Coverage Report

Created: 2025-06-13 06:56

/src/openssl/crypto/sha/sha_local.h
Line
Count
Source
1
/*
2
 * Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
#include <stdlib.h>
11
#include <string.h>
12
13
#include <openssl/opensslconf.h>
14
#include <openssl/sha.h>
15
#include "internal/endian.h"
16
17
#define DATA_ORDER_IS_BIG_ENDIAN
18
19
5.10k
#define HASH_LONG               SHA_LONG
20
#define HASH_CTX                SHA_CTX
21
35.0k
#define HASH_CBLOCK             SHA_CBLOCK
22
4.89k
#define HASH_MAKE_STRING(c,s)   do {    \
23
4.89k
        unsigned long ll;               \
24
4.89k
        ll=(c)->h0; (void)HOST_l2c(ll,(s));     \
25
4.89k
        ll=(c)->h1; (void)HOST_l2c(ll,(s));     \
26
4.89k
        ll=(c)->h2; (void)HOST_l2c(ll,(s));     \
27
4.89k
        ll=(c)->h3; (void)HOST_l2c(ll,(s));     \
28
4.89k
        ll=(c)->h4; (void)HOST_l2c(ll,(s));     \
29
4.89k
        } while (0)
30
31
#define HASH_UPDATE                     SHA1_Update
32
#define HASH_TRANSFORM                  SHA1_Transform
33
#define HASH_FINAL                      SHA1_Final
34
#define HASH_INIT                       SHA1_Init
35
10.1k
#define HASH_BLOCK_DATA_ORDER           sha1_block_data_order
36
#define Xupdate(a,ix,ia,ib,ic,id)       ( (a)=(ia^ib^ic^id),    \
37
                                          ix=(a)=ROTATE((a),1)  \
38
                                        )
39
40
#ifndef SHA1_ASM
41
static void sha1_block_data_order(SHA_CTX *c, const void *p, size_t num);
42
#else
43
void sha1_block_data_order(SHA_CTX *c, const void *p, size_t num);
44
#endif
45
46
#include "crypto/md32_common.h"
47
48
4.89k
#define INIT_DATA_h0 0x67452301UL
49
4.89k
#define INIT_DATA_h1 0xefcdab89UL
50
4.89k
#define INIT_DATA_h2 0x98badcfeUL
51
4.89k
#define INIT_DATA_h3 0x10325476UL
52
4.89k
#define INIT_DATA_h4 0xc3d2e1f0UL
53
54
int HASH_INIT(SHA_CTX *c)
55
4.89k
{
56
4.89k
    memset(c, 0, sizeof(*c));
57
4.89k
    c->h0 = INIT_DATA_h0;
58
4.89k
    c->h1 = INIT_DATA_h1;
59
4.89k
    c->h2 = INIT_DATA_h2;
60
4.89k
    c->h3 = INIT_DATA_h3;
61
4.89k
    c->h4 = INIT_DATA_h4;
62
4.89k
    return 1;
63
4.89k
}
64
65
#define K_00_19 0x5a827999UL
66
#define K_20_39 0x6ed9eba1UL
67
#define K_40_59 0x8f1bbcdcUL
68
#define K_60_79 0xca62c1d6UL
69
70
/*
71
 * As pointed out by Wei Dai, F() below can be simplified to the code in
72
 * F_00_19.  Wei attributes these optimizations to Peter Gutmann's SHS code,
73
 * and he attributes it to Rich Schroeppel.
74
 *      #define F(x,y,z) (((x) & (y)) | ((~(x)) & (z)))
75
 * I've just become aware of another tweak to be made, again from Wei Dai,
76
 * in F_40_59, (x&a)|(y&a) -> (x|y)&a
77
 */
78
#define F_00_19(b,c,d)  ((((c) ^ (d)) & (b)) ^ (d))
79
#define F_20_39(b,c,d)  ((b) ^ (c) ^ (d))
80
#define F_40_59(b,c,d)  (((b) & (c)) | (((b)|(c)) & (d)))
81
#define F_60_79(b,c,d)  F_20_39(b,c,d)
82
83
#ifndef OPENSSL_SMALL_FOOTPRINT
84
85
# define BODY_00_15(i,a,b,c,d,e,f,xi) \
86
        (f)=xi+(e)+K_00_19+ROTATE((a),5)+F_00_19((b),(c),(d)); \
87
        (b)=ROTATE((b),30);
88
89
# define BODY_16_19(i,a,b,c,d,e,f,xi,xa,xb,xc,xd) \
90
        Xupdate(f,xi,xa,xb,xc,xd); \
91
        (f)+=(e)+K_00_19+ROTATE((a),5)+F_00_19((b),(c),(d)); \
92
        (b)=ROTATE((b),30);
93
94
# define BODY_20_31(i,a,b,c,d,e,f,xi,xa,xb,xc,xd) \
95
        Xupdate(f,xi,xa,xb,xc,xd); \
96
        (f)+=(e)+K_20_39+ROTATE((a),5)+F_20_39((b),(c),(d)); \
97
        (b)=ROTATE((b),30);
98
99
# define BODY_32_39(i,a,b,c,d,e,f,xa,xb,xc,xd) \
100
        Xupdate(f,xa,xa,xb,xc,xd); \
101
        (f)+=(e)+K_20_39+ROTATE((a),5)+F_20_39((b),(c),(d)); \
102
        (b)=ROTATE((b),30);
103
104
# define BODY_40_59(i,a,b,c,d,e,f,xa,xb,xc,xd) \
105
        Xupdate(f,xa,xa,xb,xc,xd); \
106
        (f)+=(e)+K_40_59+ROTATE((a),5)+F_40_59((b),(c),(d)); \
107
        (b)=ROTATE((b),30);
108
109
# define BODY_60_79(i,a,b,c,d,e,f,xa,xb,xc,xd) \
110
        Xupdate(f,xa,xa,xb,xc,xd); \
111
        (f)=xa+(e)+K_60_79+ROTATE((a),5)+F_60_79((b),(c),(d)); \
112
        (b)=ROTATE((b),30);
113
114
# ifdef X
115
#  undef X
116
# endif
117
# ifndef MD32_XARRAY
118
  /*
119
   * Originally X was an array. As it's automatic it's natural
120
   * to expect RISC compiler to accommodate at least part of it in
121
   * the register bank, isn't it? Unfortunately not all compilers
122
   * "find" this expectation reasonable:-( On order to make such
123
   * compilers generate better code I replace X[] with a bunch of
124
   * X0, X1, etc. See the function body below...
125
   */
126
#  define X(i)   XX##i
127
# else
128
  /*
129
   * However! Some compilers (most notably HP C) get overwhelmed by
130
   * that many local variables so that we have to have the way to
131
   * fall down to the original behavior.
132
   */
133
#  define X(i)   XX[i]
134
# endif
135
136
# if !defined(SHA1_ASM)
137
static void HASH_BLOCK_DATA_ORDER(SHA_CTX *c, const void *p, size_t num)
138
{
139
    const unsigned char *data = p;
140
    register unsigned MD32_REG_T A, B, C, D, E, T, l;
141
#  ifndef MD32_XARRAY
142
    unsigned MD32_REG_T XX0, XX1, XX2, XX3, XX4, XX5, XX6, XX7,
143
        XX8, XX9, XX10, XX11, XX12, XX13, XX14, XX15;
144
#  else
145
    SHA_LONG XX[16];
146
#  endif
147
148
    A = c->h0;
149
    B = c->h1;
150
    C = c->h2;
151
    D = c->h3;
152
    E = c->h4;
153
154
    for (;;) {
155
        DECLARE_IS_ENDIAN;
156
157
        if (!IS_LITTLE_ENDIAN && sizeof(SHA_LONG) == 4
158
            && ((size_t)p % 4) == 0) {
159
            const SHA_LONG *W = (const SHA_LONG *)data;
160
161
            X(0) = W[0];
162
            X(1) = W[1];
163
            BODY_00_15(0, A, B, C, D, E, T, X(0));
164
            X(2) = W[2];
165
            BODY_00_15(1, T, A, B, C, D, E, X(1));
166
            X(3) = W[3];
167
            BODY_00_15(2, E, T, A, B, C, D, X(2));
168
            X(4) = W[4];
169
            BODY_00_15(3, D, E, T, A, B, C, X(3));
170
            X(5) = W[5];
171
            BODY_00_15(4, C, D, E, T, A, B, X(4));
172
            X(6) = W[6];
173
            BODY_00_15(5, B, C, D, E, T, A, X(5));
174
            X(7) = W[7];
175
            BODY_00_15(6, A, B, C, D, E, T, X(6));
176
            X(8) = W[8];
177
            BODY_00_15(7, T, A, B, C, D, E, X(7));
178
            X(9) = W[9];
179
            BODY_00_15(8, E, T, A, B, C, D, X(8));
180
            X(10) = W[10];
181
            BODY_00_15(9, D, E, T, A, B, C, X(9));
182
            X(11) = W[11];
183
            BODY_00_15(10, C, D, E, T, A, B, X(10));
184
            X(12) = W[12];
185
            BODY_00_15(11, B, C, D, E, T, A, X(11));
186
            X(13) = W[13];
187
            BODY_00_15(12, A, B, C, D, E, T, X(12));
188
            X(14) = W[14];
189
            BODY_00_15(13, T, A, B, C, D, E, X(13));
190
            X(15) = W[15];
191
            BODY_00_15(14, E, T, A, B, C, D, X(14));
192
            BODY_00_15(15, D, E, T, A, B, C, X(15));
193
194
            data += SHA_CBLOCK;
195
        } else {
196
            (void)HOST_c2l(data, l);
197
            X(0) = l;
198
            (void)HOST_c2l(data, l);
199
            X(1) = l;
200
            BODY_00_15(0, A, B, C, D, E, T, X(0));
201
            (void)HOST_c2l(data, l);
202
            X(2) = l;
203
            BODY_00_15(1, T, A, B, C, D, E, X(1));
204
            (void)HOST_c2l(data, l);
205
            X(3) = l;
206
            BODY_00_15(2, E, T, A, B, C, D, X(2));
207
            (void)HOST_c2l(data, l);
208
            X(4) = l;
209
            BODY_00_15(3, D, E, T, A, B, C, X(3));
210
            (void)HOST_c2l(data, l);
211
            X(5) = l;
212
            BODY_00_15(4, C, D, E, T, A, B, X(4));
213
            (void)HOST_c2l(data, l);
214
            X(6) = l;
215
            BODY_00_15(5, B, C, D, E, T, A, X(5));
216
            (void)HOST_c2l(data, l);
217
            X(7) = l;
218
            BODY_00_15(6, A, B, C, D, E, T, X(6));
219
            (void)HOST_c2l(data, l);
220
            X(8) = l;
221
            BODY_00_15(7, T, A, B, C, D, E, X(7));
222
            (void)HOST_c2l(data, l);
223
            X(9) = l;
224
            BODY_00_15(8, E, T, A, B, C, D, X(8));
225
            (void)HOST_c2l(data, l);
226
            X(10) = l;
227
            BODY_00_15(9, D, E, T, A, B, C, X(9));
228
            (void)HOST_c2l(data, l);
229
            X(11) = l;
230
            BODY_00_15(10, C, D, E, T, A, B, X(10));
231
            (void)HOST_c2l(data, l);
232
            X(12) = l;
233
            BODY_00_15(11, B, C, D, E, T, A, X(11));
234
            (void)HOST_c2l(data, l);
235
            X(13) = l;
236
            BODY_00_15(12, A, B, C, D, E, T, X(12));
237
            (void)HOST_c2l(data, l);
238
            X(14) = l;
239
            BODY_00_15(13, T, A, B, C, D, E, X(13));
240
            (void)HOST_c2l(data, l);
241
            X(15) = l;
242
            BODY_00_15(14, E, T, A, B, C, D, X(14));
243
            BODY_00_15(15, D, E, T, A, B, C, X(15));
244
        }
245
246
        BODY_16_19(16, C, D, E, T, A, B, X(0), X(0), X(2), X(8), X(13));
247
        BODY_16_19(17, B, C, D, E, T, A, X(1), X(1), X(3), X(9), X(14));
248
        BODY_16_19(18, A, B, C, D, E, T, X(2), X(2), X(4), X(10), X(15));
249
        BODY_16_19(19, T, A, B, C, D, E, X(3), X(3), X(5), X(11), X(0));
250
251
        BODY_20_31(20, E, T, A, B, C, D, X(4), X(4), X(6), X(12), X(1));
252
        BODY_20_31(21, D, E, T, A, B, C, X(5), X(5), X(7), X(13), X(2));
253
        BODY_20_31(22, C, D, E, T, A, B, X(6), X(6), X(8), X(14), X(3));
254
        BODY_20_31(23, B, C, D, E, T, A, X(7), X(7), X(9), X(15), X(4));
255
        BODY_20_31(24, A, B, C, D, E, T, X(8), X(8), X(10), X(0), X(5));
256
        BODY_20_31(25, T, A, B, C, D, E, X(9), X(9), X(11), X(1), X(6));
257
        BODY_20_31(26, E, T, A, B, C, D, X(10), X(10), X(12), X(2), X(7));
258
        BODY_20_31(27, D, E, T, A, B, C, X(11), X(11), X(13), X(3), X(8));
259
        BODY_20_31(28, C, D, E, T, A, B, X(12), X(12), X(14), X(4), X(9));
260
        BODY_20_31(29, B, C, D, E, T, A, X(13), X(13), X(15), X(5), X(10));
261
        BODY_20_31(30, A, B, C, D, E, T, X(14), X(14), X(0), X(6), X(11));
262
        BODY_20_31(31, T, A, B, C, D, E, X(15), X(15), X(1), X(7), X(12));
263
264
        BODY_32_39(32, E, T, A, B, C, D, X(0), X(2), X(8), X(13));
265
        BODY_32_39(33, D, E, T, A, B, C, X(1), X(3), X(9), X(14));
266
        BODY_32_39(34, C, D, E, T, A, B, X(2), X(4), X(10), X(15));
267
        BODY_32_39(35, B, C, D, E, T, A, X(3), X(5), X(11), X(0));
268
        BODY_32_39(36, A, B, C, D, E, T, X(4), X(6), X(12), X(1));
269
        BODY_32_39(37, T, A, B, C, D, E, X(5), X(7), X(13), X(2));
270
        BODY_32_39(38, E, T, A, B, C, D, X(6), X(8), X(14), X(3));
271
        BODY_32_39(39, D, E, T, A, B, C, X(7), X(9), X(15), X(4));
272
273
        BODY_40_59(40, C, D, E, T, A, B, X(8), X(10), X(0), X(5));
274
        BODY_40_59(41, B, C, D, E, T, A, X(9), X(11), X(1), X(6));
275
        BODY_40_59(42, A, B, C, D, E, T, X(10), X(12), X(2), X(7));
276
        BODY_40_59(43, T, A, B, C, D, E, X(11), X(13), X(3), X(8));
277
        BODY_40_59(44, E, T, A, B, C, D, X(12), X(14), X(4), X(9));
278
        BODY_40_59(45, D, E, T, A, B, C, X(13), X(15), X(5), X(10));
279
        BODY_40_59(46, C, D, E, T, A, B, X(14), X(0), X(6), X(11));
280
        BODY_40_59(47, B, C, D, E, T, A, X(15), X(1), X(7), X(12));
281
        BODY_40_59(48, A, B, C, D, E, T, X(0), X(2), X(8), X(13));
282
        BODY_40_59(49, T, A, B, C, D, E, X(1), X(3), X(9), X(14));
283
        BODY_40_59(50, E, T, A, B, C, D, X(2), X(4), X(10), X(15));
284
        BODY_40_59(51, D, E, T, A, B, C, X(3), X(5), X(11), X(0));
285
        BODY_40_59(52, C, D, E, T, A, B, X(4), X(6), X(12), X(1));
286
        BODY_40_59(53, B, C, D, E, T, A, X(5), X(7), X(13), X(2));
287
        BODY_40_59(54, A, B, C, D, E, T, X(6), X(8), X(14), X(3));
288
        BODY_40_59(55, T, A, B, C, D, E, X(7), X(9), X(15), X(4));
289
        BODY_40_59(56, E, T, A, B, C, D, X(8), X(10), X(0), X(5));
290
        BODY_40_59(57, D, E, T, A, B, C, X(9), X(11), X(1), X(6));
291
        BODY_40_59(58, C, D, E, T, A, B, X(10), X(12), X(2), X(7));
292
        BODY_40_59(59, B, C, D, E, T, A, X(11), X(13), X(3), X(8));
293
294
        BODY_60_79(60, A, B, C, D, E, T, X(12), X(14), X(4), X(9));
295
        BODY_60_79(61, T, A, B, C, D, E, X(13), X(15), X(5), X(10));
296
        BODY_60_79(62, E, T, A, B, C, D, X(14), X(0), X(6), X(11));
297
        BODY_60_79(63, D, E, T, A, B, C, X(15), X(1), X(7), X(12));
298
        BODY_60_79(64, C, D, E, T, A, B, X(0), X(2), X(8), X(13));
299
        BODY_60_79(65, B, C, D, E, T, A, X(1), X(3), X(9), X(14));
300
        BODY_60_79(66, A, B, C, D, E, T, X(2), X(4), X(10), X(15));
301
        BODY_60_79(67, T, A, B, C, D, E, X(3), X(5), X(11), X(0));
302
        BODY_60_79(68, E, T, A, B, C, D, X(4), X(6), X(12), X(1));
303
        BODY_60_79(69, D, E, T, A, B, C, X(5), X(7), X(13), X(2));
304
        BODY_60_79(70, C, D, E, T, A, B, X(6), X(8), X(14), X(3));
305
        BODY_60_79(71, B, C, D, E, T, A, X(7), X(9), X(15), X(4));
306
        BODY_60_79(72, A, B, C, D, E, T, X(8), X(10), X(0), X(5));
307
        BODY_60_79(73, T, A, B, C, D, E, X(9), X(11), X(1), X(6));
308
        BODY_60_79(74, E, T, A, B, C, D, X(10), X(12), X(2), X(7));
309
        BODY_60_79(75, D, E, T, A, B, C, X(11), X(13), X(3), X(8));
310
        BODY_60_79(76, C, D, E, T, A, B, X(12), X(14), X(4), X(9));
311
        BODY_60_79(77, B, C, D, E, T, A, X(13), X(15), X(5), X(10));
312
        BODY_60_79(78, A, B, C, D, E, T, X(14), X(0), X(6), X(11));
313
        BODY_60_79(79, T, A, B, C, D, E, X(15), X(1), X(7), X(12));
314
315
        c->h0 = (c->h0 + E) & 0xffffffffL;
316
        c->h1 = (c->h1 + T) & 0xffffffffL;
317
        c->h2 = (c->h2 + A) & 0xffffffffL;
318
        c->h3 = (c->h3 + B) & 0xffffffffL;
319
        c->h4 = (c->h4 + C) & 0xffffffffL;
320
321
        if (--num == 0)
322
            break;
323
324
        A = c->h0;
325
        B = c->h1;
326
        C = c->h2;
327
        D = c->h3;
328
        E = c->h4;
329
330
    }
331
}
332
# endif
333
334
#else                           /* OPENSSL_SMALL_FOOTPRINT */
335
336
# define BODY_00_15(xi)           do {   \
337
        T=E+K_00_19+F_00_19(B,C,D);     \
338
        E=D, D=C, C=ROTATE(B,30), B=A;  \
339
        A=ROTATE(A,5)+T+xi;         } while(0)
340
341
# define BODY_16_19(xa,xb,xc,xd)  do {   \
342
        Xupdate(T,xa,xa,xb,xc,xd);      \
343
        T+=E+K_00_19+F_00_19(B,C,D);    \
344
        E=D, D=C, C=ROTATE(B,30), B=A;  \
345
        A=ROTATE(A,5)+T;            } while(0)
346
347
# define BODY_20_39(xa,xb,xc,xd)  do {   \
348
        Xupdate(T,xa,xa,xb,xc,xd);      \
349
        T+=E+K_20_39+F_20_39(B,C,D);    \
350
        E=D, D=C, C=ROTATE(B,30), B=A;  \
351
        A=ROTATE(A,5)+T;            } while(0)
352
353
# define BODY_40_59(xa,xb,xc,xd)  do {   \
354
        Xupdate(T,xa,xa,xb,xc,xd);      \
355
        T+=E+K_40_59+F_40_59(B,C,D);    \
356
        E=D, D=C, C=ROTATE(B,30), B=A;  \
357
        A=ROTATE(A,5)+T;            } while(0)
358
359
# define BODY_60_79(xa,xb,xc,xd)  do {   \
360
        Xupdate(T,xa,xa,xb,xc,xd);      \
361
        T=E+K_60_79+F_60_79(B,C,D);     \
362
        E=D, D=C, C=ROTATE(B,30), B=A;  \
363
        A=ROTATE(A,5)+T+xa;         } while(0)
364
365
# if !defined(SHA1_ASM)
366
static void HASH_BLOCK_DATA_ORDER(SHA_CTX *c, const void *p, size_t num)
367
{
368
    const unsigned char *data = p;
369
    register unsigned MD32_REG_T A, B, C, D, E, T, l;
370
    int i;
371
    SHA_LONG X[16];
372
373
    A = c->h0;
374
    B = c->h1;
375
    C = c->h2;
376
    D = c->h3;
377
    E = c->h4;
378
379
    for (;;) {
380
        for (i = 0; i < 16; i++) {
381
            (void)HOST_c2l(data, l);
382
            X[i] = l;
383
            BODY_00_15(X[i]);
384
        }
385
        for (i = 0; i < 4; i++) {
386
            BODY_16_19(X[i], X[i + 2], X[i + 8], X[(i + 13) & 15]);
387
        }
388
        for (; i < 24; i++) {
389
            BODY_20_39(X[i & 15], X[(i + 2) & 15], X[(i + 8) & 15],
390
                       X[(i + 13) & 15]);
391
        }
392
        for (i = 0; i < 20; i++) {
393
            BODY_40_59(X[(i + 8) & 15], X[(i + 10) & 15], X[i & 15],
394
                       X[(i + 5) & 15]);
395
        }
396
        for (i = 4; i < 24; i++) {
397
            BODY_60_79(X[(i + 8) & 15], X[(i + 10) & 15], X[i & 15],
398
                       X[(i + 5) & 15]);
399
        }
400
401
        c->h0 = (c->h0 + A) & 0xffffffffL;
402
        c->h1 = (c->h1 + B) & 0xffffffffL;
403
        c->h2 = (c->h2 + C) & 0xffffffffL;
404
        c->h3 = (c->h3 + D) & 0xffffffffL;
405
        c->h4 = (c->h4 + E) & 0xffffffffL;
406
407
        if (--num == 0)
408
            break;
409
410
        A = c->h0;
411
        B = c->h1;
412
        C = c->h2;
413
        D = c->h3;
414
        E = c->h4;
415
416
    }
417
}
418
# endif
419
420
#endif