Coverage Report

Created: 2025-06-13 06:56

/src/openssl/crypto/modes/cfb128.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 2008-2021 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
#include <string.h>
11
#include <openssl/crypto.h>
12
#include "crypto/modes.h"
13
14
#if defined(__GNUC__) && !defined(STRICT_ALIGNMENT)
15
typedef size_t size_t_aX __attribute((__aligned__(1)));
16
#else
17
typedef size_t size_t_aX;
18
#endif
19
20
/*
21
 * The input and output encrypted as though 128bit cfb mode is being used.
22
 * The extra state information to record how much of the 128bit block we have
23
 * used is contained in *num;
24
 */
25
void CRYPTO_cfb128_encrypt(const unsigned char *in, unsigned char *out,
26
                           size_t len, const void *key,
27
                           unsigned char ivec[16], int *num,
28
                           int enc, block128_f block)
29
0
{
30
0
    unsigned int n;
31
0
    size_t l = 0;
32
33
0
    if (*num < 0) {
34
        /* There is no good way to signal an error return from here */
35
0
        *num = -1;
36
0
        return;
37
0
    }
38
0
    n = *num;
39
40
0
    if (enc) {
41
0
#if !defined(OPENSSL_SMALL_FOOTPRINT)
42
0
        if (16 % sizeof(size_t) == 0) { /* always true actually */
43
0
            do {
44
0
                while (n && len) {
45
0
                    *(out++) = ivec[n] ^= *(in++);
46
0
                    --len;
47
0
                    n = (n + 1) % 16;
48
0
                }
49
0
# if defined(STRICT_ALIGNMENT)
50
0
                if (((size_t)in | (size_t)out | (size_t)ivec) %
51
0
                    sizeof(size_t) != 0)
52
0
                    break;
53
0
# endif
54
0
                while (len >= 16) {
55
0
                    (*block) (ivec, ivec, key);
56
0
                    for (; n < 16; n += sizeof(size_t)) {
57
0
                        *(size_t_aX *)(out + n) =
58
0
                            *(size_t_aX *)(ivec + n)
59
0
                                ^= *(size_t_aX *)(in + n);
60
0
                    }
61
0
                    len -= 16;
62
0
                    out += 16;
63
0
                    in += 16;
64
0
                    n = 0;
65
0
                }
66
0
                if (len) {
67
0
                    (*block) (ivec, ivec, key);
68
0
                    while (len--) {
69
0
                        out[n] = ivec[n] ^= in[n];
70
0
                        ++n;
71
0
                    }
72
0
                }
73
0
                *num = n;
74
0
                return;
75
0
            } while (0);
76
0
        }
77
        /* the rest would be commonly eliminated by x86* compiler */
78
0
#endif
79
0
        while (l < len) {
80
0
            if (n == 0) {
81
0
                (*block) (ivec, ivec, key);
82
0
            }
83
0
            out[l] = ivec[n] ^= in[l];
84
0
            ++l;
85
0
            n = (n + 1) % 16;
86
0
        }
87
0
        *num = n;
88
0
    } else {
89
0
#if !defined(OPENSSL_SMALL_FOOTPRINT)
90
0
        if (16 % sizeof(size_t) == 0) { /* always true actually */
91
0
            do {
92
0
                while (n && len) {
93
0
                    unsigned char c;
94
0
                    *(out++) = ivec[n] ^ (c = *(in++));
95
0
                    ivec[n] = c;
96
0
                    --len;
97
0
                    n = (n + 1) % 16;
98
0
                }
99
0
# if defined(STRICT_ALIGNMENT)
100
0
                if (((size_t)in | (size_t)out | (size_t)ivec) %
101
0
                    sizeof(size_t) != 0)
102
0
                    break;
103
0
# endif
104
0
                while (len >= 16) {
105
0
                    (*block) (ivec, ivec, key);
106
0
                    for (; n < 16; n += sizeof(size_t)) {
107
0
                        size_t t = *(size_t_aX *)(in + n);
108
0
                        *(size_t_aX *)(out + n)
109
0
                            = *(size_t_aX *)(ivec + n) ^ t;
110
0
                        *(size_t_aX *)(ivec + n) = t;
111
0
                    }
112
0
                    len -= 16;
113
0
                    out += 16;
114
0
                    in += 16;
115
0
                    n = 0;
116
0
                }
117
0
                if (len) {
118
0
                    (*block) (ivec, ivec, key);
119
0
                    while (len--) {
120
0
                        unsigned char c;
121
0
                        out[n] = ivec[n] ^ (c = in[n]);
122
0
                        ivec[n] = c;
123
0
                        ++n;
124
0
                    }
125
0
                }
126
0
                *num = n;
127
0
                return;
128
0
            } while (0);
129
0
        }
130
        /* the rest would be commonly eliminated by x86* compiler */
131
0
#endif
132
0
        while (l < len) {
133
0
            unsigned char c;
134
0
            if (n == 0) {
135
0
                (*block) (ivec, ivec, key);
136
0
            }
137
0
            out[l] = ivec[n] ^ (c = in[l]);
138
0
            ivec[n] = c;
139
0
            ++l;
140
0
            n = (n + 1) % 16;
141
0
        }
142
0
        *num = n;
143
0
    }
144
0
}
145
146
/*
147
 * This expects a single block of size nbits for both in and out. Note that
148
 * it corrupts any extra bits in the last byte of out
149
 */
150
static void cfbr_encrypt_block(const unsigned char *in, unsigned char *out,
151
                               int nbits, const void *key,
152
                               unsigned char ivec[16], int enc,
153
                               block128_f block)
154
0
{
155
0
    int n, rem, num;
156
0
    unsigned char ovec[16 * 2 + 1]; /* +1 because we dereference (but don't
157
                                     * use) one byte off the end */
158
159
0
    if (nbits <= 0 || nbits > 128)
160
0
        return;
161
162
    /* fill in the first half of the new IV with the current IV */
163
0
    memcpy(ovec, ivec, 16);
164
    /* construct the new IV */
165
0
    (*block) (ivec, ivec, key);
166
0
    num = (nbits + 7) / 8;
167
0
    if (enc)                    /* encrypt the input */
168
0
        for (n = 0; n < num; ++n)
169
0
            out[n] = (ovec[16 + n] = in[n] ^ ivec[n]);
170
0
    else                        /* decrypt the input */
171
0
        for (n = 0; n < num; ++n)
172
0
            out[n] = (ovec[16 + n] = in[n]) ^ ivec[n];
173
    /* shift ovec left... */
174
0
    rem = nbits % 8;
175
0
    num = nbits / 8;
176
0
    if (rem == 0)
177
0
        memcpy(ivec, ovec + num, 16);
178
0
    else
179
0
        for (n = 0; n < 16; ++n)
180
0
            ivec[n] = ovec[n + num] << rem | ovec[n + num + 1] >> (8 - rem);
181
182
    /* it is not necessary to cleanse ovec, since the IV is not secret */
183
0
}
184
185
/* N.B. This expects the input to be packed, MS bit first */
186
void CRYPTO_cfb128_1_encrypt(const unsigned char *in, unsigned char *out,
187
                             size_t bits, const void *key,
188
                             unsigned char ivec[16], int *num,
189
                             int enc, block128_f block)
190
0
{
191
0
    size_t n;
192
0
    unsigned char c[1], d[1];
193
194
0
    for (n = 0; n < bits; ++n) {
195
0
        c[0] = (in[n / 8] & (1 << (7 - n % 8))) ? 0x80 : 0;
196
0
        cfbr_encrypt_block(c, d, 1, key, ivec, enc, block);
197
0
        out[n / 8] = (out[n / 8] & ~(1 << (unsigned int)(7 - n % 8))) |
198
0
            ((d[0] & 0x80) >> (unsigned int)(n % 8));
199
0
    }
200
0
}
201
202
void CRYPTO_cfb128_8_encrypt(const unsigned char *in, unsigned char *out,
203
                             size_t length, const void *key,
204
                             unsigned char ivec[16], int *num,
205
                             int enc, block128_f block)
206
0
{
207
0
    size_t n;
208
209
0
    for (n = 0; n < length; ++n)
210
0
        cfbr_encrypt_block(&in[n], &out[n], 8, key, ivec, enc, block);
211
0
}