Coverage Report

Created: 2023-06-08 06:43

/src/openssl111/crypto/ec/ecp_nistp224.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 2010-2020 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the OpenSSL license (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
/* Copyright 2011 Google Inc.
11
 *
12
 * Licensed under the Apache License, Version 2.0 (the "License");
13
 *
14
 * you may not use this file except in compliance with the License.
15
 * You may obtain a copy of the License at
16
 *
17
 *     http://www.apache.org/licenses/LICENSE-2.0
18
 *
19
 *  Unless required by applicable law or agreed to in writing, software
20
 *  distributed under the License is distributed on an "AS IS" BASIS,
21
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
22
 *  See the License for the specific language governing permissions and
23
 *  limitations under the License.
24
 */
25
26
/*
27
 * A 64-bit implementation of the NIST P-224 elliptic curve point multiplication
28
 *
29
 * Inspired by Daniel J. Bernstein's public domain nistp224 implementation
30
 * and Adam Langley's public domain 64-bit C implementation of curve25519
31
 */
32
33
#include <openssl/opensslconf.h>
34
#ifdef OPENSSL_NO_EC_NISTP_64_GCC_128
35
NON_EMPTY_TRANSLATION_UNIT
36
#else
37
38
# include <stdint.h>
39
# include <string.h>
40
# include <openssl/err.h>
41
# include "ec_local.h"
42
43
# if defined(__SIZEOF_INT128__) && __SIZEOF_INT128__==16
44
  /* even with gcc, the typedef won't work for 32-bit platforms */
45
typedef __uint128_t uint128_t;  /* nonstandard; implemented by gcc on 64-bit
46
                                 * platforms */
47
# else
48
#  error "Your compiler doesn't appear to support 128-bit integer types"
49
# endif
50
51
typedef uint8_t u8;
52
typedef uint64_t u64;
53
54
/******************************************************************************/
55
/*-
56
 * INTERNAL REPRESENTATION OF FIELD ELEMENTS
57
 *
58
 * Field elements are represented as a_0 + 2^56*a_1 + 2^112*a_2 + 2^168*a_3
59
 * using 64-bit coefficients called 'limbs',
60
 * and sometimes (for multiplication results) as
61
 * b_0 + 2^56*b_1 + 2^112*b_2 + 2^168*b_3 + 2^224*b_4 + 2^280*b_5 + 2^336*b_6
62
 * using 128-bit coefficients called 'widelimbs'.
63
 * A 4-limb representation is an 'felem';
64
 * a 7-widelimb representation is a 'widefelem'.
65
 * Even within felems, bits of adjacent limbs overlap, and we don't always
66
 * reduce the representations: we ensure that inputs to each felem
67
 * multiplication satisfy a_i < 2^60, so outputs satisfy b_i < 4*2^60*2^60,
68
 * and fit into a 128-bit word without overflow. The coefficients are then
69
 * again partially reduced to obtain an felem satisfying a_i < 2^57.
70
 * We only reduce to the unique minimal representation at the end of the
71
 * computation.
72
 */
73
74
typedef uint64_t limb;
75
typedef uint64_t limb_aX __attribute((__aligned__(1)));
76
typedef uint128_t widelimb;
77
78
typedef limb felem[4];
79
typedef widelimb widefelem[7];
80
81
/*
82
 * Field element represented as a byte array. 28*8 = 224 bits is also the
83
 * group order size for the elliptic curve, and we also use this type for
84
 * scalars for point multiplication.
85
 */
86
typedef u8 felem_bytearray[28];
87
88
static const felem_bytearray nistp224_curve_params[5] = {
89
    {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* p */
90
     0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00,
91
     0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01},
92
    {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* a */
93
     0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF,
94
     0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE},
95
    {0xB4, 0x05, 0x0A, 0x85, 0x0C, 0x04, 0xB3, 0xAB, 0xF5, 0x41, /* b */
96
     0x32, 0x56, 0x50, 0x44, 0xB0, 0xB7, 0xD7, 0xBF, 0xD8, 0xBA,
97
     0x27, 0x0B, 0x39, 0x43, 0x23, 0x55, 0xFF, 0xB4},
98
    {0xB7, 0x0E, 0x0C, 0xBD, 0x6B, 0xB4, 0xBF, 0x7F, 0x32, 0x13, /* x */
99
     0x90, 0xB9, 0x4A, 0x03, 0xC1, 0xD3, 0x56, 0xC2, 0x11, 0x22,
100
     0x34, 0x32, 0x80, 0xD6, 0x11, 0x5C, 0x1D, 0x21},
101
    {0xbd, 0x37, 0x63, 0x88, 0xb5, 0xf7, 0x23, 0xfb, 0x4c, 0x22, /* y */
102
     0xdf, 0xe6, 0xcd, 0x43, 0x75, 0xa0, 0x5a, 0x07, 0x47, 0x64,
103
     0x44, 0xd5, 0x81, 0x99, 0x85, 0x00, 0x7e, 0x34}
104
};
105
106
/*-
107
 * Precomputed multiples of the standard generator
108
 * Points are given in coordinates (X, Y, Z) where Z normally is 1
109
 * (0 for the point at infinity).
110
 * For each field element, slice a_0 is word 0, etc.
111
 *
112
 * The table has 2 * 16 elements, starting with the following:
113
 * index | bits    | point
114
 * ------+---------+------------------------------
115
 *     0 | 0 0 0 0 | 0G
116
 *     1 | 0 0 0 1 | 1G
117
 *     2 | 0 0 1 0 | 2^56G
118
 *     3 | 0 0 1 1 | (2^56 + 1)G
119
 *     4 | 0 1 0 0 | 2^112G
120
 *     5 | 0 1 0 1 | (2^112 + 1)G
121
 *     6 | 0 1 1 0 | (2^112 + 2^56)G
122
 *     7 | 0 1 1 1 | (2^112 + 2^56 + 1)G
123
 *     8 | 1 0 0 0 | 2^168G
124
 *     9 | 1 0 0 1 | (2^168 + 1)G
125
 *    10 | 1 0 1 0 | (2^168 + 2^56)G
126
 *    11 | 1 0 1 1 | (2^168 + 2^56 + 1)G
127
 *    12 | 1 1 0 0 | (2^168 + 2^112)G
128
 *    13 | 1 1 0 1 | (2^168 + 2^112 + 1)G
129
 *    14 | 1 1 1 0 | (2^168 + 2^112 + 2^56)G
130
 *    15 | 1 1 1 1 | (2^168 + 2^112 + 2^56 + 1)G
131
 * followed by a copy of this with each element multiplied by 2^28.
132
 *
133
 * The reason for this is so that we can clock bits into four different
134
 * locations when doing simple scalar multiplies against the base point,
135
 * and then another four locations using the second 16 elements.
136
 */
137
static const felem gmul[2][16][3] = {
138
{{{0, 0, 0, 0},
139
  {0, 0, 0, 0},
140
  {0, 0, 0, 0}},
141
 {{0x3280d6115c1d21, 0xc1d356c2112234, 0x7f321390b94a03, 0xb70e0cbd6bb4bf},
142
  {0xd5819985007e34, 0x75a05a07476444, 0xfb4c22dfe6cd43, 0xbd376388b5f723},
143
  {1, 0, 0, 0}},
144
 {{0xfd9675666ebbe9, 0xbca7664d40ce5e, 0x2242df8d8a2a43, 0x1f49bbb0f99bc5},
145
  {0x29e0b892dc9c43, 0xece8608436e662, 0xdc858f185310d0, 0x9812dd4eb8d321},
146
  {1, 0, 0, 0}},
147
 {{0x6d3e678d5d8eb8, 0x559eed1cb362f1, 0x16e9a3bbce8a3f, 0xeedcccd8c2a748},
148
  {0xf19f90ed50266d, 0xabf2b4bf65f9df, 0x313865468fafec, 0x5cb379ba910a17},
149
  {1, 0, 0, 0}},
150
 {{0x0641966cab26e3, 0x91fb2991fab0a0, 0xefec27a4e13a0b, 0x0499aa8a5f8ebe},
151
  {0x7510407766af5d, 0x84d929610d5450, 0x81d77aae82f706, 0x6916f6d4338c5b},
152
  {1, 0, 0, 0}},
153
 {{0xea95ac3b1f15c6, 0x086000905e82d4, 0xdd323ae4d1c8b1, 0x932b56be7685a3},
154
  {0x9ef93dea25dbbf, 0x41665960f390f0, 0xfdec76dbe2a8a7, 0x523e80f019062a},
155
  {1, 0, 0, 0}},
156
 {{0x822fdd26732c73, 0xa01c83531b5d0f, 0x363f37347c1ba4, 0xc391b45c84725c},
157
  {0xbbd5e1b2d6ad24, 0xddfbcde19dfaec, 0xc393da7e222a7f, 0x1efb7890ede244},
158
  {1, 0, 0, 0}},
159
 {{0x4c9e90ca217da1, 0xd11beca79159bb, 0xff8d33c2c98b7c, 0x2610b39409f849},
160
  {0x44d1352ac64da0, 0xcdbb7b2c46b4fb, 0x966c079b753c89, 0xfe67e4e820b112},
161
  {1, 0, 0, 0}},
162
 {{0xe28cae2df5312d, 0xc71b61d16f5c6e, 0x79b7619a3e7c4c, 0x05c73240899b47},
163
  {0x9f7f6382c73e3a, 0x18615165c56bda, 0x641fab2116fd56, 0x72855882b08394},
164
  {1, 0, 0, 0}},
165
 {{0x0469182f161c09, 0x74a98ca8d00fb5, 0xb89da93489a3e0, 0x41c98768fb0c1d},
166
  {0xe5ea05fb32da81, 0x3dce9ffbca6855, 0x1cfe2d3fbf59e6, 0x0e5e03408738a7},
167
  {1, 0, 0, 0}},
168
 {{0xdab22b2333e87f, 0x4430137a5dd2f6, 0xe03ab9f738beb8, 0xcb0c5d0dc34f24},
169
  {0x764a7df0c8fda5, 0x185ba5c3fa2044, 0x9281d688bcbe50, 0xc40331df893881},
170
  {1, 0, 0, 0}},
171
 {{0xb89530796f0f60, 0xade92bd26909a3, 0x1a0c83fb4884da, 0x1765bf22a5a984},
172
  {0x772a9ee75db09e, 0x23bc6c67cec16f, 0x4c1edba8b14e2f, 0xe2a215d9611369},
173
  {1, 0, 0, 0}},
174
 {{0x571e509fb5efb3, 0xade88696410552, 0xc8ae85fada74fe, 0x6c7e4be83bbde3},
175
  {0xff9f51160f4652, 0xb47ce2495a6539, 0xa2946c53b582f4, 0x286d2db3ee9a60},
176
  {1, 0, 0, 0}},
177
 {{0x40bbd5081a44af, 0x0995183b13926c, 0xbcefba6f47f6d0, 0x215619e9cc0057},
178
  {0x8bc94d3b0df45e, 0xf11c54a3694f6f, 0x8631b93cdfe8b5, 0xe7e3f4b0982db9},
179
  {1, 0, 0, 0}},
180
 {{0xb17048ab3e1c7b, 0xac38f36ff8a1d8, 0x1c29819435d2c6, 0xc813132f4c07e9},
181
  {0x2891425503b11f, 0x08781030579fea, 0xf5426ba5cc9674, 0x1e28ebf18562bc},
182
  {1, 0, 0, 0}},
183
 {{0x9f31997cc864eb, 0x06cd91d28b5e4c, 0xff17036691a973, 0xf1aef351497c58},
184
  {0xdd1f2d600564ff, 0xdead073b1402db, 0x74a684435bd693, 0xeea7471f962558},
185
  {1, 0, 0, 0}}},
186
{{{0, 0, 0, 0},
187
  {0, 0, 0, 0},
188
  {0, 0, 0, 0}},
189
 {{0x9665266dddf554, 0x9613d78b60ef2d, 0xce27a34cdba417, 0xd35ab74d6afc31},
190
  {0x85ccdd22deb15e, 0x2137e5783a6aab, 0xa141cffd8c93c6, 0x355a1830e90f2d},
191
  {1, 0, 0, 0}},
192
 {{0x1a494eadaade65, 0xd6da4da77fe53c, 0xe7992996abec86, 0x65c3553c6090e3},
193
  {0xfa610b1fb09346, 0xf1c6540b8a4aaf, 0xc51a13ccd3cbab, 0x02995b1b18c28a},
194
  {1, 0, 0, 0}},
195
 {{0x7874568e7295ef, 0x86b419fbe38d04, 0xdc0690a7550d9a, 0xd3966a44beac33},
196
  {0x2b7280ec29132f, 0xbeaa3b6a032df3, 0xdc7dd88ae41200, 0xd25e2513e3a100},
197
  {1, 0, 0, 0}},
198
 {{0x924857eb2efafd, 0xac2bce41223190, 0x8edaa1445553fc, 0x825800fd3562d5},
199
  {0x8d79148ea96621, 0x23a01c3dd9ed8d, 0xaf8b219f9416b5, 0xd8db0cc277daea},
200
  {1, 0, 0, 0}},
201
 {{0x76a9c3b1a700f0, 0xe9acd29bc7e691, 0x69212d1a6b0327, 0x6322e97fe154be},
202
  {0x469fc5465d62aa, 0x8d41ed18883b05, 0x1f8eae66c52b88, 0xe4fcbe9325be51},
203
  {1, 0, 0, 0}},
204
 {{0x825fdf583cac16, 0x020b857c7b023a, 0x683c17744b0165, 0x14ffd0a2daf2f1},
205
  {0x323b36184218f9, 0x4944ec4e3b47d4, 0xc15b3080841acf, 0x0bced4b01a28bb},
206
  {1, 0, 0, 0}},
207
 {{0x92ac22230df5c4, 0x52f33b4063eda8, 0xcb3f19870c0c93, 0x40064f2ba65233},
208
  {0xfe16f0924f8992, 0x012da25af5b517, 0x1a57bb24f723a6, 0x06f8bc76760def},
209
  {1, 0, 0, 0}},
210
 {{0x4a7084f7817cb9, 0xbcab0738ee9a78, 0x3ec11e11d9c326, 0xdc0fe90e0f1aae},
211
  {0xcf639ea5f98390, 0x5c350aa22ffb74, 0x9afae98a4047b7, 0x956ec2d617fc45},
212
  {1, 0, 0, 0}},
213
 {{0x4306d648c1be6a, 0x9247cd8bc9a462, 0xf5595e377d2f2e, 0xbd1c3caff1a52e},
214
  {0x045e14472409d0, 0x29f3e17078f773, 0x745a602b2d4f7d, 0x191837685cdfbb},
215
  {1, 0, 0, 0}},
216
 {{0x5b6ee254a8cb79, 0x4953433f5e7026, 0xe21faeb1d1def4, 0xc4c225785c09de},
217
  {0x307ce7bba1e518, 0x31b125b1036db8, 0x47e91868839e8f, 0xc765866e33b9f3},
218
  {1, 0, 0, 0}},
219
 {{0x3bfece24f96906, 0x4794da641e5093, 0xde5df64f95db26, 0x297ecd89714b05},
220
  {0x701bd3ebb2c3aa, 0x7073b4f53cb1d5, 0x13c5665658af16, 0x9895089d66fe58},
221
  {1, 0, 0, 0}},
222
 {{0x0fef05f78c4790, 0x2d773633b05d2e, 0x94229c3a951c94, 0xbbbd70df4911bb},
223
  {0xb2c6963d2c1168, 0x105f47a72b0d73, 0x9fdf6111614080, 0x7b7e94b39e67b0},
224
  {1, 0, 0, 0}},
225
 {{0xad1a7d6efbe2b3, 0xf012482c0da69d, 0x6b3bdf12438345, 0x40d7558d7aa4d9},
226
  {0x8a09fffb5c6d3d, 0x9a356e5d9ffd38, 0x5973f15f4f9b1c, 0xdcd5f59f63c3ea},
227
  {1, 0, 0, 0}},
228
 {{0xacf39f4c5ca7ab, 0x4c8071cc5fd737, 0xc64e3602cd1184, 0x0acd4644c9abba},
229
  {0x6c011a36d8bf6e, 0xfecd87ba24e32a, 0x19f6f56574fad8, 0x050b204ced9405},
230
  {1, 0, 0, 0}},
231
 {{0xed4f1cae7d9a96, 0x5ceef7ad94c40a, 0x778e4a3bf3ef9b, 0x7405783dc3b55e},
232
  {0x32477c61b6e8c6, 0xb46a97570f018b, 0x91176d0a7e95d1, 0x3df90fbc4c7d0e},
233
  {1, 0, 0, 0}}}
234
};
235
236
/* Precomputation for the group generator. */
237
struct nistp224_pre_comp_st {
238
    felem g_pre_comp[2][16][3];
239
    CRYPTO_REF_COUNT references;
240
    CRYPTO_RWLOCK *lock;
241
};
242
243
const EC_METHOD *EC_GFp_nistp224_method(void)
244
21.4k
{
245
21.4k
    static const EC_METHOD ret = {
246
21.4k
        EC_FLAGS_DEFAULT_OCT,
247
21.4k
        NID_X9_62_prime_field,
248
21.4k
        ec_GFp_nistp224_group_init,
249
21.4k
        ec_GFp_simple_group_finish,
250
21.4k
        ec_GFp_simple_group_clear_finish,
251
21.4k
        ec_GFp_nist_group_copy,
252
21.4k
        ec_GFp_nistp224_group_set_curve,
253
21.4k
        ec_GFp_simple_group_get_curve,
254
21.4k
        ec_GFp_simple_group_get_degree,
255
21.4k
        ec_group_simple_order_bits,
256
21.4k
        ec_GFp_simple_group_check_discriminant,
257
21.4k
        ec_GFp_simple_point_init,
258
21.4k
        ec_GFp_simple_point_finish,
259
21.4k
        ec_GFp_simple_point_clear_finish,
260
21.4k
        ec_GFp_simple_point_copy,
261
21.4k
        ec_GFp_simple_point_set_to_infinity,
262
21.4k
        ec_GFp_simple_set_Jprojective_coordinates_GFp,
263
21.4k
        ec_GFp_simple_get_Jprojective_coordinates_GFp,
264
21.4k
        ec_GFp_simple_point_set_affine_coordinates,
265
21.4k
        ec_GFp_nistp224_point_get_affine_coordinates,
266
21.4k
        0 /* point_set_compressed_coordinates */ ,
267
21.4k
        0 /* point2oct */ ,
268
21.4k
        0 /* oct2point */ ,
269
21.4k
        ec_GFp_simple_add,
270
21.4k
        ec_GFp_simple_dbl,
271
21.4k
        ec_GFp_simple_invert,
272
21.4k
        ec_GFp_simple_is_at_infinity,
273
21.4k
        ec_GFp_simple_is_on_curve,
274
21.4k
        ec_GFp_simple_cmp,
275
21.4k
        ec_GFp_simple_make_affine,
276
21.4k
        ec_GFp_simple_points_make_affine,
277
21.4k
        ec_GFp_nistp224_points_mul,
278
21.4k
        ec_GFp_nistp224_precompute_mult,
279
21.4k
        ec_GFp_nistp224_have_precompute_mult,
280
21.4k
        ec_GFp_nist_field_mul,
281
21.4k
        ec_GFp_nist_field_sqr,
282
21.4k
        0 /* field_div */ ,
283
21.4k
        ec_GFp_simple_field_inv,
284
21.4k
        0 /* field_encode */ ,
285
21.4k
        0 /* field_decode */ ,
286
21.4k
        0,                      /* field_set_to_one */
287
21.4k
        ec_key_simple_priv2oct,
288
21.4k
        ec_key_simple_oct2priv,
289
21.4k
        0, /* set private */
290
21.4k
        ec_key_simple_generate_key,
291
21.4k
        ec_key_simple_check_key,
292
21.4k
        ec_key_simple_generate_public_key,
293
21.4k
        0, /* keycopy */
294
21.4k
        0, /* keyfinish */
295
21.4k
        ecdh_simple_compute_key,
296
21.4k
        0, /* field_inverse_mod_ord */
297
21.4k
        0, /* blind_coordinates */
298
21.4k
        0, /* ladder_pre */
299
21.4k
        0, /* ladder_step */
300
21.4k
        0  /* ladder_post */
301
21.4k
    };
302
303
21.4k
    return &ret;
304
21.4k
}
305
306
/*
307
 * Helper functions to convert field elements to/from internal representation
308
 */
309
static void bin28_to_felem(felem out, const u8 in[28])
310
1.28k
{
311
1.28k
    out[0] = *((const limb *)(in)) & 0x00ffffffffffffff;
312
1.28k
    out[1] = (*((const limb_aX *)(in + 7))) & 0x00ffffffffffffff;
313
1.28k
    out[2] = (*((const limb_aX *)(in + 14))) & 0x00ffffffffffffff;
314
1.28k
    out[3] = (*((const limb_aX *)(in + 20))) >> 8;
315
1.28k
}
316
317
static void felem_to_bin28(u8 out[28], const felem in)
318
1.12k
{
319
1.12k
    unsigned i;
320
8.96k
    for (i = 0; i < 7; ++i) {
321
7.84k
        out[i] = in[0] >> (8 * i);
322
7.84k
        out[i + 7] = in[1] >> (8 * i);
323
7.84k
        out[i + 14] = in[2] >> (8 * i);
324
7.84k
        out[i + 21] = in[3] >> (8 * i);
325
7.84k
    }
326
1.12k
}
327
328
/* From OpenSSL BIGNUM to internal representation */
329
static int BN_to_felem(felem out, const BIGNUM *bn)
330
1.28k
{
331
1.28k
    felem_bytearray b_out;
332
1.28k
    int num_bytes;
333
334
1.28k
    if (BN_is_negative(bn)) {
335
0
        ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE);
336
0
        return 0;
337
0
    }
338
1.28k
    num_bytes = BN_bn2lebinpad(bn, b_out, sizeof(b_out));
339
1.28k
    if (num_bytes < 0) {
340
0
        ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE);
341
0
        return 0;
342
0
    }
343
1.28k
    bin28_to_felem(out, b_out);
344
1.28k
    return 1;
345
1.28k
}
346
347
/* From internal representation to OpenSSL BIGNUM */
348
static BIGNUM *felem_to_BN(BIGNUM *out, const felem in)
349
1.12k
{
350
1.12k
    felem_bytearray b_out;
351
1.12k
    felem_to_bin28(b_out, in);
352
1.12k
    return BN_lebin2bn(b_out, sizeof(b_out), out);
353
1.12k
}
354
355
/******************************************************************************/
356
/*-
357
 *                              FIELD OPERATIONS
358
 *
359
 * Field operations, using the internal representation of field elements.
360
 * NB! These operations are specific to our point multiplication and cannot be
361
 * expected to be correct in general - e.g., multiplication with a large scalar
362
 * will cause an overflow.
363
 *
364
 */
365
366
static void felem_one(felem out)
367
0
{
368
0
    out[0] = 1;
369
0
    out[1] = 0;
370
0
    out[2] = 0;
371
0
    out[3] = 0;
372
0
}
373
374
static void felem_assign(felem out, const felem in)
375
24.2k
{
376
24.2k
    out[0] = in[0];
377
24.2k
    out[1] = in[1];
378
24.2k
    out[2] = in[2];
379
24.2k
    out[3] = in[3];
380
24.2k
}
381
382
/* Sum two field elements: out += in */
383
static void felem_sum(felem out, const felem in)
384
3.56k
{
385
3.56k
    out[0] += in[0];
386
3.56k
    out[1] += in[1];
387
3.56k
    out[2] += in[2];
388
3.56k
    out[3] += in[3];
389
3.56k
}
390
391
/* Subtract field elements: out -= in */
392
/* Assumes in[i] < 2^57 */
393
static void felem_diff(felem out, const felem in)
394
4.79k
{
395
4.79k
    static const limb two58p2 = (((limb) 1) << 58) + (((limb) 1) << 2);
396
4.79k
    static const limb two58m2 = (((limb) 1) << 58) - (((limb) 1) << 2);
397
4.79k
    static const limb two58m42m2 = (((limb) 1) << 58) -
398
4.79k
        (((limb) 1) << 42) - (((limb) 1) << 2);
399
400
    /* Add 0 mod 2^224-2^96+1 to ensure out > in */
401
4.79k
    out[0] += two58p2;
402
4.79k
    out[1] += two58m42m2;
403
4.79k
    out[2] += two58m2;
404
4.79k
    out[3] += two58m2;
405
406
4.79k
    out[0] -= in[0];
407
4.79k
    out[1] -= in[1];
408
4.79k
    out[2] -= in[2];
409
4.79k
    out[3] -= in[3];
410
4.79k
}
411
412
/* Subtract in unreduced 128-bit mode: out -= in */
413
/* Assumes in[i] < 2^119 */
414
static void widefelem_diff(widefelem out, const widefelem in)
415
3.60k
{
416
3.60k
    static const widelimb two120 = ((widelimb) 1) << 120;
417
3.60k
    static const widelimb two120m64 = (((widelimb) 1) << 120) -
418
3.60k
        (((widelimb) 1) << 64);
419
3.60k
    static const widelimb two120m104m64 = (((widelimb) 1) << 120) -
420
3.60k
        (((widelimb) 1) << 104) - (((widelimb) 1) << 64);
421
422
    /* Add 0 mod 2^224-2^96+1 to ensure out > in */
423
3.60k
    out[0] += two120;
424
3.60k
    out[1] += two120m64;
425
3.60k
    out[2] += two120m64;
426
3.60k
    out[3] += two120;
427
3.60k
    out[4] += two120m104m64;
428
3.60k
    out[5] += two120m64;
429
3.60k
    out[6] += two120m64;
430
431
3.60k
    out[0] -= in[0];
432
3.60k
    out[1] -= in[1];
433
3.60k
    out[2] -= in[2];
434
3.60k
    out[3] -= in[3];
435
3.60k
    out[4] -= in[4];
436
3.60k
    out[5] -= in[5];
437
3.60k
    out[6] -= in[6];
438
3.60k
}
439
440
/* Subtract in mixed mode: out128 -= in64 */
441
/* in[i] < 2^63 */
442
static void felem_diff_128_64(widefelem out, const felem in)
443
12.0k
{
444
12.0k
    static const widelimb two64p8 = (((widelimb) 1) << 64) +
445
12.0k
        (((widelimb) 1) << 8);
446
12.0k
    static const widelimb two64m8 = (((widelimb) 1) << 64) -
447
12.0k
        (((widelimb) 1) << 8);
448
12.0k
    static const widelimb two64m48m8 = (((widelimb) 1) << 64) -
449
12.0k
        (((widelimb) 1) << 48) - (((widelimb) 1) << 8);
450
451
    /* Add 0 mod 2^224-2^96+1 to ensure out > in */
452
12.0k
    out[0] += two64p8;
453
12.0k
    out[1] += two64m48m8;
454
12.0k
    out[2] += two64m8;
455
12.0k
    out[3] += two64m8;
456
457
12.0k
    out[0] -= in[0];
458
12.0k
    out[1] -= in[1];
459
12.0k
    out[2] -= in[2];
460
12.0k
    out[3] -= in[3];
461
12.0k
}
462
463
/*
464
 * Multiply a field element by a scalar: out = out * scalar The scalars we
465
 * actually use are small, so results fit without overflow
466
 */
467
static void felem_scalar(felem out, const limb scalar)
468
5.98k
{
469
5.98k
    out[0] *= scalar;
470
5.98k
    out[1] *= scalar;
471
5.98k
    out[2] *= scalar;
472
5.98k
    out[3] *= scalar;
473
5.98k
}
474
475
/*
476
 * Multiply an unreduced field element by a scalar: out = out * scalar The
477
 * scalars we actually use are small, so results fit without overflow
478
 */
479
static void widefelem_scalar(widefelem out, const widelimb scalar)
480
1.18k
{
481
1.18k
    out[0] *= scalar;
482
1.18k
    out[1] *= scalar;
483
1.18k
    out[2] *= scalar;
484
1.18k
    out[3] *= scalar;
485
1.18k
    out[4] *= scalar;
486
1.18k
    out[5] *= scalar;
487
1.18k
    out[6] *= scalar;
488
1.18k
}
489
490
/* Square a field element: out = in^2 */
491
static void felem_square(widefelem out, const felem in)
492
109k
{
493
109k
    limb tmp0, tmp1, tmp2;
494
109k
    tmp0 = 2 * in[0];
495
109k
    tmp1 = 2 * in[1];
496
109k
    tmp2 = 2 * in[2];
497
109k
    out[0] = ((widelimb) in[0]) * in[0];
498
109k
    out[1] = ((widelimb) in[0]) * tmp1;
499
109k
    out[2] = ((widelimb) in[0]) * tmp2 + ((widelimb) in[1]) * in[1];
500
109k
    out[3] = ((widelimb) in[3]) * tmp0 + ((widelimb) in[1]) * tmp2;
501
109k
    out[4] = ((widelimb) in[3]) * tmp1 + ((widelimb) in[2]) * in[2];
502
109k
    out[5] = ((widelimb) in[3]) * tmp2;
503
109k
    out[6] = ((widelimb) in[3]) * in[3];
504
109k
}
505
506
/* Multiply two field elements: out = in1 * in2 */
507
static void felem_mul(widefelem out, const felem in1, const felem in2)
508
28.9k
{
509
28.9k
    out[0] = ((widelimb) in1[0]) * in2[0];
510
28.9k
    out[1] = ((widelimb) in1[0]) * in2[1] + ((widelimb) in1[1]) * in2[0];
511
28.9k
    out[2] = ((widelimb) in1[0]) * in2[2] + ((widelimb) in1[1]) * in2[1] +
512
28.9k
             ((widelimb) in1[2]) * in2[0];
513
28.9k
    out[3] = ((widelimb) in1[0]) * in2[3] + ((widelimb) in1[1]) * in2[2] +
514
28.9k
             ((widelimb) in1[2]) * in2[1] + ((widelimb) in1[3]) * in2[0];
515
28.9k
    out[4] = ((widelimb) in1[1]) * in2[3] + ((widelimb) in1[2]) * in2[2] +
516
28.9k
             ((widelimb) in1[3]) * in2[1];
517
28.9k
    out[5] = ((widelimb) in1[2]) * in2[3] + ((widelimb) in1[3]) * in2[2];
518
28.9k
    out[6] = ((widelimb) in1[3]) * in2[3];
519
28.9k
}
520
521
/*-
522
 * Reduce seven 128-bit coefficients to four 64-bit coefficients.
523
 * Requires in[i] < 2^126,
524
 * ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16 */
525
static void felem_reduce(felem out, const widefelem in)
526
134k
{
527
134k
    static const widelimb two127p15 = (((widelimb) 1) << 127) +
528
134k
        (((widelimb) 1) << 15);
529
134k
    static const widelimb two127m71 = (((widelimb) 1) << 127) -
530
134k
        (((widelimb) 1) << 71);
531
134k
    static const widelimb two127m71m55 = (((widelimb) 1) << 127) -
532
134k
        (((widelimb) 1) << 71) - (((widelimb) 1) << 55);
533
134k
    widelimb output[5];
534
535
    /* Add 0 mod 2^224-2^96+1 to ensure all differences are positive */
536
134k
    output[0] = in[0] + two127p15;
537
134k
    output[1] = in[1] + two127m71m55;
538
134k
    output[2] = in[2] + two127m71;
539
134k
    output[3] = in[3];
540
134k
    output[4] = in[4];
541
542
    /* Eliminate in[4], in[5], in[6] */
543
134k
    output[4] += in[6] >> 16;
544
134k
    output[3] += (in[6] & 0xffff) << 40;
545
134k
    output[2] -= in[6];
546
547
134k
    output[3] += in[5] >> 16;
548
134k
    output[2] += (in[5] & 0xffff) << 40;
549
134k
    output[1] -= in[5];
550
551
134k
    output[2] += output[4] >> 16;
552
134k
    output[1] += (output[4] & 0xffff) << 40;
553
134k
    output[0] -= output[4];
554
555
    /* Carry 2 -> 3 -> 4 */
556
134k
    output[3] += output[2] >> 56;
557
134k
    output[2] &= 0x00ffffffffffffff;
558
559
134k
    output[4] = output[3] >> 56;
560
134k
    output[3] &= 0x00ffffffffffffff;
561
562
    /* Now output[2] < 2^56, output[3] < 2^56, output[4] < 2^72 */
563
564
    /* Eliminate output[4] */
565
134k
    output[2] += output[4] >> 16;
566
    /* output[2] < 2^56 + 2^56 = 2^57 */
567
134k
    output[1] += (output[4] & 0xffff) << 40;
568
134k
    output[0] -= output[4];
569
570
    /* Carry 0 -> 1 -> 2 -> 3 */
571
134k
    output[1] += output[0] >> 56;
572
134k
    out[0] = output[0] & 0x00ffffffffffffff;
573
574
134k
    output[2] += output[1] >> 56;
575
    /* output[2] < 2^57 + 2^72 */
576
134k
    out[1] = output[1] & 0x00ffffffffffffff;
577
134k
    output[3] += output[2] >> 56;
578
    /* output[3] <= 2^56 + 2^16 */
579
134k
    out[2] = output[2] & 0x00ffffffffffffff;
580
581
    /*-
582
     * out[0] < 2^56, out[1] < 2^56, out[2] < 2^56,
583
     * out[3] <= 2^56 + 2^16 (due to final carry),
584
     * so out < 2*p
585
     */
586
134k
    out[3] = output[3];
587
134k
}
588
589
static void felem_square_reduce(felem out, const felem in)
590
0
{
591
0
    widefelem tmp;
592
0
    felem_square(tmp, in);
593
0
    felem_reduce(out, tmp);
594
0
}
595
596
static void felem_mul_reduce(felem out, const felem in1, const felem in2)
597
0
{
598
0
    widefelem tmp;
599
0
    felem_mul(tmp, in1, in2);
600
0
    felem_reduce(out, tmp);
601
0
}
602
603
/*
604
 * Reduce to unique minimal representation. Requires 0 <= in < 2*p (always
605
 * call felem_reduce first)
606
 */
607
static void felem_contract(felem out, const felem in)
608
988
{
609
988
    static const int64_t two56 = ((limb) 1) << 56;
610
    /* 0 <= in < 2*p, p = 2^224 - 2^96 + 1 */
611
    /* if in > p , reduce in = in - 2^224 + 2^96 - 1 */
612
988
    int64_t tmp[4], a;
613
988
    tmp[0] = in[0];
614
988
    tmp[1] = in[1];
615
988
    tmp[2] = in[2];
616
988
    tmp[3] = in[3];
617
    /* Case 1: a = 1 iff in >= 2^224 */
618
988
    a = (in[3] >> 56);
619
988
    tmp[0] -= a;
620
988
    tmp[1] += a << 40;
621
988
    tmp[3] &= 0x00ffffffffffffff;
622
    /*
623
     * Case 2: a = 0 iff p <= in < 2^224, i.e., the high 128 bits are all 1
624
     * and the lower part is non-zero
625
     */
626
988
    a = ((in[3] & in[2] & (in[1] | 0x000000ffffffffff)) + 1) |
627
988
        (((int64_t) (in[0] + (in[1] & 0x000000ffffffffff)) - 1) >> 63);
628
988
    a &= 0x00ffffffffffffff;
629
    /* turn a into an all-one mask (if a = 0) or an all-zero mask */
630
988
    a = (a - 1) >> 63;
631
    /* subtract 2^224 - 2^96 + 1 if a is all-one */
632
988
    tmp[3] &= a ^ 0xffffffffffffffff;
633
988
    tmp[2] &= a ^ 0xffffffffffffffff;
634
988
    tmp[1] &= (a ^ 0xffffffffffffffff) | 0x000000ffffffffff;
635
988
    tmp[0] -= 1 & a;
636
637
    /*
638
     * eliminate negative coefficients: if tmp[0] is negative, tmp[1] must be
639
     * non-zero, so we only need one step
640
     */
641
988
    a = tmp[0] >> 63;
642
988
    tmp[0] += two56 & a;
643
988
    tmp[1] -= 1 & a;
644
645
    /* carry 1 -> 2 -> 3 */
646
988
    tmp[2] += tmp[1] >> 56;
647
988
    tmp[1] &= 0x00ffffffffffffff;
648
649
988
    tmp[3] += tmp[2] >> 56;
650
988
    tmp[2] &= 0x00ffffffffffffff;
651
652
    /* Now 0 <= out < p */
653
988
    out[0] = tmp[0];
654
988
    out[1] = tmp[1];
655
988
    out[2] = tmp[2];
656
988
    out[3] = tmp[3];
657
988
}
658
659
/*
660
 * Get negative value: out = -in
661
 * Requires in[i] < 2^63,
662
 * ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16
663
 */
664
static void felem_neg(felem out, const felem in)
665
0
{
666
0
    widefelem tmp = {0};
667
0
    felem_diff_128_64(tmp, in);
668
0
    felem_reduce(out, tmp);
669
0
}
670
671
/*
672
 * Zero-check: returns 1 if input is 0, and 0 otherwise. We know that field
673
 * elements are reduced to in < 2^225, so we only need to check three cases:
674
 * 0, 2^224 - 2^96 + 1, and 2^225 - 2^97 + 2
675
 */
676
static limb felem_is_zero(const felem in)
677
9.68k
{
678
9.68k
    limb zero, two224m96p1, two225m97p2;
679
680
9.68k
    zero = in[0] | in[1] | in[2] | in[3];
681
9.68k
    zero = (((int64_t) (zero) - 1) >> 63) & 1;
682
9.68k
    two224m96p1 = (in[0] ^ 1) | (in[1] ^ 0x00ffff0000000000)
683
9.68k
        | (in[2] ^ 0x00ffffffffffffff) | (in[3] ^ 0x00ffffffffffffff);
684
9.68k
    two224m96p1 = (((int64_t) (two224m96p1) - 1) >> 63) & 1;
685
9.68k
    two225m97p2 = (in[0] ^ 2) | (in[1] ^ 0x00fffe0000000000)
686
9.68k
        | (in[2] ^ 0x00ffffffffffffff) | (in[3] ^ 0x01ffffffffffffff);
687
9.68k
    two225m97p2 = (((int64_t) (two225m97p2) - 1) >> 63) & 1;
688
9.68k
    return (zero | two224m96p1 | two225m97p2);
689
9.68k
}
690
691
static int felem_is_zero_int(const void *in)
692
0
{
693
0
    return (int)(felem_is_zero(in) & ((limb) 1));
694
0
}
695
696
/* Invert a field element */
697
/* Computation chain copied from djb's code */
698
static void felem_inv(felem out, const felem in)
699
428
{
700
428
    felem ftmp, ftmp2, ftmp3, ftmp4;
701
428
    widefelem tmp;
702
428
    unsigned i;
703
704
428
    felem_square(tmp, in);
705
428
    felem_reduce(ftmp, tmp);    /* 2 */
706
428
    felem_mul(tmp, in, ftmp);
707
428
    felem_reduce(ftmp, tmp);    /* 2^2 - 1 */
708
428
    felem_square(tmp, ftmp);
709
428
    felem_reduce(ftmp, tmp);    /* 2^3 - 2 */
710
428
    felem_mul(tmp, in, ftmp);
711
428
    felem_reduce(ftmp, tmp);    /* 2^3 - 1 */
712
428
    felem_square(tmp, ftmp);
713
428
    felem_reduce(ftmp2, tmp);   /* 2^4 - 2 */
714
428
    felem_square(tmp, ftmp2);
715
428
    felem_reduce(ftmp2, tmp);   /* 2^5 - 4 */
716
428
    felem_square(tmp, ftmp2);
717
428
    felem_reduce(ftmp2, tmp);   /* 2^6 - 8 */
718
428
    felem_mul(tmp, ftmp2, ftmp);
719
428
    felem_reduce(ftmp, tmp);    /* 2^6 - 1 */
720
428
    felem_square(tmp, ftmp);
721
428
    felem_reduce(ftmp2, tmp);   /* 2^7 - 2 */
722
2.56k
    for (i = 0; i < 5; ++i) {   /* 2^12 - 2^6 */
723
2.14k
        felem_square(tmp, ftmp2);
724
2.14k
        felem_reduce(ftmp2, tmp);
725
2.14k
    }
726
428
    felem_mul(tmp, ftmp2, ftmp);
727
428
    felem_reduce(ftmp2, tmp);   /* 2^12 - 1 */
728
428
    felem_square(tmp, ftmp2);
729
428
    felem_reduce(ftmp3, tmp);   /* 2^13 - 2 */
730
5.13k
    for (i = 0; i < 11; ++i) {  /* 2^24 - 2^12 */
731
4.70k
        felem_square(tmp, ftmp3);
732
4.70k
        felem_reduce(ftmp3, tmp);
733
4.70k
    }
734
428
    felem_mul(tmp, ftmp3, ftmp2);
735
428
    felem_reduce(ftmp2, tmp);   /* 2^24 - 1 */
736
428
    felem_square(tmp, ftmp2);
737
428
    felem_reduce(ftmp3, tmp);   /* 2^25 - 2 */
738
10.2k
    for (i = 0; i < 23; ++i) {  /* 2^48 - 2^24 */
739
9.84k
        felem_square(tmp, ftmp3);
740
9.84k
        felem_reduce(ftmp3, tmp);
741
9.84k
    }
742
428
    felem_mul(tmp, ftmp3, ftmp2);
743
428
    felem_reduce(ftmp3, tmp);   /* 2^48 - 1 */
744
428
    felem_square(tmp, ftmp3);
745
428
    felem_reduce(ftmp4, tmp);   /* 2^49 - 2 */
746
20.5k
    for (i = 0; i < 47; ++i) {  /* 2^96 - 2^48 */
747
20.1k
        felem_square(tmp, ftmp4);
748
20.1k
        felem_reduce(ftmp4, tmp);
749
20.1k
    }
750
428
    felem_mul(tmp, ftmp3, ftmp4);
751
428
    felem_reduce(ftmp3, tmp);   /* 2^96 - 1 */
752
428
    felem_square(tmp, ftmp3);
753
428
    felem_reduce(ftmp4, tmp);   /* 2^97 - 2 */
754
10.2k
    for (i = 0; i < 23; ++i) {  /* 2^120 - 2^24 */
755
9.84k
        felem_square(tmp, ftmp4);
756
9.84k
        felem_reduce(ftmp4, tmp);
757
9.84k
    }
758
428
    felem_mul(tmp, ftmp2, ftmp4);
759
428
    felem_reduce(ftmp2, tmp);   /* 2^120 - 1 */
760
2.99k
    for (i = 0; i < 6; ++i) {   /* 2^126 - 2^6 */
761
2.56k
        felem_square(tmp, ftmp2);
762
2.56k
        felem_reduce(ftmp2, tmp);
763
2.56k
    }
764
428
    felem_mul(tmp, ftmp2, ftmp);
765
428
    felem_reduce(ftmp, tmp);    /* 2^126 - 1 */
766
428
    felem_square(tmp, ftmp);
767
428
    felem_reduce(ftmp, tmp);    /* 2^127 - 2 */
768
428
    felem_mul(tmp, ftmp, in);
769
428
    felem_reduce(ftmp, tmp);    /* 2^127 - 1 */
770
41.9k
    for (i = 0; i < 97; ++i) {  /* 2^224 - 2^97 */
771
41.5k
        felem_square(tmp, ftmp);
772
41.5k
        felem_reduce(ftmp, tmp);
773
41.5k
    }
774
428
    felem_mul(tmp, ftmp, ftmp3);
775
428
    felem_reduce(out, tmp);     /* 2^224 - 2^96 - 1 */
776
428
}
777
778
/*
779
 * Copy in constant time: if icopy == 1, copy in to out, if icopy == 0, copy
780
 * out to itself.
781
 */
782
static void copy_conditional(felem out, const felem in, limb icopy)
783
14.5k
{
784
14.5k
    unsigned i;
785
    /*
786
     * icopy is a (64-bit) 0 or 1, so copy is either all-zero or all-one
787
     */
788
14.5k
    const limb copy = -icopy;
789
72.6k
    for (i = 0; i < 4; ++i) {
790
58.0k
        const limb tmp = copy & (in[i] ^ out[i]);
791
58.0k
        out[i] ^= tmp;
792
58.0k
    }
793
14.5k
}
794
795
/******************************************************************************/
796
/*-
797
 *                       ELLIPTIC CURVE POINT OPERATIONS
798
 *
799
 * Points are represented in Jacobian projective coordinates:
800
 * (X, Y, Z) corresponds to the affine point (X/Z^2, Y/Z^3),
801
 * or to the point at infinity if Z == 0.
802
 *
803
 */
804
805
/*-
806
 * Double an elliptic curve point:
807
 * (X', Y', Z') = 2 * (X, Y, Z), where
808
 * X' = (3 * (X - Z^2) * (X + Z^2))^2 - 8 * X * Y^2
809
 * Y' = 3 * (X - Z^2) * (X + Z^2) * (4 * X * Y^2 - X') - 8 * Y^4
810
 * Z' = (Y + Z)^2 - Y^2 - Z^2 = 2 * Y * Z
811
 * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed,
812
 * while x_out == y_in is not (maybe this works, but it's not tested).
813
 */
814
static void
815
point_double(felem x_out, felem y_out, felem z_out,
816
             const felem x_in, const felem y_in, const felem z_in)
817
1.18k
{
818
1.18k
    widefelem tmp, tmp2;
819
1.18k
    felem delta, gamma, beta, alpha, ftmp, ftmp2;
820
821
1.18k
    felem_assign(ftmp, x_in);
822
1.18k
    felem_assign(ftmp2, x_in);
823
824
    /* delta = z^2 */
825
1.18k
    felem_square(tmp, z_in);
826
1.18k
    felem_reduce(delta, tmp);
827
828
    /* gamma = y^2 */
829
1.18k
    felem_square(tmp, y_in);
830
1.18k
    felem_reduce(gamma, tmp);
831
832
    /* beta = x*gamma */
833
1.18k
    felem_mul(tmp, x_in, gamma);
834
1.18k
    felem_reduce(beta, tmp);
835
836
    /* alpha = 3*(x-delta)*(x+delta) */
837
1.18k
    felem_diff(ftmp, delta);
838
    /* ftmp[i] < 2^57 + 2^58 + 2 < 2^59 */
839
1.18k
    felem_sum(ftmp2, delta);
840
    /* ftmp2[i] < 2^57 + 2^57 = 2^58 */
841
1.18k
    felem_scalar(ftmp2, 3);
842
    /* ftmp2[i] < 3 * 2^58 < 2^60 */
843
1.18k
    felem_mul(tmp, ftmp, ftmp2);
844
    /* tmp[i] < 2^60 * 2^59 * 4 = 2^121 */
845
1.18k
    felem_reduce(alpha, tmp);
846
847
    /* x' = alpha^2 - 8*beta */
848
1.18k
    felem_square(tmp, alpha);
849
    /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
850
1.18k
    felem_assign(ftmp, beta);
851
1.18k
    felem_scalar(ftmp, 8);
852
    /* ftmp[i] < 8 * 2^57 = 2^60 */
853
1.18k
    felem_diff_128_64(tmp, ftmp);
854
    /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
855
1.18k
    felem_reduce(x_out, tmp);
856
857
    /* z' = (y + z)^2 - gamma - delta */
858
1.18k
    felem_sum(delta, gamma);
859
    /* delta[i] < 2^57 + 2^57 = 2^58 */
860
1.18k
    felem_assign(ftmp, y_in);
861
1.18k
    felem_sum(ftmp, z_in);
862
    /* ftmp[i] < 2^57 + 2^57 = 2^58 */
863
1.18k
    felem_square(tmp, ftmp);
864
    /* tmp[i] < 4 * 2^58 * 2^58 = 2^118 */
865
1.18k
    felem_diff_128_64(tmp, delta);
866
    /* tmp[i] < 2^118 + 2^64 + 8 < 2^119 */
867
1.18k
    felem_reduce(z_out, tmp);
868
869
    /* y' = alpha*(4*beta - x') - 8*gamma^2 */
870
1.18k
    felem_scalar(beta, 4);
871
    /* beta[i] < 4 * 2^57 = 2^59 */
872
1.18k
    felem_diff(beta, x_out);
873
    /* beta[i] < 2^59 + 2^58 + 2 < 2^60 */
874
1.18k
    felem_mul(tmp, alpha, beta);
875
    /* tmp[i] < 4 * 2^57 * 2^60 = 2^119 */
876
1.18k
    felem_square(tmp2, gamma);
877
    /* tmp2[i] < 4 * 2^57 * 2^57 = 2^116 */
878
1.18k
    widefelem_scalar(tmp2, 8);
879
    /* tmp2[i] < 8 * 2^116 = 2^119 */
880
1.18k
    widefelem_diff(tmp, tmp2);
881
    /* tmp[i] < 2^119 + 2^120 < 2^121 */
882
1.18k
    felem_reduce(y_out, tmp);
883
1.18k
}
884
885
/*-
886
 * Add two elliptic curve points:
887
 * (X_1, Y_1, Z_1) + (X_2, Y_2, Z_2) = (X_3, Y_3, Z_3), where
888
 * X_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1)^2 - (Z_1^2 * X_2 - Z_2^2 * X_1)^3 -
889
 * 2 * Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2
890
 * Y_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1) * (Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2 - X_3) -
891
 *        Z_2^3 * Y_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^3
892
 * Z_3 = (Z_1^2 * X_2 - Z_2^2 * X_1) * (Z_1 * Z_2)
893
 *
894
 * This runs faster if 'mixed' is set, which requires Z_2 = 1 or Z_2 = 0.
895
 */
896
897
/*
898
 * This function is not entirely constant-time: it includes a branch for
899
 * checking whether the two input points are equal, (while not equal to the
900
 * point at infinity). This case never happens during single point
901
 * multiplication, so there is no timing leak for ECDH or ECDSA signing.
902
 */
903
static void point_add(felem x3, felem y3, felem z3,
904
                      const felem x1, const felem y1, const felem z1,
905
                      const int mixed, const felem x2, const felem y2,
906
                      const felem z2)
907
2.42k
{
908
2.42k
    felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, x_out, y_out, z_out;
909
2.42k
    widefelem tmp, tmp2;
910
2.42k
    limb z1_is_zero, z2_is_zero, x_equal, y_equal;
911
2.42k
    limb points_equal;
912
913
2.42k
    if (!mixed) {
914
        /* ftmp2 = z2^2 */
915
0
        felem_square(tmp, z2);
916
0
        felem_reduce(ftmp2, tmp);
917
918
        /* ftmp4 = z2^3 */
919
0
        felem_mul(tmp, ftmp2, z2);
920
0
        felem_reduce(ftmp4, tmp);
921
922
        /* ftmp4 = z2^3*y1 */
923
0
        felem_mul(tmp2, ftmp4, y1);
924
0
        felem_reduce(ftmp4, tmp2);
925
926
        /* ftmp2 = z2^2*x1 */
927
0
        felem_mul(tmp2, ftmp2, x1);
928
0
        felem_reduce(ftmp2, tmp2);
929
2.42k
    } else {
930
        /*
931
         * We'll assume z2 = 1 (special case z2 = 0 is handled later)
932
         */
933
934
        /* ftmp4 = z2^3*y1 */
935
2.42k
        felem_assign(ftmp4, y1);
936
937
        /* ftmp2 = z2^2*x1 */
938
2.42k
        felem_assign(ftmp2, x1);
939
2.42k
    }
940
941
    /* ftmp = z1^2 */
942
2.42k
    felem_square(tmp, z1);
943
2.42k
    felem_reduce(ftmp, tmp);
944
945
    /* ftmp3 = z1^3 */
946
2.42k
    felem_mul(tmp, ftmp, z1);
947
2.42k
    felem_reduce(ftmp3, tmp);
948
949
    /* tmp = z1^3*y2 */
950
2.42k
    felem_mul(tmp, ftmp3, y2);
951
    /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
952
953
    /* ftmp3 = z1^3*y2 - z2^3*y1 */
954
2.42k
    felem_diff_128_64(tmp, ftmp4);
955
    /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
956
2.42k
    felem_reduce(ftmp3, tmp);
957
958
    /* tmp = z1^2*x2 */
959
2.42k
    felem_mul(tmp, ftmp, x2);
960
    /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
961
962
    /* ftmp = z1^2*x2 - z2^2*x1 */
963
2.42k
    felem_diff_128_64(tmp, ftmp2);
964
    /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
965
2.42k
    felem_reduce(ftmp, tmp);
966
967
    /*
968
     * The formulae are incorrect if the points are equal, in affine coordinates
969
     * (X_1, Y_1) == (X_2, Y_2), so we check for this and do doubling if this
970
     * happens.
971
     *
972
     * We use bitwise operations to avoid potential side-channels introduced by
973
     * the short-circuiting behaviour of boolean operators.
974
     */
975
2.42k
    x_equal = felem_is_zero(ftmp);
976
2.42k
    y_equal = felem_is_zero(ftmp3);
977
    /*
978
     * The special case of either point being the point at infinity (z1 and/or
979
     * z2 are zero), is handled separately later on in this function, so we
980
     * avoid jumping to point_double here in those special cases.
981
     */
982
2.42k
    z1_is_zero = felem_is_zero(z1);
983
2.42k
    z2_is_zero = felem_is_zero(z2);
984
985
    /*
986
     * Compared to `ecp_nistp256.c` and `ecp_nistp521.c`, in this
987
     * specific implementation `felem_is_zero()` returns truth as `0x1`
988
     * (rather than `0xff..ff`).
989
     *
990
     * This implies that `~true` in this implementation becomes
991
     * `0xff..fe` (rather than `0x0`): for this reason, to be used in
992
     * the if expression, we mask out only the last bit in the next
993
     * line.
994
     */
995
2.42k
    points_equal = (x_equal & y_equal & (~z1_is_zero) & (~z2_is_zero)) & 1;
996
997
2.42k
    if (points_equal) {
998
        /*
999
         * This is obviously not constant-time but, as mentioned before, this
1000
         * case never happens during single point multiplication, so there is no
1001
         * timing leak for ECDH or ECDSA signing.
1002
         */
1003
0
        point_double(x3, y3, z3, x1, y1, z1);
1004
0
        return;
1005
0
    }
1006
1007
    /* ftmp5 = z1*z2 */
1008
2.42k
    if (!mixed) {
1009
0
        felem_mul(tmp, z1, z2);
1010
0
        felem_reduce(ftmp5, tmp);
1011
2.42k
    } else {
1012
        /* special case z2 = 0 is handled later */
1013
2.42k
        felem_assign(ftmp5, z1);
1014
2.42k
    }
1015
1016
    /* z_out = (z1^2*x2 - z2^2*x1)*(z1*z2) */
1017
2.42k
    felem_mul(tmp, ftmp, ftmp5);
1018
2.42k
    felem_reduce(z_out, tmp);
1019
1020
    /* ftmp = (z1^2*x2 - z2^2*x1)^2 */
1021
2.42k
    felem_assign(ftmp5, ftmp);
1022
2.42k
    felem_square(tmp, ftmp);
1023
2.42k
    felem_reduce(ftmp, tmp);
1024
1025
    /* ftmp5 = (z1^2*x2 - z2^2*x1)^3 */
1026
2.42k
    felem_mul(tmp, ftmp, ftmp5);
1027
2.42k
    felem_reduce(ftmp5, tmp);
1028
1029
    /* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */
1030
2.42k
    felem_mul(tmp, ftmp2, ftmp);
1031
2.42k
    felem_reduce(ftmp2, tmp);
1032
1033
    /* tmp = z2^3*y1*(z1^2*x2 - z2^2*x1)^3 */
1034
2.42k
    felem_mul(tmp, ftmp4, ftmp5);
1035
    /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
1036
1037
    /* tmp2 = (z1^3*y2 - z2^3*y1)^2 */
1038
2.42k
    felem_square(tmp2, ftmp3);
1039
    /* tmp2[i] < 4 * 2^57 * 2^57 < 2^116 */
1040
1041
    /* tmp2 = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 */
1042
2.42k
    felem_diff_128_64(tmp2, ftmp5);
1043
    /* tmp2[i] < 2^116 + 2^64 + 8 < 2^117 */
1044
1045
    /* ftmp5 = 2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */
1046
2.42k
    felem_assign(ftmp5, ftmp2);
1047
2.42k
    felem_scalar(ftmp5, 2);
1048
    /* ftmp5[i] < 2 * 2^57 = 2^58 */
1049
1050
    /*-
1051
     * x_out = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 -
1052
     *  2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2
1053
     */
1054
2.42k
    felem_diff_128_64(tmp2, ftmp5);
1055
    /* tmp2[i] < 2^117 + 2^64 + 8 < 2^118 */
1056
2.42k
    felem_reduce(x_out, tmp2);
1057
1058
    /* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out */
1059
2.42k
    felem_diff(ftmp2, x_out);
1060
    /* ftmp2[i] < 2^57 + 2^58 + 2 < 2^59 */
1061
1062
    /*
1063
     * tmp2 = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out)
1064
     */
1065
2.42k
    felem_mul(tmp2, ftmp3, ftmp2);
1066
    /* tmp2[i] < 4 * 2^57 * 2^59 = 2^118 */
1067
1068
    /*-
1069
     * y_out = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out) -
1070
     *  z2^3*y1*(z1^2*x2 - z2^2*x1)^3
1071
     */
1072
2.42k
    widefelem_diff(tmp2, tmp);
1073
    /* tmp2[i] < 2^118 + 2^120 < 2^121 */
1074
2.42k
    felem_reduce(y_out, tmp2);
1075
1076
    /*
1077
     * the result (x_out, y_out, z_out) is incorrect if one of the inputs is
1078
     * the point at infinity, so we need to check for this separately
1079
     */
1080
1081
    /*
1082
     * if point 1 is at infinity, copy point 2 to output, and vice versa
1083
     */
1084
2.42k
    copy_conditional(x_out, x2, z1_is_zero);
1085
2.42k
    copy_conditional(x_out, x1, z2_is_zero);
1086
2.42k
    copy_conditional(y_out, y2, z1_is_zero);
1087
2.42k
    copy_conditional(y_out, y1, z2_is_zero);
1088
2.42k
    copy_conditional(z_out, z2, z1_is_zero);
1089
2.42k
    copy_conditional(z_out, z1, z2_is_zero);
1090
2.42k
    felem_assign(x3, x_out);
1091
2.42k
    felem_assign(y3, y_out);
1092
2.42k
    felem_assign(z3, z_out);
1093
2.42k
}
1094
1095
/*
1096
 * select_point selects the |idx|th point from a precomputation table and
1097
 * copies it to out.
1098
 * The pre_comp array argument should be size of |size| argument
1099
 */
1100
static void select_point(const u64 idx, unsigned int size,
1101
                         const felem pre_comp[][3], felem out[3])
1102
2.46k
{
1103
2.46k
    unsigned i, j;
1104
2.46k
    limb *outlimbs = &out[0][0];
1105
1106
2.46k
    memset(out, 0, sizeof(*out) * 3);
1107
41.8k
    for (i = 0; i < size; i++) {
1108
39.4k
        const limb *inlimbs = &pre_comp[i][0][0];
1109
39.4k
        u64 mask = i ^ idx;
1110
39.4k
        mask |= mask >> 4;
1111
39.4k
        mask |= mask >> 2;
1112
39.4k
        mask |= mask >> 1;
1113
39.4k
        mask &= 1;
1114
39.4k
        mask--;
1115
512k
        for (j = 0; j < 4 * 3; j++)
1116
473k
            outlimbs[j] |= inlimbs[j] & mask;
1117
39.4k
    }
1118
2.46k
}
1119
1120
/* get_bit returns the |i|th bit in |in| */
1121
static char get_bit(const felem_bytearray in, unsigned i)
1122
9.85k
{
1123
9.85k
    if (i >= 224)
1124
0
        return 0;
1125
9.85k
    return (in[i >> 3] >> (i & 7)) & 1;
1126
9.85k
}
1127
1128
/*
1129
 * Interleaved point multiplication using precomputed point multiples: The
1130
 * small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[], the scalars
1131
 * in scalars[]. If g_scalar is non-NULL, we also add this multiple of the
1132
 * generator, using certain (large) precomputed multiples in g_pre_comp.
1133
 * Output point (X, Y, Z) is stored in x_out, y_out, z_out
1134
 */
1135
static void batch_mul(felem x_out, felem y_out, felem z_out,
1136
                      const felem_bytearray scalars[],
1137
                      const unsigned num_points, const u8 *g_scalar,
1138
                      const int mixed, const felem pre_comp[][17][3],
1139
                      const felem g_pre_comp[2][16][3])
1140
44
{
1141
44
    int i, skip;
1142
44
    unsigned num;
1143
44
    unsigned gen_mul = (g_scalar != NULL);
1144
44
    felem nq[3], tmp[4];
1145
44
    u64 bits;
1146
44
    u8 sign, digit;
1147
1148
    /* set nq to the point at infinity */
1149
44
    memset(nq, 0, sizeof(nq));
1150
1151
    /*
1152
     * Loop over all scalars msb-to-lsb, interleaving additions of multiples
1153
     * of the generator (two in each of the last 28 rounds) and additions of
1154
     * other points multiples (every 5th round).
1155
     */
1156
44
    skip = 1;                   /* save two point operations in the first
1157
                                 * round */
1158
1.27k
    for (i = (num_points ? 220 : 27); i >= 0; --i) {
1159
        /* double */
1160
1.23k
        if (!skip)
1161
1.18k
            point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
1162
1163
        /* add multiples of the generator */
1164
1.23k
        if (gen_mul && (i <= 27)) {
1165
            /* first, look 28 bits upwards */
1166
1.23k
            bits = get_bit(g_scalar, i + 196) << 3;
1167
1.23k
            bits |= get_bit(g_scalar, i + 140) << 2;
1168
1.23k
            bits |= get_bit(g_scalar, i + 84) << 1;
1169
1.23k
            bits |= get_bit(g_scalar, i + 28);
1170
            /* select the point to add, in constant time */
1171
1.23k
            select_point(bits, 16, g_pre_comp[1], tmp);
1172
1173
1.23k
            if (!skip) {
1174
                /* value 1 below is argument for "mixed" */
1175
1.18k
                point_add(nq[0], nq[1], nq[2],
1176
1.18k
                          nq[0], nq[1], nq[2], 1, tmp[0], tmp[1], tmp[2]);
1177
1.18k
            } else {
1178
44
                memcpy(nq, tmp, 3 * sizeof(felem));
1179
44
                skip = 0;
1180
44
            }
1181
1182
            /* second, look at the current position */
1183
1.23k
            bits = get_bit(g_scalar, i + 168) << 3;
1184
1.23k
            bits |= get_bit(g_scalar, i + 112) << 2;
1185
1.23k
            bits |= get_bit(g_scalar, i + 56) << 1;
1186
1.23k
            bits |= get_bit(g_scalar, i);
1187
            /* select the point to add, in constant time */
1188
1.23k
            select_point(bits, 16, g_pre_comp[0], tmp);
1189
1.23k
            point_add(nq[0], nq[1], nq[2],
1190
1.23k
                      nq[0], nq[1], nq[2],
1191
1.23k
                      1 /* mixed */ , tmp[0], tmp[1], tmp[2]);
1192
1.23k
        }
1193
1194
        /* do other additions every 5 doublings */
1195
1.23k
        if (num_points && (i % 5 == 0)) {
1196
            /* loop over all scalars */
1197
0
            for (num = 0; num < num_points; ++num) {
1198
0
                bits = get_bit(scalars[num], i + 4) << 5;
1199
0
                bits |= get_bit(scalars[num], i + 3) << 4;
1200
0
                bits |= get_bit(scalars[num], i + 2) << 3;
1201
0
                bits |= get_bit(scalars[num], i + 1) << 2;
1202
0
                bits |= get_bit(scalars[num], i) << 1;
1203
0
                bits |= get_bit(scalars[num], i - 1);
1204
0
                ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
1205
1206
                /* select the point to add or subtract */
1207
0
                select_point(digit, 17, pre_comp[num], tmp);
1208
0
                felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the negative
1209
                                            * point */
1210
0
                copy_conditional(tmp[1], tmp[3], sign);
1211
1212
0
                if (!skip) {
1213
0
                    point_add(nq[0], nq[1], nq[2],
1214
0
                              nq[0], nq[1], nq[2],
1215
0
                              mixed, tmp[0], tmp[1], tmp[2]);
1216
0
                } else {
1217
0
                    memcpy(nq, tmp, 3 * sizeof(felem));
1218
0
                    skip = 0;
1219
0
                }
1220
0
            }
1221
0
        }
1222
1.23k
    }
1223
44
    felem_assign(x_out, nq[0]);
1224
44
    felem_assign(y_out, nq[1]);
1225
44
    felem_assign(z_out, nq[2]);
1226
44
}
1227
1228
/******************************************************************************/
1229
/*
1230
 * FUNCTIONS TO MANAGE PRECOMPUTATION
1231
 */
1232
1233
static NISTP224_PRE_COMP *nistp224_pre_comp_new(void)
1234
0
{
1235
0
    NISTP224_PRE_COMP *ret = OPENSSL_zalloc(sizeof(*ret));
1236
1237
0
    if (!ret) {
1238
0
        ECerr(EC_F_NISTP224_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
1239
0
        return ret;
1240
0
    }
1241
1242
0
    ret->references = 1;
1243
1244
0
    ret->lock = CRYPTO_THREAD_lock_new();
1245
0
    if (ret->lock == NULL) {
1246
0
        ECerr(EC_F_NISTP224_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
1247
0
        OPENSSL_free(ret);
1248
0
        return NULL;
1249
0
    }
1250
0
    return ret;
1251
0
}
1252
1253
NISTP224_PRE_COMP *EC_nistp224_pre_comp_dup(NISTP224_PRE_COMP *p)
1254
0
{
1255
0
    int i;
1256
0
    if (p != NULL)
1257
0
        CRYPTO_UP_REF(&p->references, &i, p->lock);
1258
0
    return p;
1259
0
}
1260
1261
void EC_nistp224_pre_comp_free(NISTP224_PRE_COMP *p)
1262
0
{
1263
0
    int i;
1264
1265
0
    if (p == NULL)
1266
0
        return;
1267
1268
0
    CRYPTO_DOWN_REF(&p->references, &i, p->lock);
1269
0
    REF_PRINT_COUNT("EC_nistp224", x);
1270
0
    if (i > 0)
1271
0
        return;
1272
0
    REF_ASSERT_ISNT(i < 0);
1273
1274
0
    CRYPTO_THREAD_lock_free(p->lock);
1275
0
    OPENSSL_free(p);
1276
0
}
1277
1278
/******************************************************************************/
1279
/*
1280
 * OPENSSL EC_METHOD FUNCTIONS
1281
 */
1282
1283
int ec_GFp_nistp224_group_init(EC_GROUP *group)
1284
14.7k
{
1285
14.7k
    int ret;
1286
14.7k
    ret = ec_GFp_simple_group_init(group);
1287
14.7k
    group->a_is_minus3 = 1;
1288
14.7k
    return ret;
1289
14.7k
}
1290
1291
int ec_GFp_nistp224_group_set_curve(EC_GROUP *group, const BIGNUM *p,
1292
                                    const BIGNUM *a, const BIGNUM *b,
1293
                                    BN_CTX *ctx)
1294
7.35k
{
1295
7.35k
    int ret = 0;
1296
7.35k
    BN_CTX *new_ctx = NULL;
1297
7.35k
    BIGNUM *curve_p, *curve_a, *curve_b;
1298
1299
7.35k
    if (ctx == NULL)
1300
0
        if ((ctx = new_ctx = BN_CTX_new()) == NULL)
1301
0
            return 0;
1302
7.35k
    BN_CTX_start(ctx);
1303
7.35k
    curve_p = BN_CTX_get(ctx);
1304
7.35k
    curve_a = BN_CTX_get(ctx);
1305
7.35k
    curve_b = BN_CTX_get(ctx);
1306
7.35k
    if (curve_b == NULL)
1307
0
        goto err;
1308
7.35k
    BN_bin2bn(nistp224_curve_params[0], sizeof(felem_bytearray), curve_p);
1309
7.35k
    BN_bin2bn(nistp224_curve_params[1], sizeof(felem_bytearray), curve_a);
1310
7.35k
    BN_bin2bn(nistp224_curve_params[2], sizeof(felem_bytearray), curve_b);
1311
7.35k
    if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || (BN_cmp(curve_b, b))) {
1312
0
        ECerr(EC_F_EC_GFP_NISTP224_GROUP_SET_CURVE,
1313
0
              EC_R_WRONG_CURVE_PARAMETERS);
1314
0
        goto err;
1315
0
    }
1316
7.35k
    group->field_mod_func = BN_nist_mod_224;
1317
7.35k
    ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
1318
7.35k
 err:
1319
7.35k
    BN_CTX_end(ctx);
1320
7.35k
    BN_CTX_free(new_ctx);
1321
7.35k
    return ret;
1322
7.35k
}
1323
1324
/*
1325
 * Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') =
1326
 * (X/Z^2, Y/Z^3)
1327
 */
1328
int ec_GFp_nistp224_point_get_affine_coordinates(const EC_GROUP *group,
1329
                                                 const EC_POINT *point,
1330
                                                 BIGNUM *x, BIGNUM *y,
1331
                                                 BN_CTX *ctx)
1332
23
{
1333
23
    felem z1, z2, x_in, y_in, x_out, y_out;
1334
23
    widefelem tmp;
1335
1336
23
    if (EC_POINT_is_at_infinity(group, point)) {
1337
0
        ECerr(EC_F_EC_GFP_NISTP224_POINT_GET_AFFINE_COORDINATES,
1338
0
              EC_R_POINT_AT_INFINITY);
1339
0
        return 0;
1340
0
    }
1341
23
    if ((!BN_to_felem(x_in, point->X)) || (!BN_to_felem(y_in, point->Y)) ||
1342
23
        (!BN_to_felem(z1, point->Z)))
1343
0
        return 0;
1344
23
    felem_inv(z2, z1);
1345
23
    felem_square(tmp, z2);
1346
23
    felem_reduce(z1, tmp);
1347
23
    felem_mul(tmp, x_in, z1);
1348
23
    felem_reduce(x_in, tmp);
1349
23
    felem_contract(x_out, x_in);
1350
23
    if (x != NULL) {
1351
23
        if (!felem_to_BN(x, x_out)) {
1352
0
            ECerr(EC_F_EC_GFP_NISTP224_POINT_GET_AFFINE_COORDINATES,
1353
0
                  ERR_R_BN_LIB);
1354
0
            return 0;
1355
0
        }
1356
23
    }
1357
23
    felem_mul(tmp, z1, z2);
1358
23
    felem_reduce(z1, tmp);
1359
23
    felem_mul(tmp, y_in, z1);
1360
23
    felem_reduce(y_in, tmp);
1361
23
    felem_contract(y_out, y_in);
1362
23
    if (y != NULL) {
1363
23
        if (!felem_to_BN(y, y_out)) {
1364
0
            ECerr(EC_F_EC_GFP_NISTP224_POINT_GET_AFFINE_COORDINATES,
1365
0
                  ERR_R_BN_LIB);
1366
0
            return 0;
1367
0
        }
1368
23
    }
1369
23
    return 1;
1370
23
}
1371
1372
static void make_points_affine(size_t num, felem points[ /* num */ ][3],
1373
                               felem tmp_felems[ /* num+1 */ ])
1374
0
{
1375
    /*
1376
     * Runs in constant time, unless an input is the point at infinity (which
1377
     * normally shouldn't happen).
1378
     */
1379
0
    ec_GFp_nistp_points_make_affine_internal(num,
1380
0
                                             points,
1381
0
                                             sizeof(felem),
1382
0
                                             tmp_felems,
1383
0
                                             (void (*)(void *))felem_one,
1384
0
                                             felem_is_zero_int,
1385
0
                                             (void (*)(void *, const void *))
1386
0
                                             felem_assign,
1387
0
                                             (void (*)(void *, const void *))
1388
0
                                             felem_square_reduce, (void (*)
1389
0
                                                                   (void *,
1390
0
                                                                    const void
1391
0
                                                                    *,
1392
0
                                                                    const void
1393
0
                                                                    *))
1394
0
                                             felem_mul_reduce,
1395
0
                                             (void (*)(void *, const void *))
1396
0
                                             felem_inv,
1397
0
                                             (void (*)(void *, const void *))
1398
0
                                             felem_contract);
1399
0
}
1400
1401
/*
1402
 * Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL
1403
 * values Result is stored in r (r can equal one of the inputs).
1404
 */
1405
int ec_GFp_nistp224_points_mul(const EC_GROUP *group, EC_POINT *r,
1406
                               const BIGNUM *scalar, size_t num,
1407
                               const EC_POINT *points[],
1408
                               const BIGNUM *scalars[], BN_CTX *ctx)
1409
10
{
1410
10
    int ret = 0;
1411
10
    int j;
1412
10
    unsigned i;
1413
10
    int mixed = 0;
1414
10
    BIGNUM *x, *y, *z, *tmp_scalar;
1415
10
    felem_bytearray g_secret;
1416
10
    felem_bytearray *secrets = NULL;
1417
10
    felem (*pre_comp)[17][3] = NULL;
1418
10
    felem *tmp_felems = NULL;
1419
10
    int num_bytes;
1420
10
    int have_pre_comp = 0;
1421
10
    size_t num_points = num;
1422
10
    felem x_in, y_in, z_in, x_out, y_out, z_out;
1423
10
    NISTP224_PRE_COMP *pre = NULL;
1424
10
    const felem(*g_pre_comp)[16][3] = NULL;
1425
10
    EC_POINT *generator = NULL;
1426
10
    const EC_POINT *p = NULL;
1427
10
    const BIGNUM *p_scalar = NULL;
1428
1429
10
    BN_CTX_start(ctx);
1430
10
    x = BN_CTX_get(ctx);
1431
10
    y = BN_CTX_get(ctx);
1432
10
    z = BN_CTX_get(ctx);
1433
10
    tmp_scalar = BN_CTX_get(ctx);
1434
10
    if (tmp_scalar == NULL)
1435
0
        goto err;
1436
1437
10
    if (scalar != NULL) {
1438
10
        pre = group->pre_comp.nistp224;
1439
10
        if (pre)
1440
            /* we have precomputation, try to use it */
1441
0
            g_pre_comp = (const felem(*)[16][3])pre->g_pre_comp;
1442
10
        else
1443
            /* try to use the standard precomputation */
1444
10
            g_pre_comp = &gmul[0];
1445
10
        generator = EC_POINT_new(group);
1446
10
        if (generator == NULL)
1447
0
            goto err;
1448
        /* get the generator from precomputation */
1449
10
        if (!felem_to_BN(x, g_pre_comp[0][1][0]) ||
1450
10
            !felem_to_BN(y, g_pre_comp[0][1][1]) ||
1451
10
            !felem_to_BN(z, g_pre_comp[0][1][2])) {
1452
0
            ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB);
1453
0
            goto err;
1454
0
        }
1455
10
        if (!EC_POINT_set_Jprojective_coordinates_GFp(group,
1456
10
                                                      generator, x, y, z,
1457
10
                                                      ctx))
1458
0
            goto err;
1459
10
        if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
1460
            /* precomputation matches generator */
1461
10
            have_pre_comp = 1;
1462
0
        else
1463
            /*
1464
             * we don't have valid precomputation: treat the generator as a
1465
             * random point
1466
             */
1467
0
            num_points = num_points + 1;
1468
10
    }
1469
1470
10
    if (num_points > 0) {
1471
0
        if (num_points >= 3) {
1472
            /*
1473
             * unless we precompute multiples for just one or two points,
1474
             * converting those into affine form is time well spent
1475
             */
1476
0
            mixed = 1;
1477
0
        }
1478
0
        secrets = OPENSSL_zalloc(sizeof(*secrets) * num_points);
1479
0
        pre_comp = OPENSSL_zalloc(sizeof(*pre_comp) * num_points);
1480
0
        if (mixed)
1481
0
            tmp_felems =
1482
0
                OPENSSL_malloc(sizeof(felem) * (num_points * 17 + 1));
1483
0
        if ((secrets == NULL) || (pre_comp == NULL)
1484
0
            || (mixed && (tmp_felems == NULL))) {
1485
0
            ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_MALLOC_FAILURE);
1486
0
            goto err;
1487
0
        }
1488
1489
        /*
1490
         * we treat NULL scalars as 0, and NULL points as points at infinity,
1491
         * i.e., they contribute nothing to the linear combination
1492
         */
1493
0
        for (i = 0; i < num_points; ++i) {
1494
0
            if (i == num) {
1495
                /* the generator */
1496
0
                p = EC_GROUP_get0_generator(group);
1497
0
                p_scalar = scalar;
1498
0
            } else {
1499
                /* the i^th point */
1500
0
                p = points[i];
1501
0
                p_scalar = scalars[i];
1502
0
            }
1503
0
            if ((p_scalar != NULL) && (p != NULL)) {
1504
                /* reduce scalar to 0 <= scalar < 2^224 */
1505
0
                if ((BN_num_bits(p_scalar) > 224)
1506
0
                    || (BN_is_negative(p_scalar))) {
1507
                    /*
1508
                     * this is an unusual input, and we don't guarantee
1509
                     * constant-timeness
1510
                     */
1511
0
                    if (!BN_nnmod(tmp_scalar, p_scalar, group->order, ctx)) {
1512
0
                        ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB);
1513
0
                        goto err;
1514
0
                    }
1515
0
                    num_bytes = BN_bn2lebinpad(tmp_scalar,
1516
0
                                               secrets[i], sizeof(secrets[i]));
1517
0
                } else {
1518
0
                    num_bytes = BN_bn2lebinpad(p_scalar,
1519
0
                                               secrets[i], sizeof(secrets[i]));
1520
0
                }
1521
0
                if (num_bytes < 0) {
1522
0
                    ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB);
1523
0
                    goto err;
1524
0
                }
1525
                /* precompute multiples */
1526
0
                if ((!BN_to_felem(x_out, p->X)) ||
1527
0
                    (!BN_to_felem(y_out, p->Y)) ||
1528
0
                    (!BN_to_felem(z_out, p->Z)))
1529
0
                    goto err;
1530
0
                felem_assign(pre_comp[i][1][0], x_out);
1531
0
                felem_assign(pre_comp[i][1][1], y_out);
1532
0
                felem_assign(pre_comp[i][1][2], z_out);
1533
0
                for (j = 2; j <= 16; ++j) {
1534
0
                    if (j & 1) {
1535
0
                        point_add(pre_comp[i][j][0], pre_comp[i][j][1],
1536
0
                                  pre_comp[i][j][2], pre_comp[i][1][0],
1537
0
                                  pre_comp[i][1][1], pre_comp[i][1][2], 0,
1538
0
                                  pre_comp[i][j - 1][0],
1539
0
                                  pre_comp[i][j - 1][1],
1540
0
                                  pre_comp[i][j - 1][2]);
1541
0
                    } else {
1542
0
                        point_double(pre_comp[i][j][0], pre_comp[i][j][1],
1543
0
                                     pre_comp[i][j][2], pre_comp[i][j / 2][0],
1544
0
                                     pre_comp[i][j / 2][1],
1545
0
                                     pre_comp[i][j / 2][2]);
1546
0
                    }
1547
0
                }
1548
0
            }
1549
0
        }
1550
0
        if (mixed)
1551
0
            make_points_affine(num_points * 17, pre_comp[0], tmp_felems);
1552
0
    }
1553
1554
    /* the scalar for the generator */
1555
10
    if ((scalar != NULL) && (have_pre_comp)) {
1556
10
        memset(g_secret, 0, sizeof(g_secret));
1557
        /* reduce scalar to 0 <= scalar < 2^224 */
1558
10
        if ((BN_num_bits(scalar) > 224) || (BN_is_negative(scalar))) {
1559
            /*
1560
             * this is an unusual input, and we don't guarantee
1561
             * constant-timeness
1562
             */
1563
3
            if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) {
1564
0
                ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB);
1565
0
                goto err;
1566
0
            }
1567
3
            num_bytes = BN_bn2lebinpad(tmp_scalar, g_secret, sizeof(g_secret));
1568
7
        } else {
1569
7
            num_bytes = BN_bn2lebinpad(scalar, g_secret, sizeof(g_secret));
1570
7
        }
1571
        /* do the multiplication with generator precomputation */
1572
10
        batch_mul(x_out, y_out, z_out,
1573
10
                  (const felem_bytearray(*))secrets, num_points,
1574
10
                  g_secret,
1575
10
                  mixed, (const felem(*)[17][3])pre_comp, g_pre_comp);
1576
10
    } else {
1577
        /* do the multiplication without generator precomputation */
1578
0
        batch_mul(x_out, y_out, z_out,
1579
0
                  (const felem_bytearray(*))secrets, num_points,
1580
0
                  NULL, mixed, (const felem(*)[17][3])pre_comp, NULL);
1581
0
    }
1582
    /* reduce the output to its unique minimal representation */
1583
10
    felem_contract(x_in, x_out);
1584
10
    felem_contract(y_in, y_out);
1585
10
    felem_contract(z_in, z_out);
1586
10
    if ((!felem_to_BN(x, x_in)) || (!felem_to_BN(y, y_in)) ||
1587
10
        (!felem_to_BN(z, z_in))) {
1588
0
        ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB);
1589
0
        goto err;
1590
0
    }
1591
10
    ret = EC_POINT_set_Jprojective_coordinates_GFp(group, r, x, y, z, ctx);
1592
1593
10
 err:
1594
10
    BN_CTX_end(ctx);
1595
10
    EC_POINT_free(generator);
1596
10
    OPENSSL_free(secrets);
1597
10
    OPENSSL_free(pre_comp);
1598
10
    OPENSSL_free(tmp_felems);
1599
10
    return ret;
1600
10
}
1601
1602
int ec_GFp_nistp224_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
1603
0
{
1604
0
    int ret = 0;
1605
0
    NISTP224_PRE_COMP *pre = NULL;
1606
0
    int i, j;
1607
0
    BN_CTX *new_ctx = NULL;
1608
0
    BIGNUM *x, *y;
1609
0
    EC_POINT *generator = NULL;
1610
0
    felem tmp_felems[32];
1611
1612
    /* throw away old precomputation */
1613
0
    EC_pre_comp_free(group);
1614
0
    if (ctx == NULL)
1615
0
        if ((ctx = new_ctx = BN_CTX_new()) == NULL)
1616
0
            return 0;
1617
0
    BN_CTX_start(ctx);
1618
0
    x = BN_CTX_get(ctx);
1619
0
    y = BN_CTX_get(ctx);
1620
0
    if (y == NULL)
1621
0
        goto err;
1622
    /* get the generator */
1623
0
    if (group->generator == NULL)
1624
0
        goto err;
1625
0
    generator = EC_POINT_new(group);
1626
0
    if (generator == NULL)
1627
0
        goto err;
1628
0
    BN_bin2bn(nistp224_curve_params[3], sizeof(felem_bytearray), x);
1629
0
    BN_bin2bn(nistp224_curve_params[4], sizeof(felem_bytearray), y);
1630
0
    if (!EC_POINT_set_affine_coordinates(group, generator, x, y, ctx))
1631
0
        goto err;
1632
0
    if ((pre = nistp224_pre_comp_new()) == NULL)
1633
0
        goto err;
1634
    /*
1635
     * if the generator is the standard one, use built-in precomputation
1636
     */
1637
0
    if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) {
1638
0
        memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp));
1639
0
        goto done;
1640
0
    }
1641
0
    if ((!BN_to_felem(pre->g_pre_comp[0][1][0], group->generator->X)) ||
1642
0
        (!BN_to_felem(pre->g_pre_comp[0][1][1], group->generator->Y)) ||
1643
0
        (!BN_to_felem(pre->g_pre_comp[0][1][2], group->generator->Z)))
1644
0
        goto err;
1645
    /*
1646
     * compute 2^56*G, 2^112*G, 2^168*G for the first table, 2^28*G, 2^84*G,
1647
     * 2^140*G, 2^196*G for the second one
1648
     */
1649
0
    for (i = 1; i <= 8; i <<= 1) {
1650
0
        point_double(pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1],
1651
0
                     pre->g_pre_comp[1][i][2], pre->g_pre_comp[0][i][0],
1652
0
                     pre->g_pre_comp[0][i][1], pre->g_pre_comp[0][i][2]);
1653
0
        for (j = 0; j < 27; ++j) {
1654
0
            point_double(pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1],
1655
0
                         pre->g_pre_comp[1][i][2], pre->g_pre_comp[1][i][0],
1656
0
                         pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]);
1657
0
        }
1658
0
        if (i == 8)
1659
0
            break;
1660
0
        point_double(pre->g_pre_comp[0][2 * i][0],
1661
0
                     pre->g_pre_comp[0][2 * i][1],
1662
0
                     pre->g_pre_comp[0][2 * i][2], pre->g_pre_comp[1][i][0],
1663
0
                     pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]);
1664
0
        for (j = 0; j < 27; ++j) {
1665
0
            point_double(pre->g_pre_comp[0][2 * i][0],
1666
0
                         pre->g_pre_comp[0][2 * i][1],
1667
0
                         pre->g_pre_comp[0][2 * i][2],
1668
0
                         pre->g_pre_comp[0][2 * i][0],
1669
0
                         pre->g_pre_comp[0][2 * i][1],
1670
0
                         pre->g_pre_comp[0][2 * i][2]);
1671
0
        }
1672
0
    }
1673
0
    for (i = 0; i < 2; i++) {
1674
        /* g_pre_comp[i][0] is the point at infinity */
1675
0
        memset(pre->g_pre_comp[i][0], 0, sizeof(pre->g_pre_comp[i][0]));
1676
        /* the remaining multiples */
1677
        /* 2^56*G + 2^112*G resp. 2^84*G + 2^140*G */
1678
0
        point_add(pre->g_pre_comp[i][6][0], pre->g_pre_comp[i][6][1],
1679
0
                  pre->g_pre_comp[i][6][2], pre->g_pre_comp[i][4][0],
1680
0
                  pre->g_pre_comp[i][4][1], pre->g_pre_comp[i][4][2],
1681
0
                  0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
1682
0
                  pre->g_pre_comp[i][2][2]);
1683
        /* 2^56*G + 2^168*G resp. 2^84*G + 2^196*G */
1684
0
        point_add(pre->g_pre_comp[i][10][0], pre->g_pre_comp[i][10][1],
1685
0
                  pre->g_pre_comp[i][10][2], pre->g_pre_comp[i][8][0],
1686
0
                  pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2],
1687
0
                  0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
1688
0
                  pre->g_pre_comp[i][2][2]);
1689
        /* 2^112*G + 2^168*G resp. 2^140*G + 2^196*G */
1690
0
        point_add(pre->g_pre_comp[i][12][0], pre->g_pre_comp[i][12][1],
1691
0
                  pre->g_pre_comp[i][12][2], pre->g_pre_comp[i][8][0],
1692
0
                  pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2],
1693
0
                  0, pre->g_pre_comp[i][4][0], pre->g_pre_comp[i][4][1],
1694
0
                  pre->g_pre_comp[i][4][2]);
1695
        /*
1696
         * 2^56*G + 2^112*G + 2^168*G resp. 2^84*G + 2^140*G + 2^196*G
1697
         */
1698
0
        point_add(pre->g_pre_comp[i][14][0], pre->g_pre_comp[i][14][1],
1699
0
                  pre->g_pre_comp[i][14][2], pre->g_pre_comp[i][12][0],
1700
0
                  pre->g_pre_comp[i][12][1], pre->g_pre_comp[i][12][2],
1701
0
                  0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
1702
0
                  pre->g_pre_comp[i][2][2]);
1703
0
        for (j = 1; j < 8; ++j) {
1704
            /* odd multiples: add G resp. 2^28*G */
1705
0
            point_add(pre->g_pre_comp[i][2 * j + 1][0],
1706
0
                      pre->g_pre_comp[i][2 * j + 1][1],
1707
0
                      pre->g_pre_comp[i][2 * j + 1][2],
1708
0
                      pre->g_pre_comp[i][2 * j][0],
1709
0
                      pre->g_pre_comp[i][2 * j][1],
1710
0
                      pre->g_pre_comp[i][2 * j][2], 0,
1711
0
                      pre->g_pre_comp[i][1][0], pre->g_pre_comp[i][1][1],
1712
0
                      pre->g_pre_comp[i][1][2]);
1713
0
        }
1714
0
    }
1715
0
    make_points_affine(31, &(pre->g_pre_comp[0][1]), tmp_felems);
1716
1717
0
 done:
1718
0
    SETPRECOMP(group, nistp224, pre);
1719
0
    pre = NULL;
1720
0
    ret = 1;
1721
0
 err:
1722
0
    BN_CTX_end(ctx);
1723
0
    EC_POINT_free(generator);
1724
0
    BN_CTX_free(new_ctx);
1725
0
    EC_nistp224_pre_comp_free(pre);
1726
0
    return ret;
1727
0
}
1728
1729
int ec_GFp_nistp224_have_precompute_mult(const EC_GROUP *group)
1730
0
{
1731
0
    return HAVEPRECOMP(group, nistp224);
1732
0
}
1733
1734
#endif