Coverage Report

Created: 2023-06-08 06:43

/src/openssl111/crypto/ec/ecp_nistp521.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 2011-2020 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the OpenSSL license (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
/* Copyright 2011 Google Inc.
11
 *
12
 * Licensed under the Apache License, Version 2.0 (the "License");
13
 *
14
 * you may not use this file except in compliance with the License.
15
 * You may obtain a copy of the License at
16
 *
17
 *     http://www.apache.org/licenses/LICENSE-2.0
18
 *
19
 *  Unless required by applicable law or agreed to in writing, software
20
 *  distributed under the License is distributed on an "AS IS" BASIS,
21
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
22
 *  See the License for the specific language governing permissions and
23
 *  limitations under the License.
24
 */
25
26
/*
27
 * A 64-bit implementation of the NIST P-521 elliptic curve point multiplication
28
 *
29
 * OpenSSL integration was taken from Emilia Kasper's work in ecp_nistp224.c.
30
 * Otherwise based on Emilia's P224 work, which was inspired by my curve25519
31
 * work which got its smarts from Daniel J. Bernstein's work on the same.
32
 */
33
34
#include <openssl/e_os2.h>
35
#ifdef OPENSSL_NO_EC_NISTP_64_GCC_128
36
NON_EMPTY_TRANSLATION_UNIT
37
#else
38
39
# include <string.h>
40
# include <openssl/err.h>
41
# include "ec_local.h"
42
43
# if defined(__SIZEOF_INT128__) && __SIZEOF_INT128__==16
44
  /* even with gcc, the typedef won't work for 32-bit platforms */
45
typedef __uint128_t uint128_t;  /* nonstandard; implemented by gcc on 64-bit
46
                                 * platforms */
47
# else
48
#  error "Your compiler doesn't appear to support 128-bit integer types"
49
# endif
50
51
typedef uint8_t u8;
52
typedef uint64_t u64;
53
54
/*
55
 * The underlying field. P521 operates over GF(2^521-1). We can serialise an
56
 * element of this field into 66 bytes where the most significant byte
57
 * contains only a single bit. We call this an felem_bytearray.
58
 */
59
60
typedef u8 felem_bytearray[66];
61
62
/*
63
 * These are the parameters of P521, taken from FIPS 186-3, section D.1.2.5.
64
 * These values are big-endian.
65
 */
66
static const felem_bytearray nistp521_curve_params[5] = {
67
    {0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* p */
68
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
69
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
70
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
71
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
72
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
73
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
74
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
75
     0xff, 0xff},
76
    {0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* a = -3 */
77
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
78
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
79
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
80
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
81
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
82
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
83
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
84
     0xff, 0xfc},
85
    {0x00, 0x51, 0x95, 0x3e, 0xb9, 0x61, 0x8e, 0x1c, /* b */
86
     0x9a, 0x1f, 0x92, 0x9a, 0x21, 0xa0, 0xb6, 0x85,
87
     0x40, 0xee, 0xa2, 0xda, 0x72, 0x5b, 0x99, 0xb3,
88
     0x15, 0xf3, 0xb8, 0xb4, 0x89, 0x91, 0x8e, 0xf1,
89
     0x09, 0xe1, 0x56, 0x19, 0x39, 0x51, 0xec, 0x7e,
90
     0x93, 0x7b, 0x16, 0x52, 0xc0, 0xbd, 0x3b, 0xb1,
91
     0xbf, 0x07, 0x35, 0x73, 0xdf, 0x88, 0x3d, 0x2c,
92
     0x34, 0xf1, 0xef, 0x45, 0x1f, 0xd4, 0x6b, 0x50,
93
     0x3f, 0x00},
94
    {0x00, 0xc6, 0x85, 0x8e, 0x06, 0xb7, 0x04, 0x04, /* x */
95
     0xe9, 0xcd, 0x9e, 0x3e, 0xcb, 0x66, 0x23, 0x95,
96
     0xb4, 0x42, 0x9c, 0x64, 0x81, 0x39, 0x05, 0x3f,
97
     0xb5, 0x21, 0xf8, 0x28, 0xaf, 0x60, 0x6b, 0x4d,
98
     0x3d, 0xba, 0xa1, 0x4b, 0x5e, 0x77, 0xef, 0xe7,
99
     0x59, 0x28, 0xfe, 0x1d, 0xc1, 0x27, 0xa2, 0xff,
100
     0xa8, 0xde, 0x33, 0x48, 0xb3, 0xc1, 0x85, 0x6a,
101
     0x42, 0x9b, 0xf9, 0x7e, 0x7e, 0x31, 0xc2, 0xe5,
102
     0xbd, 0x66},
103
    {0x01, 0x18, 0x39, 0x29, 0x6a, 0x78, 0x9a, 0x3b, /* y */
104
     0xc0, 0x04, 0x5c, 0x8a, 0x5f, 0xb4, 0x2c, 0x7d,
105
     0x1b, 0xd9, 0x98, 0xf5, 0x44, 0x49, 0x57, 0x9b,
106
     0x44, 0x68, 0x17, 0xaf, 0xbd, 0x17, 0x27, 0x3e,
107
     0x66, 0x2c, 0x97, 0xee, 0x72, 0x99, 0x5e, 0xf4,
108
     0x26, 0x40, 0xc5, 0x50, 0xb9, 0x01, 0x3f, 0xad,
109
     0x07, 0x61, 0x35, 0x3c, 0x70, 0x86, 0xa2, 0x72,
110
     0xc2, 0x40, 0x88, 0xbe, 0x94, 0x76, 0x9f, 0xd1,
111
     0x66, 0x50}
112
};
113
114
/*-
115
 * The representation of field elements.
116
 * ------------------------------------
117
 *
118
 * We represent field elements with nine values. These values are either 64 or
119
 * 128 bits and the field element represented is:
120
 *   v[0]*2^0 + v[1]*2^58 + v[2]*2^116 + ... + v[8]*2^464  (mod p)
121
 * Each of the nine values is called a 'limb'. Since the limbs are spaced only
122
 * 58 bits apart, but are greater than 58 bits in length, the most significant
123
 * bits of each limb overlap with the least significant bits of the next.
124
 *
125
 * A field element with 64-bit limbs is an 'felem'. One with 128-bit limbs is a
126
 * 'largefelem' */
127
128
33.6M
# define NLIMBS 9
129
130
typedef uint64_t limb;
131
typedef limb limb_aX __attribute((__aligned__(1)));
132
typedef limb felem[NLIMBS];
133
typedef uint128_t largefelem[NLIMBS];
134
135
static const limb bottom57bits = 0x1ffffffffffffff;
136
static const limb bottom58bits = 0x3ffffffffffffff;
137
138
/*
139
 * bin66_to_felem takes a little-endian byte array and converts it into felem
140
 * form. This assumes that the CPU is little-endian.
141
 */
142
static void bin66_to_felem(felem out, const u8 in[66])
143
1.97k
{
144
1.97k
    out[0] = (*((limb *) & in[0])) & bottom58bits;
145
1.97k
    out[1] = (*((limb_aX *) & in[7]) >> 2) & bottom58bits;
146
1.97k
    out[2] = (*((limb_aX *) & in[14]) >> 4) & bottom58bits;
147
1.97k
    out[3] = (*((limb_aX *) & in[21]) >> 6) & bottom58bits;
148
1.97k
    out[4] = (*((limb_aX *) & in[29])) & bottom58bits;
149
1.97k
    out[5] = (*((limb_aX *) & in[36]) >> 2) & bottom58bits;
150
1.97k
    out[6] = (*((limb_aX *) & in[43]) >> 4) & bottom58bits;
151
1.97k
    out[7] = (*((limb_aX *) & in[50]) >> 6) & bottom58bits;
152
1.97k
    out[8] = (*((limb_aX *) & in[58])) & bottom57bits;
153
1.97k
}
154
155
/*
156
 * felem_to_bin66 takes an felem and serialises into a little endian, 66 byte
157
 * array. This assumes that the CPU is little-endian.
158
 */
159
static void felem_to_bin66(u8 out[66], const felem in)
160
3.49k
{
161
3.49k
    memset(out, 0, 66);
162
3.49k
    (*((limb *) & out[0])) = in[0];
163
3.49k
    (*((limb_aX *) & out[7])) |= in[1] << 2;
164
3.49k
    (*((limb_aX *) & out[14])) |= in[2] << 4;
165
3.49k
    (*((limb_aX *) & out[21])) |= in[3] << 6;
166
3.49k
    (*((limb_aX *) & out[29])) = in[4];
167
3.49k
    (*((limb_aX *) & out[36])) |= in[5] << 2;
168
3.49k
    (*((limb_aX *) & out[43])) |= in[6] << 4;
169
3.49k
    (*((limb_aX *) & out[50])) |= in[7] << 6;
170
3.49k
    (*((limb_aX *) & out[58])) = in[8];
171
3.49k
}
172
173
/* BN_to_felem converts an OpenSSL BIGNUM into an felem */
174
static int BN_to_felem(felem out, const BIGNUM *bn)
175
1.97k
{
176
1.97k
    felem_bytearray b_out;
177
1.97k
    int num_bytes;
178
179
1.97k
    if (BN_is_negative(bn)) {
180
0
        ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE);
181
0
        return 0;
182
0
    }
183
1.97k
    num_bytes = BN_bn2lebinpad(bn, b_out, sizeof(b_out));
184
1.97k
    if (num_bytes < 0) {
185
0
        ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE);
186
0
        return 0;
187
0
    }
188
1.97k
    bin66_to_felem(out, b_out);
189
1.97k
    return 1;
190
1.97k
}
191
192
/* felem_to_BN converts an felem into an OpenSSL BIGNUM */
193
static BIGNUM *felem_to_BN(BIGNUM *out, const felem in)
194
3.49k
{
195
3.49k
    felem_bytearray b_out;
196
3.49k
    felem_to_bin66(b_out, in);
197
3.49k
    return BN_lebin2bn(b_out, sizeof(b_out), out);
198
3.49k
}
199
200
/*-
201
 * Field operations
202
 * ----------------
203
 */
204
205
static void felem_one(felem out)
206
0
{
207
0
    out[0] = 1;
208
0
    out[1] = 0;
209
0
    out[2] = 0;
210
0
    out[3] = 0;
211
0
    out[4] = 0;
212
0
    out[5] = 0;
213
0
    out[6] = 0;
214
0
    out[7] = 0;
215
0
    out[8] = 0;
216
0
}
217
218
static void felem_assign(felem out, const felem in)
219
1.23M
{
220
1.23M
    out[0] = in[0];
221
1.23M
    out[1] = in[1];
222
1.23M
    out[2] = in[2];
223
1.23M
    out[3] = in[3];
224
1.23M
    out[4] = in[4];
225
1.23M
    out[5] = in[5];
226
1.23M
    out[6] = in[6];
227
1.23M
    out[7] = in[7];
228
1.23M
    out[8] = in[8];
229
1.23M
}
230
231
/* felem_sum64 sets out = out + in. */
232
static void felem_sum64(felem out, const felem in)
233
412k
{
234
412k
    out[0] += in[0];
235
412k
    out[1] += in[1];
236
412k
    out[2] += in[2];
237
412k
    out[3] += in[3];
238
412k
    out[4] += in[4];
239
412k
    out[5] += in[5];
240
412k
    out[6] += in[6];
241
412k
    out[7] += in[7];
242
412k
    out[8] += in[8];
243
412k
}
244
245
/* felem_scalar sets out = in * scalar */
246
static void felem_scalar(felem out, const felem in, limb scalar)
247
3.32M
{
248
3.32M
    out[0] = in[0] * scalar;
249
3.32M
    out[1] = in[1] * scalar;
250
3.32M
    out[2] = in[2] * scalar;
251
3.32M
    out[3] = in[3] * scalar;
252
3.32M
    out[4] = in[4] * scalar;
253
3.32M
    out[5] = in[5] * scalar;
254
3.32M
    out[6] = in[6] * scalar;
255
3.32M
    out[7] = in[7] * scalar;
256
3.32M
    out[8] = in[8] * scalar;
257
3.32M
}
258
259
/* felem_scalar64 sets out = out * scalar */
260
static void felem_scalar64(felem out, limb scalar)
261
590k
{
262
590k
    out[0] *= scalar;
263
590k
    out[1] *= scalar;
264
590k
    out[2] *= scalar;
265
590k
    out[3] *= scalar;
266
590k
    out[4] *= scalar;
267
590k
    out[5] *= scalar;
268
590k
    out[6] *= scalar;
269
590k
    out[7] *= scalar;
270
590k
    out[8] *= scalar;
271
590k
}
272
273
/* felem_scalar128 sets out = out * scalar */
274
static void felem_scalar128(largefelem out, limb scalar)
275
196k
{
276
196k
    out[0] *= scalar;
277
196k
    out[1] *= scalar;
278
196k
    out[2] *= scalar;
279
196k
    out[3] *= scalar;
280
196k
    out[4] *= scalar;
281
196k
    out[5] *= scalar;
282
196k
    out[6] *= scalar;
283
196k
    out[7] *= scalar;
284
196k
    out[8] *= scalar;
285
196k
}
286
287
/*-
288
 * felem_neg sets |out| to |-in|
289
 * On entry:
290
 *   in[i] < 2^59 + 2^14
291
 * On exit:
292
 *   out[i] < 2^62
293
 */
294
static void felem_neg(felem out, const felem in)
295
17.1k
{
296
    /* In order to prevent underflow, we subtract from 0 mod p. */
297
17.1k
    static const limb two62m3 = (((limb) 1) << 62) - (((limb) 1) << 5);
298
17.1k
    static const limb two62m2 = (((limb) 1) << 62) - (((limb) 1) << 4);
299
300
17.1k
    out[0] = two62m3 - in[0];
301
17.1k
    out[1] = two62m2 - in[1];
302
17.1k
    out[2] = two62m2 - in[2];
303
17.1k
    out[3] = two62m2 - in[3];
304
17.1k
    out[4] = two62m2 - in[4];
305
17.1k
    out[5] = two62m2 - in[5];
306
17.1k
    out[6] = two62m2 - in[6];
307
17.1k
    out[7] = two62m2 - in[7];
308
17.1k
    out[8] = two62m2 - in[8];
309
17.1k
}
310
311
/*-
312
 * felem_diff64 subtracts |in| from |out|
313
 * On entry:
314
 *   in[i] < 2^59 + 2^14
315
 * On exit:
316
 *   out[i] < out[i] + 2^62
317
 */
318
static void felem_diff64(felem out, const felem in)
319
328k
{
320
    /*
321
     * In order to prevent underflow, we add 0 mod p before subtracting.
322
     */
323
328k
    static const limb two62m3 = (((limb) 1) << 62) - (((limb) 1) << 5);
324
328k
    static const limb two62m2 = (((limb) 1) << 62) - (((limb) 1) << 4);
325
326
328k
    out[0] += two62m3 - in[0];
327
328k
    out[1] += two62m2 - in[1];
328
328k
    out[2] += two62m2 - in[2];
329
328k
    out[3] += two62m2 - in[3];
330
328k
    out[4] += two62m2 - in[4];
331
328k
    out[5] += two62m2 - in[5];
332
328k
    out[6] += two62m2 - in[6];
333
328k
    out[7] += two62m2 - in[7];
334
328k
    out[8] += two62m2 - in[8];
335
328k
}
336
337
/*-
338
 * felem_diff_128_64 subtracts |in| from |out|
339
 * On entry:
340
 *   in[i] < 2^62 + 2^17
341
 * On exit:
342
 *   out[i] < out[i] + 2^63
343
 */
344
static void felem_diff_128_64(largefelem out, const felem in)
345
560k
{
346
    /*
347
     * In order to prevent underflow, we add 64p mod p (which is equivalent
348
     * to 0 mod p) before subtracting. p is 2^521 - 1, i.e. in binary a 521
349
     * digit number with all bits set to 1. See "The representation of field
350
     * elements" comment above for a description of how limbs are used to
351
     * represent a number. 64p is represented with 8 limbs containing a number
352
     * with 58 bits set and one limb with a number with 57 bits set.
353
     */
354
560k
    static const limb two63m6 = (((limb) 1) << 63) - (((limb) 1) << 6);
355
560k
    static const limb two63m5 = (((limb) 1) << 63) - (((limb) 1) << 5);
356
357
560k
    out[0] += two63m6 - in[0];
358
560k
    out[1] += two63m5 - in[1];
359
560k
    out[2] += two63m5 - in[2];
360
560k
    out[3] += two63m5 - in[3];
361
560k
    out[4] += two63m5 - in[4];
362
560k
    out[5] += two63m5 - in[5];
363
560k
    out[6] += two63m5 - in[6];
364
560k
    out[7] += two63m5 - in[7];
365
560k
    out[8] += two63m5 - in[8];
366
560k
}
367
368
/*-
369
 * felem_diff_128_64 subtracts |in| from |out|
370
 * On entry:
371
 *   in[i] < 2^126
372
 * On exit:
373
 *   out[i] < out[i] + 2^127 - 2^69
374
 */
375
static void felem_diff128(largefelem out, const largefelem in)
376
196k
{
377
    /*
378
     * In order to prevent underflow, we add 0 mod p before subtracting.
379
     */
380
196k
    static const uint128_t two127m70 =
381
196k
        (((uint128_t) 1) << 127) - (((uint128_t) 1) << 70);
382
196k
    static const uint128_t two127m69 =
383
196k
        (((uint128_t) 1) << 127) - (((uint128_t) 1) << 69);
384
385
196k
    out[0] += (two127m70 - in[0]);
386
196k
    out[1] += (two127m69 - in[1]);
387
196k
    out[2] += (two127m69 - in[2]);
388
196k
    out[3] += (two127m69 - in[3]);
389
196k
    out[4] += (two127m69 - in[4]);
390
196k
    out[5] += (two127m69 - in[5]);
391
196k
    out[6] += (two127m69 - in[6]);
392
196k
    out[7] += (two127m69 - in[7]);
393
196k
    out[8] += (two127m69 - in[8]);
394
196k
}
395
396
/*-
397
 * felem_square sets |out| = |in|^2
398
 * On entry:
399
 *   in[i] < 2^62
400
 * On exit:
401
 *   out[i] < 17 * max(in[i]) * max(in[i])
402
 */
403
static void felem_square(largefelem out, const felem in)
404
595k
{
405
595k
    felem inx2, inx4;
406
595k
    felem_scalar(inx2, in, 2);
407
595k
    felem_scalar(inx4, in, 4);
408
409
    /*-
410
     * We have many cases were we want to do
411
     *   in[x] * in[y] +
412
     *   in[y] * in[x]
413
     * This is obviously just
414
     *   2 * in[x] * in[y]
415
     * However, rather than do the doubling on the 128 bit result, we
416
     * double one of the inputs to the multiplication by reading from
417
     * |inx2|
418
     */
419
420
595k
    out[0] = ((uint128_t) in[0]) * in[0];
421
595k
    out[1] = ((uint128_t) in[0]) * inx2[1];
422
595k
    out[2] = ((uint128_t) in[0]) * inx2[2] + ((uint128_t) in[1]) * in[1];
423
595k
    out[3] = ((uint128_t) in[0]) * inx2[3] + ((uint128_t) in[1]) * inx2[2];
424
595k
    out[4] = ((uint128_t) in[0]) * inx2[4] +
425
595k
             ((uint128_t) in[1]) * inx2[3] + ((uint128_t) in[2]) * in[2];
426
595k
    out[5] = ((uint128_t) in[0]) * inx2[5] +
427
595k
             ((uint128_t) in[1]) * inx2[4] + ((uint128_t) in[2]) * inx2[3];
428
595k
    out[6] = ((uint128_t) in[0]) * inx2[6] +
429
595k
             ((uint128_t) in[1]) * inx2[5] +
430
595k
             ((uint128_t) in[2]) * inx2[4] + ((uint128_t) in[3]) * in[3];
431
595k
    out[7] = ((uint128_t) in[0]) * inx2[7] +
432
595k
             ((uint128_t) in[1]) * inx2[6] +
433
595k
             ((uint128_t) in[2]) * inx2[5] + ((uint128_t) in[3]) * inx2[4];
434
595k
    out[8] = ((uint128_t) in[0]) * inx2[8] +
435
595k
             ((uint128_t) in[1]) * inx2[7] +
436
595k
             ((uint128_t) in[2]) * inx2[6] +
437
595k
             ((uint128_t) in[3]) * inx2[5] + ((uint128_t) in[4]) * in[4];
438
439
    /*
440
     * The remaining limbs fall above 2^521, with the first falling at 2^522.
441
     * They correspond to locations one bit up from the limbs produced above
442
     * so we would have to multiply by two to align them. Again, rather than
443
     * operate on the 128-bit result, we double one of the inputs to the
444
     * multiplication. If we want to double for both this reason, and the
445
     * reason above, then we end up multiplying by four.
446
     */
447
448
    /* 9 */
449
595k
    out[0] += ((uint128_t) in[1]) * inx4[8] +
450
595k
              ((uint128_t) in[2]) * inx4[7] +
451
595k
              ((uint128_t) in[3]) * inx4[6] + ((uint128_t) in[4]) * inx4[5];
452
453
    /* 10 */
454
595k
    out[1] += ((uint128_t) in[2]) * inx4[8] +
455
595k
              ((uint128_t) in[3]) * inx4[7] +
456
595k
              ((uint128_t) in[4]) * inx4[6] + ((uint128_t) in[5]) * inx2[5];
457
458
    /* 11 */
459
595k
    out[2] += ((uint128_t) in[3]) * inx4[8] +
460
595k
              ((uint128_t) in[4]) * inx4[7] + ((uint128_t) in[5]) * inx4[6];
461
462
    /* 12 */
463
595k
    out[3] += ((uint128_t) in[4]) * inx4[8] +
464
595k
              ((uint128_t) in[5]) * inx4[7] + ((uint128_t) in[6]) * inx2[6];
465
466
    /* 13 */
467
595k
    out[4] += ((uint128_t) in[5]) * inx4[8] + ((uint128_t) in[6]) * inx4[7];
468
469
    /* 14 */
470
595k
    out[5] += ((uint128_t) in[6]) * inx4[8] + ((uint128_t) in[7]) * inx2[7];
471
472
    /* 15 */
473
595k
    out[6] += ((uint128_t) in[7]) * inx4[8];
474
475
    /* 16 */
476
595k
    out[7] += ((uint128_t) in[8]) * inx2[8];
477
595k
}
478
479
/*-
480
 * felem_mul sets |out| = |in1| * |in2|
481
 * On entry:
482
 *   in1[i] < 2^64
483
 *   in2[i] < 2^63
484
 * On exit:
485
 *   out[i] < 17 * max(in1[i]) * max(in2[i])
486
 */
487
static void felem_mul(largefelem out, const felem in1, const felem in2)
488
493k
{
489
493k
    felem in2x2;
490
493k
    felem_scalar(in2x2, in2, 2);
491
492
493k
    out[0] = ((uint128_t) in1[0]) * in2[0];
493
494
493k
    out[1] = ((uint128_t) in1[0]) * in2[1] +
495
493k
             ((uint128_t) in1[1]) * in2[0];
496
497
493k
    out[2] = ((uint128_t) in1[0]) * in2[2] +
498
493k
             ((uint128_t) in1[1]) * in2[1] +
499
493k
             ((uint128_t) in1[2]) * in2[0];
500
501
493k
    out[3] = ((uint128_t) in1[0]) * in2[3] +
502
493k
             ((uint128_t) in1[1]) * in2[2] +
503
493k
             ((uint128_t) in1[2]) * in2[1] +
504
493k
             ((uint128_t) in1[3]) * in2[0];
505
506
493k
    out[4] = ((uint128_t) in1[0]) * in2[4] +
507
493k
             ((uint128_t) in1[1]) * in2[3] +
508
493k
             ((uint128_t) in1[2]) * in2[2] +
509
493k
             ((uint128_t) in1[3]) * in2[1] +
510
493k
             ((uint128_t) in1[4]) * in2[0];
511
512
493k
    out[5] = ((uint128_t) in1[0]) * in2[5] +
513
493k
             ((uint128_t) in1[1]) * in2[4] +
514
493k
             ((uint128_t) in1[2]) * in2[3] +
515
493k
             ((uint128_t) in1[3]) * in2[2] +
516
493k
             ((uint128_t) in1[4]) * in2[1] +
517
493k
             ((uint128_t) in1[5]) * in2[0];
518
519
493k
    out[6] = ((uint128_t) in1[0]) * in2[6] +
520
493k
             ((uint128_t) in1[1]) * in2[5] +
521
493k
             ((uint128_t) in1[2]) * in2[4] +
522
493k
             ((uint128_t) in1[3]) * in2[3] +
523
493k
             ((uint128_t) in1[4]) * in2[2] +
524
493k
             ((uint128_t) in1[5]) * in2[1] +
525
493k
             ((uint128_t) in1[6]) * in2[0];
526
527
493k
    out[7] = ((uint128_t) in1[0]) * in2[7] +
528
493k
             ((uint128_t) in1[1]) * in2[6] +
529
493k
             ((uint128_t) in1[2]) * in2[5] +
530
493k
             ((uint128_t) in1[3]) * in2[4] +
531
493k
             ((uint128_t) in1[4]) * in2[3] +
532
493k
             ((uint128_t) in1[5]) * in2[2] +
533
493k
             ((uint128_t) in1[6]) * in2[1] +
534
493k
             ((uint128_t) in1[7]) * in2[0];
535
536
493k
    out[8] = ((uint128_t) in1[0]) * in2[8] +
537
493k
             ((uint128_t) in1[1]) * in2[7] +
538
493k
             ((uint128_t) in1[2]) * in2[6] +
539
493k
             ((uint128_t) in1[3]) * in2[5] +
540
493k
             ((uint128_t) in1[4]) * in2[4] +
541
493k
             ((uint128_t) in1[5]) * in2[3] +
542
493k
             ((uint128_t) in1[6]) * in2[2] +
543
493k
             ((uint128_t) in1[7]) * in2[1] +
544
493k
             ((uint128_t) in1[8]) * in2[0];
545
546
    /* See comment in felem_square about the use of in2x2 here */
547
548
493k
    out[0] += ((uint128_t) in1[1]) * in2x2[8] +
549
493k
              ((uint128_t) in1[2]) * in2x2[7] +
550
493k
              ((uint128_t) in1[3]) * in2x2[6] +
551
493k
              ((uint128_t) in1[4]) * in2x2[5] +
552
493k
              ((uint128_t) in1[5]) * in2x2[4] +
553
493k
              ((uint128_t) in1[6]) * in2x2[3] +
554
493k
              ((uint128_t) in1[7]) * in2x2[2] +
555
493k
              ((uint128_t) in1[8]) * in2x2[1];
556
557
493k
    out[1] += ((uint128_t) in1[2]) * in2x2[8] +
558
493k
              ((uint128_t) in1[3]) * in2x2[7] +
559
493k
              ((uint128_t) in1[4]) * in2x2[6] +
560
493k
              ((uint128_t) in1[5]) * in2x2[5] +
561
493k
              ((uint128_t) in1[6]) * in2x2[4] +
562
493k
              ((uint128_t) in1[7]) * in2x2[3] +
563
493k
              ((uint128_t) in1[8]) * in2x2[2];
564
565
493k
    out[2] += ((uint128_t) in1[3]) * in2x2[8] +
566
493k
              ((uint128_t) in1[4]) * in2x2[7] +
567
493k
              ((uint128_t) in1[5]) * in2x2[6] +
568
493k
              ((uint128_t) in1[6]) * in2x2[5] +
569
493k
              ((uint128_t) in1[7]) * in2x2[4] +
570
493k
              ((uint128_t) in1[8]) * in2x2[3];
571
572
493k
    out[3] += ((uint128_t) in1[4]) * in2x2[8] +
573
493k
              ((uint128_t) in1[5]) * in2x2[7] +
574
493k
              ((uint128_t) in1[6]) * in2x2[6] +
575
493k
              ((uint128_t) in1[7]) * in2x2[5] +
576
493k
              ((uint128_t) in1[8]) * in2x2[4];
577
578
493k
    out[4] += ((uint128_t) in1[5]) * in2x2[8] +
579
493k
              ((uint128_t) in1[6]) * in2x2[7] +
580
493k
              ((uint128_t) in1[7]) * in2x2[6] +
581
493k
              ((uint128_t) in1[8]) * in2x2[5];
582
583
493k
    out[5] += ((uint128_t) in1[6]) * in2x2[8] +
584
493k
              ((uint128_t) in1[7]) * in2x2[7] +
585
493k
              ((uint128_t) in1[8]) * in2x2[6];
586
587
493k
    out[6] += ((uint128_t) in1[7]) * in2x2[8] +
588
493k
              ((uint128_t) in1[8]) * in2x2[7];
589
590
493k
    out[7] += ((uint128_t) in1[8]) * in2x2[8];
591
493k
}
592
593
static const limb bottom52bits = 0xfffffffffffff;
594
595
/*-
596
 * felem_reduce converts a largefelem to an felem.
597
 * On entry:
598
 *   in[i] < 2^128
599
 * On exit:
600
 *   out[i] < 2^59 + 2^14
601
 */
602
static void felem_reduce(felem out, const largefelem in)
603
1.93M
{
604
1.93M
    u64 overflow1, overflow2;
605
606
1.93M
    out[0] = ((limb) in[0]) & bottom58bits;
607
1.93M
    out[1] = ((limb) in[1]) & bottom58bits;
608
1.93M
    out[2] = ((limb) in[2]) & bottom58bits;
609
1.93M
    out[3] = ((limb) in[3]) & bottom58bits;
610
1.93M
    out[4] = ((limb) in[4]) & bottom58bits;
611
1.93M
    out[5] = ((limb) in[5]) & bottom58bits;
612
1.93M
    out[6] = ((limb) in[6]) & bottom58bits;
613
1.93M
    out[7] = ((limb) in[7]) & bottom58bits;
614
1.93M
    out[8] = ((limb) in[8]) & bottom58bits;
615
616
    /* out[i] < 2^58 */
617
618
1.93M
    out[1] += ((limb) in[0]) >> 58;
619
1.93M
    out[1] += (((limb) (in[0] >> 64)) & bottom52bits) << 6;
620
    /*-
621
     * out[1] < 2^58 + 2^6 + 2^58
622
     *        = 2^59 + 2^6
623
     */
624
1.93M
    out[2] += ((limb) (in[0] >> 64)) >> 52;
625
626
1.93M
    out[2] += ((limb) in[1]) >> 58;
627
1.93M
    out[2] += (((limb) (in[1] >> 64)) & bottom52bits) << 6;
628
1.93M
    out[3] += ((limb) (in[1] >> 64)) >> 52;
629
630
1.93M
    out[3] += ((limb) in[2]) >> 58;
631
1.93M
    out[3] += (((limb) (in[2] >> 64)) & bottom52bits) << 6;
632
1.93M
    out[4] += ((limb) (in[2] >> 64)) >> 52;
633
634
1.93M
    out[4] += ((limb) in[3]) >> 58;
635
1.93M
    out[4] += (((limb) (in[3] >> 64)) & bottom52bits) << 6;
636
1.93M
    out[5] += ((limb) (in[3] >> 64)) >> 52;
637
638
1.93M
    out[5] += ((limb) in[4]) >> 58;
639
1.93M
    out[5] += (((limb) (in[4] >> 64)) & bottom52bits) << 6;
640
1.93M
    out[6] += ((limb) (in[4] >> 64)) >> 52;
641
642
1.93M
    out[6] += ((limb) in[5]) >> 58;
643
1.93M
    out[6] += (((limb) (in[5] >> 64)) & bottom52bits) << 6;
644
1.93M
    out[7] += ((limb) (in[5] >> 64)) >> 52;
645
646
1.93M
    out[7] += ((limb) in[6]) >> 58;
647
1.93M
    out[7] += (((limb) (in[6] >> 64)) & bottom52bits) << 6;
648
1.93M
    out[8] += ((limb) (in[6] >> 64)) >> 52;
649
650
1.93M
    out[8] += ((limb) in[7]) >> 58;
651
1.93M
    out[8] += (((limb) (in[7] >> 64)) & bottom52bits) << 6;
652
    /*-
653
     * out[x > 1] < 2^58 + 2^6 + 2^58 + 2^12
654
     *            < 2^59 + 2^13
655
     */
656
1.93M
    overflow1 = ((limb) (in[7] >> 64)) >> 52;
657
658
1.93M
    overflow1 += ((limb) in[8]) >> 58;
659
1.93M
    overflow1 += (((limb) (in[8] >> 64)) & bottom52bits) << 6;
660
1.93M
    overflow2 = ((limb) (in[8] >> 64)) >> 52;
661
662
1.93M
    overflow1 <<= 1;            /* overflow1 < 2^13 + 2^7 + 2^59 */
663
1.93M
    overflow2 <<= 1;            /* overflow2 < 2^13 */
664
665
1.93M
    out[0] += overflow1;        /* out[0] < 2^60 */
666
1.93M
    out[1] += overflow2;        /* out[1] < 2^59 + 2^6 + 2^13 */
667
668
1.93M
    out[1] += out[0] >> 58;
669
1.93M
    out[0] &= bottom58bits;
670
    /*-
671
     * out[0] < 2^58
672
     * out[1] < 2^59 + 2^6 + 2^13 + 2^2
673
     *        < 2^59 + 2^14
674
     */
675
1.93M
}
676
677
static void felem_square_reduce(felem out, const felem in)
678
0
{
679
0
    largefelem tmp;
680
0
    felem_square(tmp, in);
681
0
    felem_reduce(out, tmp);
682
0
}
683
684
static void felem_mul_reduce(felem out, const felem in1, const felem in2)
685
0
{
686
0
    largefelem tmp;
687
0
    felem_mul(tmp, in1, in2);
688
0
    felem_reduce(out, tmp);
689
0
}
690
691
/*-
692
 * felem_inv calculates |out| = |in|^{-1}
693
 *
694
 * Based on Fermat's Little Theorem:
695
 *   a^p = a (mod p)
696
 *   a^{p-1} = 1 (mod p)
697
 *   a^{p-2} = a^{-1} (mod p)
698
 */
699
static void felem_inv(felem out, const felem in)
700
495
{
701
495
    felem ftmp, ftmp2, ftmp3, ftmp4;
702
495
    largefelem tmp;
703
495
    unsigned i;
704
705
495
    felem_square(tmp, in);
706
495
    felem_reduce(ftmp, tmp);    /* 2^1 */
707
495
    felem_mul(tmp, in, ftmp);
708
495
    felem_reduce(ftmp, tmp);    /* 2^2 - 2^0 */
709
495
    felem_assign(ftmp2, ftmp);
710
495
    felem_square(tmp, ftmp);
711
495
    felem_reduce(ftmp, tmp);    /* 2^3 - 2^1 */
712
495
    felem_mul(tmp, in, ftmp);
713
495
    felem_reduce(ftmp, tmp);    /* 2^3 - 2^0 */
714
495
    felem_square(tmp, ftmp);
715
495
    felem_reduce(ftmp, tmp);    /* 2^4 - 2^1 */
716
717
495
    felem_square(tmp, ftmp2);
718
495
    felem_reduce(ftmp3, tmp);   /* 2^3 - 2^1 */
719
495
    felem_square(tmp, ftmp3);
720
495
    felem_reduce(ftmp3, tmp);   /* 2^4 - 2^2 */
721
495
    felem_mul(tmp, ftmp3, ftmp2);
722
495
    felem_reduce(ftmp3, tmp);   /* 2^4 - 2^0 */
723
724
495
    felem_assign(ftmp2, ftmp3);
725
495
    felem_square(tmp, ftmp3);
726
495
    felem_reduce(ftmp3, tmp);   /* 2^5 - 2^1 */
727
495
    felem_square(tmp, ftmp3);
728
495
    felem_reduce(ftmp3, tmp);   /* 2^6 - 2^2 */
729
495
    felem_square(tmp, ftmp3);
730
495
    felem_reduce(ftmp3, tmp);   /* 2^7 - 2^3 */
731
495
    felem_square(tmp, ftmp3);
732
495
    felem_reduce(ftmp3, tmp);   /* 2^8 - 2^4 */
733
495
    felem_assign(ftmp4, ftmp3);
734
495
    felem_mul(tmp, ftmp3, ftmp);
735
495
    felem_reduce(ftmp4, tmp);   /* 2^8 - 2^1 */
736
495
    felem_square(tmp, ftmp4);
737
495
    felem_reduce(ftmp4, tmp);   /* 2^9 - 2^2 */
738
495
    felem_mul(tmp, ftmp3, ftmp2);
739
495
    felem_reduce(ftmp3, tmp);   /* 2^8 - 2^0 */
740
495
    felem_assign(ftmp2, ftmp3);
741
742
4.45k
    for (i = 0; i < 8; i++) {
743
3.96k
        felem_square(tmp, ftmp3);
744
3.96k
        felem_reduce(ftmp3, tmp); /* 2^16 - 2^8 */
745
3.96k
    }
746
495
    felem_mul(tmp, ftmp3, ftmp2);
747
495
    felem_reduce(ftmp3, tmp);   /* 2^16 - 2^0 */
748
495
    felem_assign(ftmp2, ftmp3);
749
750
8.41k
    for (i = 0; i < 16; i++) {
751
7.92k
        felem_square(tmp, ftmp3);
752
7.92k
        felem_reduce(ftmp3, tmp); /* 2^32 - 2^16 */
753
7.92k
    }
754
495
    felem_mul(tmp, ftmp3, ftmp2);
755
495
    felem_reduce(ftmp3, tmp);   /* 2^32 - 2^0 */
756
495
    felem_assign(ftmp2, ftmp3);
757
758
16.3k
    for (i = 0; i < 32; i++) {
759
15.8k
        felem_square(tmp, ftmp3);
760
15.8k
        felem_reduce(ftmp3, tmp); /* 2^64 - 2^32 */
761
15.8k
    }
762
495
    felem_mul(tmp, ftmp3, ftmp2);
763
495
    felem_reduce(ftmp3, tmp);   /* 2^64 - 2^0 */
764
495
    felem_assign(ftmp2, ftmp3);
765
766
32.1k
    for (i = 0; i < 64; i++) {
767
31.6k
        felem_square(tmp, ftmp3);
768
31.6k
        felem_reduce(ftmp3, tmp); /* 2^128 - 2^64 */
769
31.6k
    }
770
495
    felem_mul(tmp, ftmp3, ftmp2);
771
495
    felem_reduce(ftmp3, tmp);   /* 2^128 - 2^0 */
772
495
    felem_assign(ftmp2, ftmp3);
773
774
63.8k
    for (i = 0; i < 128; i++) {
775
63.3k
        felem_square(tmp, ftmp3);
776
63.3k
        felem_reduce(ftmp3, tmp); /* 2^256 - 2^128 */
777
63.3k
    }
778
495
    felem_mul(tmp, ftmp3, ftmp2);
779
495
    felem_reduce(ftmp3, tmp);   /* 2^256 - 2^0 */
780
495
    felem_assign(ftmp2, ftmp3);
781
782
127k
    for (i = 0; i < 256; i++) {
783
126k
        felem_square(tmp, ftmp3);
784
126k
        felem_reduce(ftmp3, tmp); /* 2^512 - 2^256 */
785
126k
    }
786
495
    felem_mul(tmp, ftmp3, ftmp2);
787
495
    felem_reduce(ftmp3, tmp);   /* 2^512 - 2^0 */
788
789
4.95k
    for (i = 0; i < 9; i++) {
790
4.45k
        felem_square(tmp, ftmp3);
791
4.45k
        felem_reduce(ftmp3, tmp); /* 2^521 - 2^9 */
792
4.45k
    }
793
495
    felem_mul(tmp, ftmp3, ftmp4);
794
495
    felem_reduce(ftmp3, tmp);   /* 2^512 - 2^2 */
795
495
    felem_mul(tmp, ftmp3, in);
796
495
    felem_reduce(out, tmp);     /* 2^512 - 3 */
797
495
}
798
799
/* This is 2^521-1, expressed as an felem */
800
static const felem kPrime = {
801
    0x03ffffffffffffff, 0x03ffffffffffffff, 0x03ffffffffffffff,
802
    0x03ffffffffffffff, 0x03ffffffffffffff, 0x03ffffffffffffff,
803
    0x03ffffffffffffff, 0x03ffffffffffffff, 0x01ffffffffffffff
804
};
805
806
/*-
807
 * felem_is_zero returns a limb with all bits set if |in| == 0 (mod p) and 0
808
 * otherwise.
809
 * On entry:
810
 *   in[i] < 2^59 + 2^14
811
 */
812
static limb felem_is_zero(const felem in)
813
261k
{
814
261k
    felem ftmp;
815
261k
    limb is_zero, is_p;
816
261k
    felem_assign(ftmp, in);
817
818
261k
    ftmp[0] += ftmp[8] >> 57;
819
261k
    ftmp[8] &= bottom57bits;
820
    /* ftmp[8] < 2^57 */
821
261k
    ftmp[1] += ftmp[0] >> 58;
822
261k
    ftmp[0] &= bottom58bits;
823
261k
    ftmp[2] += ftmp[1] >> 58;
824
261k
    ftmp[1] &= bottom58bits;
825
261k
    ftmp[3] += ftmp[2] >> 58;
826
261k
    ftmp[2] &= bottom58bits;
827
261k
    ftmp[4] += ftmp[3] >> 58;
828
261k
    ftmp[3] &= bottom58bits;
829
261k
    ftmp[5] += ftmp[4] >> 58;
830
261k
    ftmp[4] &= bottom58bits;
831
261k
    ftmp[6] += ftmp[5] >> 58;
832
261k
    ftmp[5] &= bottom58bits;
833
261k
    ftmp[7] += ftmp[6] >> 58;
834
261k
    ftmp[6] &= bottom58bits;
835
261k
    ftmp[8] += ftmp[7] >> 58;
836
261k
    ftmp[7] &= bottom58bits;
837
    /* ftmp[8] < 2^57 + 4 */
838
839
    /*
840
     * The ninth limb of 2*(2^521-1) is 0x03ffffffffffffff, which is greater
841
     * than our bound for ftmp[8]. Therefore we only have to check if the
842
     * zero is zero or 2^521-1.
843
     */
844
845
261k
    is_zero = 0;
846
261k
    is_zero |= ftmp[0];
847
261k
    is_zero |= ftmp[1];
848
261k
    is_zero |= ftmp[2];
849
261k
    is_zero |= ftmp[3];
850
261k
    is_zero |= ftmp[4];
851
261k
    is_zero |= ftmp[5];
852
261k
    is_zero |= ftmp[6];
853
261k
    is_zero |= ftmp[7];
854
261k
    is_zero |= ftmp[8];
855
856
261k
    is_zero--;
857
    /*
858
     * We know that ftmp[i] < 2^63, therefore the only way that the top bit
859
     * can be set is if is_zero was 0 before the decrement.
860
     */
861
261k
    is_zero = 0 - (is_zero >> 63);
862
863
261k
    is_p = ftmp[0] ^ kPrime[0];
864
261k
    is_p |= ftmp[1] ^ kPrime[1];
865
261k
    is_p |= ftmp[2] ^ kPrime[2];
866
261k
    is_p |= ftmp[3] ^ kPrime[3];
867
261k
    is_p |= ftmp[4] ^ kPrime[4];
868
261k
    is_p |= ftmp[5] ^ kPrime[5];
869
261k
    is_p |= ftmp[6] ^ kPrime[6];
870
261k
    is_p |= ftmp[7] ^ kPrime[7];
871
261k
    is_p |= ftmp[8] ^ kPrime[8];
872
873
261k
    is_p--;
874
261k
    is_p = 0 - (is_p >> 63);
875
876
261k
    is_zero |= is_p;
877
261k
    return is_zero;
878
261k
}
879
880
static int felem_is_zero_int(const void *in)
881
0
{
882
0
    return (int)(felem_is_zero(in) & ((limb) 1));
883
0
}
884
885
/*-
886
 * felem_contract converts |in| to its unique, minimal representation.
887
 * On entry:
888
 *   in[i] < 2^59 + 2^14
889
 */
890
static void felem_contract(felem out, const felem in)
891
2.52k
{
892
2.52k
    limb is_p, is_greater, sign;
893
2.52k
    static const limb two58 = ((limb) 1) << 58;
894
895
2.52k
    felem_assign(out, in);
896
897
2.52k
    out[0] += out[8] >> 57;
898
2.52k
    out[8] &= bottom57bits;
899
    /* out[8] < 2^57 */
900
2.52k
    out[1] += out[0] >> 58;
901
2.52k
    out[0] &= bottom58bits;
902
2.52k
    out[2] += out[1] >> 58;
903
2.52k
    out[1] &= bottom58bits;
904
2.52k
    out[3] += out[2] >> 58;
905
2.52k
    out[2] &= bottom58bits;
906
2.52k
    out[4] += out[3] >> 58;
907
2.52k
    out[3] &= bottom58bits;
908
2.52k
    out[5] += out[4] >> 58;
909
2.52k
    out[4] &= bottom58bits;
910
2.52k
    out[6] += out[5] >> 58;
911
2.52k
    out[5] &= bottom58bits;
912
2.52k
    out[7] += out[6] >> 58;
913
2.52k
    out[6] &= bottom58bits;
914
2.52k
    out[8] += out[7] >> 58;
915
2.52k
    out[7] &= bottom58bits;
916
    /* out[8] < 2^57 + 4 */
917
918
    /*
919
     * If the value is greater than 2^521-1 then we have to subtract 2^521-1
920
     * out. See the comments in felem_is_zero regarding why we don't test for
921
     * other multiples of the prime.
922
     */
923
924
    /*
925
     * First, if |out| is equal to 2^521-1, we subtract it out to get zero.
926
     */
927
928
2.52k
    is_p = out[0] ^ kPrime[0];
929
2.52k
    is_p |= out[1] ^ kPrime[1];
930
2.52k
    is_p |= out[2] ^ kPrime[2];
931
2.52k
    is_p |= out[3] ^ kPrime[3];
932
2.52k
    is_p |= out[4] ^ kPrime[4];
933
2.52k
    is_p |= out[5] ^ kPrime[5];
934
2.52k
    is_p |= out[6] ^ kPrime[6];
935
2.52k
    is_p |= out[7] ^ kPrime[7];
936
2.52k
    is_p |= out[8] ^ kPrime[8];
937
938
2.52k
    is_p--;
939
2.52k
    is_p &= is_p << 32;
940
2.52k
    is_p &= is_p << 16;
941
2.52k
    is_p &= is_p << 8;
942
2.52k
    is_p &= is_p << 4;
943
2.52k
    is_p &= is_p << 2;
944
2.52k
    is_p &= is_p << 1;
945
2.52k
    is_p = 0 - (is_p >> 63);
946
2.52k
    is_p = ~is_p;
947
948
    /* is_p is 0 iff |out| == 2^521-1 and all ones otherwise */
949
950
2.52k
    out[0] &= is_p;
951
2.52k
    out[1] &= is_p;
952
2.52k
    out[2] &= is_p;
953
2.52k
    out[3] &= is_p;
954
2.52k
    out[4] &= is_p;
955
2.52k
    out[5] &= is_p;
956
2.52k
    out[6] &= is_p;
957
2.52k
    out[7] &= is_p;
958
2.52k
    out[8] &= is_p;
959
960
    /*
961
     * In order to test that |out| >= 2^521-1 we need only test if out[8] >>
962
     * 57 is greater than zero as (2^521-1) + x >= 2^522
963
     */
964
2.52k
    is_greater = out[8] >> 57;
965
2.52k
    is_greater |= is_greater << 32;
966
2.52k
    is_greater |= is_greater << 16;
967
2.52k
    is_greater |= is_greater << 8;
968
2.52k
    is_greater |= is_greater << 4;
969
2.52k
    is_greater |= is_greater << 2;
970
2.52k
    is_greater |= is_greater << 1;
971
2.52k
    is_greater = 0 - (is_greater >> 63);
972
973
2.52k
    out[0] -= kPrime[0] & is_greater;
974
2.52k
    out[1] -= kPrime[1] & is_greater;
975
2.52k
    out[2] -= kPrime[2] & is_greater;
976
2.52k
    out[3] -= kPrime[3] & is_greater;
977
2.52k
    out[4] -= kPrime[4] & is_greater;
978
2.52k
    out[5] -= kPrime[5] & is_greater;
979
2.52k
    out[6] -= kPrime[6] & is_greater;
980
2.52k
    out[7] -= kPrime[7] & is_greater;
981
2.52k
    out[8] -= kPrime[8] & is_greater;
982
983
    /* Eliminate negative coefficients */
984
2.52k
    sign = -(out[0] >> 63);
985
2.52k
    out[0] += (two58 & sign);
986
2.52k
    out[1] -= (1 & sign);
987
2.52k
    sign = -(out[1] >> 63);
988
2.52k
    out[1] += (two58 & sign);
989
2.52k
    out[2] -= (1 & sign);
990
2.52k
    sign = -(out[2] >> 63);
991
2.52k
    out[2] += (two58 & sign);
992
2.52k
    out[3] -= (1 & sign);
993
2.52k
    sign = -(out[3] >> 63);
994
2.52k
    out[3] += (two58 & sign);
995
2.52k
    out[4] -= (1 & sign);
996
2.52k
    sign = -(out[4] >> 63);
997
2.52k
    out[4] += (two58 & sign);
998
2.52k
    out[5] -= (1 & sign);
999
2.52k
    sign = -(out[0] >> 63);
1000
2.52k
    out[5] += (two58 & sign);
1001
2.52k
    out[6] -= (1 & sign);
1002
2.52k
    sign = -(out[6] >> 63);
1003
2.52k
    out[6] += (two58 & sign);
1004
2.52k
    out[7] -= (1 & sign);
1005
2.52k
    sign = -(out[7] >> 63);
1006
2.52k
    out[7] += (two58 & sign);
1007
2.52k
    out[8] -= (1 & sign);
1008
2.52k
    sign = -(out[5] >> 63);
1009
2.52k
    out[5] += (two58 & sign);
1010
2.52k
    out[6] -= (1 & sign);
1011
2.52k
    sign = -(out[6] >> 63);
1012
2.52k
    out[6] += (two58 & sign);
1013
2.52k
    out[7] -= (1 & sign);
1014
2.52k
    sign = -(out[7] >> 63);
1015
2.52k
    out[7] += (two58 & sign);
1016
2.52k
    out[8] -= (1 & sign);
1017
2.52k
}
1018
1019
/*-
1020
 * Group operations
1021
 * ----------------
1022
 *
1023
 * Building on top of the field operations we have the operations on the
1024
 * elliptic curve group itself. Points on the curve are represented in Jacobian
1025
 * coordinates */
1026
1027
/*-
1028
 * point_double calculates 2*(x_in, y_in, z_in)
1029
 *
1030
 * The method is taken from:
1031
 *   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
1032
 *
1033
 * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed.
1034
 * while x_out == y_in is not (maybe this works, but it's not tested). */
1035
static void
1036
point_double(felem x_out, felem y_out, felem z_out,
1037
             const felem x_in, const felem y_in, const felem z_in)
1038
131k
{
1039
131k
    largefelem tmp, tmp2;
1040
131k
    felem delta, gamma, beta, alpha, ftmp, ftmp2;
1041
1042
131k
    felem_assign(ftmp, x_in);
1043
131k
    felem_assign(ftmp2, x_in);
1044
1045
    /* delta = z^2 */
1046
131k
    felem_square(tmp, z_in);
1047
131k
    felem_reduce(delta, tmp);   /* delta[i] < 2^59 + 2^14 */
1048
1049
    /* gamma = y^2 */
1050
131k
    felem_square(tmp, y_in);
1051
131k
    felem_reduce(gamma, tmp);   /* gamma[i] < 2^59 + 2^14 */
1052
1053
    /* beta = x*gamma */
1054
131k
    felem_mul(tmp, x_in, gamma);
1055
131k
    felem_reduce(beta, tmp);    /* beta[i] < 2^59 + 2^14 */
1056
1057
    /* alpha = 3*(x-delta)*(x+delta) */
1058
131k
    felem_diff64(ftmp, delta);
1059
    /* ftmp[i] < 2^61 */
1060
131k
    felem_sum64(ftmp2, delta);
1061
    /* ftmp2[i] < 2^60 + 2^15 */
1062
131k
    felem_scalar64(ftmp2, 3);
1063
    /* ftmp2[i] < 3*2^60 + 3*2^15 */
1064
131k
    felem_mul(tmp, ftmp, ftmp2);
1065
    /*-
1066
     * tmp[i] < 17(3*2^121 + 3*2^76)
1067
     *        = 61*2^121 + 61*2^76
1068
     *        < 64*2^121 + 64*2^76
1069
     *        = 2^127 + 2^82
1070
     *        < 2^128
1071
     */
1072
131k
    felem_reduce(alpha, tmp);
1073
1074
    /* x' = alpha^2 - 8*beta */
1075
131k
    felem_square(tmp, alpha);
1076
    /*
1077
     * tmp[i] < 17*2^120 < 2^125
1078
     */
1079
131k
    felem_assign(ftmp, beta);
1080
131k
    felem_scalar64(ftmp, 8);
1081
    /* ftmp[i] < 2^62 + 2^17 */
1082
131k
    felem_diff_128_64(tmp, ftmp);
1083
    /* tmp[i] < 2^125 + 2^63 + 2^62 + 2^17 */
1084
131k
    felem_reduce(x_out, tmp);
1085
1086
    /* z' = (y + z)^2 - gamma - delta */
1087
131k
    felem_sum64(delta, gamma);
1088
    /* delta[i] < 2^60 + 2^15 */
1089
131k
    felem_assign(ftmp, y_in);
1090
131k
    felem_sum64(ftmp, z_in);
1091
    /* ftmp[i] < 2^60 + 2^15 */
1092
131k
    felem_square(tmp, ftmp);
1093
    /*
1094
     * tmp[i] < 17(2^122) < 2^127
1095
     */
1096
131k
    felem_diff_128_64(tmp, delta);
1097
    /* tmp[i] < 2^127 + 2^63 */
1098
131k
    felem_reduce(z_out, tmp);
1099
1100
    /* y' = alpha*(4*beta - x') - 8*gamma^2 */
1101
131k
    felem_scalar64(beta, 4);
1102
    /* beta[i] < 2^61 + 2^16 */
1103
131k
    felem_diff64(beta, x_out);
1104
    /* beta[i] < 2^61 + 2^60 + 2^16 */
1105
131k
    felem_mul(tmp, alpha, beta);
1106
    /*-
1107
     * tmp[i] < 17*((2^59 + 2^14)(2^61 + 2^60 + 2^16))
1108
     *        = 17*(2^120 + 2^75 + 2^119 + 2^74 + 2^75 + 2^30)
1109
     *        = 17*(2^120 + 2^119 + 2^76 + 2^74 + 2^30)
1110
     *        < 2^128
1111
     */
1112
131k
    felem_square(tmp2, gamma);
1113
    /*-
1114
     * tmp2[i] < 17*(2^59 + 2^14)^2
1115
     *         = 17*(2^118 + 2^74 + 2^28)
1116
     */
1117
131k
    felem_scalar128(tmp2, 8);
1118
    /*-
1119
     * tmp2[i] < 8*17*(2^118 + 2^74 + 2^28)
1120
     *         = 2^125 + 2^121 + 2^81 + 2^77 + 2^35 + 2^31
1121
     *         < 2^126
1122
     */
1123
131k
    felem_diff128(tmp, tmp2);
1124
    /*-
1125
     * tmp[i] < 2^127 - 2^69 + 17(2^120 + 2^119 + 2^76 + 2^74 + 2^30)
1126
     *        = 2^127 + 2^124 + 2^122 + 2^120 + 2^118 + 2^80 + 2^78 + 2^76 +
1127
     *          2^74 + 2^69 + 2^34 + 2^30
1128
     *        < 2^128
1129
     */
1130
131k
    felem_reduce(y_out, tmp);
1131
131k
}
1132
1133
/* copy_conditional copies in to out iff mask is all ones. */
1134
static void copy_conditional(felem out, const felem in, limb mask)
1135
409k
{
1136
409k
    unsigned i;
1137
4.09M
    for (i = 0; i < NLIMBS; ++i) {
1138
3.68M
        const limb tmp = mask & (in[i] ^ out[i]);
1139
3.68M
        out[i] ^= tmp;
1140
3.68M
    }
1141
409k
}
1142
1143
/*-
1144
 * point_add calculates (x1, y1, z1) + (x2, y2, z2)
1145
 *
1146
 * The method is taken from
1147
 *   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl,
1148
 * adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity).
1149
 *
1150
 * This function includes a branch for checking whether the two input points
1151
 * are equal (while not equal to the point at infinity). See comment below
1152
 * on constant-time.
1153
 */
1154
static void point_add(felem x3, felem y3, felem z3,
1155
                      const felem x1, const felem y1, const felem z1,
1156
                      const int mixed, const felem x2, const felem y2,
1157
                      const felem z2)
1158
65.4k
{
1159
65.4k
    felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, ftmp6, x_out, y_out, z_out;
1160
65.4k
    largefelem tmp, tmp2;
1161
65.4k
    limb x_equal, y_equal, z1_is_zero, z2_is_zero;
1162
65.4k
    limb points_equal;
1163
1164
65.4k
    z1_is_zero = felem_is_zero(z1);
1165
65.4k
    z2_is_zero = felem_is_zero(z2);
1166
1167
    /* ftmp = z1z1 = z1**2 */
1168
65.4k
    felem_square(tmp, z1);
1169
65.4k
    felem_reduce(ftmp, tmp);
1170
1171
65.4k
    if (!mixed) {
1172
        /* ftmp2 = z2z2 = z2**2 */
1173
18.0k
        felem_square(tmp, z2);
1174
18.0k
        felem_reduce(ftmp2, tmp);
1175
1176
        /* u1 = ftmp3 = x1*z2z2 */
1177
18.0k
        felem_mul(tmp, x1, ftmp2);
1178
18.0k
        felem_reduce(ftmp3, tmp);
1179
1180
        /* ftmp5 = z1 + z2 */
1181
18.0k
        felem_assign(ftmp5, z1);
1182
18.0k
        felem_sum64(ftmp5, z2);
1183
        /* ftmp5[i] < 2^61 */
1184
1185
        /* ftmp5 = (z1 + z2)**2 - z1z1 - z2z2 = 2*z1z2 */
1186
18.0k
        felem_square(tmp, ftmp5);
1187
        /* tmp[i] < 17*2^122 */
1188
18.0k
        felem_diff_128_64(tmp, ftmp);
1189
        /* tmp[i] < 17*2^122 + 2^63 */
1190
18.0k
        felem_diff_128_64(tmp, ftmp2);
1191
        /* tmp[i] < 17*2^122 + 2^64 */
1192
18.0k
        felem_reduce(ftmp5, tmp);
1193
1194
        /* ftmp2 = z2 * z2z2 */
1195
18.0k
        felem_mul(tmp, ftmp2, z2);
1196
18.0k
        felem_reduce(ftmp2, tmp);
1197
1198
        /* s1 = ftmp6 = y1 * z2**3 */
1199
18.0k
        felem_mul(tmp, y1, ftmp2);
1200
18.0k
        felem_reduce(ftmp6, tmp);
1201
47.3k
    } else {
1202
        /*
1203
         * We'll assume z2 = 1 (special case z2 = 0 is handled later)
1204
         */
1205
1206
        /* u1 = ftmp3 = x1*z2z2 */
1207
47.3k
        felem_assign(ftmp3, x1);
1208
1209
        /* ftmp5 = 2*z1z2 */
1210
47.3k
        felem_scalar(ftmp5, z1, 2);
1211
1212
        /* s1 = ftmp6 = y1 * z2**3 */
1213
47.3k
        felem_assign(ftmp6, y1);
1214
47.3k
    }
1215
1216
    /* u2 = x2*z1z1 */
1217
65.4k
    felem_mul(tmp, x2, ftmp);
1218
    /* tmp[i] < 17*2^120 */
1219
1220
    /* h = ftmp4 = u2 - u1 */
1221
65.4k
    felem_diff_128_64(tmp, ftmp3);
1222
    /* tmp[i] < 17*2^120 + 2^63 */
1223
65.4k
    felem_reduce(ftmp4, tmp);
1224
1225
65.4k
    x_equal = felem_is_zero(ftmp4);
1226
1227
    /* z_out = ftmp5 * h */
1228
65.4k
    felem_mul(tmp, ftmp5, ftmp4);
1229
65.4k
    felem_reduce(z_out, tmp);
1230
1231
    /* ftmp = z1 * z1z1 */
1232
65.4k
    felem_mul(tmp, ftmp, z1);
1233
65.4k
    felem_reduce(ftmp, tmp);
1234
1235
    /* s2 = tmp = y2 * z1**3 */
1236
65.4k
    felem_mul(tmp, y2, ftmp);
1237
    /* tmp[i] < 17*2^120 */
1238
1239
    /* r = ftmp5 = (s2 - s1)*2 */
1240
65.4k
    felem_diff_128_64(tmp, ftmp6);
1241
    /* tmp[i] < 17*2^120 + 2^63 */
1242
65.4k
    felem_reduce(ftmp5, tmp);
1243
65.4k
    y_equal = felem_is_zero(ftmp5);
1244
65.4k
    felem_scalar64(ftmp5, 2);
1245
    /* ftmp5[i] < 2^61 */
1246
1247
    /*
1248
     * The formulae are incorrect if the points are equal, in affine coordinates
1249
     * (X_1, Y_1) == (X_2, Y_2), so we check for this and do doubling if this
1250
     * happens.
1251
     *
1252
     * We use bitwise operations to avoid potential side-channels introduced by
1253
     * the short-circuiting behaviour of boolean operators.
1254
     *
1255
     * The special case of either point being the point at infinity (z1 and/or
1256
     * z2 are zero), is handled separately later on in this function, so we
1257
     * avoid jumping to point_double here in those special cases.
1258
     *
1259
     * Notice the comment below on the implications of this branching for timing
1260
     * leaks and why it is considered practically irrelevant.
1261
     */
1262
65.4k
    points_equal = (x_equal & y_equal & (~z1_is_zero) & (~z2_is_zero));
1263
1264
65.4k
    if (points_equal) {
1265
        /*
1266
         * This is obviously not constant-time but it will almost-never happen
1267
         * for ECDH / ECDSA. The case where it can happen is during scalar-mult
1268
         * where the intermediate value gets very close to the group order.
1269
         * Since |ec_GFp_nistp_recode_scalar_bits| produces signed digits for
1270
         * the scalar, it's possible for the intermediate value to be a small
1271
         * negative multiple of the base point, and for the final signed digit
1272
         * to be the same value. We believe that this only occurs for the scalar
1273
         * 1fffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
1274
         * ffffffa51868783bf2f966b7fcc0148f709a5d03bb5c9b8899c47aebb6fb
1275
         * 71e913863f7, in that case the penultimate intermediate is -9G and
1276
         * the final digit is also -9G. Since this only happens for a single
1277
         * scalar, the timing leak is irrelevant. (Any attacker who wanted to
1278
         * check whether a secret scalar was that exact value, can already do
1279
         * so.)
1280
         */
1281
0
        point_double(x3, y3, z3, x1, y1, z1);
1282
0
        return;
1283
0
    }
1284
1285
    /* I = ftmp = (2h)**2 */
1286
65.4k
    felem_assign(ftmp, ftmp4);
1287
65.4k
    felem_scalar64(ftmp, 2);
1288
    /* ftmp[i] < 2^61 */
1289
65.4k
    felem_square(tmp, ftmp);
1290
    /* tmp[i] < 17*2^122 */
1291
65.4k
    felem_reduce(ftmp, tmp);
1292
1293
    /* J = ftmp2 = h * I */
1294
65.4k
    felem_mul(tmp, ftmp4, ftmp);
1295
65.4k
    felem_reduce(ftmp2, tmp);
1296
1297
    /* V = ftmp4 = U1 * I */
1298
65.4k
    felem_mul(tmp, ftmp3, ftmp);
1299
65.4k
    felem_reduce(ftmp4, tmp);
1300
1301
    /* x_out = r**2 - J - 2V */
1302
65.4k
    felem_square(tmp, ftmp5);
1303
    /* tmp[i] < 17*2^122 */
1304
65.4k
    felem_diff_128_64(tmp, ftmp2);
1305
    /* tmp[i] < 17*2^122 + 2^63 */
1306
65.4k
    felem_assign(ftmp3, ftmp4);
1307
65.4k
    felem_scalar64(ftmp4, 2);
1308
    /* ftmp4[i] < 2^61 */
1309
65.4k
    felem_diff_128_64(tmp, ftmp4);
1310
    /* tmp[i] < 17*2^122 + 2^64 */
1311
65.4k
    felem_reduce(x_out, tmp);
1312
1313
    /* y_out = r(V-x_out) - 2 * s1 * J */
1314
65.4k
    felem_diff64(ftmp3, x_out);
1315
    /*
1316
     * ftmp3[i] < 2^60 + 2^60 = 2^61
1317
     */
1318
65.4k
    felem_mul(tmp, ftmp5, ftmp3);
1319
    /* tmp[i] < 17*2^122 */
1320
65.4k
    felem_mul(tmp2, ftmp6, ftmp2);
1321
    /* tmp2[i] < 17*2^120 */
1322
65.4k
    felem_scalar128(tmp2, 2);
1323
    /* tmp2[i] < 17*2^121 */
1324
65.4k
    felem_diff128(tmp, tmp2);
1325
        /*-
1326
         * tmp[i] < 2^127 - 2^69 + 17*2^122
1327
         *        = 2^126 - 2^122 - 2^6 - 2^2 - 1
1328
         *        < 2^127
1329
         */
1330
65.4k
    felem_reduce(y_out, tmp);
1331
1332
65.4k
    copy_conditional(x_out, x2, z1_is_zero);
1333
65.4k
    copy_conditional(x_out, x1, z2_is_zero);
1334
65.4k
    copy_conditional(y_out, y2, z1_is_zero);
1335
65.4k
    copy_conditional(y_out, y1, z2_is_zero);
1336
65.4k
    copy_conditional(z_out, z2, z1_is_zero);
1337
65.4k
    copy_conditional(z_out, z1, z2_is_zero);
1338
65.4k
    felem_assign(x3, x_out);
1339
65.4k
    felem_assign(y3, y_out);
1340
65.4k
    felem_assign(z3, z_out);
1341
65.4k
}
1342
1343
/*-
1344
 * Base point pre computation
1345
 * --------------------------
1346
 *
1347
 * Two different sorts of precomputed tables are used in the following code.
1348
 * Each contain various points on the curve, where each point is three field
1349
 * elements (x, y, z).
1350
 *
1351
 * For the base point table, z is usually 1 (0 for the point at infinity).
1352
 * This table has 16 elements:
1353
 * index | bits    | point
1354
 * ------+---------+------------------------------
1355
 *     0 | 0 0 0 0 | 0G
1356
 *     1 | 0 0 0 1 | 1G
1357
 *     2 | 0 0 1 0 | 2^130G
1358
 *     3 | 0 0 1 1 | (2^130 + 1)G
1359
 *     4 | 0 1 0 0 | 2^260G
1360
 *     5 | 0 1 0 1 | (2^260 + 1)G
1361
 *     6 | 0 1 1 0 | (2^260 + 2^130)G
1362
 *     7 | 0 1 1 1 | (2^260 + 2^130 + 1)G
1363
 *     8 | 1 0 0 0 | 2^390G
1364
 *     9 | 1 0 0 1 | (2^390 + 1)G
1365
 *    10 | 1 0 1 0 | (2^390 + 2^130)G
1366
 *    11 | 1 0 1 1 | (2^390 + 2^130 + 1)G
1367
 *    12 | 1 1 0 0 | (2^390 + 2^260)G
1368
 *    13 | 1 1 0 1 | (2^390 + 2^260 + 1)G
1369
 *    14 | 1 1 1 0 | (2^390 + 2^260 + 2^130)G
1370
 *    15 | 1 1 1 1 | (2^390 + 2^260 + 2^130 + 1)G
1371
 *
1372
 * The reason for this is so that we can clock bits into four different
1373
 * locations when doing simple scalar multiplies against the base point.
1374
 *
1375
 * Tables for other points have table[i] = iG for i in 0 .. 16. */
1376
1377
/* gmul is the table of precomputed base points */
1378
static const felem gmul[16][3] = {
1379
{{0, 0, 0, 0, 0, 0, 0, 0, 0},
1380
 {0, 0, 0, 0, 0, 0, 0, 0, 0},
1381
 {0, 0, 0, 0, 0, 0, 0, 0, 0}},
1382
{{0x017e7e31c2e5bd66, 0x022cf0615a90a6fe, 0x00127a2ffa8de334,
1383
  0x01dfbf9d64a3f877, 0x006b4d3dbaa14b5e, 0x014fed487e0a2bd8,
1384
  0x015b4429c6481390, 0x03a73678fb2d988e, 0x00c6858e06b70404},
1385
 {0x00be94769fd16650, 0x031c21a89cb09022, 0x039013fad0761353,
1386
  0x02657bd099031542, 0x03273e662c97ee72, 0x01e6d11a05ebef45,
1387
  0x03d1bd998f544495, 0x03001172297ed0b1, 0x011839296a789a3b},
1388
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1389
{{0x0373faacbc875bae, 0x00f325023721c671, 0x00f666fd3dbde5ad,
1390
  0x01a6932363f88ea7, 0x01fc6d9e13f9c47b, 0x03bcbffc2bbf734e,
1391
  0x013ee3c3647f3a92, 0x029409fefe75d07d, 0x00ef9199963d85e5},
1392
 {0x011173743ad5b178, 0x02499c7c21bf7d46, 0x035beaeabb8b1a58,
1393
  0x00f989c4752ea0a3, 0x0101e1de48a9c1a3, 0x01a20076be28ba6c,
1394
  0x02f8052e5eb2de95, 0x01bfe8f82dea117c, 0x0160074d3c36ddb7},
1395
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1396
{{0x012f3fc373393b3b, 0x03d3d6172f1419fa, 0x02adc943c0b86873,
1397
  0x00d475584177952b, 0x012a4d1673750ee2, 0x00512517a0f13b0c,
1398
  0x02b184671a7b1734, 0x0315b84236f1a50a, 0x00a4afc472edbdb9},
1399
 {0x00152a7077f385c4, 0x03044007d8d1c2ee, 0x0065829d61d52b52,
1400
  0x00494ff6b6631d0d, 0x00a11d94d5f06bcf, 0x02d2f89474d9282e,
1401
  0x0241c5727c06eeb9, 0x0386928710fbdb9d, 0x01f883f727b0dfbe},
1402
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1403
{{0x019b0c3c9185544d, 0x006243a37c9d97db, 0x02ee3cbe030a2ad2,
1404
  0x00cfdd946bb51e0d, 0x0271c00932606b91, 0x03f817d1ec68c561,
1405
  0x03f37009806a369c, 0x03c1f30baf184fd5, 0x01091022d6d2f065},
1406
 {0x0292c583514c45ed, 0x0316fca51f9a286c, 0x00300af507c1489a,
1407
  0x0295f69008298cf1, 0x02c0ed8274943d7b, 0x016509b9b47a431e,
1408
  0x02bc9de9634868ce, 0x005b34929bffcb09, 0x000c1a0121681524},
1409
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1410
{{0x0286abc0292fb9f2, 0x02665eee9805b3f7, 0x01ed7455f17f26d6,
1411
  0x0346355b83175d13, 0x006284944cd0a097, 0x0191895bcdec5e51,
1412
  0x02e288370afda7d9, 0x03b22312bfefa67a, 0x01d104d3fc0613fe},
1413
 {0x0092421a12f7e47f, 0x0077a83fa373c501, 0x03bd25c5f696bd0d,
1414
  0x035c41e4d5459761, 0x01ca0d1742b24f53, 0x00aaab27863a509c,
1415
  0x018b6de47df73917, 0x025c0b771705cd01, 0x01fd51d566d760a7},
1416
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1417
{{0x01dd92ff6b0d1dbd, 0x039c5e2e8f8afa69, 0x0261ed13242c3b27,
1418
  0x0382c6e67026e6a0, 0x01d60b10be2089f9, 0x03c15f3dce86723f,
1419
  0x03c764a32d2a062d, 0x017307eac0fad056, 0x018207c0b96c5256},
1420
 {0x0196a16d60e13154, 0x03e6ce74c0267030, 0x00ddbf2b4e52a5aa,
1421
  0x012738241bbf31c8, 0x00ebe8dc04685a28, 0x024c2ad6d380d4a2,
1422
  0x035ee062a6e62d0e, 0x0029ed74af7d3a0f, 0x00eef32aec142ebd},
1423
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1424
{{0x00c31ec398993b39, 0x03a9f45bcda68253, 0x00ac733c24c70890,
1425
  0x00872b111401ff01, 0x01d178c23195eafb, 0x03bca2c816b87f74,
1426
  0x0261a9af46fbad7a, 0x0324b2a8dd3d28f9, 0x00918121d8f24e23},
1427
 {0x032bc8c1ca983cd7, 0x00d869dfb08fc8c6, 0x01693cb61fce1516,
1428
  0x012a5ea68f4e88a8, 0x010869cab88d7ae3, 0x009081ad277ceee1,
1429
  0x033a77166d064cdc, 0x03955235a1fb3a95, 0x01251a4a9b25b65e},
1430
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1431
{{0x00148a3a1b27f40b, 0x0123186df1b31fdc, 0x00026e7beaad34ce,
1432
  0x01db446ac1d3dbba, 0x0299c1a33437eaec, 0x024540610183cbb7,
1433
  0x0173bb0e9ce92e46, 0x02b937e43921214b, 0x01ab0436a9bf01b5},
1434
 {0x0383381640d46948, 0x008dacbf0e7f330f, 0x03602122bcc3f318,
1435
  0x01ee596b200620d6, 0x03bd0585fda430b3, 0x014aed77fd123a83,
1436
  0x005ace749e52f742, 0x0390fe041da2b842, 0x0189a8ceb3299242},
1437
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1438
{{0x012a19d6b3282473, 0x00c0915918b423ce, 0x023a954eb94405ae,
1439
  0x00529f692be26158, 0x0289fa1b6fa4b2aa, 0x0198ae4ceea346ef,
1440
  0x0047d8cdfbdedd49, 0x00cc8c8953f0f6b8, 0x001424abbff49203},
1441
 {0x0256732a1115a03a, 0x0351bc38665c6733, 0x03f7b950fb4a6447,
1442
  0x000afffa94c22155, 0x025763d0a4dab540, 0x000511e92d4fc283,
1443
  0x030a7e9eda0ee96c, 0x004c3cd93a28bf0a, 0x017edb3a8719217f},
1444
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1445
{{0x011de5675a88e673, 0x031d7d0f5e567fbe, 0x0016b2062c970ae5,
1446
  0x03f4a2be49d90aa7, 0x03cef0bd13822866, 0x03f0923dcf774a6c,
1447
  0x0284bebc4f322f72, 0x016ab2645302bb2c, 0x01793f95dace0e2a},
1448
 {0x010646e13527a28f, 0x01ca1babd59dc5e7, 0x01afedfd9a5595df,
1449
  0x01f15785212ea6b1, 0x0324e5d64f6ae3f4, 0x02d680f526d00645,
1450
  0x0127920fadf627a7, 0x03b383f75df4f684, 0x0089e0057e783b0a},
1451
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1452
{{0x00f334b9eb3c26c6, 0x0298fdaa98568dce, 0x01c2d24843a82292,
1453
  0x020bcb24fa1b0711, 0x02cbdb3d2b1875e6, 0x0014907598f89422,
1454
  0x03abe3aa43b26664, 0x02cbf47f720bc168, 0x0133b5e73014b79b},
1455
 {0x034aab5dab05779d, 0x00cdc5d71fee9abb, 0x0399f16bd4bd9d30,
1456
  0x03582fa592d82647, 0x02be1cdfb775b0e9, 0x0034f7cea32e94cb,
1457
  0x0335a7f08f56f286, 0x03b707e9565d1c8b, 0x0015c946ea5b614f},
1458
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1459
{{0x024676f6cff72255, 0x00d14625cac96378, 0x00532b6008bc3767,
1460
  0x01fc16721b985322, 0x023355ea1b091668, 0x029de7afdc0317c3,
1461
  0x02fc8a7ca2da037c, 0x02de1217d74a6f30, 0x013f7173175b73bf},
1462
 {0x0344913f441490b5, 0x0200f9e272b61eca, 0x0258a246b1dd55d2,
1463
  0x03753db9ea496f36, 0x025e02937a09c5ef, 0x030cbd3d14012692,
1464
  0x01793a67e70dc72a, 0x03ec1d37048a662e, 0x006550f700c32a8d},
1465
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1466
{{0x00d3f48a347eba27, 0x008e636649b61bd8, 0x00d3b93716778fb3,
1467
  0x004d1915757bd209, 0x019d5311a3da44e0, 0x016d1afcbbe6aade,
1468
  0x0241bf5f73265616, 0x0384672e5d50d39b, 0x005009fee522b684},
1469
 {0x029b4fab064435fe, 0x018868ee095bbb07, 0x01ea3d6936cc92b8,
1470
  0x000608b00f78a2f3, 0x02db911073d1c20f, 0x018205938470100a,
1471
  0x01f1e4964cbe6ff2, 0x021a19a29eed4663, 0x01414485f42afa81},
1472
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1473
{{0x01612b3a17f63e34, 0x03813992885428e6, 0x022b3c215b5a9608,
1474
  0x029b4057e19f2fcb, 0x0384059a587af7e6, 0x02d6400ace6fe610,
1475
  0x029354d896e8e331, 0x00c047ee6dfba65e, 0x0037720542e9d49d},
1476
 {0x02ce9eed7c5e9278, 0x0374ed703e79643b, 0x01316c54c4072006,
1477
  0x005aaa09054b2ee8, 0x002824000c840d57, 0x03d4eba24771ed86,
1478
  0x0189c50aabc3bdae, 0x0338c01541e15510, 0x00466d56e38eed42},
1479
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1480
{{0x007efd8330ad8bd6, 0x02465ed48047710b, 0x0034c6606b215e0c,
1481
  0x016ae30c53cbf839, 0x01fa17bd37161216, 0x018ead4e61ce8ab9,
1482
  0x005482ed5f5dee46, 0x037543755bba1d7f, 0x005e5ac7e70a9d0f},
1483
 {0x0117e1bb2fdcb2a2, 0x03deea36249f40c4, 0x028d09b4a6246cb7,
1484
  0x03524b8855bcf756, 0x023d7d109d5ceb58, 0x0178e43e3223ef9c,
1485
  0x0154536a0c6e966a, 0x037964d1286ee9fe, 0x0199bcd90e125055},
1486
 {1, 0, 0, 0, 0, 0, 0, 0, 0}}
1487
};
1488
1489
/*
1490
 * select_point selects the |idx|th point from a precomputation table and
1491
 * copies it to out.
1492
 */
1493
 /* pre_comp below is of the size provided in |size| */
1494
static void select_point(const limb idx, unsigned int size,
1495
                         const felem pre_comp[][3], felem out[3])
1496
64.7k
{
1497
64.7k
    unsigned i, j;
1498
64.7k
    limb *outlimbs = &out[0][0];
1499
1500
64.7k
    memset(out, 0, sizeof(*out) * 3);
1501
1502
1.11M
    for (i = 0; i < size; i++) {
1503
1.05M
        const limb *inlimbs = &pre_comp[i][0][0];
1504
1.05M
        limb mask = i ^ idx;
1505
1.05M
        mask |= mask >> 4;
1506
1.05M
        mask |= mask >> 2;
1507
1.05M
        mask |= mask >> 1;
1508
1.05M
        mask &= 1;
1509
1.05M
        mask--;
1510
29.5M
        for (j = 0; j < NLIMBS * 3; j++)
1511
28.4M
            outlimbs[j] |= inlimbs[j] & mask;
1512
1.05M
    }
1513
64.7k
}
1514
1515
/* get_bit returns the |i|th bit in |in| */
1516
static char get_bit(const felem_bytearray in, int i)
1517
292k
{
1518
292k
    if (i < 0)
1519
163
        return 0;
1520
292k
    return (in[i >> 3] >> (i & 7)) & 1;
1521
292k
}
1522
1523
/*
1524
 * Interleaved point multiplication using precomputed point multiples: The
1525
 * small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[], the scalars
1526
 * in scalars[]. If g_scalar is non-NULL, we also add this multiple of the
1527
 * generator, using certain (large) precomputed multiples in g_pre_comp.
1528
 * Output point (X, Y, Z) is stored in x_out, y_out, z_out
1529
 */
1530
static void batch_mul(felem x_out, felem y_out, felem z_out,
1531
                      const felem_bytearray scalars[],
1532
                      const unsigned num_points, const u8 *g_scalar,
1533
                      const int mixed, const felem pre_comp[][17][3],
1534
                      const felem g_pre_comp[16][3])
1535
511
{
1536
511
    int i, skip;
1537
511
    unsigned num, gen_mul = (g_scalar != NULL);
1538
511
    felem nq[3], tmp[4];
1539
511
    limb bits;
1540
511
    u8 sign, digit;
1541
1542
    /* set nq to the point at infinity */
1543
511
    memset(nq, 0, sizeof(nq));
1544
1545
    /*
1546
     * Loop over all scalars msb-to-lsb, interleaving additions of multiples
1547
     * of the generator (last quarter of rounds) and additions of other
1548
     * points multiples (every 5th round).
1549
     */
1550
511
    skip = 1;                   /* save two point operations in the first
1551
                                 * round */
1552
131k
    for (i = (num_points ? 520 : 130); i >= 0; --i) {
1553
        /* double */
1554
130k
        if (!skip)
1555
130k
            point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
1556
1557
        /* add multiples of the generator */
1558
130k
        if (gen_mul && (i <= 130)) {
1559
47.6k
            bits = get_bit(g_scalar, i + 390) << 3;
1560
47.6k
            if (i < 130) {
1561
47.3k
                bits |= get_bit(g_scalar, i + 260) << 2;
1562
47.3k
                bits |= get_bit(g_scalar, i + 130) << 1;
1563
47.3k
                bits |= get_bit(g_scalar, i);
1564
47.3k
            }
1565
            /* select the point to add, in constant time */
1566
47.6k
            select_point(bits, 16, g_pre_comp, tmp);
1567
47.6k
            if (!skip) {
1568
                /* The 1 argument below is for "mixed" */
1569
47.3k
                point_add(nq[0], nq[1], nq[2],
1570
47.3k
                          nq[0], nq[1], nq[2], 1, tmp[0], tmp[1], tmp[2]);
1571
47.3k
            } else {
1572
348
                memcpy(nq, tmp, 3 * sizeof(felem));
1573
348
                skip = 0;
1574
348
            }
1575
47.6k
        }
1576
1577
        /* do other additions every 5 doublings */
1578
130k
        if (num_points && (i % 5 == 0)) {
1579
            /* loop over all scalars */
1580
34.2k
            for (num = 0; num < num_points; ++num) {
1581
17.1k
                bits = get_bit(scalars[num], i + 4) << 5;
1582
17.1k
                bits |= get_bit(scalars[num], i + 3) << 4;
1583
17.1k
                bits |= get_bit(scalars[num], i + 2) << 3;
1584
17.1k
                bits |= get_bit(scalars[num], i + 1) << 2;
1585
17.1k
                bits |= get_bit(scalars[num], i) << 1;
1586
17.1k
                bits |= get_bit(scalars[num], i - 1);
1587
17.1k
                ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
1588
1589
                /*
1590
                 * select the point to add or subtract, in constant time
1591
                 */
1592
17.1k
                select_point(digit, 17, pre_comp[num], tmp);
1593
17.1k
                felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the negative
1594
                                            * point */
1595
17.1k
                copy_conditional(tmp[1], tmp[3], (-(limb) sign));
1596
1597
17.1k
                if (!skip) {
1598
16.9k
                    point_add(nq[0], nq[1], nq[2],
1599
16.9k
                              nq[0], nq[1], nq[2],
1600
16.9k
                              mixed, tmp[0], tmp[1], tmp[2]);
1601
16.9k
                } else {
1602
163
                    memcpy(nq, tmp, 3 * sizeof(felem));
1603
163
                    skip = 0;
1604
163
                }
1605
17.1k
            }
1606
17.1k
        }
1607
130k
    }
1608
511
    felem_assign(x_out, nq[0]);
1609
511
    felem_assign(y_out, nq[1]);
1610
511
    felem_assign(z_out, nq[2]);
1611
511
}
1612
1613
/* Precomputation for the group generator. */
1614
struct nistp521_pre_comp_st {
1615
    felem g_pre_comp[16][3];
1616
    CRYPTO_REF_COUNT references;
1617
    CRYPTO_RWLOCK *lock;
1618
};
1619
1620
const EC_METHOD *EC_GFp_nistp521_method(void)
1621
11.8k
{
1622
11.8k
    static const EC_METHOD ret = {
1623
11.8k
        EC_FLAGS_DEFAULT_OCT,
1624
11.8k
        NID_X9_62_prime_field,
1625
11.8k
        ec_GFp_nistp521_group_init,
1626
11.8k
        ec_GFp_simple_group_finish,
1627
11.8k
        ec_GFp_simple_group_clear_finish,
1628
11.8k
        ec_GFp_nist_group_copy,
1629
11.8k
        ec_GFp_nistp521_group_set_curve,
1630
11.8k
        ec_GFp_simple_group_get_curve,
1631
11.8k
        ec_GFp_simple_group_get_degree,
1632
11.8k
        ec_group_simple_order_bits,
1633
11.8k
        ec_GFp_simple_group_check_discriminant,
1634
11.8k
        ec_GFp_simple_point_init,
1635
11.8k
        ec_GFp_simple_point_finish,
1636
11.8k
        ec_GFp_simple_point_clear_finish,
1637
11.8k
        ec_GFp_simple_point_copy,
1638
11.8k
        ec_GFp_simple_point_set_to_infinity,
1639
11.8k
        ec_GFp_simple_set_Jprojective_coordinates_GFp,
1640
11.8k
        ec_GFp_simple_get_Jprojective_coordinates_GFp,
1641
11.8k
        ec_GFp_simple_point_set_affine_coordinates,
1642
11.8k
        ec_GFp_nistp521_point_get_affine_coordinates,
1643
11.8k
        0 /* point_set_compressed_coordinates */ ,
1644
11.8k
        0 /* point2oct */ ,
1645
11.8k
        0 /* oct2point */ ,
1646
11.8k
        ec_GFp_simple_add,
1647
11.8k
        ec_GFp_simple_dbl,
1648
11.8k
        ec_GFp_simple_invert,
1649
11.8k
        ec_GFp_simple_is_at_infinity,
1650
11.8k
        ec_GFp_simple_is_on_curve,
1651
11.8k
        ec_GFp_simple_cmp,
1652
11.8k
        ec_GFp_simple_make_affine,
1653
11.8k
        ec_GFp_simple_points_make_affine,
1654
11.8k
        ec_GFp_nistp521_points_mul,
1655
11.8k
        ec_GFp_nistp521_precompute_mult,
1656
11.8k
        ec_GFp_nistp521_have_precompute_mult,
1657
11.8k
        ec_GFp_nist_field_mul,
1658
11.8k
        ec_GFp_nist_field_sqr,
1659
11.8k
        0 /* field_div */ ,
1660
11.8k
        ec_GFp_simple_field_inv,
1661
11.8k
        0 /* field_encode */ ,
1662
11.8k
        0 /* field_decode */ ,
1663
11.8k
        0,                      /* field_set_to_one */
1664
11.8k
        ec_key_simple_priv2oct,
1665
11.8k
        ec_key_simple_oct2priv,
1666
11.8k
        0, /* set private */
1667
11.8k
        ec_key_simple_generate_key,
1668
11.8k
        ec_key_simple_check_key,
1669
11.8k
        ec_key_simple_generate_public_key,
1670
11.8k
        0, /* keycopy */
1671
11.8k
        0, /* keyfinish */
1672
11.8k
        ecdh_simple_compute_key,
1673
11.8k
        0, /* field_inverse_mod_ord */
1674
11.8k
        0, /* blind_coordinates */
1675
11.8k
        0, /* ladder_pre */
1676
11.8k
        0, /* ladder_step */
1677
11.8k
        0  /* ladder_post */
1678
11.8k
    };
1679
1680
11.8k
    return &ret;
1681
11.8k
}
1682
1683
/******************************************************************************/
1684
/*
1685
 * FUNCTIONS TO MANAGE PRECOMPUTATION
1686
 */
1687
1688
static NISTP521_PRE_COMP *nistp521_pre_comp_new(void)
1689
0
{
1690
0
    NISTP521_PRE_COMP *ret = OPENSSL_zalloc(sizeof(*ret));
1691
1692
0
    if (ret == NULL) {
1693
0
        ECerr(EC_F_NISTP521_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
1694
0
        return ret;
1695
0
    }
1696
1697
0
    ret->references = 1;
1698
1699
0
    ret->lock = CRYPTO_THREAD_lock_new();
1700
0
    if (ret->lock == NULL) {
1701
0
        ECerr(EC_F_NISTP521_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
1702
0
        OPENSSL_free(ret);
1703
0
        return NULL;
1704
0
    }
1705
0
    return ret;
1706
0
}
1707
1708
NISTP521_PRE_COMP *EC_nistp521_pre_comp_dup(NISTP521_PRE_COMP *p)
1709
0
{
1710
0
    int i;
1711
0
    if (p != NULL)
1712
0
        CRYPTO_UP_REF(&p->references, &i, p->lock);
1713
0
    return p;
1714
0
}
1715
1716
void EC_nistp521_pre_comp_free(NISTP521_PRE_COMP *p)
1717
0
{
1718
0
    int i;
1719
1720
0
    if (p == NULL)
1721
0
        return;
1722
1723
0
    CRYPTO_DOWN_REF(&p->references, &i, p->lock);
1724
0
    REF_PRINT_COUNT("EC_nistp521", x);
1725
0
    if (i > 0)
1726
0
        return;
1727
0
    REF_ASSERT_ISNT(i < 0);
1728
1729
0
    CRYPTO_THREAD_lock_free(p->lock);
1730
0
    OPENSSL_free(p);
1731
0
}
1732
1733
/******************************************************************************/
1734
/*
1735
 * OPENSSL EC_METHOD FUNCTIONS
1736
 */
1737
1738
int ec_GFp_nistp521_group_init(EC_GROUP *group)
1739
6.69k
{
1740
6.69k
    int ret;
1741
6.69k
    ret = ec_GFp_simple_group_init(group);
1742
6.69k
    group->a_is_minus3 = 1;
1743
6.69k
    return ret;
1744
6.69k
}
1745
1746
int ec_GFp_nistp521_group_set_curve(EC_GROUP *group, const BIGNUM *p,
1747
                                    const BIGNUM *a, const BIGNUM *b,
1748
                                    BN_CTX *ctx)
1749
3.25k
{
1750
3.25k
    int ret = 0;
1751
3.25k
    BN_CTX *new_ctx = NULL;
1752
3.25k
    BIGNUM *curve_p, *curve_a, *curve_b;
1753
1754
3.25k
    if (ctx == NULL)
1755
0
        if ((ctx = new_ctx = BN_CTX_new()) == NULL)
1756
0
            return 0;
1757
3.25k
    BN_CTX_start(ctx);
1758
3.25k
    curve_p = BN_CTX_get(ctx);
1759
3.25k
    curve_a = BN_CTX_get(ctx);
1760
3.25k
    curve_b = BN_CTX_get(ctx);
1761
3.25k
    if (curve_b == NULL)
1762
0
        goto err;
1763
3.25k
    BN_bin2bn(nistp521_curve_params[0], sizeof(felem_bytearray), curve_p);
1764
3.25k
    BN_bin2bn(nistp521_curve_params[1], sizeof(felem_bytearray), curve_a);
1765
3.25k
    BN_bin2bn(nistp521_curve_params[2], sizeof(felem_bytearray), curve_b);
1766
3.25k
    if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || (BN_cmp(curve_b, b))) {
1767
0
        ECerr(EC_F_EC_GFP_NISTP521_GROUP_SET_CURVE,
1768
0
              EC_R_WRONG_CURVE_PARAMETERS);
1769
0
        goto err;
1770
0
    }
1771
3.25k
    group->field_mod_func = BN_nist_mod_521;
1772
3.25k
    ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
1773
3.25k
 err:
1774
3.25k
    BN_CTX_end(ctx);
1775
3.25k
    BN_CTX_free(new_ctx);
1776
3.25k
    return ret;
1777
3.25k
}
1778
1779
/*
1780
 * Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') =
1781
 * (X/Z^2, Y/Z^3)
1782
 */
1783
int ec_GFp_nistp521_point_get_affine_coordinates(const EC_GROUP *group,
1784
                                                 const EC_POINT *point,
1785
                                                 BIGNUM *x, BIGNUM *y,
1786
                                                 BN_CTX *ctx)
1787
247
{
1788
247
    felem z1, z2, x_in, y_in, x_out, y_out;
1789
247
    largefelem tmp;
1790
1791
247
    if (EC_POINT_is_at_infinity(group, point)) {
1792
0
        ECerr(EC_F_EC_GFP_NISTP521_POINT_GET_AFFINE_COORDINATES,
1793
0
              EC_R_POINT_AT_INFINITY);
1794
0
        return 0;
1795
0
    }
1796
247
    if ((!BN_to_felem(x_in, point->X)) || (!BN_to_felem(y_in, point->Y)) ||
1797
247
        (!BN_to_felem(z1, point->Z)))
1798
0
        return 0;
1799
247
    felem_inv(z2, z1);
1800
247
    felem_square(tmp, z2);
1801
247
    felem_reduce(z1, tmp);
1802
247
    felem_mul(tmp, x_in, z1);
1803
247
    felem_reduce(x_in, tmp);
1804
247
    felem_contract(x_out, x_in);
1805
247
    if (x != NULL) {
1806
247
        if (!felem_to_BN(x, x_out)) {
1807
0
            ECerr(EC_F_EC_GFP_NISTP521_POINT_GET_AFFINE_COORDINATES,
1808
0
                  ERR_R_BN_LIB);
1809
0
            return 0;
1810
0
        }
1811
247
    }
1812
247
    felem_mul(tmp, z1, z2);
1813
247
    felem_reduce(z1, tmp);
1814
247
    felem_mul(tmp, y_in, z1);
1815
247
    felem_reduce(y_in, tmp);
1816
247
    felem_contract(y_out, y_in);
1817
247
    if (y != NULL) {
1818
157
        if (!felem_to_BN(y, y_out)) {
1819
0
            ECerr(EC_F_EC_GFP_NISTP521_POINT_GET_AFFINE_COORDINATES,
1820
0
                  ERR_R_BN_LIB);
1821
0
            return 0;
1822
0
        }
1823
157
    }
1824
247
    return 1;
1825
247
}
1826
1827
/* points below is of size |num|, and tmp_felems is of size |num+1/ */
1828
static void make_points_affine(size_t num, felem points[][3],
1829
                               felem tmp_felems[])
1830
0
{
1831
    /*
1832
     * Runs in constant time, unless an input is the point at infinity (which
1833
     * normally shouldn't happen).
1834
     */
1835
0
    ec_GFp_nistp_points_make_affine_internal(num,
1836
0
                                             points,
1837
0
                                             sizeof(felem),
1838
0
                                             tmp_felems,
1839
0
                                             (void (*)(void *))felem_one,
1840
0
                                             felem_is_zero_int,
1841
0
                                             (void (*)(void *, const void *))
1842
0
                                             felem_assign,
1843
0
                                             (void (*)(void *, const void *))
1844
0
                                             felem_square_reduce, (void (*)
1845
0
                                                                   (void *,
1846
0
                                                                    const void
1847
0
                                                                    *,
1848
0
                                                                    const void
1849
0
                                                                    *))
1850
0
                                             felem_mul_reduce,
1851
0
                                             (void (*)(void *, const void *))
1852
0
                                             felem_inv,
1853
0
                                             (void (*)(void *, const void *))
1854
0
                                             felem_contract);
1855
0
}
1856
1857
/*
1858
 * Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL
1859
 * values Result is stored in r (r can equal one of the inputs).
1860
 */
1861
int ec_GFp_nistp521_points_mul(const EC_GROUP *group, EC_POINT *r,
1862
                               const BIGNUM *scalar, size_t num,
1863
                               const EC_POINT *points[],
1864
                               const BIGNUM *scalars[], BN_CTX *ctx)
1865
246
{
1866
246
    int ret = 0;
1867
246
    int j;
1868
246
    int mixed = 0;
1869
246
    BIGNUM *x, *y, *z, *tmp_scalar;
1870
246
    felem_bytearray g_secret;
1871
246
    felem_bytearray *secrets = NULL;
1872
246
    felem (*pre_comp)[17][3] = NULL;
1873
246
    felem *tmp_felems = NULL;
1874
246
    unsigned i;
1875
246
    int num_bytes;
1876
246
    int have_pre_comp = 0;
1877
246
    size_t num_points = num;
1878
246
    felem x_in, y_in, z_in, x_out, y_out, z_out;
1879
246
    NISTP521_PRE_COMP *pre = NULL;
1880
246
    felem(*g_pre_comp)[3] = NULL;
1881
246
    EC_POINT *generator = NULL;
1882
246
    const EC_POINT *p = NULL;
1883
246
    const BIGNUM *p_scalar = NULL;
1884
1885
246
    BN_CTX_start(ctx);
1886
246
    x = BN_CTX_get(ctx);
1887
246
    y = BN_CTX_get(ctx);
1888
246
    z = BN_CTX_get(ctx);
1889
246
    tmp_scalar = BN_CTX_get(ctx);
1890
246
    if (tmp_scalar == NULL)
1891
0
        goto err;
1892
1893
246
    if (scalar != NULL) {
1894
153
        pre = group->pre_comp.nistp521;
1895
153
        if (pre)
1896
            /* we have precomputation, try to use it */
1897
0
            g_pre_comp = &pre->g_pre_comp[0];
1898
153
        else
1899
            /* try to use the standard precomputation */
1900
153
            g_pre_comp = (felem(*)[3]) gmul;
1901
153
        generator = EC_POINT_new(group);
1902
153
        if (generator == NULL)
1903
0
            goto err;
1904
        /* get the generator from precomputation */
1905
153
        if (!felem_to_BN(x, g_pre_comp[1][0]) ||
1906
153
            !felem_to_BN(y, g_pre_comp[1][1]) ||
1907
153
            !felem_to_BN(z, g_pre_comp[1][2])) {
1908
0
            ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB);
1909
0
            goto err;
1910
0
        }
1911
153
        if (!EC_POINT_set_Jprojective_coordinates_GFp(group,
1912
153
                                                      generator, x, y, z,
1913
153
                                                      ctx))
1914
0
            goto err;
1915
153
        if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
1916
            /* precomputation matches generator */
1917
153
            have_pre_comp = 1;
1918
0
        else
1919
            /*
1920
             * we don't have valid precomputation: treat the generator as a
1921
             * random point
1922
             */
1923
0
            num_points++;
1924
153
    }
1925
1926
246
    if (num_points > 0) {
1927
97
        if (num_points >= 2) {
1928
            /*
1929
             * unless we precompute multiples for just one point, converting
1930
             * those into affine form is time well spent
1931
             */
1932
0
            mixed = 1;
1933
0
        }
1934
97
        secrets = OPENSSL_zalloc(sizeof(*secrets) * num_points);
1935
97
        pre_comp = OPENSSL_zalloc(sizeof(*pre_comp) * num_points);
1936
97
        if (mixed)
1937
0
            tmp_felems =
1938
0
                OPENSSL_malloc(sizeof(*tmp_felems) * (num_points * 17 + 1));
1939
97
        if ((secrets == NULL) || (pre_comp == NULL)
1940
97
            || (mixed && (tmp_felems == NULL))) {
1941
0
            ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_MALLOC_FAILURE);
1942
0
            goto err;
1943
0
        }
1944
1945
        /*
1946
         * we treat NULL scalars as 0, and NULL points as points at infinity,
1947
         * i.e., they contribute nothing to the linear combination
1948
         */
1949
194
        for (i = 0; i < num_points; ++i) {
1950
97
            if (i == num) {
1951
                /*
1952
                 * we didn't have a valid precomputation, so we pick the
1953
                 * generator
1954
                 */
1955
0
                p = EC_GROUP_get0_generator(group);
1956
0
                p_scalar = scalar;
1957
97
            } else {
1958
                /* the i^th point */
1959
97
                p = points[i];
1960
97
                p_scalar = scalars[i];
1961
97
            }
1962
97
            if ((p_scalar != NULL) && (p != NULL)) {
1963
                /* reduce scalar to 0 <= scalar < 2^521 */
1964
97
                if ((BN_num_bits(p_scalar) > 521)
1965
97
                    || (BN_is_negative(p_scalar))) {
1966
                    /*
1967
                     * this is an unusual input, and we don't guarantee
1968
                     * constant-timeness
1969
                     */
1970
0
                    if (!BN_nnmod(tmp_scalar, p_scalar, group->order, ctx)) {
1971
0
                        ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB);
1972
0
                        goto err;
1973
0
                    }
1974
0
                    num_bytes = BN_bn2lebinpad(tmp_scalar,
1975
0
                                               secrets[i], sizeof(secrets[i]));
1976
97
                } else {
1977
97
                    num_bytes = BN_bn2lebinpad(p_scalar,
1978
97
                                               secrets[i], sizeof(secrets[i]));
1979
97
                }
1980
97
                if (num_bytes < 0) {
1981
0
                    ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB);
1982
0
                    goto err;
1983
0
                }
1984
                /* precompute multiples */
1985
97
                if ((!BN_to_felem(x_out, p->X)) ||
1986
97
                    (!BN_to_felem(y_out, p->Y)) ||
1987
97
                    (!BN_to_felem(z_out, p->Z)))
1988
0
                    goto err;
1989
97
                memcpy(pre_comp[i][1][0], x_out, sizeof(felem));
1990
97
                memcpy(pre_comp[i][1][1], y_out, sizeof(felem));
1991
97
                memcpy(pre_comp[i][1][2], z_out, sizeof(felem));
1992
1.55k
                for (j = 2; j <= 16; ++j) {
1993
1.45k
                    if (j & 1) {
1994
679
                        point_add(pre_comp[i][j][0], pre_comp[i][j][1],
1995
679
                                  pre_comp[i][j][2], pre_comp[i][1][0],
1996
679
                                  pre_comp[i][1][1], pre_comp[i][1][2], 0,
1997
679
                                  pre_comp[i][j - 1][0],
1998
679
                                  pre_comp[i][j - 1][1],
1999
679
                                  pre_comp[i][j - 1][2]);
2000
776
                    } else {
2001
776
                        point_double(pre_comp[i][j][0], pre_comp[i][j][1],
2002
776
                                     pre_comp[i][j][2], pre_comp[i][j / 2][0],
2003
776
                                     pre_comp[i][j / 2][1],
2004
776
                                     pre_comp[i][j / 2][2]);
2005
776
                    }
2006
1.45k
                }
2007
97
            }
2008
97
        }
2009
97
        if (mixed)
2010
0
            make_points_affine(num_points * 17, pre_comp[0], tmp_felems);
2011
97
    }
2012
2013
    /* the scalar for the generator */
2014
246
    if ((scalar != NULL) && (have_pre_comp)) {
2015
153
        memset(g_secret, 0, sizeof(g_secret));
2016
        /* reduce scalar to 0 <= scalar < 2^521 */
2017
153
        if ((BN_num_bits(scalar) > 521) || (BN_is_negative(scalar))) {
2018
            /*
2019
             * this is an unusual input, and we don't guarantee
2020
             * constant-timeness
2021
             */
2022
2
            if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) {
2023
0
                ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB);
2024
0
                goto err;
2025
0
            }
2026
2
            num_bytes = BN_bn2lebinpad(tmp_scalar, g_secret, sizeof(g_secret));
2027
151
        } else {
2028
151
            num_bytes = BN_bn2lebinpad(scalar, g_secret, sizeof(g_secret));
2029
151
        }
2030
        /* do the multiplication with generator precomputation */
2031
153
        batch_mul(x_out, y_out, z_out,
2032
153
                  (const felem_bytearray(*))secrets, num_points,
2033
153
                  g_secret,
2034
153
                  mixed, (const felem(*)[17][3])pre_comp,
2035
153
                  (const felem(*)[3])g_pre_comp);
2036
153
    } else {
2037
        /* do the multiplication without generator precomputation */
2038
93
        batch_mul(x_out, y_out, z_out,
2039
93
                  (const felem_bytearray(*))secrets, num_points,
2040
93
                  NULL, mixed, (const felem(*)[17][3])pre_comp, NULL);
2041
93
    }
2042
    /* reduce the output to its unique minimal representation */
2043
246
    felem_contract(x_in, x_out);
2044
246
    felem_contract(y_in, y_out);
2045
246
    felem_contract(z_in, z_out);
2046
246
    if ((!felem_to_BN(x, x_in)) || (!felem_to_BN(y, y_in)) ||
2047
246
        (!felem_to_BN(z, z_in))) {
2048
0
        ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB);
2049
0
        goto err;
2050
0
    }
2051
246
    ret = EC_POINT_set_Jprojective_coordinates_GFp(group, r, x, y, z, ctx);
2052
2053
246
 err:
2054
246
    BN_CTX_end(ctx);
2055
246
    EC_POINT_free(generator);
2056
246
    OPENSSL_free(secrets);
2057
246
    OPENSSL_free(pre_comp);
2058
246
    OPENSSL_free(tmp_felems);
2059
246
    return ret;
2060
246
}
2061
2062
int ec_GFp_nistp521_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
2063
0
{
2064
0
    int ret = 0;
2065
0
    NISTP521_PRE_COMP *pre = NULL;
2066
0
    int i, j;
2067
0
    BN_CTX *new_ctx = NULL;
2068
0
    BIGNUM *x, *y;
2069
0
    EC_POINT *generator = NULL;
2070
0
    felem tmp_felems[16];
2071
2072
    /* throw away old precomputation */
2073
0
    EC_pre_comp_free(group);
2074
0
    if (ctx == NULL)
2075
0
        if ((ctx = new_ctx = BN_CTX_new()) == NULL)
2076
0
            return 0;
2077
0
    BN_CTX_start(ctx);
2078
0
    x = BN_CTX_get(ctx);
2079
0
    y = BN_CTX_get(ctx);
2080
0
    if (y == NULL)
2081
0
        goto err;
2082
    /* get the generator */
2083
0
    if (group->generator == NULL)
2084
0
        goto err;
2085
0
    generator = EC_POINT_new(group);
2086
0
    if (generator == NULL)
2087
0
        goto err;
2088
0
    BN_bin2bn(nistp521_curve_params[3], sizeof(felem_bytearray), x);
2089
0
    BN_bin2bn(nistp521_curve_params[4], sizeof(felem_bytearray), y);
2090
0
    if (!EC_POINT_set_affine_coordinates(group, generator, x, y, ctx))
2091
0
        goto err;
2092
0
    if ((pre = nistp521_pre_comp_new()) == NULL)
2093
0
        goto err;
2094
    /*
2095
     * if the generator is the standard one, use built-in precomputation
2096
     */
2097
0
    if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) {
2098
0
        memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp));
2099
0
        goto done;
2100
0
    }
2101
0
    if ((!BN_to_felem(pre->g_pre_comp[1][0], group->generator->X)) ||
2102
0
        (!BN_to_felem(pre->g_pre_comp[1][1], group->generator->Y)) ||
2103
0
        (!BN_to_felem(pre->g_pre_comp[1][2], group->generator->Z)))
2104
0
        goto err;
2105
    /* compute 2^130*G, 2^260*G, 2^390*G */
2106
0
    for (i = 1; i <= 4; i <<= 1) {
2107
0
        point_double(pre->g_pre_comp[2 * i][0], pre->g_pre_comp[2 * i][1],
2108
0
                     pre->g_pre_comp[2 * i][2], pre->g_pre_comp[i][0],
2109
0
                     pre->g_pre_comp[i][1], pre->g_pre_comp[i][2]);
2110
0
        for (j = 0; j < 129; ++j) {
2111
0
            point_double(pre->g_pre_comp[2 * i][0],
2112
0
                         pre->g_pre_comp[2 * i][1],
2113
0
                         pre->g_pre_comp[2 * i][2],
2114
0
                         pre->g_pre_comp[2 * i][0],
2115
0
                         pre->g_pre_comp[2 * i][1],
2116
0
                         pre->g_pre_comp[2 * i][2]);
2117
0
        }
2118
0
    }
2119
    /* g_pre_comp[0] is the point at infinity */
2120
0
    memset(pre->g_pre_comp[0], 0, sizeof(pre->g_pre_comp[0]));
2121
    /* the remaining multiples */
2122
    /* 2^130*G + 2^260*G */
2123
0
    point_add(pre->g_pre_comp[6][0], pre->g_pre_comp[6][1],
2124
0
              pre->g_pre_comp[6][2], pre->g_pre_comp[4][0],
2125
0
              pre->g_pre_comp[4][1], pre->g_pre_comp[4][2],
2126
0
              0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
2127
0
              pre->g_pre_comp[2][2]);
2128
    /* 2^130*G + 2^390*G */
2129
0
    point_add(pre->g_pre_comp[10][0], pre->g_pre_comp[10][1],
2130
0
              pre->g_pre_comp[10][2], pre->g_pre_comp[8][0],
2131
0
              pre->g_pre_comp[8][1], pre->g_pre_comp[8][2],
2132
0
              0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
2133
0
              pre->g_pre_comp[2][2]);
2134
    /* 2^260*G + 2^390*G */
2135
0
    point_add(pre->g_pre_comp[12][0], pre->g_pre_comp[12][1],
2136
0
              pre->g_pre_comp[12][2], pre->g_pre_comp[8][0],
2137
0
              pre->g_pre_comp[8][1], pre->g_pre_comp[8][2],
2138
0
              0, pre->g_pre_comp[4][0], pre->g_pre_comp[4][1],
2139
0
              pre->g_pre_comp[4][2]);
2140
    /* 2^130*G + 2^260*G + 2^390*G */
2141
0
    point_add(pre->g_pre_comp[14][0], pre->g_pre_comp[14][1],
2142
0
              pre->g_pre_comp[14][2], pre->g_pre_comp[12][0],
2143
0
              pre->g_pre_comp[12][1], pre->g_pre_comp[12][2],
2144
0
              0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
2145
0
              pre->g_pre_comp[2][2]);
2146
0
    for (i = 1; i < 8; ++i) {
2147
        /* odd multiples: add G */
2148
0
        point_add(pre->g_pre_comp[2 * i + 1][0],
2149
0
                  pre->g_pre_comp[2 * i + 1][1],
2150
0
                  pre->g_pre_comp[2 * i + 1][2], pre->g_pre_comp[2 * i][0],
2151
0
                  pre->g_pre_comp[2 * i][1], pre->g_pre_comp[2 * i][2], 0,
2152
0
                  pre->g_pre_comp[1][0], pre->g_pre_comp[1][1],
2153
0
                  pre->g_pre_comp[1][2]);
2154
0
    }
2155
0
    make_points_affine(15, &(pre->g_pre_comp[1]), tmp_felems);
2156
2157
0
 done:
2158
0
    SETPRECOMP(group, nistp521, pre);
2159
0
    ret = 1;
2160
0
    pre = NULL;
2161
0
 err:
2162
0
    BN_CTX_end(ctx);
2163
0
    EC_POINT_free(generator);
2164
0
    BN_CTX_free(new_ctx);
2165
0
    EC_nistp521_pre_comp_free(pre);
2166
0
    return ret;
2167
0
}
2168
2169
int ec_GFp_nistp521_have_precompute_mult(const EC_GROUP *group)
2170
0
{
2171
0
    return HAVEPRECOMP(group, nistp521);
2172
0
}
2173
2174
#endif