2 - in[7];
309
0
    out[8] = two62m2 - in[8];
310
0
}
311
312
/*-
313
 * felem_diff64 subtracts |in| from |out|
314
 * On entry:
315
 *   in[i] < 2^59 + 2^14
316
 * On exit:
317
 *   out[i] < out[i] + 2^62
318
 */
319
static void felem_diff64(felem out, const felem in)
320
0
{
321
    /*
322
     * In order to prevent underflow, we add 0 mod p before subtracting.
323
     */
324
0
    static const limb two62m3 = (((limb) 1) << 62) - (((limb) 1) << 5);
325
0
    static const limb two62m2 = (((limb) 1) << 62) - (((limb) 1) << 4);
326
327
0
    out[0] += two62m3 - in[0];
328
0
    out[1] += two62m2 - in[1];
329
0
    out[2] += two62m2 - in[2];
330
0
    out[3] += two62m2 - in[3];
331
0
    out[4] += two62m2 - in[4];
332
0
    out[5] += two62m2 - in[5];
333
0
    out[6] += two62m2 - in[6];
334
0
    out[7] += two62m2 - in[7];
335
0
    out[8] += two62m2 - in[8];
336
0
}
337
338
/*-
339
 * felem_diff_128_64 subtracts |in| from |out|
340
 * On entry:
341
 *   in[i] < 2^62 + 2^17
342
 * On exit:
343
 *   out[i] < out[i] + 2^63
344
 */
345
static void felem_diff_128_64(largefelem out, const felem in)
346
0
{
347
    /*
348
     * In order to prevent underflow, we add 64p mod p (which is equivalent
349
     * to 0 mod p) before subtracting. p is 2^521 - 1, i.e. in binary a 521
350
     * digit number with all bits set to 1. See "The representation of field
351
     * elements" comment above for a description of how limbs are used to
352
     * represent a number. 64p is represented with 8 limbs containing a number
353
     * with 58 bits set and one limb with a number with 57 bits set.
354
     */
355
0
    static const limb two63m6 = (((limb) 1) << 63) - (((limb) 1) << 6);
356
0
    static const limb two63m5 = (((limb) 1) << 63) - (((limb) 1) << 5);
357
358
0
    out[0] += two63m6 - in[0];
359
0
    out[1] += two63m5 - in[1];
360
0
    out[2] += two63m5 - in[2];
361
0
    out[3] += two63m5 - in[3];
362
0
    out[4] += two63m5 - in[4];
363
0
    out[5] += two63m5 - in[5];
364
0
    out[6] += two63m5 - in[6];
365
0
    out[7] += two63m5 - in[7];
366
0
    out[8] += two63m5 - in[8];
367
0
}
368
369
/*-
370
 * felem_diff_128_64 subtracts |in| from |out|
371
 * On entry:
372
 *   in[i] < 2^126
373
 * On exit:
374
 *   out[i] < out[i] + 2^127 - 2^69
375
 */
376
static void felem_diff128(largefelem out, const largefelem in)
377
0
{
378
    /*
379
     * In order to prevent underflow, we add 0 mod p before subtracting.
380
     */
381
0
    static const uint128_t two127m70 =
382
0
        (((uint128_t) 1) << 127) - (((uint128_t) 1) << 70);
383
0
    static const uint128_t two127m69 =
384
0
        (((uint128_t) 1) << 127) - (((uint128_t) 1) << 69);
385
386
0
    out[0] += (two127m70 - in[0]);
387
0
    out[1] += (two127m69 - in[1]);
388
0
    out[2] += (two127m69 - in[2]);
389
0
    out[3] += (two127m69 - in[3]);
390
0
    out[4] += (two127m69 - in[4]);
391
0
    out[5] += (two127m69 - in[5]);
392
0
    out[6] += (two127m69 - in[6]);
393
0
    out[7] += (two127m69 - in[7]);
394
0
    out[8] += (two127m69 - in[8]);
395
0
}
396
397
/*-
398
 * felem_square sets |out| = |in|^2
399
 * On entry:
400
 *   in[i] < 2^62
401
 * On exit:
402
 *   out[i] < 17 * max(in[i]) * max(in[i])
403
 */
404
static void felem_square_ref(largefelem out, const felem in)
405
8.90k
{
406
8.90k
    felem inx2, inx4;
407
8.90k
    felem_scalar(inx2, in, 2);
408
8.90k
    felem_scalar(inx4, in, 4);
409
410
    /*-
411
     * We have many cases were we want to do
412
     *   in[x] * in[y] +
413
     *   in[y] * in[x]
414
     * This is obviously just
415
     *   2 * in[x] * in[y]
416
     * However, rather than do the doubling on the 128 bit result, we
417
     * double one of the inputs to the multiplication by reading from
418
     * |inx2|
419
     */
420
421
8.90k
    out[0] = ((uint128_t) in[0]) * in[0];
422
8.90k
    out[1] = ((uint128_t) in[0]) * inx2[1];
423
8.90k
    out[2] = ((uint128_t) in[0]) * inx2[2] + ((uint128_t) in[1]) * in[1];
424
8.90k
    out[3] = ((uint128_t) in[0]) * inx2[3] + ((uint128_t) in[1]) * inx2[2];
425
8.90k
    out[4] = ((uint128_t) in[0]) * inx2[4] +
426
8.90k
             ((uint128_t) in[1]) * inx2[3] + ((uint128_t) in[2]) * in[2];
427
8.90k
    out[5] = ((uint128_t) in[0]) * inx2[5] +
428
8.90k
             ((uint128_t) in[1]) * inx2[4] + ((uint128_t) in[2]) * inx2[3];
429
8.90k
    out[6] = ((uint128_t) in[0]) * inx2[6] +
430
8.90k
             ((uint128_t) in[1]) * inx2[5] +
431
8.90k
             ((uint128_t) in[2]) * inx2[4] + ((uint128_t) in[3]) * in[3];
432
8.90k
    out[7] = ((uint128_t) in[0]) * inx2[7] +
433
8.90k
             ((uint128_t) in[1]) * inx2[6] +
434
8.90k
             ((uint128_t) in[2]) * inx2[5] + ((uint128_t) in[3]) * inx2[4];
435
8.90k
    out[8] = ((uint128_t) in[0]) * inx2[8] +
436
8.90k
             ((uint128_t) in[1]) * inx2[7] +
437
8.90k
             ((uint128_t) in[2]) * inx2[6] +
438
8.90k
             ((uint128_t) in[3]) * inx2[5] + ((uint128_t) in[4]) * in[4];
439
440
    /*
441
     * The remaining limbs fall above 2^521, with the first falling at 2^522.
442
     * They correspond to locations one bit up from the limbs produced above
443
     * so we would have to multiply by two to align them. Again, rather than
444
     * operate on the 128-bit result, we double one of the inputs to the
445
     * multiplication. If we want to double for both this reason, and the
446
     * reason above, then we end up multiplying by four.
447
     */
448
449
    /* 9 */
450
8.90k
    out[0] += ((uint128_t) in[1]) * inx4[8] +
451
8.90k
              ((uint128_t) in[2]) * inx4[7] +
452
8.90k
              ((uint128_t) in[3]) * inx4[6] + ((uint128_t) in[4]) * inx4[5];
453
454
    /* 10 */
455
8.90k
    out[1] += ((uint128_t) in[2]) * inx4[8] +
456
8.90k
              ((uint128_t) in[3]) * inx4[7] +
457
8.90k
              ((uint128_t) in[4]) * inx4[6] + ((uint128_t) in[5]) * inx2[5];
458
459
    /* 11 */
460
8.90k
    out[2] += ((uint128_t) in[3]) * inx4[8] +
461
8.90k
              ((uint128_t) in[4]) * inx4[7] + ((uint128_t) in[5]) * inx4[6];
462
463
    /* 12 */
464
8.90k
    out[3] += ((uint128_t) in[4]) * inx4[8] +
465
8.90k
              ((uint128_t) in[5]) * inx4[7] + ((uint128_t) in[6]) * inx2[6];
466
467
    /* 13 */
468
8.90k
    out[4] += ((uint128_t) in[5]) * inx4[8] + ((uint128_t) in[6]) * inx4[7];
469
470
    /* 14 */
471
8.90k
    out[5] += ((uint128_t) in[6]) * inx4[8] + ((uint128_t) in[7]) * inx2[7];
472
473
    /* 15 */
474
8.90k
    out[6] += ((uint128_t) in[7]) * inx4[8];
475
476
    /* 16 */
477
8.90k
    out[7] += ((uint128_t) in[8]) * inx2[8];
478
8.90k
}
479
480
/*-
481
 * felem_mul sets |out| = |in1| * |in2|
482
 * On entry:
483
 *   in1[i] < 2^64
484
 *   in2[i] < 2^63
485
 * On exit:
486
 *   out[i] < 17 * max(in1[i]) * max(in2[i])
487
 */
488
static void felem_mul_ref(largefelem out, const felem in1, const felem in2)
489
272
{
490
272
    felem in2x2;
491
272
    felem_scalar(in2x2, in2, 2);
492
493
272
    out[0] = ((uint128_t) in1[0]) * in2[0];
494
495
272
    out[1] = ((uint128_t) in1[0]) * in2[1] +
496
272
             ((uint128_t) in1[1]) * in2[0];
497
498
272
    out[2] = ((uint128_t) in1[0]) * in2[2] +
499
272
             ((uint128_t) in1[1]) * in2[1] +
500
272
             ((uint128_t) in1[2]) * in2[0];
501
502
272
    out[3] = ((uint128_t) in1[0]) * in2[3] +
503
272
             ((uint128_t) in1[1]) * in2[2] +
504
272
             ((uint128_t) in1[2]) * in2[1] +
505
272
             ((uint128_t) in1[3]) * in2[0];
506
507
272
    out[4] = ((uint128_t) in1[0]) * in2[4] +
508
272
             ((uint128_t) in1[1]) * in2[3] +
509
272
             ((uint128_t) in1[2]) * in2[2] +
510
272
             ((uint128_t) in1[3]) * in2[1] +
511
272
             ((uint128_t) in1[4]) * in2[0];
512
513
272
    out[5] = ((uint128_t) in1[0]) * in2[5] +
514
272
             ((uint128_t) in1[1]) * in2[4] +
515
272
             ((uint128_t) in1[2]) * in2[3] +
516
272
             ((uint128_t) in1[3]) * in2[2] +
517
272
             ((uint128_t) in1[4]) * in2[1] +
518
272
             ((uint128_t) in1[5]) * in2[0];
519
520
272
    out[6] = ((uint128_t) in1[0]) * in2[6] +
521
272
             ((uint128_t) in1[1]) * in2[5] +
522
272
             ((uint128_t) in1[2]) * in2[4] +
523
272
             ((uint128_t) in1[3]) * in2[3] +
524
272
             ((uint128_t) in1[4]) * in2[2] +
525
272
             ((uint128_t) in1[5]) * in2[1] +
526
272
             ((uint128_t) in1[6]) * in2[0];
527
528
272
    out[7] = ((uint128_t) in1[0]) * in2[7] +
529
272
             ((uint128_t) in1[1]) * in2[6] +
530
272
             ((uint128_t) in1[2]) * in2[5] +
531
272
             ((uint128_t) in1[3]) * in2[4] +
532
272
             ((uint128_t) in1[4]) * in2[3] +
533
272
             ((uint128_t) in1[5]) * in2[2] +
534
272
             ((uint128_t) in1[6]) * in2[1] +
535
272
             ((uint128_t) in1[7]) * in2[0];
536
537
272
    out[8] = ((uint128_t) in1[0]) * in2[8] +
538
272
             ((uint128_t) in1[1]) * in2[7] +
539
272
             ((uint128_t) in1[2]) * in2[6] +
540
272
             ((uint128_t) in1[3]) * in2[5] +
541
272
             ((uint128_t) in1[4]) * in2[4] +
542
272
             ((uint128_t) in1[5]) * in2[3] +
543
272
             ((uint128_t) in1[6]) * in2[2] +
544
272
             ((uint128_t) in1[7]) * in2[1] +
545
272
             ((uint128_t) in1[8]) * in2[0];
546
547
    /* See comment in felem_square about the use of in2x2 here */
548
549
272
    out[0] += ((uint128_t) in1[1]) * in2x2[8] +
550
272
              ((uint128_t) in1[2]) * in2x2[7] +
551
272
              ((uint128_t) in1[3]) * in2x2[6] +
552
272
              ((uint128_t) in1[4]) * in2x2[5] +
553
272
              ((uint128_t) in1[5]) * in2x2[4] +
554
272
              ((uint128_t) in1[6]) * in2x2[3] +
555
272
              ((uint128_t) in1[7]) * in2x2[2] +
556
272
              ((uint128_t) in1[8]) * in2x2[1];
557
558
272
    out[1] += ((uint128_t) in1[2]) * in2x2[8] +
559
272
              ((uint128_t) in1[3]) * in2x2[7] +
560
272
              ((uint128_t) in1[4]) * in2x2[6] +
561
272
              ((uint128_t) in1[5]) * in2x2[5] +
562
272
              ((uint128_t) in1[6]) * in2x2[4] +
563
272
              ((uint128_t) in1[7]) * in2x2[3] +
564
272
              ((uint128_t) in1[8]) * in2x2[2];
565
566
272
    out[2] += ((uint128_t) in1[3]) * in2x2[8] +
567
272
              ((uint128_t) in1[4]) * in2x2[7] +
568
272
              ((uint128_t) in1[5]) * in2x2[6] +
569
272
              ((uint128_t) in1[6]) * in2x2[5] +
570
272
              ((uint128_t) in1[7]) * in2x2[4] +
571
272
              ((uint128_t) in1[8]) * in2x2[3];
572
573
272
    out[3] += ((uint128_t) in1[4]) * in2x2[8] +
574
272
              ((uint128_t) in1[5]) * in2x2[7] +
575
272
              ((uint128_t) in1[6]) * in2x2[6] +
576
272
              ((uint128_t) in1[7]) * in2x2[5] +
577
272
              ((uint128_t) in1[8]) * in2x2[4];
578
579
272
    out[4] += ((uint128_t) in1[5]) * in2x2[8] +
580
272
              ((uint128_t) in1[6]) * in2x2[7] +
581
272
              ((uint128_t) in1[7]) * in2x2[6] +
582
272
              ((uint128_t) in1[8]) * in2x2[5];
583
584
272
    out[5] += ((uint128_t) in1[6]) * in2x2[8] +
585
272
              ((uint128_t) in1[7]) * in2x2[7] +
586
272
              ((uint128_t) in1[8]) * in2x2[6];
587
588
272
    out[6] += ((uint128_t) in1[7]) * in2x2[8] +
589
272
              ((uint128_t) in1[8]) * in2x2[7];
590
591
272
    out[7] += ((uint128_t) in1[8]) * in2x2[8];
592
272
}
593
594
static const limb bottom52bits = 0xfffffffffffff;
595
596
/*-
597
 * felem_reduce converts a largefelem to an felem.
598
 * On entry:
599
 *   in[i] < 2^128
600
 * On exit:
601
 *   out[i] < 2^59 + 2^14
602
 */
603
static void felem_reduce(felem out, const largefelem in)
604
9.18k
{
605
9.18k
    u64 overflow1, overflow2;
606
607
9.18k
    out[0] = ((limb) in[0]) & bottom58bits;
608
9.18k
    out[1] = ((limb) in[1]) & bottom58bits;
609
9.18k
    out[2] = ((limb) in[2]) & bottom58bits;
610
9.18k
    out[3] = ((limb) in[3]) & bottom58bits;
611
9.18k
    out[4] = ((limb) in[4]) & bottom58bits;
612
9.18k
    out[5] = ((limb) in[5]) & bottom58bits;
613
9.18k
    out[6] = ((limb) in[6]) & bottom58bits;
614
9.18k
    out[7] = ((limb) in[7]) & bottom58bits;
615
9.18k
    out[8] = ((limb) in[8]) & bottom58bits;
616
617
    /* out[i] < 2^58 */
618
619
9.18k
    out[1] += ((limb) in[0]) >> 58;
620
9.18k
    out[1] += (((limb) (in[0] >> 64)) & bottom52bits) << 6;
621
    /*-
622
     * out[1] < 2^58 + 2^6 + 2^58
623
     *        = 2^59 + 2^6
624
     */
625
9.18k
    out[2] += ((limb) (in[0] >> 64)) >> 52;
626
627
9.18k
    out[2] += ((limb) in[1]) >> 58;
628
9.18k
    out[2] += (((limb) (in[1] >> 64)) & bottom52bits) << 6;
629
9.18k
    out[3] += ((limb) (in[1] >> 64)) >> 52;
630
631
9.18k
    out[3] += ((limb) in[2]) >> 58;
632
9.18k
    out[3] += (((limb) (in[2] >> 64)) & bottom52bits) << 6;
633
9.18k
    out[4] += ((limb) (in[2] >> 64)) >> 52;
634
635
9.18k
    out[4] += ((limb) in[3]) >> 58;
636
9.18k
    out[4] += (((limb) (in[3] >> 64)) & bottom52bits) << 6;
637
9.18k
    out[5] += ((limb) (in[3] >> 64)) >> 52;
638
639
9.18k
    out[5] += ((limb) in[4]) >> 58;
640
9.18k
    out[5] += (((limb) (in[4] >> 64)) & bottom52bits) << 6;
641
9.18k
    out[6] += ((limb) (in[4] >> 64)) >> 52;
642
643
9.18k
    out[6] += ((limb) in[5]) >> 58;
644
9.18k
    out[6] += (((limb) (in[5] >> 64)) & bottom52bits) << 6;
645
9.18k
    out[7] += ((limb) (in[5] >> 64)) >> 52;
646
647
9.18k
    out[7] += ((limb) in[6]) >> 58;
648
9.18k
    out[7] += (((limb) (in[6] >> 64)) & bottom52bits) << 6;
649
9.18k
    out[8] += ((limb) (in[6] >> 64)) >> 52;
650
651
9.18k
    out[8] += ((limb) in[7]) >> 58;
652
9.18k
    out[8] += (((limb) (in[7] >> 64)) & bottom52bits) << 6;
653
    /*-
654
     * out[x > 1] < 2^58 + 2^6 + 2^58 + 2^12
655
     *            < 2^59 + 2^13
656
     */
657
9.18k
    overflow1 = ((limb) (in[7] >> 64)) >> 52;
658
659
9.18k
    overflow1 += ((limb) in[8]) >> 58;
660
9.18k
    overflow1 += (((limb) (in[8] >> 64)) & bottom52bits) << 6;
661
9.18k
    overflow2 = ((limb) (in[8] >> 64)) >> 52;
662
663
9.18k
    overflow1 <<= 1;            /* overflow1 < 2^13 + 2^7 + 2^59 */
664
9.18k
    overflow2 <<= 1;            /* overflow2 < 2^13 */
665
666
9.18k
    out[0] += overflow1;        /* out[0] < 2^60 */
667
9.18k
    out[1] += overflow2;        /* out[1] < 2^59 + 2^6 + 2^13 */
668
669
9.18k
    out[1] += out[0] >> 58;
670
9.18k
    out[0] &= bottom58bits;
671
    /*-
672
     * out[0] < 2^58
673
     * out[1] < 2^59 + 2^6 + 2^13 + 2^2
674
     *        < 2^59 + 2^14
675
     */
676
9.18k
}
677
678
#if defined(ECP_NISTP521_ASM)
679
static void felem_square_wrapper(largefelem out, const felem in);
680
static void felem_mul_wrapper(largefelem out, const felem in1, const felem in2);
681
682
static void (*felem_square_p)(largefelem out, const felem in) =
683
    felem_square_wrapper;
684
static void (*felem_mul_p)(largefelem out, const felem in1, const felem in2) =
685
    felem_mul_wrapper;
686
687
void p521_felem_square(largefelem out, const felem in);
688
void p521_felem_mul(largefelem out, const felem in1, const felem in2);
689
690
# if defined(_ARCH_PPC64)
691
#  include "crypto/ppc_arch.h"
692
# endif
693
694
static void felem_select(void)
695
{
696
# if defined(_ARCH_PPC64)
697
    if ((OPENSSL_ppccap_P & PPC_MADD300) && (OPENSSL_ppccap_P & PPC_ALTIVEC)) {
698
        felem_square_p = p521_felem_square;
699
        felem_mul_p = p521_felem_mul;
700
701
        return;
702
    }
703
# endif
704
705
    /* Default */
706
    felem_square_p = felem_square_ref;
707
    felem_mul_p = felem_mul_ref;
708
}
709
710
static void felem_square_wrapper(largefelem out, const felem in)
711
{
712
    felem_select();
713
    felem_square_p(out, in);
714
}
715
716
static void felem_mul_wrapper(largefelem out, const felem in1, const felem in2)
717
{
718
    felem_select();
719
    felem_mul_p(out, in1, in2);
720
}
721
722
# define felem_square felem_square_p
723
# define felem_mul felem_mul_p
724
#else
725
8.90k
# define felem_square felem_square_ref
726
272
# define felem_mul felem_mul_ref
727
#endif
728
729
static void felem_square_reduce(felem out, const felem in)
730
0
{
731
0
    largefelem tmp;
732
0
    felem_square(tmp, in);
733
0
    felem_reduce(out, tmp);
734
0
}
735
736
static void felem_mul_reduce(felem out, const felem in1, const felem in2)
737
0
{
738
0
    largefelem tmp;
739
0
    felem_mul(tmp, in1, in2);
740
0
    felem_reduce(out, tmp);
741
0
}
742
743
/*-
744
 * felem_inv calculates |out| = |in|^{-1}
745
 *
746
 * Based on Fermat's Little Theorem:
747
 *   a^p = a (mod p)
748
 *   a^{p-1} = 1 (mod p)
749
 *   a^{p-2} = a^{-1} (mod p)
750
 */
751
static void felem_inv(felem out, const felem in)
752
17
{
753
17
    felem ftmp, ftmp2, ftmp3, ftmp4;
754
17
    largefelem tmp;
755
17
    unsigned i;
756
757
17
    felem_square(tmp, in);
758
17
    felem_reduce(ftmp, tmp);    /* 2^1 */
759
17
    felem_mul(tmp, in, ftmp);
760
17
    felem_reduce(ftmp, tmp);    /* 2^2 - 2^0 */
761
17
    felem_assign(ftmp2, ftmp);
762
17
    felem_square(tmp, ftmp);
763
17
    felem_reduce(ftmp, tmp);    /* 2^3 - 2^1 */
764
17
    felem_mul(tmp, in, ftmp);
765
17
    felem_reduce(ftmp, tmp);    /* 2^3 - 2^0 */
766
17
    felem_square(tmp, ftmp);
767
17
    felem_reduce(ftmp, tmp);    /* 2^4 - 2^1 */
768
769
17
    felem_square(tmp, ftmp2);
770
17
    felem_reduce(ftmp3, tmp);   /* 2^3 - 2^1 */
771
17
    felem_square(tmp, ftmp3);
772
17
    felem_reduce(ftmp3, tmp);   /* 2^4 - 2^2 */
773
17
    felem_mul(tmp, ftmp3, ftmp2);
774
17
    felem_reduce(ftmp3, tmp);   /* 2^4 - 2^0 */
775
776
17
    felem_assign(ftmp2, ftmp3);
777
17
    felem_square(tmp, ftmp3);
778
17
    felem_reduce(ftmp3, tmp);   /* 2^5 - 2^1 */
779
17
    felem_square(tmp, ftmp3);
780
17
    felem_reduce(ftmp3, tmp);   /* 2^6 - 2^2 */
781
17
    felem_square(tmp, ftmp3);
782
17
    felem_reduce(ftmp3, tmp);   /* 2^7 - 2^3 */
783
17
    felem_square(tmp, ftmp3);
784
17
    felem_reduce(ftmp3, tmp);   /* 2^8 - 2^4 */
785
17
    felem_mul(tmp, ftmp3, ftmp);
786
17
    felem_reduce(ftmp4, tmp);   /* 2^8 - 2^1 */
787
17
    felem_square(tmp, ftmp4);
788
17
    felem_reduce(ftmp4, tmp);   /* 2^9 - 2^2 */
789
17
    felem_mul(tmp, ftmp3, ftmp2);
790
17
    felem_reduce(ftmp3, tmp);   /* 2^8 - 2^0 */
791
17
    felem_assign(ftmp2, ftmp3);
792
793
153
    for (i = 0; i < 8; i++) {
794
136
        felem_square(tmp, ftmp3);
795
136
        felem_reduce(ftmp3, tmp); /* 2^16 - 2^8 */
796
136
    }
797
17
    felem_mul(tmp, ftmp3, ftmp2);
798
17
    felem_reduce(ftmp3, tmp);   /* 2^16 - 2^0 */
799
17
    felem_assign(ftmp2, ftmp3);
800
801
289
    for (i = 0; i < 16; i++) {
802
272
        felem_square(tmp, ftmp3);
803
272
        felem_reduce(ftmp3, tmp); /* 2^32 - 2^16 */
804
272
    }
805
17
    felem_mul(tmp, ftmp3, ftmp2);
806
17
    felem_reduce(ftmp3, tmp);   /* 2^32 - 2^0 */
807
17
    felem_assign(ftmp2, ftmp3);
808
809
561
    for (i = 0; i < 32; i++) {
810
544
        felem_square(tmp, ftmp3);
811
544
        felem_reduce(ftmp3, tmp); /* 2^64 - 2^32 */
812
544
    }
813
17
    felem_mul(tmp, ftmp3, ftmp2);
814
17
    felem_reduce(ftmp3, tmp);   /* 2^64 - 2^0 */
815
17
    felem_assign(ftmp2, ftmp3);
816
817
1.10k
    for (i = 0; i < 64; i++) {
818
1.08k
        felem_square(tmp, ftmp3);
819
1.08k
        felem_reduce(ftmp3, tmp); /* 2^128 - 2^64 */
820
1.08k
    }
821
17
    felem_mul(tmp, ftmp3, ftmp2);
822
17
    felem_reduce(ftmp3, tmp);   /* 2^128 - 2^0 */
823
17
    felem_assign(ftmp2, ftmp3);
824
825
2.19k
    for (i = 0; i < 128; i++) {
826
2.17k
        felem_square(tmp, ftmp3);
827
2.17k
        felem_reduce(ftmp3, tmp); /* 2^256 - 2^128 */
828
2.17k
    }
829
17
    felem_mul(tmp, ftmp3, ftmp2);
830
17
    felem_reduce(ftmp3, tmp);   /* 2^256 - 2^0 */
831
17
    felem_assign(ftmp2, ftmp3);
832
833
4.36k
    for (i = 0; i < 256; i++) {
834
4.35k
        felem_square(tmp, ftmp3);
835
4.35k
        felem_reduce(ftmp3, tmp); /* 2^512 - 2^256 */
836
4.35k
    }
837
17
    felem_mul(tmp, ftmp3, ftmp2);
838
17
    felem_reduce(ftmp3, tmp);   /* 2^512 - 2^0 */
839
840
170
    for (i = 0; i < 9; i++) {
841
153
        felem_square(tmp, ftmp3);
842
153
        felem_reduce(ftmp3, tmp); /* 2^521 - 2^9 */
843
153
    }
844
17
    felem_mul(tmp, ftmp3, ftmp4);
845
17
    felem_reduce(ftmp3, tmp);   /* 2^521 - 2^2 */
846
17
    felem_mul(tmp, ftmp3, in);
847
17
    felem_reduce(out, tmp);     /* 2^521 - 3 */
848
17
}
849
850
/* This is 2^521-1, expressed as an felem */
851
static const felem kPrime = {
852
    0x03ffffffffffffff, 0x03ffffffffffffff, 0x03ffffffffffffff,
853
    0x03ffffffffffffff, 0x03ffffffffffffff, 0x03ffffffffffffff,
854
    0x03ffffffffffffff, 0x03ffffffffffffff, 0x01ffffffffffffff
855
};
856
857
/*-
858
 * felem_is_zero returns a limb with all bits set if |in| == 0 (mod p) and 0
859
 * otherwise.
860
 * On entry:
861
 *   in[i] < 2^59 + 2^14
862
 */
863
static limb felem_is_zero(const felem in)
864
0
{
865
0
    felem ftmp;
866
0
    limb is_zero, is_p;
867
0
    felem_assign(ftmp, in);
868
869
0
    ftmp[0] += ftmp[8] >> 57;
870
0
    ftmp[8] &= bottom57bits;
871
    /* ftmp[8] < 2^57 */
872
0
    ftmp[1] += ftmp[0] >> 58;
873
0
    ftmp[0] &= bottom58bits;
874
0
    ftmp[2] += ftmp[1] >> 58;
875
0
    ftmp[1] &= bottom58bits;
876
0
    ftmp[3] += ftmp[2] >> 58;
877
0
    ftmp[2] &= bottom58bits;
878
0
    ftmp[4] += ftmp[3] >> 58;
879
0
    ftmp[3] &= bottom58bits;
880
0
    ftmp[5] += ftmp[4] >> 58;
881
0
    ftmp[4] &= bottom58bits;
882
0
    ftmp[6] += ftmp[5] >> 58;
883
0
    ftmp[5] &= bottom58bits;
884
0
    ftmp[7] += ftmp[6] >> 58;
885
0
    ftmp[6] &= bottom58bits;
886
0
    ftmp[8] += ftmp[7] >> 58;
887
0
    ftmp[7] &= bottom58bits;
888
    /* ftmp[8] < 2^57 + 4 */
889
890
    /*
891
     * The ninth limb of 2*(2^521-1) is 0x03ffffffffffffff, which is greater
892
     * than our bound for ftmp[8]. Therefore we only have to check if the
893
     * zero is zero or 2^521-1.
894
     */
895
896
0
    is_zero = 0;
897
0
    is_zero |= ftmp[0];
898
0
    is_zero |= ftmp[1];
899
0
    is_zero |= ftmp[2];
900
0
    is_zero |= ftmp[3];
901
0
    is_zero |= ftmp[4];
902
0
    is_zero |= ftmp[5];
903
0
    is_zero |= ftmp[6];
904
0
    is_zero |= ftmp[7];
905
0
    is_zero |= ftmp[8];
906
907
0
    is_zero--;
908
    /*
909
     * We know that ftmp[i] < 2^63, therefore the only way that the top bit
910
     * can be set is if is_zero was 0 before the decrement.
911
     */
912
0
    is_zero = 0 - (is_zero >> 63);
913
914
0
    is_p = ftmp[0] ^ kPrime[0];
915
0
    is_p |= ftmp[1] ^ kPrime[1];
916
0
    is_p |= ftmp[2] ^ kPrime[2];
917
0
    is_p |= ftmp[3] ^ kPrime[3];
918
0
    is_p |= ftmp[4] ^ kPrime[4];
919
0
    is_p |= ftmp[5] ^ kPrime[5];
920
0
    is_p |= ftmp[6] ^ kPrime[6];
921
0
    is_p |= ftmp[7] ^ kPrime[7];
922
0
    is_p |= ftmp[8] ^ kPrime[8];
923
924
0
    is_p--;
925
0
    is_p = 0 - (is_p >> 63);
926
927
0
    is_zero |= is_p;
928
0
    return is_zero;
929
0
}
930
931
static int felem_is_zero_int(const void *in)
932
0
{
933
0
    return (int)(felem_is_zero(in) & ((limb) 1));
934
0
}
935
936
/*-
937
 * felem_contract converts |in| to its unique, minimal representation.
938
 * On entry:
939
 *   in[i] < 2^59 + 2^14
940
 */
941
static void felem_contract(felem out, const felem in)
942
34
{
943
34
    limb is_p, is_greater, sign;
944
34
    static const limb two58 = ((limb) 1) << 58;
945
946
34
    felem_assign(out, in);
947
948
34
    out[0] += out[8] >> 57;
949
34
    out[8] &= bottom57bits;
950
    /* out[8] < 2^57 */
951
34
    out[1] += out[0] >> 58;
952
34
    out[0] &= bottom58bits;
953
34
    out[2] += out[1] >> 58;
954
34
    out[1] &= bottom58bits;
955
34
    out[3] += out[2] >> 58;
956
34
    out[2] &= bottom58bits;
957
34
    out[4] += out[3] >> 58;
958
34
    out[3] &= bottom58bits;
959
34
    out[5] += out[4] >> 58;
960
34
    out[4] &= bottom58bits;
961
34
    out[6] += out[5] >> 58;
962
34
    out[5] &= bottom58bits;
963
34
    out[7] += out[6] >> 58;
964
34
    out[6] &= bottom58bits;
965
34
    out[8] += out[7] >> 58;
966
34
    out[7] &= bottom58bits;
967
    /* out[8] < 2^57 + 4 */
968
969
    /*
970
     * If the value is greater than 2^521-1 then we have to subtract 2^521-1
971
     * out. See the comments in felem_is_zero regarding why we don't test for
972
     * other multiples of the prime.
973
     */
974
975
    /*
976
     * First, if |out| is equal to 2^521-1, we subtract it out to get zero.
977
     */
978
979
34
    is_p = out[0] ^ kPrime[0];
980
34
    is_p |= out[1] ^ kPrime[1];
981
34
    is_p |= out[2] ^ kPrime[2];
982
34
    is_p |= out[3] ^ kPrime[3];
983
34
    is_p |= out[4] ^ kPrime[4];
984
34
    is_p |= out[5] ^ kPrime[5];
985
34
    is_p |= out[6] ^ kPrime[6];
986
34
    is_p |= out[7] ^ kPrime[7];
987
34
    is_p |= out[8] ^ kPrime[8];
988
989
34
    is_p--;
990
34
    is_p &= is_p << 32;
991
34
    is_p &= is_p << 16;
992
34
    is_p &= is_p << 8;
993
34
    is_p &= is_p << 4;
994
34
    is_p &= is_p << 2;
995
34
    is_p &= is_p << 1;
996
34
    is_p = 0 - (is_p >> 63);
997
34
    is_p = ~is_p;
998
999
    /* is_p is 0 iff |out| == 2^521-1 and all ones otherwise */
1000
1001
34
    out[0] &= is_p;
1002
34
    out[1] &= is_p;
1003
34
    out[2] &= is_p;
1004
34
    out[3] &= is_p;
1005
34
    out[4] &= is_p;
1006
34
    out[5] &= is_p;
1007
34
    out[6] &= is_p;
1008
34
    out[7] &= is_p;
1009
34
    out[8] &= is_p;
1010
1011
    /*
1012
     * In order to test that |out| >= 2^521-1 we need only test if out[8] >>
1013
     * 57 is greater than zero as (2^521-1) + x >= 2^522
1014
     */
1015
34
    is_greater = out[8] >> 57;
1016
34
    is_greater |= is_greater << 32;
1017
34
    is_greater |= is_greater << 16;
1018
34
    is_greater |= is_greater << 8;
1019
34
    is_greater |= is_greater << 4;
1020
34
    is_greater |= is_greater << 2;
1021
34
    is_greater |= is_greater << 1;
1022
34
    is_greater = 0 - (is_greater >> 63);
1023
1024
34
    out[0] -= kPrime[0] & is_greater;
1025
34
    out[1] -= kPrime[1] & is_greater;
1026
34
    out[2] -= kPrime[2] & is_greater;
1027
34
    out[3] -= kPrime[3] & is_greater;
1028
34
    out[4] -= kPrime[4] & is_greater;
1029
34
    out[5] -= kPrime[5] & is_greater;
1030
34
    out[6] -= kPrime[6] & is_greater;
1031
34
    out[7] -= kPrime[7] & is_greater;
1032
34
    out[8] -= kPrime[8] & is_greater;
1033
1034
    /* Eliminate negative coefficients */
1035
34
    sign = -(out[0] >> 63);
1036
34
    out[0] += (two58 & sign);
1037
34
    out[1] -= (1 & sign);
1038
34
    sign = -(out[1] >> 63);
1039
34
    out[1] += (two58 & sign);
1040
34
    out[2] -= (1 & sign);
1041
34
    sign = -(out[2] >> 63);
1042
34
    out[2] += (two58 & sign);
1043
34
    out[3] -= (1 & sign);
1044
34
    sign = -(out[3] >> 63);
1045
34
    out[3] += (two58 & sign);
1046
34
    out[4] -= (1 & sign);
1047
34
    sign = -(out[4] >> 63);
1048
34
    out[4] += (two58 & sign);
1049
34
    out[5] -= (1 & sign);
1050
34
    sign = -(out[0] >> 63);
1051
34
    out[5] += (two58 & sign);
1052
34
    out[6] -= (1 & sign);
1053
34
    sign = -(out[6] >> 63);
1054
34
    out[6] += (two58 & sign);
1055
34
    out[7] -= (1 & sign);
1056
34
    sign = -(out[7] >> 63);
1057
34
    out[7] += (two58 & sign);
1058
34
    out[8] -= (1 & sign);
1059
34
    sign = -(out[5] >> 63);
1060
34
    out[5] += (two58 & sign);
1061
34
    out[6] -= (1 & sign);
1062
34
    sign = -(out[6] >> 63);
1063
34
    out[6] += (two58 & sign);
1064
34
    out[7] -= (1 & sign);
1065
34
    sign = -(out[7] >> 63);
1066
34
    out[7] += (two58 & sign);
1067
34
    out[8] -= (1 & sign);
1068
34
}
1069
1070
/*-
1071
 * Group operations
1072
 * ----------------
1073
 *
1074
 * Building on top of the field operations we have the operations on the
1075
 * elliptic curve group itself. Points on the curve are represented in Jacobian
1076
 * coordinates */
1077
1078
/*-
1079
 * point_double calculates 2*(x_in, y_in, z_in)
1080
 *
1081
 * The method is taken from:
1082
 *   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
1083
 *
1084
 * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed.
1085
 * while x_out == y_in is not (maybe this works, but it's not tested). */
1086
static void
1087
point_double(felem x_out, felem y_out, felem z_out,
1088
             const felem x_in, const felem y_in, const felem z_in)
1089
0
{
1090
0
    largefelem tmp, tmp2;
1091
0
    felem delta, gamma, beta, alpha, ftmp, ftmp2;
1092
1093
0
    felem_assign(ftmp, x_in);
1094
0
    felem_assign(ftmp2, x_in);
1095
1096
    /* delta = z^2 */
1097
0
    felem_square(tmp, z_in);
1098
0
    felem_reduce(delta, tmp);   /* delta[i] < 2^59 + 2^14 */
1099
1100
    /* gamma = y^2 */
1101
0
    felem_square(tmp, y_in);
1102
0
    felem_reduce(gamma, tmp);   /* gamma[i] < 2^59 + 2^14 */
1103
1104
    /* beta = x*gamma */
1105
0
    felem_mul(tmp, x_in, gamma);
1106
0
    felem_reduce(beta, tmp);    /* beta[i] < 2^59 + 2^14 */
1107
1108
    /* alpha = 3*(x-delta)*(x+delta) */
1109
0
    felem_diff64(ftmp, delta);
1110
    /* ftmp[i] < 2^61 */
1111
0
    felem_sum64(ftmp2, delta);
1112
    /* ftmp2[i] < 2^60 + 2^15 */
1113
0
    felem_scalar64(ftmp2, 3);
1114
    /* ftmp2[i] < 3*2^60 + 3*2^15 */
1115
0
    felem_mul(tmp, ftmp, ftmp2);
1116
    /*-
1117
     * tmp[i] < 17(3*2^121 + 3*2^76)
1118
     *        = 61*2^121 + 61*2^76
1119
     *        < 64*2^121 + 64*2^76
1120
     *        = 2^127 + 2^82
1121
     *        < 2^128
1122
     */
1123
0
    felem_reduce(alpha, tmp);
1124
1125
    /* x' = alpha^2 - 8*beta */
1126
0
    felem_square(tmp, alpha);
1127
    /*
1128
     * tmp[i] < 17*2^120 < 2^125
1129
     */
1130
0
    felem_assign(ftmp, beta);
1131
0
    felem_scalar64(ftmp, 8);
1132
    /* ftmp[i] < 2^62 + 2^17 */
1133
0
    felem_diff_128_64(tmp, ftmp);
1134
    /* tmp[i] < 2^125 + 2^63 + 2^62 + 2^17 */
1135
0
    felem_reduce(x_out, tmp);
1136
1137
    /* z' = (y + z)^2 - gamma - delta */
1138
0
    felem_sum64(delta, gamma);
1139
    /* delta[i] < 2^60 + 2^15 */
1140
0
    felem_assign(ftmp, y_in);
1141
0
    felem_sum64(ftmp, z_in);
1142
    /* ftmp[i] < 2^60 + 2^15 */
1143
0
    felem_square(tmp, ftmp);
1144
    /*
1145
     * tmp[i] < 17(2^122) < 2^127
1146
     */
1147
0
    felem_diff_128_64(tmp, delta);
1148
    /* tmp[i] < 2^127 + 2^63 */
1149
0
    felem_reduce(z_out, tmp);
1150
1151
    /* y' = alpha*(4*beta - x') - 8*gamma^2 */
1152
0
    felem_scalar64(beta, 4);
1153
    /* beta[i] < 2^61 + 2^16 */
1154
0
    felem_diff64(beta, x_out);
1155
    /* beta[i] < 2^61 + 2^60 + 2^16 */
1156
0
    felem_mul(tmp, alpha, beta);
1157
    /*-
1158
     * tmp[i] < 17*((2^59 + 2^14)(2^61 + 2^60 + 2^16))
1159
     *        = 17*(2^120 + 2^75 + 2^119 + 2^74 + 2^75 + 2^30)
1160
     *        = 17*(2^120 + 2^119 + 2^76 + 2^74 + 2^30)
1161
     *        < 2^128
1162
     */
1163
0
    felem_square(tmp2, gamma);
1164
    /*-
1165
     * tmp2[i] < 17*(2^59 + 2^14)^2
1166
     *         = 17*(2^118 + 2^74 + 2^28)
1167
     */
1168
0
    felem_scalar128(tmp2, 8);
1169
    /*-
1170
     * tmp2[i] < 8*17*(2^118 + 2^74 + 2^28)
1171
     *         = 2^125 + 2^121 + 2^81 + 2^77 + 2^35 + 2^31
1172
     *         < 2^126
1173
     */
1174
0
    felem_diff128(tmp, tmp2);
1175
    /*-
1176
     * tmp[i] < 2^127 - 2^69 + 17(2^120 + 2^119 + 2^76 + 2^74 + 2^30)
1177
     *        = 2^127 + 2^124 + 2^122 + 2^120 + 2^118 + 2^80 + 2^78 + 2^76 +
1178
     *          2^74 + 2^69 + 2^34 + 2^30
1179
     *        < 2^128
1180
     */
1181
0
    felem_reduce(y_out, tmp);
1182
0
}
1183
1184
/* copy_conditional copies in to out iff mask is all ones. */
1185
static void copy_conditional(felem out, const felem in, limb mask)
1186
0
{
1187
0
    unsigned i;
1188
0
    for (i = 0; i < NLIMBS; ++i) {
1189
0
        const limb tmp = mask & (in[i] ^ out[i]);
1190
0
        out[i] ^= tmp;
1191
0
    }
1192
0
}
1193
1194
/*-
1195
 * point_add calculates (x1, y1, z1) + (x2, y2, z2)
1196
 *
1197
 * The method is taken from
1198
 *   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl,
1199
 * adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity).
1200
 *
1201
 * This function includes a branch for checking whether the two input points
1202
 * are equal (while not equal to the point at infinity). See comment below
1203
 * on constant-time.
1204
 */
1205
static void point_add(felem x3, felem y3, felem z3,
1206
                      const felem x1, const felem y1, const felem z1,
1207
                      const int mixed, const felem x2, const felem y2,
1208
                      const felem z2)
1209
0
{
1210
0
    felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, ftmp6, x_out, y_out, z_out;
1211
0
    largefelem tmp, tmp2;
1212
0
    limb x_equal, y_equal, z1_is_zero, z2_is_zero;
1213
0
    limb points_equal;
1214
1215
0
    z1_is_zero = felem_is_zero(z1);
1216
0
    z2_is_zero = felem_is_zero(z2);
1217
1218
    /* ftmp = z1z1 = z1**2 */
1219
0
    felem_square(tmp, z1);
1220
0
    felem_reduce(ftmp, tmp);
1221
1222
0
    if (!mixed) {
1223
        /* ftmp2 = z2z2 = z2**2 */
1224
0
        felem_square(tmp, z2);
1225
0
        felem_reduce(ftmp2, tmp);
1226
1227
        /* u1 = ftmp3 = x1*z2z2 */
1228
0
        felem_mul(tmp, x1, ftmp2);
1229
0
        felem_reduce(ftmp3, tmp);
1230
1231
        /* ftmp5 = z1 + z2 */
1232
0
        felem_assign(ftmp5, z1);
1233
0
        felem_sum64(ftmp5, z2);
1234
        /* ftmp5[i] < 2^61 */
1235
1236
        /* ftmp5 = (z1 + z2)**2 - z1z1 - z2z2 = 2*z1z2 */
1237
0
        felem_square(tmp, ftmp5);
1238
        /* tmp[i] < 17*2^122 */
1239
0
        felem_diff_128_64(tmp, ftmp);
1240
        /* tmp[i] < 17*2^122 + 2^63 */
1241
0
        felem_diff_128_64(tmp, ftmp2);
1242
        /* tmp[i] < 17*2^122 + 2^64 */
1243
0
        felem_reduce(ftmp5, tmp);
1244
1245
        /* ftmp2 = z2 * z2z2 */
1246
0
        felem_mul(tmp, ftmp2, z2);
1247
0
        felem_reduce(ftmp2, tmp);
1248
1249
        /* s1 = ftmp6 = y1 * z2**3 */
1250
0
        felem_mul(tmp, y1, ftmp2);
1251
0
        felem_reduce(ftmp6, tmp);
1252
0
    } else {
1253
        /*
1254
         * We'll assume z2 = 1 (special case z2 = 0 is handled later)
1255
         */
1256
1257
        /* u1 = ftmp3 = x1*z2z2 */
1258
0
        felem_assign(ftmp3, x1);
1259
1260
        /* ftmp5 = 2*z1z2 */
1261
0
        felem_scalar(ftmp5, z1, 2);
1262
1263
        /* s1 = ftmp6 = y1 * z2**3 */
1264
0
        felem_assign(ftmp6, y1);
1265
0
    }
1266
1267
    /* u2 = x2*z1z1 */
1268
0
    felem_mul(tmp, x2, ftmp);
1269
    /* tmp[i] < 17*2^120 */
1270
1271
    /* h = ftmp4 = u2 - u1 */
1272
0
    felem_diff_128_64(tmp, ftmp3);
1273
    /* tmp[i] < 17*2^120 + 2^63 */
1274
0
    felem_reduce(ftmp4, tmp);
1275
1276
0
    x_equal = felem_is_zero(ftmp4);
1277
1278
    /* z_out = ftmp5 * h */
1279
0
    felem_mul(tmp, ftmp5, ftmp4);
1280
0
    felem_reduce(z_out, tmp);
1281
1282
    /* ftmp = z1 * z1z1 */
1283
0
    felem_mul(tmp, ftmp, z1);
1284
0
    felem_reduce(ftmp, tmp);
1285
1286
    /* s2 = tmp = y2 * z1**3 */
1287
0
    felem_mul(tmp, y2, ftmp);
1288
    /* tmp[i] < 17*2^120 */
1289
1290
    /* r = ftmp5 = (s2 - s1)*2 */
1291
0
    felem_diff_128_64(tmp, ftmp6);
1292
    /* tmp[i] < 17*2^120 + 2^63 */
1293
0
    felem_reduce(ftmp5, tmp);
1294
0
    y_equal = felem_is_zero(ftmp5);
1295
0
    felem_scalar64(ftmp5, 2);
1296
    /* ftmp5[i] < 2^61 */
1297
1298
    /*
1299
     * The formulae are incorrect if the points are equal, in affine coordinates
1300
     * (X_1, Y_1) == (X_2, Y_2), so we check for this and do doubling if this
1301
     * happens.
1302
     *
1303
     * We use bitwise operations to avoid potential side-channels introduced by
1304
     * the short-circuiting behaviour of boolean operators.
1305
     *
1306
     * The special case of either point being the point at infinity (z1 and/or
1307
     * z2 are zero), is handled separately later on in this function, so we
1308
     * avoid jumping to point_double here in those special cases.
1309
     *
1310
     * Notice the comment below on the implications of this branching for timing
1311
     * leaks and why it is considered practically irrelevant.
1312
     */
1313
0
    points_equal = (x_equal & y_equal & (~z1_is_zero) & (~z2_is_zero));
1314
1315
0
    if (points_equal) {
1316
        /*
1317
         * This is obviously not constant-time but it will almost-never happen
1318
         * for ECDH / ECDSA. The case where it can happen is during scalar-mult
1319
         * where the intermediate value gets very close to the group order.
1320
         * Since |ossl_ec_GFp_nistp_recode_scalar_bits| produces signed digits
1321
         * for the scalar, it's possible for the intermediate value to be a small
1322
         * negative multiple of the base point, and for the final signed digit
1323
         * to be the same value. We believe that this only occurs for the scalar
1324
         * 1fffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
1325
         * ffffffa51868783bf2f966b7fcc0148f709a5d03bb5c9b8899c47aebb6fb
1326
         * 71e913863f7, in that case the penultimate intermediate is -9G and
1327
         * the final digit is also -9G. Since this only happens for a single
1328
         * scalar, the timing leak is irrelevant. (Any attacker who wanted to
1329
         * check whether a secret scalar was that exact value, can already do
1330
         * so.)
1331
         */
1332
0
        point_double(x3, y3, z3, x1, y1, z1);
1333
0
        return;
1334
0
    }
1335
1336
    /* I = ftmp = (2h)**2 */
1337
0
    felem_assign(ftmp, ftmp4);
1338
0
    felem_scalar64(ftmp, 2);
1339
    /* ftmp[i] < 2^61 */
1340
0
    felem_square(tmp, ftmp);
1341
    /* tmp[i] < 17*2^122 */
1342
0
    felem_reduce(ftmp, tmp);
1343
1344
    /* J = ftmp2 = h * I */
1345
0
    felem_mul(tmp, ftmp4, ftmp);
1346
0
    felem_reduce(ftmp2, tmp);
1347
1348
    /* V = ftmp4 = U1 * I */
1349
0
    felem_mul(tmp, ftmp3, ftmp);
1350
0
    felem_reduce(ftmp4, tmp);
1351
1352
    /* x_out = r**2 - J - 2V */
1353
0
    felem_square(tmp, ftmp5);
1354
    /* tmp[i] < 17*2^122 */
1355
0
    felem_diff_128_64(tmp, ftmp2);
1356
    /* tmp[i] < 17*2^122 + 2^63 */
1357
0
    felem_assign(ftmp3, ftmp4);
1358
0
    felem_scalar64(ftmp4, 2);
1359
    /* ftmp4[i] < 2^61 */
1360
0
    felem_diff_128_64(tmp, ftmp4);
1361
    /* tmp[i] < 17*2^122 + 2^64 */
1362
0
    felem_reduce(x_out, tmp);
1363
1364
    /* y_out = r(V-x_out) - 2 * s1 * J */
1365
0
    felem_diff64(ftmp3, x_out);
1366
    /*
1367
     * ftmp3[i] < 2^60 + 2^60 = 2^61
1368
     */
1369
0
    felem_mul(tmp, ftmp5, ftmp3);
1370
    /* tmp[i] < 17*2^122 */
1371
0
    felem_mul(tmp2, ftmp6, ftmp2);
1372
    /* tmp2[i] < 17*2^120 */
1373
0
    felem_scalar128(tmp2, 2);
1374
    /* tmp2[i] < 17*2^121 */
1375
0
    felem_diff128(tmp, tmp2);
1376
        /*-
1377
         * tmp[i] < 2^127 - 2^69 + 17*2^122
1378
         *        = 2^126 - 2^122 - 2^6 - 2^2 - 1
1379
         *        < 2^127
1380
         */
1381
0
    felem_reduce(y_out, tmp);
1382
1383
0
    copy_conditional(x_out, x2, z1_is_zero);
1384
0
    copy_conditional(x_out, x1, z2_is_zero);
1385
0
    copy_conditional(y_out, y2, z1_is_zero);
1386
0
    copy_conditional(y_out, y1, z2_is_zero);
1387
0
    copy_conditional(z_out, z2, z1_is_zero);
1388
0
    copy_conditional(z_out, z1, z2_is_zero);
1389
0
    felem_assign(x3, x_out);
1390
0
    felem_assign(y3, y_out);
1391
0
    felem_assign(z3, z_out);
1392
0
}
1393
1394
/*-
1395
 * Base point pre computation
1396
 * --------------------------
1397
 *
1398
 * Two different sorts of precomputed tables are used in the following code.
1399
 * Each contain various points on the curve, where each point is three field
1400
 * elements (x, y, z).
1401
 *
1402
 * For the base point table, z is usually 1 (0 for the point at infinity).
1403
 * This table has 16 elements:
1404
 * index | bits    | point
1405
 * ------+---------+------------------------------
1406
 *     0 | 0 0 0 0 | 0G
1407
 *     1 | 0 0 0 1 | 1G
1408
 *     2 | 0 0 1 0 | 2^130G
1409
 *     3 | 0 0 1 1 | (2^130 + 1)G
1410
 *     4 | 0 1 0 0 | 2^260G
1411
 *     5 | 0 1 0 1 | (2^260 + 1)G
1412
 *     6 | 0 1 1 0 | (2^260 + 2^130)G
1413
 *     7 | 0 1 1 1 | (2^260 + 2^130 + 1)G
1414
 *     8 | 1 0 0 0 | 2^390G
1415
 *     9 | 1 0 0 1 | (2^390 + 1)G
1416
 *    10 | 1 0 1 0 | (2^390 + 2^130)G
1417
 *    11 | 1 0 1 1 | (2^390 + 2^130 + 1)G
1418
 *    12 | 1 1 0 0 | (2^390 + 2^260)G
1419
 *    13 | 1 1 0 1 | (2^390 + 2^260 + 1)G
1420
 *    14 | 1 1 1 0 | (2^390 + 2^260 + 2^130)G
1421
 *    15 | 1 1 1 1 | (2^390 + 2^260 + 2^130 + 1)G
1422
 *
1423
 * The reason for this is so that we can clock bits into four different
1424
 * locations when doing simple scalar multiplies against the base point.
1425
 *
1426
 * Tables for other points have table[i] = iG for i in 0 .. 16. */
1427
1428
/* gmul is the table of precomputed base points */
1429
static const felem gmul[16][3] = {
1430
{{0, 0, 0, 0, 0, 0, 0, 0, 0},
1431
 {0, 0, 0, 0, 0, 0, 0, 0, 0},
1432
 {0, 0, 0, 0, 0, 0, 0, 0, 0}},
1433
{{0x017e7e31c2e5bd66, 0x022cf0615a90a6fe, 0x00127a2ffa8de334,
1434
  0x01dfbf9d64a3f877, 0x006b4d3dbaa14b5e, 0x014fed487e0a2bd8,
1435
  0x015b4429c6481390, 0x03a73678fb2d988e, 0x00c6858e06b70404},
1436
 {0x00be94769fd16650, 0x031c21a89cb09022, 0x039013fad0761353,
1437
  0x02657bd099031542, 0x03273e662c97ee72, 0x01e6d11a05ebef45,
1438
  0x03d1bd998f544495, 0x03001172297ed0b1, 0x011839296a789a3b},
1439
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1440
{{0x0373faacbc875bae, 0x00f325023721c671, 0x00f666fd3dbde5ad,
1441
  0x01a6932363f88ea7, 0x01fc6d9e13f9c47b, 0x03bcbffc2bbf734e,
1442
  0x013ee3c3647f3a92, 0x029409fefe75d07d, 0x00ef9199963d85e5},
1443
 {0x011173743ad5b178, 0x02499c7c21bf7d46, 0x035beaeabb8b1a58,
1444
  0x00f989c4752ea0a3, 0x0101e1de48a9c1a3, 0x01a20076be28ba6c,
1445
  0x02f8052e5eb2de95, 0x01bfe8f82dea117c, 0x0160074d3c36ddb7},
1446
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1447
{{0x012f3fc373393b3b, 0x03d3d6172f1419fa, 0x02adc943c0b86873,
1448
  0x00d475584177952b, 0x012a4d1673750ee2, 0x00512517a0f13b0c,
1449
  0x02b184671a7b1734, 0x0315b84236f1a50a, 0x00a4afc472edbdb9},
1450
 {0x00152a7077f385c4, 0x03044007d8d1c2ee, 0x0065829d61d52b52,
1451
  0x00494ff6b6631d0d, 0x00a11d94d5f06bcf, 0x02d2f89474d9282e,
1452
  0x0241c5727c06eeb9, 0x0386928710fbdb9d, 0x01f883f727b0dfbe},
1453
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1454
{{0x019b0c3c9185544d, 0x006243a37c9d97db, 0x02ee3cbe030a2ad2,
1455
  0x00cfdd946bb51e0d, 0x0271c00932606b91, 0x03f817d1ec68c561,
1456
  0x03f37009806a369c, 0x03c1f30baf184fd5, 0x01091022d6d2f065},
1457
 {0x0292c583514c45ed, 0x0316fca51f9a286c, 0x00300af507c1489a,
1458
  0x0295f69008298cf1, 0x02c0ed8274943d7b, 0x016509b9b47a431e,
1459
  0x02bc9de9634868ce, 0x005b34929bffcb09, 0x000c1a0121681524},
1460
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1461
{{0x0286abc0292fb9f2, 0x02665eee9805b3f7, 0x01ed7455f17f26d6,
1462
  0x0346355b83175d13, 0x006284944cd0a097, 0x0191895bcdec5e51,
1463
  0x02e288370afda7d9, 0x03b22312bfefa67a, 0x01d104d3fc0613fe},
1464
 {0x0092421a12f7e47f, 0x0077a83fa373c501, 0x03bd25c5f696bd0d,
1465
  0x035c41e4d5459761, 0x01ca0d1742b24f53, 0x00aaab27863a509c,
1466
  0x018b6de47df73917, 0x025c0b771705cd01, 0x01fd51d566d760a7},
1467
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1468
{{0x01dd92ff6b0d1dbd, 0x039c5e2e8f8afa69, 0x0261ed13242c3b27,
1469
  0x0382c6e67026e6a0, 0x01d60b10be2089f9, 0x03c15f3dce86723f,
1470
  0x03c764a32d2a062d, 0x017307eac0fad056, 0x018207c0b96c5256},
1471
 {0x0196a16d60e13154, 0x03e6ce74c0267030, 0x00ddbf2b4e52a5aa,
1472
  0x012738241bbf31c8, 0x00ebe8dc04685a28, 0x024c2ad6d380d4a2,
1473
  0x035ee062a6e62d0e, 0x0029ed74af7d3a0f, 0x00eef32aec142ebd},
1474
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1475
{{0x00c31ec398993b39, 0x03a9f45bcda68253, 0x00ac733c24c70890,
1476
  0x00872b111401ff01, 0x01d178c23195eafb, 0x03bca2c816b87f74,
1477
  0x0261a9af46fbad7a, 0x0324b2a8dd3d28f9, 0x00918121d8f24e23},
1478
 {0x032bc8c1ca983cd7, 0x00d869dfb08fc8c6, 0x01693cb61fce1516,
1479
  0x012a5ea68f4e88a8, 0x010869cab88d7ae3, 0x009081ad277ceee1,
1480
  0x033a77166d064cdc, 0x03955235a1fb3a95, 0x01251a4a9b25b65e},
1481
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1482
{{0x00148a3a1b27f40b, 0x0123186df1b31fdc, 0x00026e7beaad34ce,
1483
  0x01db446ac1d3dbba, 0x0299c1a33437eaec, 0x024540610183cbb7,
1484
  0x0173bb0e9ce92e46, 0x02b937e43921214b, 0x01ab0436a9bf01b5},
1485
 {0x0383381640d46948, 0x008dacbf0e7f330f, 0x03602122bcc3f318,
1486
  0x01ee596b200620d6, 0x03bd0585fda430b3, 0x014aed77fd123a83,
1487
  0x005ace749e52f742, 0x0390fe041da2b842, 0x0189a8ceb3299242},
1488
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1489
{{0x012a19d6b3282473, 0x00c0915918b423ce, 0x023a954eb94405ae,
1490
  0x00529f692be26158, 0x0289fa1b6fa4b2aa, 0x0198ae4ceea346ef,
1491
  0x0047d8cdfbdedd49, 0x00cc8c8953f0f6b8, 0x001424abbff49203},
1492
 {0x0256732a1115a03a, 0x0351bc38665c6733, 0x03f7b950fb4a6447,
1493
  0x000afffa94c22155, 0x025763d0a4dab540, 0x000511e92d4fc283,
1494
  0x030a7e9eda0ee96c, 0x004c3cd93a28bf0a, 0x017edb3a8719217f},
1495
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1496
{{0x011de5675a88e673, 0x031d7d0f5e567fbe, 0x0016b2062c970ae5,
1497
  0x03f4a2be49d90aa7, 0x03cef0bd13822866, 0x03f0923dcf774a6c,
1498
  0x0284bebc4f322f72, 0x016ab2645302bb2c, 0x01793f95dace0e2a},
1499
 {0x010646e13527a28f, 0x01ca1babd59dc5e7, 0x01afedfd9a5595df,
1500
  0x01f15785212ea6b1, 0x0324e5d64f6ae3f4, 0x02d680f526d00645,
1501
  0x0127920fadf627a7, 0x03b383f75df4f684, 0x0089e0057e783b0a},
1502
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1503
{{0x00f334b9eb3c26c6, 0x0298fdaa98568dce, 0x01c2d24843a82292,
1504
  0x020bcb24fa1b0711, 0x02cbdb3d2b1875e6, 0x0014907598f89422,
1505
  0x03abe3aa43b26664, 0x02cbf47f720bc168, 0x0133b5e73014b79b},
1506
 {0x034aab5dab05779d, 0x00cdc5d71fee9abb, 0x0399f16bd4bd9d30,
1507
  0x03582fa592d82647, 0x02be1cdfb775b0e9, 0x0034f7cea32e94cb,
1508
  0x0335a7f08f56f286, 0x03b707e9565d1c8b, 0x0015c946ea5b614f},
1509
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1510
{{0x024676f6cff72255, 0x00d14625cac96378, 0x00532b6008bc3767,
1511
  0x01fc16721b985322, 0x023355ea1b091668, 0x029de7afdc0317c3,
1512
  0x02fc8a7ca2da037c, 0x02de1217d74a6f30, 0x013f7173175b73bf},
1513
 {0x0344913f441490b5, 0x0200f9e272b61eca, 0x0258a246b1dd55d2,
1514
  0x03753db9ea496f36, 0x025e02937a09c5ef, 0x030cbd3d14012692,
1515
  0x01793a67e70dc72a, 0x03ec1d37048a662e, 0x006550f700c32a8d},
1516
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1517
{{0x00d3f48a347eba27, 0x008e636649b61bd8, 0x00d3b93716778fb3,
1518
  0x004d1915757bd209, 0x019d5311a3da44e0, 0x016d1afcbbe6aade,
1519
  0x0241bf5f73265616, 0x0384672e5d50d39b, 0x005009fee522b684},
1520
 {0x029b4fab064435fe, 0x018868ee095bbb07, 0x01ea3d6936cc92b8,
1521
  0x000608b00f78a2f3, 0x02db911073d1c20f, 0x018205938470100a,
1522
  0x01f1e4964cbe6ff2, 0x021a19a29eed4663, 0x01414485f42afa81},
1523
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1524
{{0x01612b3a17f63e34, 0x03813992885428e6, 0x022b3c215b5a9608,
1525
  0x029b4057e19f2fcb, 0x0384059a587af7e6, 0x02d6400ace6fe610,
1526
  0x029354d896e8e331, 0x00c047ee6dfba65e, 0x0037720542e9d49d},
1527
 {0x02ce9eed7c5e9278, 0x0374ed703e79643b, 0x01316c54c4072006,
1528
  0x005aaa09054b2ee8, 0x002824000c840d57, 0x03d4eba24771ed86,
1529
  0x0189c50aabc3bdae, 0x0338c01541e15510, 0x00466d56e38eed42},
1530
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1531
{{0x007efd8330ad8bd6, 0x02465ed48047710b, 0x0034c6606b215e0c,
1532
  0x016ae30c53cbf839, 0x01fa17bd37161216, 0x018ead4e61ce8ab9,
1533
  0x005482ed5f5dee46, 0x037543755bba1d7f, 0x005e5ac7e70a9d0f},
1534
 {0x0117e1bb2fdcb2a2, 0x03deea36249f40c4, 0x028d09b4a6246cb7,
1535
  0x03524b8855bcf756, 0x023d7d109d5ceb58, 0x0178e43e3223ef9c,
1536
  0x0154536a0c6e966a, 0x037964d1286ee9fe, 0x0199bcd90e125055},
1537
 {1, 0, 0, 0, 0, 0, 0, 0, 0}}
1538
};
1539
1540
/*
1541
 * select_point selects the |idx|th point from a precomputation table and
1542
 * copies it to out.
1543
 */
1544
 /* pre_comp below is of the size provided in |size| */
1545
static void select_point(const limb idx, unsigned int size,
1546
                         const felem pre_comp[][3], felem out[3])
1547
0
{
1548
0
    unsigned i, j;
1549
0
    limb *outlimbs = &out[0][0];
1550
1551
0
    memset(out, 0, sizeof(*out) * 3);
1552
1553
0
    for (i = 0; i < size; i++) {
1554
0
        const limb *inlimbs = &pre_comp[i][0][0];
1555
0
        limb mask = i ^ idx;
1556
0
        mask |= mask >> 4;
1557
0
        mask |= mask >> 2;
1558
0
        mask |= mask >> 1;
1559
0
        mask &= 1;
1560
0
        mask--;
1561
0
        for (j = 0; j < NLIMBS * 3; j++)
1562
0
            outlimbs[j] |= inlimbs[j] & mask;
1563
0
    }
1564
0
}
1565
1566
/* get_bit returns the |i|th bit in |in| */
1567
static char get_bit(const felem_bytearray in, int i)
1568
0
{
1569
0
    if (i < 0)
1570
0
        return 0;
1571
0
    return (in[i >> 3] >> (i & 7)) & 1;
1572
0
}
1573
1574
/*
1575
 * Interleaved point multiplication using precomputed point multiples: The
1576
 * small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[], the scalars
1577
 * in scalars[]. If g_scalar is non-NULL, we also add this multiple of the
1578
 * generator, using certain (large) precomputed multiples in g_pre_comp.
1579
 * Output point (X, Y, Z) is stored in x_out, y_out, z_out
1580
 */
1581
static void batch_mul(felem x_out, felem y_out, felem z_out,
1582
                      const felem_bytearray scalars[],
1583
                      const unsigned num_points, const u8 *g_scalar,
1584
                      const int mixed, const felem pre_comp[][17][3],
1585
                      const felem g_pre_comp[16][3])
1586
0
{
1587
0
    int i, skip;
1588
0
    unsigned num, gen_mul = (g_scalar != NULL);
1589
0
    felem nq[3], tmp[4];
1590
0
    limb bits;
1591
0
    u8 sign, digit;
1592
1593
    /* set nq to the point at infinity */
1594
0
    memset(nq, 0, sizeof(nq));
1595
1596
    /*
1597
     * Loop over all scalars msb-to-lsb, interleaving additions of multiples
1598
     * of the generator (last quarter of rounds) and additions of other
1599
     * points multiples (every 5th round).
1600
     */
1601
0
    skip = 1;                   /* save two point operations in the first
1602
                                 * round */
1603
0
    for (i = (num_points ? 520 : 130); i >= 0; --i) {
1604
        /* double */
1605
0
        if (!skip)
1606
0
            point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
1607
1608
        /* add multiples of the generator */
1609
0
        if (gen_mul && (i <= 130)) {
1610
0
            bits = get_bit(g_scalar, i + 390) << 3;
1611
0
            if (i < 130) {
1612
0
                bits |= get_bit(g_scalar, i + 260) << 2;
1613
0
                bits |= get_bit(g_scalar, i + 130) << 1;
1614
0
                bits |= get_bit(g_scalar, i);
1615
0
            }
1616
            /* select the point to add, in constant time */
1617
0
            select_point(bits, 16, g_pre_comp, tmp);
1618
0
            if (!skip) {
1619
                /* The 1 argument below is for "mixed" */
1620
0
                point_add(nq[0], nq[1], nq[2],
1621
0
                          nq[0], nq[1], nq[2], 1, tmp[0], tmp[1], tmp[2]);
1622
0
            } else {
1623
0
                memcpy(nq, tmp, 3 * sizeof(felem));
1624
0
                skip = 0;
1625
0
            }
1626
0
        }
1627
1628
        /* do other additions every 5 doublings */
1629
0
        if (num_points && (i % 5 == 0)) {
1630
            /* loop over all scalars */
1631
0
            for (num = 0; num < num_points; ++num) {
1632
0
                bits = get_bit(scalars[num], i + 4) << 5;
1633
0
                bits |= get_bit(scalars[num], i + 3) << 4;
1634
0
                bits |= get_bit(scalars[num], i + 2) << 3;
1635
0
                bits |= get_bit(scalars[num], i + 1) << 2;
1636
0
                bits |= get_bit(scalars[num], i) << 1;
1637
0
                bits |= get_bit(scalars[num], i - 1);
1638
0
                ossl_ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
1639
1640
                /*
1641
                 * select the point to add or subtract, in constant time
1642
                 */
1643
0
                select_point(digit, 17, pre_comp[num], tmp);
1644
0
                felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the negative
1645
                                            * point */
1646
0
                copy_conditional(tmp[1], tmp[3], (-(limb) sign));
1647
1648
0
                if (!skip) {
1649
0
                    point_add(nq[0], nq[1], nq[2],
1650
0
                              nq[0], nq[1], nq[2],
1651
0
                              mixed, tmp[0], tmp[1], tmp[2]);
1652
0
                } else {
1653
0
                    memcpy(nq, tmp, 3 * sizeof(felem));
1654
0
                    skip = 0;
1655
0
                }
1656
0
            }
1657
0
        }
1658
0
    }
1659
0
    felem_assign(x_out, nq[0]);
1660
0
    felem_assign(y_out, nq[1]);
1661
0
    felem_assign(z_out, nq[2]);
1662
0
}
1663
1664
/* Precomputation for the group generator. */
1665
struct nistp521_pre_comp_st {
1666
    felem g_pre_comp[16][3];
1667
    CRYPTO_REF_COUNT references;
1668
};
1669
1670
const EC_METHOD *EC_GFp_nistp521_method(void)
1671
70
{
1672
70
    static const EC_METHOD ret = {
1673
70
        EC_FLAGS_DEFAULT_OCT,
1674
70
        NID_X9_62_prime_field,
1675
70
        ossl_ec_GFp_nistp521_group_init,
1676
70
        ossl_ec_GFp_simple_group_finish,
1677
70
        ossl_ec_GFp_simple_group_clear_finish,
1678
70
        ossl_ec_GFp_nist_group_copy,
1679
70
        ossl_ec_GFp_nistp521_group_set_curve,
1680
70
        ossl_ec_GFp_simple_group_get_curve,
1681
70
        ossl_ec_GFp_simple_group_get_degree,
1682
70
        ossl_ec_group_simple_order_bits,
1683
70
        ossl_ec_GFp_simple_group_check_discriminant,
1684
70
        ossl_ec_GFp_simple_point_init,
1685
70
        ossl_ec_GFp_simple_point_finish,
1686
70
        ossl_ec_GFp_simple_point_clear_finish,
1687
70
        ossl_ec_GFp_simple_point_copy,
1688
70
        ossl_ec_GFp_simple_point_set_to_infinity,
1689
70
        ossl_ec_GFp_simple_point_set_affine_coordinates,
1690
70
        ossl_ec_GFp_nistp521_point_get_affine_coordinates,
1691
70
        0 /* point_set_compressed_coordinates */ ,
1692
70
        0 /* point2oct */ ,
1693
70
        0 /* oct2point */ ,
1694
70
        ossl_ec_GFp_simple_add,
1695
70
        ossl_ec_GFp_simple_dbl,
1696
70
        ossl_ec_GFp_simple_invert,
1697
70
        ossl_ec_GFp_simple_is_at_infinity,
1698
70
        ossl_ec_GFp_simple_is_on_curve,
1699
70
        ossl_ec_GFp_simple_cmp,
1700
70
        ossl_ec_GFp_simple_make_affine,
1701
70
        ossl_ec_GFp_simple_points_make_affine,
1702
70
        ossl_ec_GFp_nistp521_points_mul,
1703
70
        ossl_ec_GFp_nistp521_precompute_mult,
1704
70
        ossl_ec_GFp_nistp521_have_precompute_mult,
1705
70
        ossl_ec_GFp_nist_field_mul,
1706
70
        ossl_ec_GFp_nist_field_sqr,
1707
70
        0 /* field_div */ ,
1708
70
        ossl_ec_GFp_simple_field_inv,
1709
70
        0 /* field_encode */ ,
1710
70
        0 /* field_decode */ ,
1711
70
        0,                      /* field_set_to_one */
1712
70
        ossl_ec_key_simple_priv2oct,
1713
70
        ossl_ec_key_simple_oct2priv,
1714
70
        0, /* set private */
1715
70
        ossl_ec_key_simple_generate_key,
1716
70
        ossl_ec_key_simple_check_key,
1717
70
        ossl_ec_key_simple_generate_public_key,
1718
70
        0, /* keycopy */
1719
70
        0, /* keyfinish */
1720
70
        ossl_ecdh_simple_compute_key,
1721
70
        ossl_ecdsa_simple_sign_setup,
1722
70
        ossl_ecdsa_simple_sign_sig,
1723
70
        ossl_ecdsa_simple_verify_sig,
1724
70
        0, /* field_inverse_mod_ord */
1725
70
        0, /* blind_coordinates */
1726
70
        0, /* ladder_pre */
1727
70
        0, /* ladder_step */
1728
70
        0  /* ladder_post */
1729
70
    };
1730
1731
70
    return &ret;
1732
70
}
1733
1734
/******************************************************************************/
1735
/*
1736
 * FUNCTIONS TO MANAGE PRECOMPUTATION
1737
 */
1738
1739
static NISTP521_PRE_COMP *nistp521_pre_comp_new(void)
1740
0
{
1741
0
    NISTP521_PRE_COMP *ret = OPENSSL_zalloc(sizeof(*ret));
1742
1743
0
    if (ret == NULL)
1744
0
        return ret;
1745
1746
0
    if (!CRYPTO_NEW_REF(&ret->references, 1)) {
1747
0
        OPENSSL_free(ret);
1748
0
        return NULL;
1749
0
    }
1750
0
    return ret;
1751
0
}
1752
1753
NISTP521_PRE_COMP *EC_nistp521_pre_comp_dup(NISTP521_PRE_COMP *p)
1754
0
{
1755
0
    int i;
1756
0
    if (p != NULL)
1757
0
        CRYPTO_UP_REF(&p->references, &i);
1758
0
    return p;
1759
0
}
1760
1761
void EC_nistp521_pre_comp_free(NISTP521_PRE_COMP *p)
1762
0
{
1763
0
    int i;
1764
1765
0
    if (p == NULL)
1766
0
        return;
1767
1768
0
    CRYPTO_DOWN_REF(&p->references, &i);
1769
0
    REF_PRINT_COUNT("EC_nistp521", i, p);
1770
0
    if (i > 0)
1771
0
        return;
1772
0
    REF_ASSERT_ISNT(i < 0);
1773
1774
0
    CRYPTO_FREE_REF(&p->references);
1775
0
    OPENSSL_free(p);
1776
0
}
1777
1778
/******************************************************************************/
1779
/*
1780
 * OPENSSL EC_METHOD FUNCTIONS
1781
 */
1782
1783
int ossl_ec_GFp_nistp521_group_init(EC_GROUP *group)
1784
140
{
1785
140
    int ret;
1786
140
    ret = ossl_ec_GFp_simple_group_init(group);
1787
140
    group->a_is_minus3 = 1;
1788
140
    return ret;
1789
140
}
1790
1791
int ossl_ec_GFp_nistp521_group_set_curve(EC_GROUP *group, const BIGNUM *p,
1792
                                         const BIGNUM *a, const BIGNUM *b,
1793
                                         BN_CTX *ctx)
1794
70
{
1795
70
    int ret = 0;
1796
70
    BIGNUM *curve_p, *curve_a, *curve_b;
1797
70
#ifndef FIPS_MODULE
1798
70
    BN_CTX *new_ctx = NULL;
1799
1800
70
    if (ctx == NULL)
1801
0
        ctx = new_ctx = BN_CTX_new();
1802
70
#endif
1803
70
    if (ctx == NULL)
1804
0
        return 0;
1805
1806
70
    BN_CTX_start(ctx);
1807
70
    curve_p = BN_CTX_get(ctx);
1808
70
    curve_a = BN_CTX_get(ctx);
1809
70
    curve_b = BN_CTX_get(ctx);
1810
70
    if (curve_b == NULL)
1811
0
        goto err;
1812
70
    BN_bin2bn(nistp521_curve_params[0], sizeof(felem_bytearray), curve_p);
1813
70
    BN_bin2bn(nistp521_curve_params[1], sizeof(felem_bytearray), curve_a);
1814
70
    BN_bin2bn(nistp521_curve_params[2], sizeof(felem_bytearray), curve_b);
1815
70
    if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || (BN_cmp(curve_b, b))) {
1816
0
        ERR_raise(ERR_LIB_EC, EC_R_WRONG_CURVE_PARAMETERS);
1817
0
        goto err;
1818
0
    }
1819
70
    group->field_mod_func = BN_nist_mod_521;
1820
70
    ret = ossl_ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
1821
70
 err:
1822
70
    BN_CTX_end(ctx);
1823
70
#ifndef FIPS_MODULE
1824
70
    BN_CTX_free(new_ctx);
1825
70
#endif
1826
70
    return ret;
1827
70
}
1828
1829
/*
1830
 * Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') =
1831
 * (X/Z^2, Y/Z^3)
1832
 */
1833
int ossl_ec_GFp_nistp521_point_get_affine_coordinates(const EC_GROUP *group,
1834
                                                      const EC_POINT *point,
1835
                                                      BIGNUM *x, BIGNUM *y,
1836
                                                      BN_CTX *ctx)
1837
17
{
1838
17
    felem z1, z2, x_in, y_in, x_out, y_out;
1839
17
    largefelem tmp;
1840
1841
17
    if (EC_POINT_is_at_infinity(group, point)) {
1842
0
        ERR_raise(ERR_LIB_EC, EC_R_POINT_AT_INFINITY);
1843
0
        return 0;
1844
0
    }
1845
17
    if ((!BN_to_felem(x_in, point->X)) || (!BN_to_felem(y_in, point->Y)) ||
1846
17
        (!BN_to_felem(z1, point->Z)))
1847
0
        return 0;
1848
17
    felem_inv(z2, z1);
1849
17
    felem_square(tmp, z2);
1850
17
    felem_reduce(z1, tmp);
1851
17
    felem_mul(tmp, x_in, z1);
1852
17
    felem_reduce(x_in, tmp);
1853
17
    felem_contract(x_out, x_in);
1854
17
    if (x != NULL) {
1855
17
        if (!felem_to_BN(x, x_out)) {
1856
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1857
0
            return 0;
1858
0
        }
1859
17
    }
1860
17
    felem_mul(tmp, z1, z2);
1861
17
    felem_reduce(z1, tmp);
1862
17
    felem_mul(tmp, y_in, z1);
1863
17
    felem_reduce(y_in, tmp);
1864
17
    felem_contract(y_out, y_in);
1865
17
    if (y != NULL) {
1866
17
        if (!felem_to_BN(y, y_out)) {
1867
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1868
0
            return 0;
1869
0
        }
1870
17
    }
1871
17
    return 1;
1872
17
}
1873
1874
/* points below is of size |num|, and tmp_felems is of size |num+1/ */
1875
static void make_points_affine(size_t num, felem points[][3],
1876
                               felem tmp_felems[])
1877
0
{
1878
    /*
1879
     * Runs in constant time, unless an input is the point at infinity (which
1880
     * normally shouldn't happen).
1881
     */
1882
0
    ossl_ec_GFp_nistp_points_make_affine_internal(num,
1883
0
                                                  points,
1884
0
                                                  sizeof(felem),
1885
0
                                                  tmp_felems,
1886
0
                                                  (void (*)(void *))felem_one,
1887
0
                                                  felem_is_zero_int,
1888
0
                                                  (void (*)(void *, const void *))
1889
0
                                                  felem_assign,
1890
0
                                                  (void (*)(void *, const void *))
1891
0
                                                  felem_square_reduce, (void (*)
1892
0
                                                                        (void *,
1893
0
                                                                         const void
1894
0
                                                                         *,
1895
0
                                                                         const void
1896
0
                                                                         *))
1897
0
                                                  felem_mul_reduce,
1898
0
                                                  (void (*)(void *, const void *))
1899
0
                                                  felem_inv,
1900
0
                                                  (void (*)(void *, const void *))
1901
0
                                                  felem_contract);
1902
0
}
1903
1904
/*
1905
 * Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL
1906
 * values Result is stored in r (r can equal one of the inputs).
1907
 */
1908
int ossl_ec_GFp_nistp521_points_mul(const EC_GROUP *group, EC_POINT *r,
1909
                                    const BIGNUM *scalar, size_t num,
1910
                                    const EC_POINT *points[],
1911
                                    const BIGNUM *scalars[], BN_CTX *ctx)
1912
0
{
1913
0
    int ret = 0;
1914
0
    int j;
1915
0
    int mixed = 0;
1916
0
    BIGNUM *x, *y, *z, *tmp_scalar;
1917
0
    felem_bytearray g_secret;
1918
0
    felem_bytearray *secrets = NULL;
1919
0
    felem (*pre_comp)[17][3] = NULL;
1920
0
    felem *tmp_felems = NULL;
1921
0
    unsigned i;
1922
0
    int num_bytes;
1923
0
    int have_pre_comp = 0;
1924
0
    size_t num_points = num;
1925
0
    felem x_in, y_in, z_in, x_out, y_out, z_out;
1926
0
    NISTP521_PRE_COMP *pre = NULL;
1927
0
    felem(*g_pre_comp)[3] = NULL;
1928
0
    EC_POINT *generator = NULL;
1929
0
    const EC_POINT *p = NULL;
1930
0
    const BIGNUM *p_scalar = NULL;
1931
1932
0
    BN_CTX_start(ctx);
1933
0
    x = BN_CTX_get(ctx);
1934
0
    y = BN_CTX_get(ctx);
1935
0
    z = BN_CTX_get(ctx);
1936
0
    tmp_scalar = BN_CTX_get(ctx);
1937
0
    if (tmp_scalar == NULL)
1938
0
        goto err;
1939
1940
0
    if (scalar != NULL) {
1941
0
        pre = group->pre_comp.nistp521;
1942
0
        if (pre)
1943
            /* we have precomputation, try to use it */
1944
0
            g_pre_comp = &pre->g_pre_comp[0];
1945
0
        else
1946
            /* try to use the standard precomputation */
1947
0
            g_pre_comp = (felem(*)[3]) gmul;
1948
0
        generator = EC_POINT_new(group);
1949
0
        if (generator == NULL)
1950
0
            goto err;
1951
        /* get the generator from precomputation */
1952
0
        if (!felem_to_BN(x, g_pre_comp[1][0]) ||
1953
0
            !felem_to_BN(y, g_pre_comp[1][1]) ||
1954
0
            !felem_to_BN(z, g_pre_comp[1][2])) {
1955
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1956
0
            goto err;
1957
0
        }
1958
0
        if (!ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group,
1959
0
                                                                generator,
1960
0
                                                                x, y, z, ctx))
1961
0
            goto err;
1962
0
        if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
1963
            /* precomputation matches generator */
1964
0
            have_pre_comp = 1;
1965
0
        else
1966
            /*
1967
             * we don't have valid precomputation: treat the generator as a
1968
             * random point
1969
             */
1970
0
            num_points++;
1971
0
    }
1972
1973
0
    if (num_points > 0) {
1974
0
        if (num_points >= 2) {
1975
            /*
1976
             * unless we precompute multiples for just one point, converting
1977
             * those into affine form is time well spent
1978
             */
1979
0
            mixed = 1;
1980
0
        }
1981
0
        secrets = OPENSSL_zalloc(sizeof(*secrets) * num_points);
1982
0
        pre_comp = OPENSSL_zalloc(sizeof(*pre_comp) * num_points);
1983
0
        if (mixed)
1984
0
            tmp_felems =
1985
0
                OPENSSL_malloc(sizeof(*tmp_felems) * (num_points * 17 + 1));
1986
0
        if ((secrets == NULL) || (pre_comp == NULL)
1987
0
            || (mixed && (tmp_felems == NULL)))
1988
0
            goto err;
1989
1990
        /*
1991
         * we treat NULL scalars as 0, and NULL points as points at infinity,
1992
         * i.e., they contribute nothing to the linear combination
1993
         */
1994
0
        for (i = 0; i < num_points; ++i) {
1995
0
            if (i == num) {
1996
                /*
1997
                 * we didn't have a valid precomputation, so we pick the
1998
                 * generator
1999
                 */
2000
0
                p = EC_GROUP_get0_generator(group);
2001
0
                p_scalar = scalar;
2002
0
            } else {
2003
                /* the i^th point */
2004
0
                p = points[i];
2005
0
                p_scalar = scalars[i];
2006
0
            }
2007
0
            if ((p_scalar != NULL) && (p != NULL)) {
2008
                /* reduce scalar to 0 <= scalar < 2^521 */
2009
0
                if ((BN_num_bits(p_scalar) > 521)
2010
0
                    || (BN_is_negative(p_scalar))) {
2011
                    /*
2012
                     * this is an unusual input, and we don't guarantee
2013
                     * constant-timeness
2014
                     */
2015
0
                    if (!BN_nnmod(tmp_scalar, p_scalar, group->order, ctx)) {
2016
0
                        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
2017
0
                        goto err;
2018
0
                    }
2019
0
                    num_bytes = BN_bn2lebinpad(tmp_scalar,
2020
0
                                               secrets[i], sizeof(secrets[i]));
2021
0
                } else {
2022
0
                    num_bytes = BN_bn2lebinpad(p_scalar,
2023
0
                                               secrets[i], sizeof(secrets[i]));
2024
0
                }
2025
0
                if (num_bytes < 0) {
2026
0
                    ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
2027
0
                    goto err;
2028
0
                }
2029
                /* precompute multiples */
2030
0
                if ((!BN_to_felem(x_out, p->X)) ||
2031
0
                    (!BN_to_felem(y_out, p->Y)) ||
2032
0
                    (!BN_to_felem(z_out, p->Z)))
2033
0
                    goto err;
2034
0
                memcpy(pre_comp[i][1][0], x_out, sizeof(felem));
2035
0
                memcpy(pre_comp[i][1][1], y_out, sizeof(felem));
2036
0
                memcpy(pre_comp[i][1][2], z_out, sizeof(felem));
2037
0
                for (j = 2; j <= 16; ++j) {
2038
0
                    if (j & 1) {
2039
0
                        point_add(pre_comp[i][j][0], pre_comp[i][j][1],
2040
0
                                  pre_comp[i][j][2], pre_comp[i][1][0],
2041
0
                                  pre_comp[i][1][1], pre_comp[i][1][2], 0,
2042
0
                                  pre_comp[i][j - 1][0],
2043
0
                                  pre_comp[i][j - 1][1],
2044
0
                                  pre_comp[i][j - 1][2]);
2045
0
                    } else {
2046
0
                        point_double(pre_comp[i][j][0], pre_comp[i][j][1],
2047
0
                                     pre_comp[i][j][2], pre_comp[i][j / 2][0],
2048
0
                                     pre_comp[i][j / 2][1],
2049
0
                                     pre_comp[i][j / 2][2]);
2050
0
                    }
2051
0
                }
2052
0
            }
2053
0
        }
2054
0
        if (mixed)
2055
0
            make_points_affine(num_points * 17, pre_comp[0], tmp_felems);
2056
0
    }
2057
2058
    /* the scalar for the generator */
2059
0
    if ((scalar != NULL) && (have_pre_comp)) {
2060
0
        memset(g_secret, 0, sizeof(g_secret));
2061
        /* reduce scalar to 0 <= scalar < 2^521 */
2062
0
        if ((BN_num_bits(scalar) > 521) || (BN_is_negative(scalar))) {
2063
            /*
2064
             * this is an unusual input, and we don't guarantee
2065
             * constant-timeness
2066
             */
2067
0
            if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) {
2068
0
                ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
2069
0
                goto err;
2070
0
            }
2071
0
            num_bytes = BN_bn2lebinpad(tmp_scalar, g_secret, sizeof(g_secret));
2072
0
        } else {
2073
0
            num_bytes = BN_bn2lebinpad(scalar, g_secret, sizeof(g_secret));
2074
0
        }
2075
        /* do the multiplication with generator precomputation */
2076
0
        batch_mul(x_out, y_out, z_out,
2077
0
                  (const felem_bytearray(*))secrets, num_points,
2078
0
                  g_secret,
2079
0
                  mixed, (const felem(*)[17][3])pre_comp,
2080
0
                  (const felem(*)[3])g_pre_comp);
2081
0
    } else {
2082
        /* do the multiplication without generator precomputation */
2083
0
        batch_mul(x_out, y_out, z_out,
2084
0
                  (const felem_bytearray(*))secrets, num_points,
2085
0
                  NULL, mixed, (const felem(*)[17][3])pre_comp, NULL);
2086
0
    }
2087
    /* reduce the output to its unique minimal representation */
2088
0
    felem_contract(x_in, x_out);
2089
0
    felem_contract(y_in, y_out);
2090
0
    felem_contract(z_in, z_out);
2091
0
    if ((!felem_to_BN(x, x_in)) || (!felem_to_BN(y, y_in)) ||
2092
0
        (!felem_to_BN(z, z_in))) {
2093
0
        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
2094
0
        goto err;
2095
0
    }
2096
0
    ret = ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group, r, x, y, z,
2097
0
                                                             ctx);
2098
2099
0
 err:
2100
0
    BN_CTX_end(ctx);
2101
0
    EC_POINT_free(generator);
2102
0
    OPENSSL_free(secrets);
2103
0
    OPENSSL_free(pre_comp);
2104
0
    OPENSSL_free(tmp_felems);
2105
0
    return ret;
2106
0
}
2107
2108
int ossl_ec_GFp_nistp521_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
2109
0
{
2110
0
    int ret = 0;
2111
0
    NISTP521_PRE_COMP *pre = NULL;
2112
0
    int i, j;
2113
0
    BIGNUM *x, *y;
2114
0
    EC_POINT *generator = NULL;
2115
0
    felem tmp_felems[16];
2116
0
#ifndef FIPS_MODULE
2117
0
    BN_CTX *new_ctx = NULL;
2118
0
#endif
2119
2120
    /* throw away old precomputation */
2121
0
    EC_pre_comp_free(group);
2122
2123
0
#ifndef FIPS_MODULE
2124
0
    if (ctx == NULL)
2125
0
        ctx = new_ctx = BN_CTX_new();
2126
0
#endif
2127
0
    if (ctx == NULL)
2128
0
        return 0;
2129
2130
0
    BN_CTX_start(ctx);
2131
0
    x = BN_CTX_get(ctx);
2132
0
    y = BN_CTX_get(ctx);
2133
0
    if (y == NULL)
2134
0
        goto err;
2135
    /* get the generator */
2136
0
    if (group->generator == NULL)
2137
0
        goto err;
2138
0
    generator = EC_POINT_new(group);
2139
0
    if (generator == NULL)
2140
0
        goto err;
2141
0
    BN_bin2bn(nistp521_curve_params[3], sizeof(felem_bytearray), x);
2142
0
    BN_bin2bn(nistp521_curve_params[4], sizeof(felem_bytearray), y);
2143
0
    if (!EC_POINT_set_affine_coordinates(group, generator, x, y, ctx))
2144
0
        goto err;
2145
0
    if ((pre = nistp521_pre_comp_new()) == NULL)
2146
0
        goto err;
2147
    /*
2148
     * if the generator is the standard one, use built-in precomputation
2149
     */
2150
0
    if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) {
2151
0
        memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp));
2152
0
        goto done;
2153
0
    }
2154
0
    if ((!BN_to_felem(pre->g_pre_comp[1][0], group->generator->X)) ||
2155
0
        (!BN_to_felem(pre->g_pre_comp[1][1], group->generator->Y)) ||
2156
0
        (!BN_to_felem(pre->g_pre_comp[1][2], group->generator->Z)))
2157
0
        goto err;
2158
    /* compute 2^130*G, 2^260*G, 2^390*G */
2159
0
    for (i = 1; i <= 4; i <<= 1) {
2160
0
        point_double(pre->g_pre_comp[2 * i][0], pre->g_pre_comp[2 * i][1],
2161
0
                     pre->g_pre_comp[2 * i][2], pre->g_pre_comp[i][0],
2162
0
                     pre->g_pre_comp[i][1], pre->g_pre_comp[i][2]);
2163
0
        for (j = 0; j < 129; ++j) {
2164
0
            point_double(pre->g_pre_comp[2 * i][0],
2165
0
                         pre->g_pre_comp[2 * i][1],
2166
0
                         pre->g_pre_comp[2 * i][2],
2167
0
                         pre->g_pre_comp[2 * i][0],
2168
0
                         pre->g_pre_comp[2 * i][1],
2169
0
                         pre->g_pre_comp[2 * i][2]);
2170
0
        }
2171
0
    }
2172
    /* g_pre_comp[0] is the point at infinity */
2173
0
    memset(pre->g_pre_comp[0], 0, sizeof(pre->g_pre_comp[0]));
2174
    /* the remaining multiples */
2175
    /* 2^130*G + 2^260*G */
2176
0
    point_add(pre->g_pre_comp[6][0], pre->g_pre_comp[6][1],
2177
0
              pre->g_pre_comp[6][2], pre->g_pre_comp[4][0],
2178
0
              pre->g_pre_comp[4][1], pre->g_pre_comp[4][2],
2179
0
              0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
2180
0
              pre->g_pre_comp[2][2]);
2181
    /* 2^130*G + 2^390*G */
2182
0
    point_add(pre->g_pre_comp[10][0], pre->g_pre_comp[10][1],
2183
0
              pre->g_pre_comp[10][2], pre->g_pre_comp[8][0],
2184
0
              pre->g_pre_comp[8][1], pre->g_pre_comp[8][2],
2185
0
              0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
2186
0
              pre->g_pre_comp[2][2]);
2187
    /* 2^260*G + 2^390*G */
2188
0
    point_add(pre->g_pre_comp[12][0], pre->g_pre_comp[12][1],
2189
0
              pre->g_pre_comp[12][2], pre->g_pre_comp[8][0],
2190
0
              pre->g_pre_comp[8][1], pre->g_pre_comp[8][2],
2191
0
              0, pre->g_pre_comp[4][0], pre->g_pre_comp[4][1],
2192
0
              pre->g_pre_comp[4][2]);
2193
    /* 2^130*G + 2^260*G + 2^390*G */
2194
0
    point_add(pre->g_pre_comp[14][0], pre->g_pre_comp[14][1],
2195
0
              pre->g_pre_comp[14][2], pre->g_pre_comp[12][0],
2196
0
              pre->g_pre_comp[12][1], pre->g_pre_comp[12][2],
2197
0
              0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
2198
0
              pre->g_pre_comp[2][2]);
2199
0
    for (i = 1; i < 8; ++i) {
2200
        /* odd multiples: add G */
2201
0
        point_add(pre->g_pre_comp[2 * i + 1][0],
2202
0
                  pre->g_pre_comp[2 * i + 1][1],
2203
0
                  pre->g_pre_comp[2 * i + 1][2], pre->g_pre_comp[2 * i][0],
2204
0
                  pre->g_pre_comp[2 * i][1], pre->g_pre_comp[2 * i][2], 0,
2205
0
                  pre->g_pre_comp[1][0], pre->g_pre_comp[1][1],
2206
0
                  pre->g_pre_comp[1][2]);
2207
0
    }
2208
0
    make_points_affine(15, &(pre->g_pre_comp[1]), tmp_felems);
2209
2210
0
 done:
2211
0
    SETPRECOMP(group, nistp521, pre);
2212
0
    ret = 1;
2213
0
    pre = NULL;
2214
0
 err:
2215
0
    BN_CTX_end(ctx);
2216
0
    EC_POINT_free(generator);
2217
0
#ifndef FIPS_MODULE
2218
0
    BN_CTX_free(new_ctx);
2219
0
#endif
2220
0
    EC_nistp521_pre_comp_free(pre);
2221
0
    return ret;
2222
0
}
2223
2224
int ossl_ec_GFp_nistp521_have_precompute_mult(const EC_GROUP *group)
2225
0
{
2226
0
    return HAVEPRECOMP(group, nistp521);
2227
0
}