Coverage Report

Created: 2025-06-13 06:56

/src/openssl/crypto/rsa/rsa_oaep.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 1999-2024 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
/* EME-OAEP as defined in RFC 2437 (PKCS #1 v2.0) */
11
12
/*
13
 * See Victor Shoup, "OAEP reconsidered," Nov. 2000, <URL:
14
 * http://www.shoup.net/papers/oaep.ps.Z> for problems with the security
15
 * proof for the original OAEP scheme, which EME-OAEP is based on. A new
16
 * proof can be found in E. Fujisaki, T. Okamoto, D. Pointcheval, J. Stern,
17
 * "RSA-OEAP is Still Alive!", Dec. 2000, <URL:
18
 * http://eprint.iacr.org/2000/061/>. The new proof has stronger requirements
19
 * for the underlying permutation: "partial-one-wayness" instead of
20
 * one-wayness.  For the RSA function, this is an equivalent notion.
21
 */
22
23
/*
24
 * RSA low level APIs are deprecated for public use, but still ok for
25
 * internal use.
26
 */
27
#include "internal/deprecated.h"
28
29
#include "internal/constant_time.h"
30
31
#include <stdio.h>
32
#include "internal/cryptlib.h"
33
#include <openssl/bn.h>
34
#include <openssl/evp.h>
35
#include <openssl/rand.h>
36
#include <openssl/sha.h>
37
#include "rsa_local.h"
38
39
int RSA_padding_add_PKCS1_OAEP(unsigned char *to, int tlen,
40
                               const unsigned char *from, int flen,
41
                               const unsigned char *param, int plen)
42
0
{
43
0
    return ossl_rsa_padding_add_PKCS1_OAEP_mgf1_ex(NULL, to, tlen, from, flen,
44
0
                                                   param, plen, NULL, NULL);
45
0
}
46
47
/*
48
 * Perform the padding as per NIST 800-56B 7.2.2.3
49
 *      from (K) is the key material.
50
 *      param (A) is the additional input.
51
 * Step numbers are included here but not in the constant time inverse below
52
 * to avoid complicating an already difficult enough function.
53
 */
54
int ossl_rsa_padding_add_PKCS1_OAEP_mgf1_ex(OSSL_LIB_CTX *libctx,
55
                                            unsigned char *to, int tlen,
56
                                            const unsigned char *from, int flen,
57
                                            const unsigned char *param,
58
                                            int plen, const EVP_MD *md,
59
                                            const EVP_MD *mgf1md)
60
0
{
61
0
    int rv = 0;
62
0
    int i, emlen = tlen - 1;
63
0
    unsigned char *db, *seed;
64
0
    unsigned char *dbmask = NULL;
65
0
    unsigned char seedmask[EVP_MAX_MD_SIZE];
66
0
    int mdlen, dbmask_len = 0;
67
68
0
    if (md == NULL) {
69
0
#ifndef FIPS_MODULE
70
0
        md = EVP_sha1();
71
#else
72
        ERR_raise(ERR_LIB_RSA, ERR_R_PASSED_NULL_PARAMETER);
73
        return 0;
74
#endif
75
0
    }
76
0
    if (mgf1md == NULL)
77
0
        mgf1md = md;
78
79
#ifdef FIPS_MODULE
80
    /* XOF are approved as standalone; Shake256 in Ed448; MGF */
81
    if (EVP_MD_xof(md)) {
82
        ERR_raise(ERR_LIB_RSA, RSA_R_DIGEST_NOT_ALLOWED);
83
        return 0;
84
    }
85
    if (EVP_MD_xof(mgf1md)) {
86
        ERR_raise(ERR_LIB_RSA, RSA_R_MGF1_DIGEST_NOT_ALLOWED);
87
        return 0;
88
    }
89
#endif
90
91
0
    mdlen = EVP_MD_get_size(md);
92
0
    if (mdlen <= 0) {
93
0
        ERR_raise(ERR_LIB_RSA, RSA_R_INVALID_LENGTH);
94
0
        return 0;
95
0
    }
96
97
    /* step 2b: check KLen > nLen - 2 HLen - 2 */
98
0
    if (flen > emlen - 2 * mdlen - 1) {
99
0
        ERR_raise(ERR_LIB_RSA, RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE);
100
0
        return 0;
101
0
    }
102
103
0
    if (emlen < 2 * mdlen + 1) {
104
0
        ERR_raise(ERR_LIB_RSA, RSA_R_KEY_SIZE_TOO_SMALL);
105
0
        return 0;
106
0
    }
107
108
    /* step 3i: EM = 00000000 || maskedMGF || maskedDB */
109
0
    to[0] = 0;
110
0
    seed = to + 1;
111
0
    db = to + mdlen + 1;
112
113
    /* step 3a: hash the additional input */
114
0
    if (!EVP_Digest((void *)param, plen, db, NULL, md, NULL))
115
0
        goto err;
116
    /* step 3b: zero bytes array of length nLen - KLen - 2 HLen -2 */
117
0
    memset(db + mdlen, 0, emlen - flen - 2 * mdlen - 1);
118
    /* step 3c: DB = HA || PS || 00000001 || K */
119
0
    db[emlen - flen - mdlen - 1] = 0x01;
120
0
    memcpy(db + emlen - flen - mdlen, from, (unsigned int)flen);
121
    /* step 3d: generate random byte string */
122
0
    if (RAND_bytes_ex(libctx, seed, mdlen, 0) <= 0)
123
0
        goto err;
124
125
0
    dbmask_len = emlen - mdlen;
126
0
    dbmask = OPENSSL_malloc(dbmask_len);
127
0
    if (dbmask == NULL)
128
0
        goto err;
129
130
    /* step 3e: dbMask = MGF(mgfSeed, nLen - HLen - 1) */
131
0
    if (PKCS1_MGF1(dbmask, dbmask_len, seed, mdlen, mgf1md) < 0)
132
0
        goto err;
133
    /* step 3f: maskedDB = DB XOR dbMask */
134
0
    for (i = 0; i < dbmask_len; i++)
135
0
        db[i] ^= dbmask[i];
136
137
    /* step 3g: mgfSeed = MGF(maskedDB, HLen) */
138
0
    if (PKCS1_MGF1(seedmask, mdlen, db, dbmask_len, mgf1md) < 0)
139
0
        goto err;
140
    /* stepo 3h: maskedMGFSeed = mgfSeed XOR mgfSeedMask */
141
0
    for (i = 0; i < mdlen; i++)
142
0
        seed[i] ^= seedmask[i];
143
0
    rv = 1;
144
145
0
 err:
146
0
    OPENSSL_cleanse(seedmask, sizeof(seedmask));
147
0
    OPENSSL_clear_free(dbmask, dbmask_len);
148
0
    return rv;
149
0
}
150
151
int RSA_padding_add_PKCS1_OAEP_mgf1(unsigned char *to, int tlen,
152
                                    const unsigned char *from, int flen,
153
                                    const unsigned char *param, int plen,
154
                                    const EVP_MD *md, const EVP_MD *mgf1md)
155
0
{
156
0
    return ossl_rsa_padding_add_PKCS1_OAEP_mgf1_ex(NULL, to, tlen, from, flen,
157
0
                                                   param, plen, md, mgf1md);
158
0
}
159
160
int RSA_padding_check_PKCS1_OAEP(unsigned char *to, int tlen,
161
                                 const unsigned char *from, int flen, int num,
162
                                 const unsigned char *param, int plen)
163
0
{
164
0
    return RSA_padding_check_PKCS1_OAEP_mgf1(to, tlen, from, flen, num,
165
0
                                             param, plen, NULL, NULL);
166
0
}
167
168
int RSA_padding_check_PKCS1_OAEP_mgf1(unsigned char *to, int tlen,
169
                                      const unsigned char *from, int flen,
170
                                      int num, const unsigned char *param,
171
                                      int plen, const EVP_MD *md,
172
                                      const EVP_MD *mgf1md)
173
0
{
174
0
    int i, dblen = 0, mlen = -1, one_index = 0, msg_index;
175
0
    unsigned int good = 0, found_one_byte, mask;
176
0
    const unsigned char *maskedseed, *maskeddb;
177
    /*
178
     * |em| is the encoded message, zero-padded to exactly |num| bytes: em =
179
     * Y || maskedSeed || maskedDB
180
     */
181
0
    unsigned char *db = NULL, *em = NULL, seed[EVP_MAX_MD_SIZE],
182
0
        phash[EVP_MAX_MD_SIZE];
183
0
    int mdlen;
184
185
0
    if (md == NULL) {
186
0
#ifndef FIPS_MODULE
187
0
        md = EVP_sha1();
188
#else
189
        ERR_raise(ERR_LIB_RSA, ERR_R_PASSED_NULL_PARAMETER);
190
        return -1;
191
#endif
192
0
    }
193
194
0
    if (mgf1md == NULL)
195
0
        mgf1md = md;
196
197
#ifdef FIPS_MODULE
198
    /* XOF are approved as standalone; Shake256 in Ed448; MGF */
199
    if (EVP_MD_xof(md)) {
200
        ERR_raise(ERR_LIB_RSA, RSA_R_DIGEST_NOT_ALLOWED);
201
        return -1;
202
    }
203
    if (EVP_MD_xof(mgf1md)) {
204
        ERR_raise(ERR_LIB_RSA, RSA_R_MGF1_DIGEST_NOT_ALLOWED);
205
        return -1;
206
    }
207
#endif
208
209
0
    mdlen = EVP_MD_get_size(md);
210
211
0
    if (tlen <= 0 || flen <= 0 || mdlen <= 0)
212
0
        return -1;
213
    /*
214
     * |num| is the length of the modulus; |flen| is the length of the
215
     * encoded message. Therefore, for any |from| that was obtained by
216
     * decrypting a ciphertext, we must have |flen| <= |num|. Similarly,
217
     * |num| >= 2 * |mdlen| + 2 must hold for the modulus irrespective of
218
     * the ciphertext, see PKCS #1 v2.2, section 7.1.2.
219
     * This does not leak any side-channel information.
220
     */
221
0
    if (num < flen || num < 2 * mdlen + 2) {
222
0
        ERR_raise(ERR_LIB_RSA, RSA_R_OAEP_DECODING_ERROR);
223
0
        return -1;
224
0
    }
225
226
0
    dblen = num - mdlen - 1;
227
0
    db = OPENSSL_malloc(dblen);
228
0
    if (db == NULL)
229
0
        goto cleanup;
230
231
0
    em = OPENSSL_malloc(num);
232
0
    if (em == NULL)
233
0
        goto cleanup;
234
235
    /*
236
     * Caller is encouraged to pass zero-padded message created with
237
     * BN_bn2binpad. Trouble is that since we can't read out of |from|'s
238
     * bounds, it's impossible to have an invariant memory access pattern
239
     * in case |from| was not zero-padded in advance.
240
     */
241
0
    for (from += flen, em += num, i = 0; i < num; i++) {
242
0
        mask = ~constant_time_is_zero(flen);
243
0
        flen -= 1 & mask;
244
0
        from -= 1 & mask;
245
0
        *--em = *from & mask;
246
0
    }
247
248
    /*
249
     * The first byte must be zero, however we must not leak if this is
250
     * true. See James H. Manger, "A Chosen Ciphertext  Attack on RSA
251
     * Optimal Asymmetric Encryption Padding (OAEP) [...]", CRYPTO 2001).
252
     */
253
0
    good = constant_time_is_zero(em[0]);
254
255
0
    maskedseed = em + 1;
256
0
    maskeddb = em + 1 + mdlen;
257
258
0
    if (PKCS1_MGF1(seed, mdlen, maskeddb, dblen, mgf1md))
259
0
        goto cleanup;
260
0
    for (i = 0; i < mdlen; i++)
261
0
        seed[i] ^= maskedseed[i];
262
263
0
    if (PKCS1_MGF1(db, dblen, seed, mdlen, mgf1md))
264
0
        goto cleanup;
265
0
    for (i = 0; i < dblen; i++)
266
0
        db[i] ^= maskeddb[i];
267
268
0
    if (!EVP_Digest((void *)param, plen, phash, NULL, md, NULL))
269
0
        goto cleanup;
270
271
0
    good &= constant_time_is_zero(CRYPTO_memcmp(db, phash, mdlen));
272
273
0
    found_one_byte = 0;
274
0
    for (i = mdlen; i < dblen; i++) {
275
        /*
276
         * Padding consists of a number of 0-bytes, followed by a 1.
277
         */
278
0
        unsigned int equals1 = constant_time_eq(db[i], 1);
279
0
        unsigned int equals0 = constant_time_is_zero(db[i]);
280
0
        one_index = constant_time_select_int(~found_one_byte & equals1,
281
0
                                             i, one_index);
282
0
        found_one_byte |= equals1;
283
0
        good &= (found_one_byte | equals0);
284
0
    }
285
286
0
    good &= found_one_byte;
287
288
    /*
289
     * At this point |good| is zero unless the plaintext was valid,
290
     * so plaintext-awareness ensures timing side-channels are no longer a
291
     * concern.
292
     */
293
0
    msg_index = one_index + 1;
294
0
    mlen = dblen - msg_index;
295
296
    /*
297
     * For good measure, do this check in constant time as well.
298
     */
299
0
    good &= constant_time_ge(tlen, mlen);
300
301
    /*
302
     * Move the result in-place by |dblen|-|mdlen|-1-|mlen| bytes to the left.
303
     * Then if |good| move |mlen| bytes from |db|+|mdlen|+1 to |to|.
304
     * Otherwise leave |to| unchanged.
305
     * Copy the memory back in a way that does not reveal the size of
306
     * the data being copied via a timing side channel. This requires copying
307
     * parts of the buffer multiple times based on the bits set in the real
308
     * length. Clear bits do a non-copy with identical access pattern.
309
     * The loop below has overall complexity of O(N*log(N)).
310
     */
311
0
    tlen = constant_time_select_int(constant_time_lt(dblen - mdlen - 1, tlen),
312
0
                                    dblen - mdlen - 1, tlen);
313
0
    for (msg_index = 1; msg_index < dblen - mdlen - 1; msg_index <<= 1) {
314
0
        mask = ~constant_time_eq(msg_index & (dblen - mdlen - 1 - mlen), 0);
315
0
        for (i = mdlen + 1; i < dblen - msg_index; i++)
316
0
            db[i] = constant_time_select_8(mask, db[i + msg_index], db[i]);
317
0
    }
318
0
    for (i = 0; i < tlen; i++) {
319
0
        mask = good & constant_time_lt(i, mlen);
320
0
        to[i] = constant_time_select_8(mask, db[i + mdlen + 1], to[i]);
321
0
    }
322
323
0
#ifndef FIPS_MODULE
324
    /*
325
     * To avoid chosen ciphertext attacks, the error message should not
326
     * reveal which kind of decoding error happened.
327
     *
328
     * This trick doesn't work in the FIPS provider because libcrypto manages
329
     * the error stack. Instead we opt not to put an error on the stack at all
330
     * in case of padding failure in the FIPS provider.
331
     */
332
0
    ERR_raise(ERR_LIB_RSA, RSA_R_OAEP_DECODING_ERROR);
333
0
    err_clear_last_constant_time(1 & good);
334
0
#endif
335
0
 cleanup:
336
0
    OPENSSL_cleanse(seed, sizeof(seed));
337
0
    OPENSSL_clear_free(db, dblen);
338
0
    OPENSSL_clear_free(em, num);
339
340
0
    return constant_time_select_int(good, mlen, -1);
341
0
}
342
343
/*
344
 * Mask Generation Function corresponding to section 7.2.2.2 of NIST SP 800-56B.
345
 * The variables are named differently to NIST:
346
 *      mask (T) and len (maskLen)are the returned mask.
347
 *      seed (mgfSeed).
348
 * The range checking steps inm the process are performed outside.
349
 */
350
int PKCS1_MGF1(unsigned char *mask, long len,
351
               const unsigned char *seed, long seedlen, const EVP_MD *dgst)
352
37
{
353
37
    long i, outlen = 0;
354
37
    unsigned char cnt[4];
355
37
    EVP_MD_CTX *c = EVP_MD_CTX_new();
356
37
    unsigned char md[EVP_MAX_MD_SIZE];
357
37
    int mdlen;
358
37
    int rv = -1;
359
360
37
    if (c == NULL)
361
0
        goto err;
362
37
    mdlen = EVP_MD_get_size(dgst);
363
37
    if (mdlen <= 0)
364
0
        goto err;
365
    /* step 4 */
366
231
    for (i = 0; outlen < len; i++) {
367
        /* step 4a: D = I2BS(counter, 4) */
368
194
        cnt[0] = (unsigned char)((i >> 24) & 255);
369
194
        cnt[1] = (unsigned char)((i >> 16) & 255);
370
194
        cnt[2] = (unsigned char)((i >> 8)) & 255;
371
194
        cnt[3] = (unsigned char)(i & 255);
372
        /* step 4b: T =T || hash(mgfSeed || D) */
373
194
        if (!EVP_DigestInit_ex(c, dgst, NULL)
374
194
            || !EVP_DigestUpdate(c, seed, seedlen)
375
194
            || !EVP_DigestUpdate(c, cnt, 4))
376
0
            goto err;
377
194
        if (outlen + mdlen <= len) {
378
158
            if (!EVP_DigestFinal_ex(c, mask + outlen, NULL))
379
0
                goto err;
380
158
            outlen += mdlen;
381
158
        } else {
382
36
            if (!EVP_DigestFinal_ex(c, md, NULL))
383
0
                goto err;
384
36
            memcpy(mask + outlen, md, len - outlen);
385
36
            outlen = len;
386
36
        }
387
194
    }
388
37
    rv = 0;
389
37
 err:
390
37
    OPENSSL_cleanse(md, sizeof(md));
391
37
    EVP_MD_CTX_free(c);
392
37
    return rv;
393
37
}