Coverage Report

Created: 2023-06-08 06:43

/src/openssl30/crypto/ec/ecp_nistp521.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 2011-2021 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
/* Copyright 2011 Google Inc.
11
 *
12
 * Licensed under the Apache License, Version 2.0 (the "License");
13
 *
14
 * you may not use this file except in compliance with the License.
15
 * You may obtain a copy of the License at
16
 *
17
 *     http://www.apache.org/licenses/LICENSE-2.0
18
 *
19
 *  Unless required by applicable law or agreed to in writing, software
20
 *  distributed under the License is distributed on an "AS IS" BASIS,
21
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
22
 *  See the License for the specific language governing permissions and
23
 *  limitations under the License.
24
 */
25
26
/*
27
 * ECDSA low level APIs are deprecated for public use, but still ok for
28
 * internal use.
29
 */
30
#include "internal/deprecated.h"
31
32
/*
33
 * A 64-bit implementation of the NIST P-521 elliptic curve point multiplication
34
 *
35
 * OpenSSL integration was taken from Emilia Kasper's work in ecp_nistp224.c.
36
 * Otherwise based on Emilia's P224 work, which was inspired by my curve25519
37
 * work which got its smarts from Daniel J. Bernstein's work on the same.
38
 */
39
40
#include <openssl/e_os2.h>
41
42
#include <string.h>
43
#include <openssl/err.h>
44
#include "ec_local.h"
45
46
#include "internal/numbers.h"
47
48
#ifndef INT128_MAX
49
# error "Your compiler doesn't appear to support 128-bit integer types"
50
#endif
51
52
typedef uint8_t u8;
53
typedef uint64_t u64;
54
55
/*
56
 * The underlying field. P521 operates over GF(2^521-1). We can serialize an
57
 * element of this field into 66 bytes where the most significant byte
58
 * contains only a single bit. We call this an felem_bytearray.
59
 */
60
61
typedef u8 felem_bytearray[66];
62
63
/*
64
 * These are the parameters of P521, taken from FIPS 186-3, section D.1.2.5.
65
 * These values are big-endian.
66
 */
67
static const felem_bytearray nistp521_curve_params[5] = {
68
    {0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* p */
69
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
70
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
71
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
72
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
73
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
74
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
75
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
76
     0xff, 0xff},
77
    {0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* a = -3 */
78
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
79
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
80
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
81
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
82
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
83
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
84
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
85
     0xff, 0xfc},
86
    {0x00, 0x51, 0x95, 0x3e, 0xb9, 0x61, 0x8e, 0x1c, /* b */
87
     0x9a, 0x1f, 0x92, 0x9a, 0x21, 0xa0, 0xb6, 0x85,
88
     0x40, 0xee, 0xa2, 0xda, 0x72, 0x5b, 0x99, 0xb3,
89
     0x15, 0xf3, 0xb8, 0xb4, 0x89, 0x91, 0x8e, 0xf1,
90
     0x09, 0xe1, 0x56, 0x19, 0x39, 0x51, 0xec, 0x7e,
91
     0x93, 0x7b, 0x16, 0x52, 0xc0, 0xbd, 0x3b, 0xb1,
92
     0xbf, 0x07, 0x35, 0x73, 0xdf, 0x88, 0x3d, 0x2c,
93
     0x34, 0xf1, 0xef, 0x45, 0x1f, 0xd4, 0x6b, 0x50,
94
     0x3f, 0x00},
95
    {0x00, 0xc6, 0x85, 0x8e, 0x06, 0xb7, 0x04, 0x04, /* x */
96
     0xe9, 0xcd, 0x9e, 0x3e, 0xcb, 0x66, 0x23, 0x95,
97
     0xb4, 0x42, 0x9c, 0x64, 0x81, 0x39, 0x05, 0x3f,
98
     0xb5, 0x21, 0xf8, 0x28, 0xaf, 0x60, 0x6b, 0x4d,
99
     0x3d, 0xba, 0xa1, 0x4b, 0x5e, 0x77, 0xef, 0xe7,
100
     0x59, 0x28, 0xfe, 0x1d, 0xc1, 0x27, 0xa2, 0xff,
101
     0xa8, 0xde, 0x33, 0x48, 0xb3, 0xc1, 0x85, 0x6a,
102
     0x42, 0x9b, 0xf9, 0x7e, 0x7e, 0x31, 0xc2, 0xe5,
103
     0xbd, 0x66},
104
    {0x01, 0x18, 0x39, 0x29, 0x6a, 0x78, 0x9a, 0x3b, /* y */
105
     0xc0, 0x04, 0x5c, 0x8a, 0x5f, 0xb4, 0x2c, 0x7d,
106
     0x1b, 0xd9, 0x98, 0xf5, 0x44, 0x49, 0x57, 0x9b,
107
     0x44, 0x68, 0x17, 0xaf, 0xbd, 0x17, 0x27, 0x3e,
108
     0x66, 0x2c, 0x97, 0xee, 0x72, 0x99, 0x5e, 0xf4,
109
     0x26, 0x40, 0xc5, 0x50, 0xb9, 0x01, 0x3f, 0xad,
110
     0x07, 0x61, 0x35, 0x3c, 0x70, 0x86, 0xa2, 0x72,
111
     0xc2, 0x40, 0x88, 0xbe, 0x94, 0x76, 0x9f, 0xd1,
112
     0x66, 0x50}
113
};
114
115
/*-
116
 * The representation of field elements.
117
 * ------------------------------------
118
 *
119
 * We represent field elements with nine values. These values are either 64 or
120
 * 128 bits and the field element represented is:
121
 *   v[0]*2^0 + v[1]*2^58 + v[2]*2^116 + ... + v[8]*2^464  (mod p)
122
 * Each of the nine values is called a 'limb'. Since the limbs are spaced only
123
 * 58 bits apart, but are greater than 58 bits in length, the most significant
124
 * bits of each limb overlap with the least significant bits of the next.
125
 *
126
 * A field element with 64-bit limbs is an 'felem'. One with 128-bit limbs is a
127
 * 'largefelem' */
128
129
33.6M
#define NLIMBS 9
130
131
typedef uint64_t limb;
132
typedef limb limb_aX __attribute((__aligned__(1)));
133
typedef limb felem[NLIMBS];
134
typedef uint128_t largefelem[NLIMBS];
135
136
static const limb bottom57bits = 0x1ffffffffffffff;
137
static const limb bottom58bits = 0x3ffffffffffffff;
138
139
/*
140
 * bin66_to_felem takes a little-endian byte array and converts it into felem
141
 * form. This assumes that the CPU is little-endian.
142
 */
143
static void bin66_to_felem(felem out, const u8 in[66])
144
1.97k
{
145
1.97k
    out[0] = (*((limb *) & in[0])) & bottom58bits;
146
1.97k
    out[1] = (*((limb_aX *) & in[7]) >> 2) & bottom58bits;
147
1.97k
    out[2] = (*((limb_aX *) & in[14]) >> 4) & bottom58bits;
148
1.97k
    out[3] = (*((limb_aX *) & in[21]) >> 6) & bottom58bits;
149
1.97k
    out[4] = (*((limb_aX *) & in[29])) & bottom58bits;
150
1.97k
    out[5] = (*((limb_aX *) & in[36]) >> 2) & bottom58bits;
151
1.97k
    out[6] = (*((limb_aX *) & in[43]) >> 4) & bottom58bits;
152
1.97k
    out[7] = (*((limb_aX *) & in[50]) >> 6) & bottom58bits;
153
1.97k
    out[8] = (*((limb_aX *) & in[58])) & bottom57bits;
154
1.97k
}
155
156
/*
157
 * felem_to_bin66 takes an felem and serializes into a little endian, 66 byte
158
 * array. This assumes that the CPU is little-endian.
159
 */
160
static void felem_to_bin66(u8 out[66], const felem in)
161
3.49k
{
162
3.49k
    memset(out, 0, 66);
163
3.49k
    (*((limb *) & out[0])) = in[0];
164
3.49k
    (*((limb_aX *) & out[7])) |= in[1] << 2;
165
3.49k
    (*((limb_aX *) & out[14])) |= in[2] << 4;
166
3.49k
    (*((limb_aX *) & out[21])) |= in[3] << 6;
167
3.49k
    (*((limb_aX *) & out[29])) = in[4];
168
3.49k
    (*((limb_aX *) & out[36])) |= in[5] << 2;
169
3.49k
    (*((limb_aX *) & out[43])) |= in[6] << 4;
170
3.49k
    (*((limb_aX *) & out[50])) |= in[7] << 6;
171
3.49k
    (*((limb_aX *) & out[58])) = in[8];
172
3.49k
}
173
174
/* BN_to_felem converts an OpenSSL BIGNUM into an felem */
175
static int BN_to_felem(felem out, const BIGNUM *bn)
176
1.97k
{
177
1.97k
    felem_bytearray b_out;
178
1.97k
    int num_bytes;
179
180
1.97k
    if (BN_is_negative(bn)) {
181
0
        ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE);
182
0
        return 0;
183
0
    }
184
1.97k
    num_bytes = BN_bn2lebinpad(bn, b_out, sizeof(b_out));
185
1.97k
    if (num_bytes < 0) {
186
0
        ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE);
187
0
        return 0;
188
0
    }
189
1.97k
    bin66_to_felem(out, b_out);
190
1.97k
    return 1;
191
1.97k
}
192
193
/* felem_to_BN converts an felem into an OpenSSL BIGNUM */
194
static BIGNUM *felem_to_BN(BIGNUM *out, const felem in)
195
3.49k
{
196
3.49k
    felem_bytearray b_out;
197
3.49k
    felem_to_bin66(b_out, in);
198
3.49k
    return BN_lebin2bn(b_out, sizeof(b_out), out);
199
3.49k
}
200
201
/*-
202
 * Field operations
203
 * ----------------
204
 */
205
206
static void felem_one(felem out)
207
0
{
208
0
    out[0] = 1;
209
0
    out[1] = 0;
210
0
    out[2] = 0;
211
0
    out[3] = 0;
212
0
    out[4] = 0;
213
0
    out[5] = 0;
214
0
    out[6] = 0;
215
0
    out[7] = 0;
216
0
    out[8] = 0;
217
0
}
218
219
static void felem_assign(felem out, const felem in)
220
1.23M
{
221
1.23M
    out[0] = in[0];
222
1.23M
    out[1] = in[1];
223
1.23M
    out[2] = in[2];
224
1.23M
    out[3] = in[3];
225
1.23M
    out[4] = in[4];
226
1.23M
    out[5] = in[5];
227
1.23M
    out[6] = in[6];
228
1.23M
    out[7] = in[7];
229
1.23M
    out[8] = in[8];
230
1.23M
}
231
232
/* felem_sum64 sets out = out + in. */
233
static void felem_sum64(felem out, const felem in)
234
412k
{
235
412k
    out[0] += in[0];
236
412k
    out[1] += in[1];
237
412k
    out[2] += in[2];
238
412k
    out[3] += in[3];
239
412k
    out[4] += in[4];
240
412k
    out[5] += in[5];
241
412k
    out[6] += in[6];
242
412k
    out[7] += in[7];
243
412k
    out[8] += in[8];
244
412k
}
245
246
/* felem_scalar sets out = in * scalar */
247
static void felem_scalar(felem out, const felem in, limb scalar)
248
3.32M
{
249
3.32M
    out[0] = in[0] * scalar;
250
3.32M
    out[1] = in[1] * scalar;
251
3.32M
    out[2] = in[2] * scalar;
252
3.32M
    out[3] = in[3] * scalar;
253
3.32M
    out[4] = in[4] * scalar;
254
3.32M
    out[5] = in[5] * scalar;
255
3.32M
    out[6] = in[6] * scalar;
256
3.32M
    out[7] = in[7] * scalar;
257
3.32M
    out[8] = in[8] * scalar;
258
3.32M
}
259
260
/* felem_scalar64 sets out = out * scalar */
261
static void felem_scalar64(felem out, limb scalar)
262
590k
{
263
590k
    out[0] *= scalar;
264
590k
    out[1] *= scalar;
265
590k
    out[2] *= scalar;
266
590k
    out[3] *= scalar;
267
590k
    out[4] *= scalar;
268
590k
    out[5] *= scalar;
269
590k
    out[6] *= scalar;
270
590k
    out[7] *= scalar;
271
590k
    out[8] *= scalar;
272
590k
}
273
274
/* felem_scalar128 sets out = out * scalar */
275
static void felem_scalar128(largefelem out, limb scalar)
276
196k
{
277
196k
    out[0] *= scalar;
278
196k
    out[1] *= scalar;
279
196k
    out[2] *= scalar;
280
196k
    out[3] *= scalar;
281
196k
    out[4] *= scalar;
282
196k
    out[5] *= scalar;
283
196k
    out[6] *= scalar;
284
196k
    out[7] *= scalar;
285
196k
    out[8] *= scalar;
286
196k
}
287
288
/*-
289
 * felem_neg sets |out| to |-in|
290
 * On entry:
291
 *   in[i] < 2^59 + 2^14
292
 * On exit:
293
 *   out[i] < 2^62
294
 */
295
static void felem_neg(felem out, const felem in)
296
17.1k
{
297
    /* In order to prevent underflow, we subtract from 0 mod p. */
298
17.1k
    static const limb two62m3 = (((limb) 1) << 62) - (((limb) 1) << 5);
299
17.1k
    static const limb two62m2 = (((limb) 1) << 62) - (((limb) 1) << 4);
300
301
17.1k
    out[0] = two62m3 - in[0];
302
17.1k
    out[1] = two62m2 - in[1];
303
17.1k
    out[2] = two62m2 - in[2];
304
17.1k
    out[3] = two62m2 - in[3];
305
17.1k
    out[4] = two62m2 - in[4];
306
17.1k
    out[5] = two62m2 - in[5];
307
17.1k
    out[6] = two62m2 - in[6];
308
17.1k
    out[7] = two62m2 - in[7];
309
17.1k
    out[8] = two62m2 - in[8];
310
17.1k
}
311
312
/*-
313
 * felem_diff64 subtracts |in| from |out|
314
 * On entry:
315
 *   in[i] < 2^59 + 2^14
316
 * On exit:
317
 *   out[i] < out[i] + 2^62
318
 */
319
static void felem_diff64(felem out, const felem in)
320
328k
{
321
    /*
322
     * In order to prevent underflow, we add 0 mod p before subtracting.
323
     */
324
328k
    static const limb two62m3 = (((limb) 1) << 62) - (((limb) 1) << 5);
325
328k
    static const limb two62m2 = (((limb) 1) << 62) - (((limb) 1) << 4);
326
327
328k
    out[0] += two62m3 - in[0];
328
328k
    out[1] += two62m2 - in[1];
329
328k
    out[2] += two62m2 - in[2];
330
328k
    out[3] += two62m2 - in[3];
331
328k
    out[4] += two62m2 - in[4];
332
328k
    out[5] += two62m2 - in[5];
333
328k
    out[6] += two62m2 - in[6];
334
328k
    out[7] += two62m2 - in[7];
335
328k
    out[8] += two62m2 - in[8];
336
328k
}
337
338
/*-
339
 * felem_diff_128_64 subtracts |in| from |out|
340
 * On entry:
341
 *   in[i] < 2^62 + 2^17
342
 * On exit:
343
 *   out[i] < out[i] + 2^63
344
 */
345
static void felem_diff_128_64(largefelem out, const felem in)
346
560k
{
347
    /*
348
     * In order to prevent underflow, we add 64p mod p (which is equivalent
349
     * to 0 mod p) before subtracting. p is 2^521 - 1, i.e. in binary a 521
350
     * digit number with all bits set to 1. See "The representation of field
351
     * elements" comment above for a description of how limbs are used to
352
     * represent a number. 64p is represented with 8 limbs containing a number
353
     * with 58 bits set and one limb with a number with 57 bits set.
354
     */
355
560k
    static const limb two63m6 = (((limb) 1) << 63) - (((limb) 1) << 6);
356
560k
    static const limb two63m5 = (((limb) 1) << 63) - (((limb) 1) << 5);
357
358
560k
    out[0] += two63m6 - in[0];
359
560k
    out[1] += two63m5 - in[1];
360
560k
    out[2] += two63m5 - in[2];
361
560k
    out[3] += two63m5 - in[3];
362
560k
    out[4] += two63m5 - in[4];
363
560k
    out[5] += two63m5 - in[5];
364
560k
    out[6] += two63m5 - in[6];
365
560k
    out[7] += two63m5 - in[7];
366
560k
    out[8] += two63m5 - in[8];
367
560k
}
368
369
/*-
370
 * felem_diff_128_64 subtracts |in| from |out|
371
 * On entry:
372
 *   in[i] < 2^126
373
 * On exit:
374
 *   out[i] < out[i] + 2^127 - 2^69
375
 */
376
static void felem_diff128(largefelem out, const largefelem in)
377
196k
{
378
    /*
379
     * In order to prevent underflow, we add 0 mod p before subtracting.
380
     */
381
196k
    static const uint128_t two127m70 =
382
196k
        (((uint128_t) 1) << 127) - (((uint128_t) 1) << 70);
383
196k
    static const uint128_t two127m69 =
384
196k
        (((uint128_t) 1) << 127) - (((uint128_t) 1) << 69);
385
386
196k
    out[0] += (two127m70 - in[0]);
387
196k
    out[1] += (two127m69 - in[1]);
388
196k
    out[2] += (two127m69 - in[2]);
389
196k
    out[3] += (two127m69 - in[3]);
390
196k
    out[4] += (two127m69 - in[4]);
391
196k
    out[5] += (two127m69 - in[5]);
392
196k
    out[6] += (two127m69 - in[6]);
393
196k
    out[7] += (two127m69 - in[7]);
394
196k
    out[8] += (two127m69 - in[8]);
395
196k
}
396
397
/*-
398
 * felem_square sets |out| = |in|^2
399
 * On entry:
400
 *   in[i] < 2^62
401
 * On exit:
402
 *   out[i] < 17 * max(in[i]) * max(in[i])
403
 */
404
static void felem_square_ref(largefelem out, const felem in)
405
552k
{
406
552k
    felem inx2, inx4;
407
552k
    felem_scalar(inx2, in, 2);
408
552k
    felem_scalar(inx4, in, 4);
409
410
    /*-
411
     * We have many cases were we want to do
412
     *   in[x] * in[y] +
413
     *   in[y] * in[x]
414
     * This is obviously just
415
     *   2 * in[x] * in[y]
416
     * However, rather than do the doubling on the 128 bit result, we
417
     * double one of the inputs to the multiplication by reading from
418
     * |inx2|
419
     */
420
421
552k
    out[0] = ((uint128_t) in[0]) * in[0];
422
552k
    out[1] = ((uint128_t) in[0]) * inx2[1];
423
552k
    out[2] = ((uint128_t) in[0]) * inx2[2] + ((uint128_t) in[1]) * in[1];
424
552k
    out[3] = ((uint128_t) in[0]) * inx2[3] + ((uint128_t) in[1]) * inx2[2];
425
552k
    out[4] = ((uint128_t) in[0]) * inx2[4] +
426
552k
             ((uint128_t) in[1]) * inx2[3] + ((uint128_t) in[2]) * in[2];
427
552k
    out[5] = ((uint128_t) in[0]) * inx2[5] +
428
552k
             ((uint128_t) in[1]) * inx2[4] + ((uint128_t) in[2]) * inx2[3];
429
552k
    out[6] = ((uint128_t) in[0]) * inx2[6] +
430
552k
             ((uint128_t) in[1]) * inx2[5] +
431
552k
             ((uint128_t) in[2]) * inx2[4] + ((uint128_t) in[3]) * in[3];
432
552k
    out[7] = ((uint128_t) in[0]) * inx2[7] +
433
552k
             ((uint128_t) in[1]) * inx2[6] +
434
552k
             ((uint128_t) in[2]) * inx2[5] + ((uint128_t) in[3]) * inx2[4];
435
552k
    out[8] = ((uint128_t) in[0]) * inx2[8] +
436
552k
             ((uint128_t) in[1]) * inx2[7] +
437
552k
             ((uint128_t) in[2]) * inx2[6] +
438
552k
             ((uint128_t) in[3]) * inx2[5] + ((uint128_t) in[4]) * in[4];
439
440
    /*
441
     * The remaining limbs fall above 2^521, with the first falling at 2^522.
442
     * They correspond to locations one bit up from the limbs produced above
443
     * so we would have to multiply by two to align them. Again, rather than
444
     * operate on the 128-bit result, we double one of the inputs to the
445
     * multiplication. If we want to double for both this reason, and the
446
     * reason above, then we end up multiplying by four.
447
     */
448
449
    /* 9 */
450
552k
    out[0] += ((uint128_t) in[1]) * inx4[8] +
451
552k
              ((uint128_t) in[2]) * inx4[7] +
452
552k
              ((uint128_t) in[3]) * inx4[6] + ((uint128_t) in[4]) * inx4[5];
453
454
    /* 10 */
455
552k
    out[1] += ((uint128_t) in[2]) * inx4[8] +
456
552k
              ((uint128_t) in[3]) * inx4[7] +
457
552k
              ((uint128_t) in[4]) * inx4[6] + ((uint128_t) in[5]) * inx2[5];
458
459
    /* 11 */
460
552k
    out[2] += ((uint128_t) in[3]) * inx4[8] +
461
552k
              ((uint128_t) in[4]) * inx4[7] + ((uint128_t) in[5]) * inx4[6];
462
463
    /* 12 */
464
552k
    out[3] += ((uint128_t) in[4]) * inx4[8] +
465
552k
              ((uint128_t) in[5]) * inx4[7] + ((uint128_t) in[6]) * inx2[6];
466
467
    /* 13 */
468
552k
    out[4] += ((uint128_t) in[5]) * inx4[8] + ((uint128_t) in[6]) * inx4[7];
469
470
    /* 14 */
471
552k
    out[5] += ((uint128_t) in[6]) * inx4[8] + ((uint128_t) in[7]) * inx2[7];
472
473
    /* 15 */
474
552k
    out[6] += ((uint128_t) in[7]) * inx4[8];
475
476
    /* 16 */
477
552k
    out[7] += ((uint128_t) in[8]) * inx2[8];
478
552k
}
479
480
/*-
481
 * felem_mul sets |out| = |in1| * |in2|
482
 * On entry:
483
 *   in1[i] < 2^64
484
 *   in2[i] < 2^63
485
 * On exit:
486
 *   out[i] < 17 * max(in1[i]) * max(in2[i])
487
 */
488
static void felem_mul_ref(largefelem out, const felem in1, const felem in2)
489
486k
{
490
486k
    felem in2x2;
491
486k
    felem_scalar(in2x2, in2, 2);
492
493
486k
    out[0] = ((uint128_t) in1[0]) * in2[0];
494
495
486k
    out[1] = ((uint128_t) in1[0]) * in2[1] +
496
486k
             ((uint128_t) in1[1]) * in2[0];
497
498
486k
    out[2] = ((uint128_t) in1[0]) * in2[2] +
499
486k
             ((uint128_t) in1[1]) * in2[1] +
500
486k
             ((uint128_t) in1[2]) * in2[0];
501
502
486k
    out[3] = ((uint128_t) in1[0]) * in2[3] +
503
486k
             ((uint128_t) in1[1]) * in2[2] +
504
486k
             ((uint128_t) in1[2]) * in2[1] +
505
486k
             ((uint128_t) in1[3]) * in2[0];
506
507
486k
    out[4] = ((uint128_t) in1[0]) * in2[4] +
508
486k
             ((uint128_t) in1[1]) * in2[3] +
509
486k
             ((uint128_t) in1[2]) * in2[2] +
510
486k
             ((uint128_t) in1[3]) * in2[1] +
511
486k
             ((uint128_t) in1[4]) * in2[0];
512
513
486k
    out[5] = ((uint128_t) in1[0]) * in2[5] +
514
486k
             ((uint128_t) in1[1]) * in2[4] +
515
486k
             ((uint128_t) in1[2]) * in2[3] +
516
486k
             ((uint128_t) in1[3]) * in2[2] +
517
486k
             ((uint128_t) in1[4]) * in2[1] +
518
486k
             ((uint128_t) in1[5]) * in2[0];
519
520
486k
    out[6] = ((uint128_t) in1[0]) * in2[6] +
521
486k
             ((uint128_t) in1[1]) * in2[5] +
522
486k
             ((uint128_t) in1[2]) * in2[4] +
523
486k
             ((uint128_t) in1[3]) * in2[3] +
524
486k
             ((uint128_t) in1[4]) * in2[2] +
525
486k
             ((uint128_t) in1[5]) * in2[1] +
526
486k
             ((uint128_t) in1[6]) * in2[0];
527
528
486k
    out[7] = ((uint128_t) in1[0]) * in2[7] +
529
486k
             ((uint128_t) in1[1]) * in2[6] +
530
486k
             ((uint128_t) in1[2]) * in2[5] +
531
486k
             ((uint128_t) in1[3]) * in2[4] +
532
486k
             ((uint128_t) in1[4]) * in2[3] +
533
486k
             ((uint128_t) in1[5]) * in2[2] +
534
486k
             ((uint128_t) in1[6]) * in2[1] +
535
486k
             ((uint128_t) in1[7]) * in2[0];
536
537
486k
    out[8] = ((uint128_t) in1[0]) * in2[8] +
538
486k
             ((uint128_t) in1[1]) * in2[7] +
539
486k
             ((uint128_t) in1[2]) * in2[6] +
540
486k
             ((uint128_t) in1[3]) * in2[5] +
541
486k
             ((uint128_t) in1[4]) * in2[4] +
542
486k
             ((uint128_t) in1[5]) * in2[3] +
543
486k
             ((uint128_t) in1[6]) * in2[2] +
544
486k
             ((uint128_t) in1[7]) * in2[1] +
545
486k
             ((uint128_t) in1[8]) * in2[0];
546
547
    /* See comment in felem_square about the use of in2x2 here */
548
549
486k
    out[0] += ((uint128_t) in1[1]) * in2x2[8] +
550
486k
              ((uint128_t) in1[2]) * in2x2[7] +
551
486k
              ((uint128_t) in1[3]) * in2x2[6] +
552
486k
              ((uint128_t) in1[4]) * in2x2[5] +
553
486k
              ((uint128_t) in1[5]) * in2x2[4] +
554
486k
              ((uint128_t) in1[6]) * in2x2[3] +
555
486k
              ((uint128_t) in1[7]) * in2x2[2] +
556
486k
              ((uint128_t) in1[8]) * in2x2[1];
557
558
486k
    out[1] += ((uint128_t) in1[2]) * in2x2[8] +
559
486k
              ((uint128_t) in1[3]) * in2x2[7] +
560
486k
              ((uint128_t) in1[4]) * in2x2[6] +
561
486k
              ((uint128_t) in1[5]) * in2x2[5] +
562
486k
              ((uint128_t) in1[6]) * in2x2[4] +
563
486k
              ((uint128_t) in1[7]) * in2x2[3] +
564
486k
              ((uint128_t) in1[8]) * in2x2[2];
565
566
486k
    out[2] += ((uint128_t) in1[3]) * in2x2[8] +
567
486k
              ((uint128_t) in1[4]) * in2x2[7] +
568
486k
              ((uint128_t) in1[5]) * in2x2[6] +
569
486k
              ((uint128_t) in1[6]) * in2x2[5] +
570
486k
              ((uint128_t) in1[7]) * in2x2[4] +
571
486k
              ((uint128_t) in1[8]) * in2x2[3];
572
573
486k
    out[3] += ((uint128_t) in1[4]) * in2x2[8] +
574
486k
              ((uint128_t) in1[5]) * in2x2[7] +
575
486k
              ((uint128_t) in1[6]) * in2x2[6] +
576
486k
              ((uint128_t) in1[7]) * in2x2[5] +
577
486k
              ((uint128_t) in1[8]) * in2x2[4];
578
579
486k
    out[4] += ((uint128_t) in1[5]) * in2x2[8] +
580
486k
              ((uint128_t) in1[6]) * in2x2[7] +
581
486k
              ((uint128_t) in1[7]) * in2x2[6] +
582
486k
              ((uint128_t) in1[8]) * in2x2[5];
583
584
486k
    out[5] += ((uint128_t) in1[6]) * in2x2[8] +
585
486k
              ((uint128_t) in1[7]) * in2x2[7] +
586
486k
              ((uint128_t) in1[8]) * in2x2[6];
587
588
486k
    out[6] += ((uint128_t) in1[7]) * in2x2[8] +
589
486k
              ((uint128_t) in1[8]) * in2x2[7];
590
591
486k
    out[7] += ((uint128_t) in1[8]) * in2x2[8];
592
486k
}
593
594
static const limb bottom52bits = 0xfffffffffffff;
595
596
/*-
597
 * felem_reduce converts a largefelem to an felem.
598
 * On entry:
599
 *   in[i] < 2^128
600
 * On exit:
601
 *   out[i] < 2^59 + 2^14
602
 */
603
static void felem_reduce(felem out, const largefelem in)
604
1.93M
{
605
1.93M
    u64 overflow1, overflow2;
606
607
1.93M
    out[0] = ((limb) in[0]) & bottom58bits;
608
1.93M
    out[1] = ((limb) in[1]) & bottom58bits;
609
1.93M
    out[2] = ((limb) in[2]) & bottom58bits;
610
1.93M
    out[3] = ((limb) in[3]) & bottom58bits;
611
1.93M
    out[4] = ((limb) in[4]) & bottom58bits;
612
1.93M
    out[5] = ((limb) in[5]) & bottom58bits;
613
1.93M
    out[6] = ((limb) in[6]) & bottom58bits;
614
1.93M
    out[7] = ((limb) in[7]) & bottom58bits;
615
1.93M
    out[8] = ((limb) in[8]) & bottom58bits;
616
617
    /* out[i] < 2^58 */
618
619
1.93M
    out[1] += ((limb) in[0]) >> 58;
620
1.93M
    out[1] += (((limb) (in[0] >> 64)) & bottom52bits) << 6;
621
    /*-
622
     * out[1] < 2^58 + 2^6 + 2^58
623
     *        = 2^59 + 2^6
624
     */
625
1.93M
    out[2] += ((limb) (in[0] >> 64)) >> 52;
626
627
1.93M
    out[2] += ((limb) in[1]) >> 58;
628
1.93M
    out[2] += (((limb) (in[1] >> 64)) & bottom52bits) << 6;
629
1.93M
    out[3] += ((limb) (in[1] >> 64)) >> 52;
630
631
1.93M
    out[3] += ((limb) in[2]) >> 58;
632
1.93M
    out[3] += (((limb) (in[2] >> 64)) & bottom52bits) << 6;
633
1.93M
    out[4] += ((limb) (in[2] >> 64)) >> 52;
634
635
1.93M
    out[4] += ((limb) in[3]) >> 58;
636
1.93M
    out[4] += (((limb) (in[3] >> 64)) & bottom52bits) << 6;
637
1.93M
    out[5] += ((limb) (in[3] >> 64)) >> 52;
638
639
1.93M
    out[5] += ((limb) in[4]) >> 58;
640
1.93M
    out[5] += (((limb) (in[4] >> 64)) & bottom52bits) << 6;
641
1.93M
    out[6] += ((limb) (in[4] >> 64)) >> 52;
642
643
1.93M
    out[6] += ((limb) in[5]) >> 58;
644
1.93M
    out[6] += (((limb) (in[5] >> 64)) & bottom52bits) << 6;
645
1.93M
    out[7] += ((limb) (in[5] >> 64)) >> 52;
646
647
1.93M
    out[7] += ((limb) in[6]) >> 58;
648
1.93M
    out[7] += (((limb) (in[6] >> 64)) & bottom52bits) << 6;
649
1.93M
    out[8] += ((limb) (in[6] >> 64)) >> 52;
650
651
1.93M
    out[8] += ((limb) in[7]) >> 58;
652
1.93M
    out[8] += (((limb) (in[7] >> 64)) & bottom52bits) << 6;
653
    /*-
654
     * out[x > 1] < 2^58 + 2^6 + 2^58 + 2^12
655
     *            < 2^59 + 2^13
656
     */
657
1.93M
    overflow1 = ((limb) (in[7] >> 64)) >> 52;
658
659
1.93M
    overflow1 += ((limb) in[8]) >> 58;
660
1.93M
    overflow1 += (((limb) (in[8] >> 64)) & bottom52bits) << 6;
661
1.93M
    overflow2 = ((limb) (in[8] >> 64)) >> 52;
662
663
1.93M
    overflow1 <<= 1;            /* overflow1 < 2^13 + 2^7 + 2^59 */
664
1.93M
    overflow2 <<= 1;            /* overflow2 < 2^13 */
665
666
1.93M
    out[0] += overflow1;        /* out[0] < 2^60 */
667
1.93M
    out[1] += overflow2;        /* out[1] < 2^59 + 2^6 + 2^13 */
668
669
1.93M
    out[1] += out[0] >> 58;
670
1.93M
    out[0] &= bottom58bits;
671
    /*-
672
     * out[0] < 2^58
673
     * out[1] < 2^59 + 2^6 + 2^13 + 2^2
674
     *        < 2^59 + 2^14
675
     */
676
1.93M
}
677
678
#if defined(ECP_NISTP521_ASM)
679
void felem_square_wrapper(largefelem out, const felem in);
680
void felem_mul_wrapper(largefelem out, const felem in1, const felem in2);
681
682
static void (*felem_square_p)(largefelem out, const felem in) =
683
    felem_square_wrapper;
684
static void (*felem_mul_p)(largefelem out, const felem in1, const felem in2) =
685
    felem_mul_wrapper;
686
687
void p521_felem_square(largefelem out, const felem in);
688
void p521_felem_mul(largefelem out, const felem in1, const felem in2);
689
690
# if defined(_ARCH_PPC64)
691
#  include "crypto/ppc_arch.h"
692
# endif
693
694
void felem_select(void)
695
{
696
# if defined(_ARCH_PPC64)
697
    if ((OPENSSL_ppccap_P & PPC_MADD300) && (OPENSSL_ppccap_P & PPC_ALTIVEC)) {
698
        felem_square_p = p521_felem_square;
699
        felem_mul_p = p521_felem_mul;
700
701
        return;
702
    }
703
# endif
704
705
    /* Default */
706
    felem_square_p = felem_square_ref;
707
    felem_mul_p = felem_mul_ref;
708
}
709
710
void felem_square_wrapper(largefelem out, const felem in)
711
{
712
    felem_select();
713
    felem_square_p(out, in);
714
}
715
716
void felem_mul_wrapper(largefelem out, const felem in1, const felem in2)
717
{
718
    felem_select();
719
    felem_mul_p(out, in1, in2);
720
}
721
722
# define felem_square felem_square_p
723
# define felem_mul felem_mul_p
724
#else
725
1.14M
# define felem_square felem_square_ref
726
978k
# define felem_mul felem_mul_ref
727
#endif
728
729
static void felem_square_reduce(felem out, const felem in)
730
0
{
731
0
    largefelem tmp;
732
0
    felem_square(tmp, in);
733
0
    felem_reduce(out, tmp);
734
0
}
735
736
static void felem_mul_reduce(felem out, const felem in1, const felem in2)
737
0
{
738
0
    largefelem tmp;
739
0
    felem_mul(tmp, in1, in2);
740
0
    felem_reduce(out, tmp);
741
0
}
742
743
/*-
744
 * felem_inv calculates |out| = |in|^{-1}
745
 *
746
 * Based on Fermat's Little Theorem:
747
 *   a^p = a (mod p)
748
 *   a^{p-1} = 1 (mod p)
749
 *   a^{p-2} = a^{-1} (mod p)
750
 */
751
static void felem_inv(felem out, const felem in)
752
495
{
753
495
    felem ftmp, ftmp2, ftmp3, ftmp4;
754
495
    largefelem tmp;
755
495
    unsigned i;
756
757
495
    felem_square(tmp, in);
758
495
    felem_reduce(ftmp, tmp);    /* 2^1 */
759
495
    felem_mul(tmp, in, ftmp);
760
495
    felem_reduce(ftmp, tmp);    /* 2^2 - 2^0 */
761
495
    felem_assign(ftmp2, ftmp);
762
495
    felem_square(tmp, ftmp);
763
495
    felem_reduce(ftmp, tmp);    /* 2^3 - 2^1 */
764
495
    felem_mul(tmp, in, ftmp);
765
495
    felem_reduce(ftmp, tmp);    /* 2^3 - 2^0 */
766
495
    felem_square(tmp, ftmp);
767
495
    felem_reduce(ftmp, tmp);    /* 2^4 - 2^1 */
768
769
495
    felem_square(tmp, ftmp2);
770
495
    felem_reduce(ftmp3, tmp);   /* 2^3 - 2^1 */
771
495
    felem_square(tmp, ftmp3);
772
495
    felem_reduce(ftmp3, tmp);   /* 2^4 - 2^2 */
773
495
    felem_mul(tmp, ftmp3, ftmp2);
774
495
    felem_reduce(ftmp3, tmp);   /* 2^4 - 2^0 */
775
776
495
    felem_assign(ftmp2, ftmp3);
777
495
    felem_square(tmp, ftmp3);
778
495
    felem_reduce(ftmp3, tmp);   /* 2^5 - 2^1 */
779
495
    felem_square(tmp, ftmp3);
780
495
    felem_reduce(ftmp3, tmp);   /* 2^6 - 2^2 */
781
495
    felem_square(tmp, ftmp3);
782
495
    felem_reduce(ftmp3, tmp);   /* 2^7 - 2^3 */
783
495
    felem_square(tmp, ftmp3);
784
495
    felem_reduce(ftmp3, tmp);   /* 2^8 - 2^4 */
785
495
    felem_assign(ftmp4, ftmp3);
786
495
    felem_mul(tmp, ftmp3, ftmp);
787
495
    felem_reduce(ftmp4, tmp);   /* 2^8 - 2^1 */
788
495
    felem_square(tmp, ftmp4);
789
495
    felem_reduce(ftmp4, tmp);   /* 2^9 - 2^2 */
790
495
    felem_mul(tmp, ftmp3, ftmp2);
791
495
    felem_reduce(ftmp3, tmp);   /* 2^8 - 2^0 */
792
495
    felem_assign(ftmp2, ftmp3);
793
794
4.45k
    for (i = 0; i < 8; i++) {
795
3.96k
        felem_square(tmp, ftmp3);
796
3.96k
        felem_reduce(ftmp3, tmp); /* 2^16 - 2^8 */
797
3.96k
    }
798
495
    felem_mul(tmp, ftmp3, ftmp2);
799
495
    felem_reduce(ftmp3, tmp);   /* 2^16 - 2^0 */
800
495
    felem_assign(ftmp2, ftmp3);
801
802
8.41k
    for (i = 0; i < 16; i++) {
803
7.92k
        felem_square(tmp, ftmp3);
804
7.92k
        felem_reduce(ftmp3, tmp); /* 2^32 - 2^16 */
805
7.92k
    }
806
495
    felem_mul(tmp, ftmp3, ftmp2);
807
495
    felem_reduce(ftmp3, tmp);   /* 2^32 - 2^0 */
808
495
    felem_assign(ftmp2, ftmp3);
809
810
16.3k
    for (i = 0; i < 32; i++) {
811
15.8k
        felem_square(tmp, ftmp3);
812
15.8k
        felem_reduce(ftmp3, tmp); /* 2^64 - 2^32 */
813
15.8k
    }
814
495
    felem_mul(tmp, ftmp3, ftmp2);
815
495
    felem_reduce(ftmp3, tmp);   /* 2^64 - 2^0 */
816
495
    felem_assign(ftmp2, ftmp3);
817
818
32.1k
    for (i = 0; i < 64; i++) {
819
31.6k
        felem_square(tmp, ftmp3);
820
31.6k
        felem_reduce(ftmp3, tmp); /* 2^128 - 2^64 */
821
31.6k
    }
822
495
    felem_mul(tmp, ftmp3, ftmp2);
823
495
    felem_reduce(ftmp3, tmp);   /* 2^128 - 2^0 */
824
495
    felem_assign(ftmp2, ftmp3);
825
826
63.8k
    for (i = 0; i < 128; i++) {
827
63.3k
        felem_square(tmp, ftmp3);
828
63.3k
        felem_reduce(ftmp3, tmp); /* 2^256 - 2^128 */
829
63.3k
    }
830
495
    felem_mul(tmp, ftmp3, ftmp2);
831
495
    felem_reduce(ftmp3, tmp);   /* 2^256 - 2^0 */
832
495
    felem_assign(ftmp2, ftmp3);
833
834
127k
    for (i = 0; i < 256; i++) {
835
126k
        felem_square(tmp, ftmp3);
836
126k
        felem_reduce(ftmp3, tmp); /* 2^512 - 2^256 */
837
126k
    }
838
495
    felem_mul(tmp, ftmp3, ftmp2);
839
495
    felem_reduce(ftmp3, tmp);   /* 2^512 - 2^0 */
840
841
4.95k
    for (i = 0; i < 9; i++) {
842
4.45k
        felem_square(tmp, ftmp3);
843
4.45k
        felem_reduce(ftmp3, tmp); /* 2^521 - 2^9 */
844
4.45k
    }
845
495
    felem_mul(tmp, ftmp3, ftmp4);
846
495
    felem_reduce(ftmp3, tmp);   /* 2^512 - 2^2 */
847
495
    felem_mul(tmp, ftmp3, in);
848
495
    felem_reduce(out, tmp);     /* 2^512 - 3 */
849
495
}
850
851
/* This is 2^521-1, expressed as an felem */
852
static const felem kPrime = {
853
    0x03ffffffffffffff, 0x03ffffffffffffff, 0x03ffffffffffffff,
854
    0x03ffffffffffffff, 0x03ffffffffffffff, 0x03ffffffffffffff,
855
    0x03ffffffffffffff, 0x03ffffffffffffff, 0x01ffffffffffffff
856
};
857
858
/*-
859
 * felem_is_zero returns a limb with all bits set if |in| == 0 (mod p) and 0
860
 * otherwise.
861
 * On entry:
862
 *   in[i] < 2^59 + 2^14
863
 */
864
static limb felem_is_zero(const felem in)
865
261k
{
866
261k
    felem ftmp;
867
261k
    limb is_zero, is_p;
868
261k
    felem_assign(ftmp, in);
869
870
261k
    ftmp[0] += ftmp[8] >> 57;
871
261k
    ftmp[8] &= bottom57bits;
872
    /* ftmp[8] < 2^57 */
873
261k
    ftmp[1] += ftmp[0] >> 58;
874
261k
    ftmp[0] &= bottom58bits;
875
261k
    ftmp[2] += ftmp[1] >> 58;
876
261k
    ftmp[1] &= bottom58bits;
877
261k
    ftmp[3] += ftmp[2] >> 58;
878
261k
    ftmp[2] &= bottom58bits;
879
261k
    ftmp[4] += ftmp[3] >> 58;
880
261k
    ftmp[3] &= bottom58bits;
881
261k
    ftmp[5] += ftmp[4] >> 58;
882
261k
    ftmp[4] &= bottom58bits;
883
261k
    ftmp[6] += ftmp[5] >> 58;
884
261k
    ftmp[5] &= bottom58bits;
885
261k
    ftmp[7] += ftmp[6] >> 58;
886
261k
    ftmp[6] &= bottom58bits;
887
261k
    ftmp[8] += ftmp[7] >> 58;
888
261k
    ftmp[7] &= bottom58bits;
889
    /* ftmp[8] < 2^57 + 4 */
890
891
    /*
892
     * The ninth limb of 2*(2^521-1) is 0x03ffffffffffffff, which is greater
893
     * than our bound for ftmp[8]. Therefore we only have to check if the
894
     * zero is zero or 2^521-1.
895
     */
896
897
261k
    is_zero = 0;
898
261k
    is_zero |= ftmp[0];
899
261k
    is_zero |= ftmp[1];
900
261k
    is_zero |= ftmp[2];
901
261k
    is_zero |= ftmp[3];
902
261k
    is_zero |= ftmp[4];
903
261k
    is_zero |= ftmp[5];
904
261k
    is_zero |= ftmp[6];
905
261k
    is_zero |= ftmp[7];
906
261k
    is_zero |= ftmp[8];
907
908
261k
    is_zero--;
909
    /*
910
     * We know that ftmp[i] < 2^63, therefore the only way that the top bit
911
     * can be set is if is_zero was 0 before the decrement.
912
     */
913
261k
    is_zero = 0 - (is_zero >> 63);
914
915
261k
    is_p = ftmp[0] ^ kPrime[0];
916
261k
    is_p |= ftmp[1] ^ kPrime[1];
917
261k
    is_p |= ftmp[2] ^ kPrime[2];
918
261k
    is_p |= ftmp[3] ^ kPrime[3];
919
261k
    is_p |= ftmp[4] ^ kPrime[4];
920
261k
    is_p |= ftmp[5] ^ kPrime[5];
921
261k
    is_p |= ftmp[6] ^ kPrime[6];
922
261k
    is_p |= ftmp[7] ^ kPrime[7];
923
261k
    is_p |= ftmp[8] ^ kPrime[8];
924
925
261k
    is_p--;
926
261k
    is_p = 0 - (is_p >> 63);
927
928
261k
    is_zero |= is_p;
929
261k
    return is_zero;
930
261k
}
931
932
static int felem_is_zero_int(const void *in)
933
0
{
934
0
    return (int)(felem_is_zero(in) & ((limb) 1));
935
0
}
936
937
/*-
938
 * felem_contract converts |in| to its unique, minimal representation.
939
 * On entry:
940
 *   in[i] < 2^59 + 2^14
941
 */
942
static void felem_contract(felem out, const felem in)
943
2.52k
{
944
2.52k
    limb is_p, is_greater, sign;
945
2.52k
    static const limb two58 = ((limb) 1) << 58;
946
947
2.52k
    felem_assign(out, in);
948
949
2.52k
    out[0] += out[8] >> 57;
950
2.52k
    out[8] &= bottom57bits;
951
    /* out[8] < 2^57 */
952
2.52k
    out[1] += out[0] >> 58;
953
2.52k
    out[0] &= bottom58bits;
954
2.52k
    out[2] += out[1] >> 58;
955
2.52k
    out[1] &= bottom58bits;
956
2.52k
    out[3] += out[2] >> 58;
957
2.52k
    out[2] &= bottom58bits;
958
2.52k
    out[4] += out[3] >> 58;
959
2.52k
    out[3] &= bottom58bits;
960
2.52k
    out[5] += out[4] >> 58;
961
2.52k
    out[4] &= bottom58bits;
962
2.52k
    out[6] += out[5] >> 58;
963
2.52k
    out[5] &= bottom58bits;
964
2.52k
    out[7] += out[6] >> 58;
965
2.52k
    out[6] &= bottom58bits;
966
2.52k
    out[8] += out[7] >> 58;
967
2.52k
    out[7] &= bottom58bits;
968
    /* out[8] < 2^57 + 4 */
969
970
    /*
971
     * If the value is greater than 2^521-1 then we have to subtract 2^521-1
972
     * out. See the comments in felem_is_zero regarding why we don't test for
973
     * other multiples of the prime.
974
     */
975
976
    /*
977
     * First, if |out| is equal to 2^521-1, we subtract it out to get zero.
978
     */
979
980
2.52k
    is_p = out[0] ^ kPrime[0];
981
2.52k
    is_p |= out[1] ^ kPrime[1];
982
2.52k
    is_p |= out[2] ^ kPrime[2];
983
2.52k
    is_p |= out[3] ^ kPrime[3];
984
2.52k
    is_p |= out[4] ^ kPrime[4];
985
2.52k
    is_p |= out[5] ^ kPrime[5];
986
2.52k
    is_p |= out[6] ^ kPrime[6];
987
2.52k
    is_p |= out[7] ^ kPrime[7];
988
2.52k
    is_p |= out[8] ^ kPrime[8];
989
990
2.52k
    is_p--;
991
2.52k
    is_p &= is_p << 32;
992
2.52k
    is_p &= is_p << 16;
993
2.52k
    is_p &= is_p << 8;
994
2.52k
    is_p &= is_p << 4;
995
2.52k
    is_p &= is_p << 2;
996
2.52k
    is_p &= is_p << 1;
997
2.52k
    is_p = 0 - (is_p >> 63);
998
2.52k
    is_p = ~is_p;
999
1000
    /* is_p is 0 iff |out| == 2^521-1 and all ones otherwise */
1001
1002
2.52k
    out[0] &= is_p;
1003
2.52k
    out[1] &= is_p;
1004
2.52k
    out[2] &= is_p;
1005
2.52k
    out[3] &= is_p;
1006
2.52k
    out[4] &= is_p;
1007
2.52k
    out[5] &= is_p;
1008
2.52k
    out[6] &= is_p;
1009
2.52k
    out[7] &= is_p;
1010
2.52k
    out[8] &= is_p;
1011
1012
    /*
1013
     * In order to test that |out| >= 2^521-1 we need only test if out[8] >>
1014
     * 57 is greater than zero as (2^521-1) + x >= 2^522
1015
     */
1016
2.52k
    is_greater = out[8] >> 57;
1017
2.52k
    is_greater |= is_greater << 32;
1018
2.52k
    is_greater |= is_greater << 16;
1019
2.52k
    is_greater |= is_greater << 8;
1020
2.52k
    is_greater |= is_greater << 4;
1021
2.52k
    is_greater |= is_greater << 2;
1022
2.52k
    is_greater |= is_greater << 1;
1023
2.52k
    is_greater = 0 - (is_greater >> 63);
1024
1025
2.52k
    out[0] -= kPrime[0] & is_greater;
1026
2.52k
    out[1] -= kPrime[1] & is_greater;
1027
2.52k
    out[2] -= kPrime[2] & is_greater;
1028
2.52k
    out[3] -= kPrime[3] & is_greater;
1029
2.52k
    out[4] -= kPrime[4] & is_greater;
1030
2.52k
    out[5] -= kPrime[5] & is_greater;
1031
2.52k
    out[6] -= kPrime[6] & is_greater;
1032
2.52k
    out[7] -= kPrime[7] & is_greater;
1033
2.52k
    out[8] -= kPrime[8] & is_greater;
1034
1035
    /* Eliminate negative coefficients */
1036
2.52k
    sign = -(out[0] >> 63);
1037
2.52k
    out[0] += (two58 & sign);
1038
2.52k
    out[1] -= (1 & sign);
1039
2.52k
    sign = -(out[1] >> 63);
1040
2.52k
    out[1] += (two58 & sign);
1041
2.52k
    out[2] -= (1 & sign);
1042
2.52k
    sign = -(out[2] >> 63);
1043
2.52k
    out[2] += (two58 & sign);
1044
2.52k
    out[3] -= (1 & sign);
1045
2.52k
    sign = -(out[3] >> 63);
1046
2.52k
    out[3] += (two58 & sign);
1047
2.52k
    out[4] -= (1 & sign);
1048
2.52k
    sign = -(out[4] >> 63);
1049
2.52k
    out[4] += (two58 & sign);
1050
2.52k
    out[5] -= (1 & sign);
1051
2.52k
    sign = -(out[0] >> 63);
1052
2.52k
    out[5] += (two58 & sign);
1053
2.52k
    out[6] -= (1 & sign);
1054
2.52k
    sign = -(out[6] >> 63);
1055
2.52k
    out[6] += (two58 & sign);
1056
2.52k
    out[7] -= (1 & sign);
1057
2.52k
    sign = -(out[7] >> 63);
1058
2.52k
    out[7] += (two58 & sign);
1059
2.52k
    out[8] -= (1 & sign);
1060
2.52k
    sign = -(out[5] >> 63);
1061
2.52k
    out[5] += (two58 & sign);
1062
2.52k
    out[6] -= (1 & sign);
1063
2.52k
    sign = -(out[6] >> 63);
1064
2.52k
    out[6] += (two58 & sign);
1065
2.52k
    out[7] -= (1 & sign);
1066
2.52k
    sign = -(out[7] >> 63);
1067
2.52k
    out[7] += (two58 & sign);
1068
2.52k
    out[8] -= (1 & sign);
1069
2.52k
}
1070
1071
/*-
1072
 * Group operations
1073
 * ----------------
1074
 *
1075
 * Building on top of the field operations we have the operations on the
1076
 * elliptic curve group itself. Points on the curve are represented in Jacobian
1077
 * coordinates */
1078
1079
/*-
1080
 * point_double calculates 2*(x_in, y_in, z_in)
1081
 *
1082
 * The method is taken from:
1083
 *   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
1084
 *
1085
 * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed.
1086
 * while x_out == y_in is not (maybe this works, but it's not tested). */
1087
static void
1088
point_double(felem x_out, felem y_out, felem z_out,
1089
             const felem x_in, const felem y_in, const felem z_in)
1090
131k
{
1091
131k
    largefelem tmp, tmp2;
1092
131k
    felem delta, gamma, beta, alpha, ftmp, ftmp2;
1093
1094
131k
    felem_assign(ftmp, x_in);
1095
131k
    felem_assign(ftmp2, x_in);
1096
1097
    /* delta = z^2 */
1098
131k
    felem_square(tmp, z_in);
1099
131k
    felem_reduce(delta, tmp);   /* delta[i] < 2^59 + 2^14 */
1100
1101
    /* gamma = y^2 */
1102
131k
    felem_square(tmp, y_in);
1103
131k
    felem_reduce(gamma, tmp);   /* gamma[i] < 2^59 + 2^14 */
1104
1105
    /* beta = x*gamma */
1106
131k
    felem_mul(tmp, x_in, gamma);
1107
131k
    felem_reduce(beta, tmp);    /* beta[i] < 2^59 + 2^14 */
1108
1109
    /* alpha = 3*(x-delta)*(x+delta) */
1110
131k
    felem_diff64(ftmp, delta);
1111
    /* ftmp[i] < 2^61 */
1112
131k
    felem_sum64(ftmp2, delta);
1113
    /* ftmp2[i] < 2^60 + 2^15 */
1114
131k
    felem_scalar64(ftmp2, 3);
1115
    /* ftmp2[i] < 3*2^60 + 3*2^15 */
1116
131k
    felem_mul(tmp, ftmp, ftmp2);
1117
    /*-
1118
     * tmp[i] < 17(3*2^121 + 3*2^76)
1119
     *        = 61*2^121 + 61*2^76
1120
     *        < 64*2^121 + 64*2^76
1121
     *        = 2^127 + 2^82
1122
     *        < 2^128
1123
     */
1124
131k
    felem_reduce(alpha, tmp);
1125
1126
    /* x' = alpha^2 - 8*beta */
1127
131k
    felem_square(tmp, alpha);
1128
    /*
1129
     * tmp[i] < 17*2^120 < 2^125
1130
     */
1131
131k
    felem_assign(ftmp, beta);
1132
131k
    felem_scalar64(ftmp, 8);
1133
    /* ftmp[i] < 2^62 + 2^17 */
1134
131k
    felem_diff_128_64(tmp, ftmp);
1135
    /* tmp[i] < 2^125 + 2^63 + 2^62 + 2^17 */
1136
131k
    felem_reduce(x_out, tmp);
1137
1138
    /* z' = (y + z)^2 - gamma - delta */
1139
131k
    felem_sum64(delta, gamma);
1140
    /* delta[i] < 2^60 + 2^15 */
1141
131k
    felem_assign(ftmp, y_in);
1142
131k
    felem_sum64(ftmp, z_in);
1143
    /* ftmp[i] < 2^60 + 2^15 */
1144
131k
    felem_square(tmp, ftmp);
1145
    /*
1146
     * tmp[i] < 17(2^122) < 2^127
1147
     */
1148
131k
    felem_diff_128_64(tmp, delta);
1149
    /* tmp[i] < 2^127 + 2^63 */
1150
131k
    felem_reduce(z_out, tmp);
1151
1152
    /* y' = alpha*(4*beta - x') - 8*gamma^2 */
1153
131k
    felem_scalar64(beta, 4);
1154
    /* beta[i] < 2^61 + 2^16 */
1155
131k
    felem_diff64(beta, x_out);
1156
    /* beta[i] < 2^61 + 2^60 + 2^16 */
1157
131k
    felem_mul(tmp, alpha, beta);
1158
    /*-
1159
     * tmp[i] < 17*((2^59 + 2^14)(2^61 + 2^60 + 2^16))
1160
     *        = 17*(2^120 + 2^75 + 2^119 + 2^74 + 2^75 + 2^30)
1161
     *        = 17*(2^120 + 2^119 + 2^76 + 2^74 + 2^30)
1162
     *        < 2^128
1163
     */
1164
131k
    felem_square(tmp2, gamma);
1165
    /*-
1166
     * tmp2[i] < 17*(2^59 + 2^14)^2
1167
     *         = 17*(2^118 + 2^74 + 2^28)
1168
     */
1169
131k
    felem_scalar128(tmp2, 8);
1170
    /*-
1171
     * tmp2[i] < 8*17*(2^118 + 2^74 + 2^28)
1172
     *         = 2^125 + 2^121 + 2^81 + 2^77 + 2^35 + 2^31
1173
     *         < 2^126
1174
     */
1175
131k
    felem_diff128(tmp, tmp2);
1176
    /*-
1177
     * tmp[i] < 2^127 - 2^69 + 17(2^120 + 2^119 + 2^76 + 2^74 + 2^30)
1178
     *        = 2^127 + 2^124 + 2^122 + 2^120 + 2^118 + 2^80 + 2^78 + 2^76 +
1179
     *          2^74 + 2^69 + 2^34 + 2^30
1180
     *        < 2^128
1181
     */
1182
131k
    felem_reduce(y_out, tmp);
1183
131k
}
1184
1185
/* copy_conditional copies in to out iff mask is all ones. */
1186
static void copy_conditional(felem out, const felem in, limb mask)
1187
409k
{
1188
409k
    unsigned i;
1189
4.09M
    for (i = 0; i < NLIMBS; ++i) {
1190
3.68M
        const limb tmp = mask & (in[i] ^ out[i]);
1191
3.68M
        out[i] ^= tmp;
1192
3.68M
    }
1193
409k
}
1194
1195
/*-
1196
 * point_add calculates (x1, y1, z1) + (x2, y2, z2)
1197
 *
1198
 * The method is taken from
1199
 *   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl,
1200
 * adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity).
1201
 *
1202
 * This function includes a branch for checking whether the two input points
1203
 * are equal (while not equal to the point at infinity). See comment below
1204
 * on constant-time.
1205
 */
1206
static void point_add(felem x3, felem y3, felem z3,
1207
                      const felem x1, const felem y1, const felem z1,
1208
                      const int mixed, const felem x2, const felem y2,
1209
                      const felem z2)
1210
65.4k
{
1211
65.4k
    felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, ftmp6, x_out, y_out, z_out;
1212
65.4k
    largefelem tmp, tmp2;
1213
65.4k
    limb x_equal, y_equal, z1_is_zero, z2_is_zero;
1214
65.4k
    limb points_equal;
1215
1216
65.4k
    z1_is_zero = felem_is_zero(z1);
1217
65.4k
    z2_is_zero = felem_is_zero(z2);
1218
1219
    /* ftmp = z1z1 = z1**2 */
1220
65.4k
    felem_square(tmp, z1);
1221
65.4k
    felem_reduce(ftmp, tmp);
1222
1223
65.4k
    if (!mixed) {
1224
        /* ftmp2 = z2z2 = z2**2 */
1225
18.0k
        felem_square(tmp, z2);
1226
18.0k
        felem_reduce(ftmp2, tmp);
1227
1228
        /* u1 = ftmp3 = x1*z2z2 */
1229
18.0k
        felem_mul(tmp, x1, ftmp2);
1230
18.0k
        felem_reduce(ftmp3, tmp);
1231
1232
        /* ftmp5 = z1 + z2 */
1233
18.0k
        felem_assign(ftmp5, z1);
1234
18.0k
        felem_sum64(ftmp5, z2);
1235
        /* ftmp5[i] < 2^61 */
1236
1237
        /* ftmp5 = (z1 + z2)**2 - z1z1 - z2z2 = 2*z1z2 */
1238
18.0k
        felem_square(tmp, ftmp5);
1239
        /* tmp[i] < 17*2^122 */
1240
18.0k
        felem_diff_128_64(tmp, ftmp);
1241
        /* tmp[i] < 17*2^122 + 2^63 */
1242
18.0k
        felem_diff_128_64(tmp, ftmp2);
1243
        /* tmp[i] < 17*2^122 + 2^64 */
1244
18.0k
        felem_reduce(ftmp5, tmp);
1245
1246
        /* ftmp2 = z2 * z2z2 */
1247
18.0k
        felem_mul(tmp, ftmp2, z2);
1248
18.0k
        felem_reduce(ftmp2, tmp);
1249
1250
        /* s1 = ftmp6 = y1 * z2**3 */
1251
18.0k
        felem_mul(tmp, y1, ftmp2);
1252
18.0k
        felem_reduce(ftmp6, tmp);
1253
47.3k
    } else {
1254
        /*
1255
         * We'll assume z2 = 1 (special case z2 = 0 is handled later)
1256
         */
1257
1258
        /* u1 = ftmp3 = x1*z2z2 */
1259
47.3k
        felem_assign(ftmp3, x1);
1260
1261
        /* ftmp5 = 2*z1z2 */
1262
47.3k
        felem_scalar(ftmp5, z1, 2);
1263
1264
        /* s1 = ftmp6 = y1 * z2**3 */
1265
47.3k
        felem_assign(ftmp6, y1);
1266
47.3k
    }
1267
1268
    /* u2 = x2*z1z1 */
1269
65.4k
    felem_mul(tmp, x2, ftmp);
1270
    /* tmp[i] < 17*2^120 */
1271
1272
    /* h = ftmp4 = u2 - u1 */
1273
65.4k
    felem_diff_128_64(tmp, ftmp3);
1274
    /* tmp[i] < 17*2^120 + 2^63 */
1275
65.4k
    felem_reduce(ftmp4, tmp);
1276
1277
65.4k
    x_equal = felem_is_zero(ftmp4);
1278
1279
    /* z_out = ftmp5 * h */
1280
65.4k
    felem_mul(tmp, ftmp5, ftmp4);
1281
65.4k
    felem_reduce(z_out, tmp);
1282
1283
    /* ftmp = z1 * z1z1 */
1284
65.4k
    felem_mul(tmp, ftmp, z1);
1285
65.4k
    felem_reduce(ftmp, tmp);
1286
1287
    /* s2 = tmp = y2 * z1**3 */
1288
65.4k
    felem_mul(tmp, y2, ftmp);
1289
    /* tmp[i] < 17*2^120 */
1290
1291
    /* r = ftmp5 = (s2 - s1)*2 */
1292
65.4k
    felem_diff_128_64(tmp, ftmp6);
1293
    /* tmp[i] < 17*2^120 + 2^63 */
1294
65.4k
    felem_reduce(ftmp5, tmp);
1295
65.4k
    y_equal = felem_is_zero(ftmp5);
1296
65.4k
    felem_scalar64(ftmp5, 2);
1297
    /* ftmp5[i] < 2^61 */
1298
1299
    /*
1300
     * The formulae are incorrect if the points are equal, in affine coordinates
1301
     * (X_1, Y_1) == (X_2, Y_2), so we check for this and do doubling if this
1302
     * happens.
1303
     *
1304
     * We use bitwise operations to avoid potential side-channels introduced by
1305
     * the short-circuiting behaviour of boolean operators.
1306
     *
1307
     * The special case of either point being the point at infinity (z1 and/or
1308
     * z2 are zero), is handled separately later on in this function, so we
1309
     * avoid jumping to point_double here in those special cases.
1310
     *
1311
     * Notice the comment below on the implications of this branching for timing
1312
     * leaks and why it is considered practically irrelevant.
1313
     */
1314
65.4k
    points_equal = (x_equal & y_equal & (~z1_is_zero) & (~z2_is_zero));
1315
1316
65.4k
    if (points_equal) {
1317
        /*
1318
         * This is obviously not constant-time but it will almost-never happen
1319
         * for ECDH / ECDSA. The case where it can happen is during scalar-mult
1320
         * where the intermediate value gets very close to the group order.
1321
         * Since |ossl_ec_GFp_nistp_recode_scalar_bits| produces signed digits
1322
         * for the scalar, it's possible for the intermediate value to be a small
1323
         * negative multiple of the base point, and for the final signed digit
1324
         * to be the same value. We believe that this only occurs for the scalar
1325
         * 1fffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
1326
         * ffffffa51868783bf2f966b7fcc0148f709a5d03bb5c9b8899c47aebb6fb
1327
         * 71e913863f7, in that case the penultimate intermediate is -9G and
1328
         * the final digit is also -9G. Since this only happens for a single
1329
         * scalar, the timing leak is irrelevant. (Any attacker who wanted to
1330
         * check whether a secret scalar was that exact value, can already do
1331
         * so.)
1332
         */
1333
0
        point_double(x3, y3, z3, x1, y1, z1);
1334
0
        return;
1335
0
    }
1336
1337
    /* I = ftmp = (2h)**2 */
1338
65.4k
    felem_assign(ftmp, ftmp4);
1339
65.4k
    felem_scalar64(ftmp, 2);
1340
    /* ftmp[i] < 2^61 */
1341
65.4k
    felem_square(tmp, ftmp);
1342
    /* tmp[i] < 17*2^122 */
1343
65.4k
    felem_reduce(ftmp, tmp);
1344
1345
    /* J = ftmp2 = h * I */
1346
65.4k
    felem_mul(tmp, ftmp4, ftmp);
1347
65.4k
    felem_reduce(ftmp2, tmp);
1348
1349
    /* V = ftmp4 = U1 * I */
1350
65.4k
    felem_mul(tmp, ftmp3, ftmp);
1351
65.4k
    felem_reduce(ftmp4, tmp);
1352
1353
    /* x_out = r**2 - J - 2V */
1354
65.4k
    felem_square(tmp, ftmp5);
1355
    /* tmp[i] < 17*2^122 */
1356
65.4k
    felem_diff_128_64(tmp, ftmp2);
1357
    /* tmp[i] < 17*2^122 + 2^63 */
1358
65.4k
    felem_assign(ftmp3, ftmp4);
1359
65.4k
    felem_scalar64(ftmp4, 2);
1360
    /* ftmp4[i] < 2^61 */
1361
65.4k
    felem_diff_128_64(tmp, ftmp4);
1362
    /* tmp[i] < 17*2^122 + 2^64 */
1363
65.4k
    felem_reduce(x_out, tmp);
1364
1365
    /* y_out = r(V-x_out) - 2 * s1 * J */
1366
65.4k
    felem_diff64(ftmp3, x_out);
1367
    /*
1368
     * ftmp3[i] < 2^60 + 2^60 = 2^61
1369
     */
1370
65.4k
    felem_mul(tmp, ftmp5, ftmp3);
1371
    /* tmp[i] < 17*2^122 */
1372
65.4k
    felem_mul(tmp2, ftmp6, ftmp2);
1373
    /* tmp2[i] < 17*2^120 */
1374
65.4k
    felem_scalar128(tmp2, 2);
1375
    /* tmp2[i] < 17*2^121 */
1376
65.4k
    felem_diff128(tmp, tmp2);
1377
        /*-
1378
         * tmp[i] < 2^127 - 2^69 + 17*2^122
1379
         *        = 2^126 - 2^122 - 2^6 - 2^2 - 1
1380
         *        < 2^127
1381
         */
1382
65.4k
    felem_reduce(y_out, tmp);
1383
1384
65.4k
    copy_conditional(x_out, x2, z1_is_zero);
1385
65.4k
    copy_conditional(x_out, x1, z2_is_zero);
1386
65.4k
    copy_conditional(y_out, y2, z1_is_zero);
1387
65.4k
    copy_conditional(y_out, y1, z2_is_zero);
1388
65.4k
    copy_conditional(z_out, z2, z1_is_zero);
1389
65.4k
    copy_conditional(z_out, z1, z2_is_zero);
1390
65.4k
    felem_assign(x3, x_out);
1391
65.4k
    felem_assign(y3, y_out);
1392
65.4k
    felem_assign(z3, z_out);
1393
65.4k
}
1394
1395
/*-
1396
 * Base point pre computation
1397
 * --------------------------
1398
 *
1399
 * Two different sorts of precomputed tables are used in the following code.
1400
 * Each contain various points on the curve, where each point is three field
1401
 * elements (x, y, z).
1402
 *
1403
 * For the base point table, z is usually 1 (0 for the point at infinity).
1404
 * This table has 16 elements:
1405
 * index | bits    | point
1406
 * ------+---------+------------------------------
1407
 *     0 | 0 0 0 0 | 0G
1408
 *     1 | 0 0 0 1 | 1G
1409
 *     2 | 0 0 1 0 | 2^130G
1410
 *     3 | 0 0 1 1 | (2^130 + 1)G
1411
 *     4 | 0 1 0 0 | 2^260G
1412
 *     5 | 0 1 0 1 | (2^260 + 1)G
1413
 *     6 | 0 1 1 0 | (2^260 + 2^130)G
1414
 *     7 | 0 1 1 1 | (2^260 + 2^130 + 1)G
1415
 *     8 | 1 0 0 0 | 2^390G
1416
 *     9 | 1 0 0 1 | (2^390 + 1)G
1417
 *    10 | 1 0 1 0 | (2^390 + 2^130)G
1418
 *    11 | 1 0 1 1 | (2^390 + 2^130 + 1)G
1419
 *    12 | 1 1 0 0 | (2^390 + 2^260)G
1420
 *    13 | 1 1 0 1 | (2^390 + 2^260 + 1)G
1421
 *    14 | 1 1 1 0 | (2^390 + 2^260 + 2^130)G
1422
 *    15 | 1 1 1 1 | (2^390 + 2^260 + 2^130 + 1)G
1423
 *
1424
 * The reason for this is so that we can clock bits into four different
1425
 * locations when doing simple scalar multiplies against the base point.
1426
 *
1427
 * Tables for other points have table[i] = iG for i in 0 .. 16. */
1428
1429
/* gmul is the table of precomputed base points */
1430
static const felem gmul[16][3] = {
1431
{{0, 0, 0, 0, 0, 0, 0, 0, 0},
1432
 {0, 0, 0, 0, 0, 0, 0, 0, 0},
1433
 {0, 0, 0, 0, 0, 0, 0, 0, 0}},
1434
{{0x017e7e31c2e5bd66, 0x022cf0615a90a6fe, 0x00127a2ffa8de334,
1435
  0x01dfbf9d64a3f877, 0x006b4d3dbaa14b5e, 0x014fed487e0a2bd8,
1436
  0x015b4429c6481390, 0x03a73678fb2d988e, 0x00c6858e06b70404},
1437
 {0x00be94769fd16650, 0x031c21a89cb09022, 0x039013fad0761353,
1438
  0x02657bd099031542, 0x03273e662c97ee72, 0x01e6d11a05ebef45,
1439
  0x03d1bd998f544495, 0x03001172297ed0b1, 0x011839296a789a3b},
1440
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1441
{{0x0373faacbc875bae, 0x00f325023721c671, 0x00f666fd3dbde5ad,
1442
  0x01a6932363f88ea7, 0x01fc6d9e13f9c47b, 0x03bcbffc2bbf734e,
1443
  0x013ee3c3647f3a92, 0x029409fefe75d07d, 0x00ef9199963d85e5},
1444
 {0x011173743ad5b178, 0x02499c7c21bf7d46, 0x035beaeabb8b1a58,
1445
  0x00f989c4752ea0a3, 0x0101e1de48a9c1a3, 0x01a20076be28ba6c,
1446
  0x02f8052e5eb2de95, 0x01bfe8f82dea117c, 0x0160074d3c36ddb7},
1447
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1448
{{0x012f3fc373393b3b, 0x03d3d6172f1419fa, 0x02adc943c0b86873,
1449
  0x00d475584177952b, 0x012a4d1673750ee2, 0x00512517a0f13b0c,
1450
  0x02b184671a7b1734, 0x0315b84236f1a50a, 0x00a4afc472edbdb9},
1451
 {0x00152a7077f385c4, 0x03044007d8d1c2ee, 0x0065829d61d52b52,
1452
  0x00494ff6b6631d0d, 0x00a11d94d5f06bcf, 0x02d2f89474d9282e,
1453
  0x0241c5727c06eeb9, 0x0386928710fbdb9d, 0x01f883f727b0dfbe},
1454
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1455
{{0x019b0c3c9185544d, 0x006243a37c9d97db, 0x02ee3cbe030a2ad2,
1456
  0x00cfdd946bb51e0d, 0x0271c00932606b91, 0x03f817d1ec68c561,
1457
  0x03f37009806a369c, 0x03c1f30baf184fd5, 0x01091022d6d2f065},
1458
 {0x0292c583514c45ed, 0x0316fca51f9a286c, 0x00300af507c1489a,
1459
  0x0295f69008298cf1, 0x02c0ed8274943d7b, 0x016509b9b47a431e,
1460
  0x02bc9de9634868ce, 0x005b34929bffcb09, 0x000c1a0121681524},
1461
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1462
{{0x0286abc0292fb9f2, 0x02665eee9805b3f7, 0x01ed7455f17f26d6,
1463
  0x0346355b83175d13, 0x006284944cd0a097, 0x0191895bcdec5e51,
1464
  0x02e288370afda7d9, 0x03b22312bfefa67a, 0x01d104d3fc0613fe},
1465
 {0x0092421a12f7e47f, 0x0077a83fa373c501, 0x03bd25c5f696bd0d,
1466
  0x035c41e4d5459761, 0x01ca0d1742b24f53, 0x00aaab27863a509c,
1467
  0x018b6de47df73917, 0x025c0b771705cd01, 0x01fd51d566d760a7},
1468
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1469
{{0x01dd92ff6b0d1dbd, 0x039c5e2e8f8afa69, 0x0261ed13242c3b27,
1470
  0x0382c6e67026e6a0, 0x01d60b10be2089f9, 0x03c15f3dce86723f,
1471
  0x03c764a32d2a062d, 0x017307eac0fad056, 0x018207c0b96c5256},
1472
 {0x0196a16d60e13154, 0x03e6ce74c0267030, 0x00ddbf2b4e52a5aa,
1473
  0x012738241bbf31c8, 0x00ebe8dc04685a28, 0x024c2ad6d380d4a2,
1474
  0x035ee062a6e62d0e, 0x0029ed74af7d3a0f, 0x00eef32aec142ebd},
1475
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1476
{{0x00c31ec398993b39, 0x03a9f45bcda68253, 0x00ac733c24c70890,
1477
  0x00872b111401ff01, 0x01d178c23195eafb, 0x03bca2c816b87f74,
1478
  0x0261a9af46fbad7a, 0x0324b2a8dd3d28f9, 0x00918121d8f24e23},
1479
 {0x032bc8c1ca983cd7, 0x00d869dfb08fc8c6, 0x01693cb61fce1516,
1480
  0x012a5ea68f4e88a8, 0x010869cab88d7ae3, 0x009081ad277ceee1,
1481
  0x033a77166d064cdc, 0x03955235a1fb3a95, 0x01251a4a9b25b65e},
1482
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1483
{{0x00148a3a1b27f40b, 0x0123186df1b31fdc, 0x00026e7beaad34ce,
1484
  0x01db446ac1d3dbba, 0x0299c1a33437eaec, 0x024540610183cbb7,
1485
  0x0173bb0e9ce92e46, 0x02b937e43921214b, 0x01ab0436a9bf01b5},
1486
 {0x0383381640d46948, 0x008dacbf0e7f330f, 0x03602122bcc3f318,
1487
  0x01ee596b200620d6, 0x03bd0585fda430b3, 0x014aed77fd123a83,
1488
  0x005ace749e52f742, 0x0390fe041da2b842, 0x0189a8ceb3299242},
1489
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1490
{{0x012a19d6b3282473, 0x00c0915918b423ce, 0x023a954eb94405ae,
1491
  0x00529f692be26158, 0x0289fa1b6fa4b2aa, 0x0198ae4ceea346ef,
1492
  0x0047d8cdfbdedd49, 0x00cc8c8953f0f6b8, 0x001424abbff49203},
1493
 {0x0256732a1115a03a, 0x0351bc38665c6733, 0x03f7b950fb4a6447,
1494
  0x000afffa94c22155, 0x025763d0a4dab540, 0x000511e92d4fc283,
1495
  0x030a7e9eda0ee96c, 0x004c3cd93a28bf0a, 0x017edb3a8719217f},
1496
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1497
{{0x011de5675a88e673, 0x031d7d0f5e567fbe, 0x0016b2062c970ae5,
1498
  0x03f4a2be49d90aa7, 0x03cef0bd13822866, 0x03f0923dcf774a6c,
1499
  0x0284bebc4f322f72, 0x016ab2645302bb2c, 0x01793f95dace0e2a},
1500
 {0x010646e13527a28f, 0x01ca1babd59dc5e7, 0x01afedfd9a5595df,
1501
  0x01f15785212ea6b1, 0x0324e5d64f6ae3f4, 0x02d680f526d00645,
1502
  0x0127920fadf627a7, 0x03b383f75df4f684, 0x0089e0057e783b0a},
1503
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1504
{{0x00f334b9eb3c26c6, 0x0298fdaa98568dce, 0x01c2d24843a82292,
1505
  0x020bcb24fa1b0711, 0x02cbdb3d2b1875e6, 0x0014907598f89422,
1506
  0x03abe3aa43b26664, 0x02cbf47f720bc168, 0x0133b5e73014b79b},
1507
 {0x034aab5dab05779d, 0x00cdc5d71fee9abb, 0x0399f16bd4bd9d30,
1508
  0x03582fa592d82647, 0x02be1cdfb775b0e9, 0x0034f7cea32e94cb,
1509
  0x0335a7f08f56f286, 0x03b707e9565d1c8b, 0x0015c946ea5b614f},
1510
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1511
{{0x024676f6cff72255, 0x00d14625cac96378, 0x00532b6008bc3767,
1512
  0x01fc16721b985322, 0x023355ea1b091668, 0x029de7afdc0317c3,
1513
  0x02fc8a7ca2da037c, 0x02de1217d74a6f30, 0x013f7173175b73bf},
1514
 {0x0344913f441490b5, 0x0200f9e272b61eca, 0x0258a246b1dd55d2,
1515
  0x03753db9ea496f36, 0x025e02937a09c5ef, 0x030cbd3d14012692,
1516
  0x01793a67e70dc72a, 0x03ec1d37048a662e, 0x006550f700c32a8d},
1517
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1518
{{0x00d3f48a347eba27, 0x008e636649b61bd8, 0x00d3b93716778fb3,
1519
  0x004d1915757bd209, 0x019d5311a3da44e0, 0x016d1afcbbe6aade,
1520
  0x0241bf5f73265616, 0x0384672e5d50d39b, 0x005009fee522b684},
1521
 {0x029b4fab064435fe, 0x018868ee095bbb07, 0x01ea3d6936cc92b8,
1522
  0x000608b00f78a2f3, 0x02db911073d1c20f, 0x018205938470100a,
1523
  0x01f1e4964cbe6ff2, 0x021a19a29eed4663, 0x01414485f42afa81},
1524
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1525
{{0x01612b3a17f63e34, 0x03813992885428e6, 0x022b3c215b5a9608,
1526
  0x029b4057e19f2fcb, 0x0384059a587af7e6, 0x02d6400ace6fe610,
1527
  0x029354d896e8e331, 0x00c047ee6dfba65e, 0x0037720542e9d49d},
1528
 {0x02ce9eed7c5e9278, 0x0374ed703e79643b, 0x01316c54c4072006,
1529
  0x005aaa09054b2ee8, 0x002824000c840d57, 0x03d4eba24771ed86,
1530
  0x0189c50aabc3bdae, 0x0338c01541e15510, 0x00466d56e38eed42},
1531
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1532
{{0x007efd8330ad8bd6, 0x02465ed48047710b, 0x0034c6606b215e0c,
1533
  0x016ae30c53cbf839, 0x01fa17bd37161216, 0x018ead4e61ce8ab9,
1534
  0x005482ed5f5dee46, 0x037543755bba1d7f, 0x005e5ac7e70a9d0f},
1535
 {0x0117e1bb2fdcb2a2, 0x03deea36249f40c4, 0x028d09b4a6246cb7,
1536
  0x03524b8855bcf756, 0x023d7d109d5ceb58, 0x0178e43e3223ef9c,
1537
  0x0154536a0c6e966a, 0x037964d1286ee9fe, 0x0199bcd90e125055},
1538
 {1, 0, 0, 0, 0, 0, 0, 0, 0}}
1539
};
1540
1541
/*
1542
 * select_point selects the |idx|th point from a precomputation table and
1543
 * copies it to out.
1544
 */
1545
 /* pre_comp below is of the size provided in |size| */
1546
static void select_point(const limb idx, unsigned int size,
1547
                         const felem pre_comp[][3], felem out[3])
1548
64.7k
{
1549
64.7k
    unsigned i, j;
1550
64.7k
    limb *outlimbs = &out[0][0];
1551
1552
64.7k
    memset(out, 0, sizeof(*out) * 3);
1553
1554
1.11M
    for (i = 0; i < size; i++) {
1555
1.05M
        const limb *inlimbs = &pre_comp[i][0][0];
1556
1.05M
        limb mask = i ^ idx;
1557
1.05M
        mask |= mask >> 4;
1558
1.05M
        mask |= mask >> 2;
1559
1.05M
        mask |= mask >> 1;
1560
1.05M
        mask &= 1;
1561
1.05M
        mask--;
1562
29.5M
        for (j = 0; j < NLIMBS * 3; j++)
1563
28.4M
            outlimbs[j] |= inlimbs[j] & mask;
1564
1.05M
    }
1565
64.7k
}
1566
1567
/* get_bit returns the |i|th bit in |in| */
1568
static char get_bit(const felem_bytearray in, int i)
1569
292k
{
1570
292k
    if (i < 0)
1571
163
        return 0;
1572
292k
    return (in[i >> 3] >> (i & 7)) & 1;
1573
292k
}
1574
1575
/*
1576
 * Interleaved point multiplication using precomputed point multiples: The
1577
 * small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[], the scalars
1578
 * in scalars[]. If g_scalar is non-NULL, we also add this multiple of the
1579
 * generator, using certain (large) precomputed multiples in g_pre_comp.
1580
 * Output point (X, Y, Z) is stored in x_out, y_out, z_out
1581
 */
1582
static void batch_mul(felem x_out, felem y_out, felem z_out,
1583
                      const felem_bytearray scalars[],
1584
                      const unsigned num_points, const u8 *g_scalar,
1585
                      const int mixed, const felem pre_comp[][17][3],
1586
                      const felem g_pre_comp[16][3])
1587
511
{
1588
511
    int i, skip;
1589
511
    unsigned num, gen_mul = (g_scalar != NULL);
1590
511
    felem nq[3], tmp[4];
1591
511
    limb bits;
1592
511
    u8 sign, digit;
1593
1594
    /* set nq to the point at infinity */
1595
511
    memset(nq, 0, sizeof(nq));
1596
1597
    /*
1598
     * Loop over all scalars msb-to-lsb, interleaving additions of multiples
1599
     * of the generator (last quarter of rounds) and additions of other
1600
     * points multiples (every 5th round).
1601
     */
1602
511
    skip = 1;                   /* save two point operations in the first
1603
                                 * round */
1604
131k
    for (i = (num_points ? 520 : 130); i >= 0; --i) {
1605
        /* double */
1606
130k
        if (!skip)
1607
130k
            point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
1608
1609
        /* add multiples of the generator */
1610
130k
        if (gen_mul && (i <= 130)) {
1611
47.6k
            bits = get_bit(g_scalar, i + 390) << 3;
1612
47.6k
            if (i < 130) {
1613
47.3k
                bits |= get_bit(g_scalar, i + 260) << 2;
1614
47.3k
                bits |= get_bit(g_scalar, i + 130) << 1;
1615
47.3k
                bits |= get_bit(g_scalar, i);
1616
47.3k
            }
1617
            /* select the point to add, in constant time */
1618
47.6k
            select_point(bits, 16, g_pre_comp, tmp);
1619
47.6k
            if (!skip) {
1620
                /* The 1 argument below is for "mixed" */
1621
47.3k
                point_add(nq[0], nq[1], nq[2],
1622
47.3k
                          nq[0], nq[1], nq[2], 1, tmp[0], tmp[1], tmp[2]);
1623
47.3k
            } else {
1624
348
                memcpy(nq, tmp, 3 * sizeof(felem));
1625
348
                skip = 0;
1626
348
            }
1627
47.6k
        }
1628
1629
        /* do other additions every 5 doublings */
1630
130k
        if (num_points && (i % 5 == 0)) {
1631
            /* loop over all scalars */
1632
34.2k
            for (num = 0; num < num_points; ++num) {
1633
17.1k
                bits = get_bit(scalars[num], i + 4) << 5;
1634
17.1k
                bits |= get_bit(scalars[num], i + 3) << 4;
1635
17.1k
                bits |= get_bit(scalars[num], i + 2) << 3;
1636
17.1k
                bits |= get_bit(scalars[num], i + 1) << 2;
1637
17.1k
                bits |= get_bit(scalars[num], i) << 1;
1638
17.1k
                bits |= get_bit(scalars[num], i - 1);
1639
17.1k
                ossl_ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
1640
1641
                /*
1642
                 * select the point to add or subtract, in constant time
1643
                 */
1644
17.1k
                select_point(digit, 17, pre_comp[num], tmp);
1645
17.1k
                felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the negative
1646
                                            * point */
1647
17.1k
                copy_conditional(tmp[1], tmp[3], (-(limb) sign));
1648
1649
17.1k
                if (!skip) {
1650
16.9k
                    point_add(nq[0], nq[1], nq[2],
1651
16.9k
                              nq[0], nq[1], nq[2],
1652
16.9k
                              mixed, tmp[0], tmp[1], tmp[2]);
1653
16.9k
                } else {
1654
163
                    memcpy(nq, tmp, 3 * sizeof(felem));
1655
163
                    skip = 0;
1656
163
                }
1657
17.1k
            }
1658
17.1k
        }
1659
130k
    }
1660
511
    felem_assign(x_out, nq[0]);
1661
511
    felem_assign(y_out, nq[1]);
1662
511
    felem_assign(z_out, nq[2]);
1663
511
}
1664
1665
/* Precomputation for the group generator. */
1666
struct nistp521_pre_comp_st {
1667
    felem g_pre_comp[16][3];
1668
    CRYPTO_REF_COUNT references;
1669
    CRYPTO_RWLOCK *lock;
1670
};
1671
1672
const EC_METHOD *EC_GFp_nistp521_method(void)
1673
11.8k
{
1674
11.8k
    static const EC_METHOD ret = {
1675
11.8k
        EC_FLAGS_DEFAULT_OCT,
1676
11.8k
        NID_X9_62_prime_field,
1677
11.8k
        ossl_ec_GFp_nistp521_group_init,
1678
11.8k
        ossl_ec_GFp_simple_group_finish,
1679
11.8k
        ossl_ec_GFp_simple_group_clear_finish,
1680
11.8k
        ossl_ec_GFp_nist_group_copy,
1681
11.8k
        ossl_ec_GFp_nistp521_group_set_curve,
1682
11.8k
        ossl_ec_GFp_simple_group_get_curve,
1683
11.8k
        ossl_ec_GFp_simple_group_get_degree,
1684
11.8k
        ossl_ec_group_simple_order_bits,
1685
11.8k
        ossl_ec_GFp_simple_group_check_discriminant,
1686
11.8k
        ossl_ec_GFp_simple_point_init,
1687
11.8k
        ossl_ec_GFp_simple_point_finish,
1688
11.8k
        ossl_ec_GFp_simple_point_clear_finish,
1689
11.8k
        ossl_ec_GFp_simple_point_copy,
1690
11.8k
        ossl_ec_GFp_simple_point_set_to_infinity,
1691
11.8k
        ossl_ec_GFp_simple_point_set_affine_coordinates,
1692
11.8k
        ossl_ec_GFp_nistp521_point_get_affine_coordinates,
1693
11.8k
        0 /* point_set_compressed_coordinates */ ,
1694
11.8k
        0 /* point2oct */ ,
1695
11.8k
        0 /* oct2point */ ,
1696
11.8k
        ossl_ec_GFp_simple_add,
1697
11.8k
        ossl_ec_GFp_simple_dbl,
1698
11.8k
        ossl_ec_GFp_simple_invert,
1699
11.8k
        ossl_ec_GFp_simple_is_at_infinity,
1700
11.8k
        ossl_ec_GFp_simple_is_on_curve,
1701
11.8k
        ossl_ec_GFp_simple_cmp,
1702
11.8k
        ossl_ec_GFp_simple_make_affine,
1703
11.8k
        ossl_ec_GFp_simple_points_make_affine,
1704
11.8k
        ossl_ec_GFp_nistp521_points_mul,
1705
11.8k
        ossl_ec_GFp_nistp521_precompute_mult,
1706
11.8k
        ossl_ec_GFp_nistp521_have_precompute_mult,
1707
11.8k
        ossl_ec_GFp_nist_field_mul,
1708
11.8k
        ossl_ec_GFp_nist_field_sqr,
1709
11.8k
        0 /* field_div */ ,
1710
11.8k
        ossl_ec_GFp_simple_field_inv,
1711
11.8k
        0 /* field_encode */ ,
1712
11.8k
        0 /* field_decode */ ,
1713
11.8k
        0,                      /* field_set_to_one */
1714
11.8k
        ossl_ec_key_simple_priv2oct,
1715
11.8k
        ossl_ec_key_simple_oct2priv,
1716
11.8k
        0, /* set private */
1717
11.8k
        ossl_ec_key_simple_generate_key,
1718
11.8k
        ossl_ec_key_simple_check_key,
1719
11.8k
        ossl_ec_key_simple_generate_public_key,
1720
11.8k
        0, /* keycopy */
1721
11.8k
        0, /* keyfinish */
1722
11.8k
        ossl_ecdh_simple_compute_key,
1723
11.8k
        ossl_ecdsa_simple_sign_setup,
1724
11.8k
        ossl_ecdsa_simple_sign_sig,
1725
11.8k
        ossl_ecdsa_simple_verify_sig,
1726
11.8k
        0, /* field_inverse_mod_ord */
1727
11.8k
        0, /* blind_coordinates */
1728
11.8k
        0, /* ladder_pre */
1729
11.8k
        0, /* ladder_step */
1730
11.8k
        0  /* ladder_post */
1731
11.8k
    };
1732
1733
11.8k
    return &ret;
1734
11.8k
}
1735
1736
/******************************************************************************/
1737
/*
1738
 * FUNCTIONS TO MANAGE PRECOMPUTATION
1739
 */
1740
1741
static NISTP521_PRE_COMP *nistp521_pre_comp_new(void)
1742
0
{
1743
0
    NISTP521_PRE_COMP *ret = OPENSSL_zalloc(sizeof(*ret));
1744
1745
0
    if (ret == NULL) {
1746
0
        ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
1747
0
        return ret;
1748
0
    }
1749
1750
0
    ret->references = 1;
1751
1752
0
    ret->lock = CRYPTO_THREAD_lock_new();
1753
0
    if (ret->lock == NULL) {
1754
0
        ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
1755
0
        OPENSSL_free(ret);
1756
0
        return NULL;
1757
0
    }
1758
0
    return ret;
1759
0
}
1760
1761
NISTP521_PRE_COMP *EC_nistp521_pre_comp_dup(NISTP521_PRE_COMP *p)
1762
0
{
1763
0
    int i;
1764
0
    if (p != NULL)
1765
0
        CRYPTO_UP_REF(&p->references, &i, p->lock);
1766
0
    return p;
1767
0
}
1768
1769
void EC_nistp521_pre_comp_free(NISTP521_PRE_COMP *p)
1770
0
{
1771
0
    int i;
1772
1773
0
    if (p == NULL)
1774
0
        return;
1775
1776
0
    CRYPTO_DOWN_REF(&p->references, &i, p->lock);
1777
0
    REF_PRINT_COUNT("EC_nistp521", p);
1778
0
    if (i > 0)
1779
0
        return;
1780
0
    REF_ASSERT_ISNT(i < 0);
1781
1782
0
    CRYPTO_THREAD_lock_free(p->lock);
1783
0
    OPENSSL_free(p);
1784
0
}
1785
1786
/******************************************************************************/
1787
/*
1788
 * OPENSSL EC_METHOD FUNCTIONS
1789
 */
1790
1791
int ossl_ec_GFp_nistp521_group_init(EC_GROUP *group)
1792
17.2k
{
1793
17.2k
    int ret;
1794
17.2k
    ret = ossl_ec_GFp_simple_group_init(group);
1795
17.2k
    group->a_is_minus3 = 1;
1796
17.2k
    return ret;
1797
17.2k
}
1798
1799
int ossl_ec_GFp_nistp521_group_set_curve(EC_GROUP *group, const BIGNUM *p,
1800
                                         const BIGNUM *a, const BIGNUM *b,
1801
                                         BN_CTX *ctx)
1802
8.62k
{
1803
8.62k
    int ret = 0;
1804
8.62k
    BIGNUM *curve_p, *curve_a, *curve_b;
1805
8.62k
#ifndef FIPS_MODULE
1806
8.62k
    BN_CTX *new_ctx = NULL;
1807
1808
8.62k
    if (ctx == NULL)
1809
0
        ctx = new_ctx = BN_CTX_new();
1810
8.62k
#endif
1811
8.62k
    if (ctx == NULL)
1812
0
        return 0;
1813
1814
8.62k
    BN_CTX_start(ctx);
1815
8.62k
    curve_p = BN_CTX_get(ctx);
1816
8.62k
    curve_a = BN_CTX_get(ctx);
1817
8.62k
    curve_b = BN_CTX_get(ctx);
1818
8.62k
    if (curve_b == NULL)
1819
0
        goto err;
1820
8.62k
    BN_bin2bn(nistp521_curve_params[0], sizeof(felem_bytearray), curve_p);
1821
8.62k
    BN_bin2bn(nistp521_curve_params[1], sizeof(felem_bytearray), curve_a);
1822
8.62k
    BN_bin2bn(nistp521_curve_params[2], sizeof(felem_bytearray), curve_b);
1823
8.62k
    if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || (BN_cmp(curve_b, b))) {
1824
0
        ERR_raise(ERR_LIB_EC, EC_R_WRONG_CURVE_PARAMETERS);
1825
0
        goto err;
1826
0
    }
1827
8.62k
    group->field_mod_func = BN_nist_mod_521;
1828
8.62k
    ret = ossl_ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
1829
8.62k
 err:
1830
8.62k
    BN_CTX_end(ctx);
1831
8.62k
#ifndef FIPS_MODULE
1832
8.62k
    BN_CTX_free(new_ctx);
1833
8.62k
#endif
1834
8.62k
    return ret;
1835
8.62k
}
1836
1837
/*
1838
 * Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') =
1839
 * (X/Z^2, Y/Z^3)
1840
 */
1841
int ossl_ec_GFp_nistp521_point_get_affine_coordinates(const EC_GROUP *group,
1842
                                                      const EC_POINT *point,
1843
                                                      BIGNUM *x, BIGNUM *y,
1844
                                                      BN_CTX *ctx)
1845
248
{
1846
248
    felem z1, z2, x_in, y_in, x_out, y_out;
1847
248
    largefelem tmp;
1848
1849
248
    if (EC_POINT_is_at_infinity(group, point)) {
1850
0
        ERR_raise(ERR_LIB_EC, EC_R_POINT_AT_INFINITY);
1851
0
        return 0;
1852
0
    }
1853
248
    if ((!BN_to_felem(x_in, point->X)) || (!BN_to_felem(y_in, point->Y)) ||
1854
248
        (!BN_to_felem(z1, point->Z)))
1855
0
        return 0;
1856
248
    felem_inv(z2, z1);
1857
248
    felem_square(tmp, z2);
1858
248
    felem_reduce(z1, tmp);
1859
248
    felem_mul(tmp, x_in, z1);
1860
248
    felem_reduce(x_in, tmp);
1861
248
    felem_contract(x_out, x_in);
1862
248
    if (x != NULL) {
1863
248
        if (!felem_to_BN(x, x_out)) {
1864
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1865
0
            return 0;
1866
0
        }
1867
248
    }
1868
248
    felem_mul(tmp, z1, z2);
1869
248
    felem_reduce(z1, tmp);
1870
248
    felem_mul(tmp, y_in, z1);
1871
248
    felem_reduce(y_in, tmp);
1872
248
    felem_contract(y_out, y_in);
1873
248
    if (y != NULL) {
1874
214
        if (!felem_to_BN(y, y_out)) {
1875
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1876
0
            return 0;
1877
0
        }
1878
214
    }
1879
248
    return 1;
1880
248
}
1881
1882
/* points below is of size |num|, and tmp_felems is of size |num+1/ */
1883
static void make_points_affine(size_t num, felem points[][3],
1884
                               felem tmp_felems[])
1885
0
{
1886
    /*
1887
     * Runs in constant time, unless an input is the point at infinity (which
1888
     * normally shouldn't happen).
1889
     */
1890
0
    ossl_ec_GFp_nistp_points_make_affine_internal(num,
1891
0
                                                  points,
1892
0
                                                  sizeof(felem),
1893
0
                                                  tmp_felems,
1894
0
                                                  (void (*)(void *))felem_one,
1895
0
                                                  felem_is_zero_int,
1896
0
                                                  (void (*)(void *, const void *))
1897
0
                                                  felem_assign,
1898
0
                                                  (void (*)(void *, const void *))
1899
0
                                                  felem_square_reduce, (void (*)
1900
0
                                                                        (void *,
1901
0
                                                                         const void
1902
0
                                                                         *,
1903
0
                                                                         const void
1904
0
                                                                         *))
1905
0
                                                  felem_mul_reduce,
1906
0
                                                  (void (*)(void *, const void *))
1907
0
                                                  felem_inv,
1908
0
                                                  (void (*)(void *, const void *))
1909
0
                                                  felem_contract);
1910
0
}
1911
1912
/*
1913
 * Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL
1914
 * values Result is stored in r (r can equal one of the inputs).
1915
 */
1916
int ossl_ec_GFp_nistp521_points_mul(const EC_GROUP *group, EC_POINT *r,
1917
                                    const BIGNUM *scalar, size_t num,
1918
                                    const EC_POINT *points[],
1919
                                    const BIGNUM *scalars[], BN_CTX *ctx)
1920
265
{
1921
265
    int ret = 0;
1922
265
    int j;
1923
265
    int mixed = 0;
1924
265
    BIGNUM *x, *y, *z, *tmp_scalar;
1925
265
    felem_bytearray g_secret;
1926
265
    felem_bytearray *secrets = NULL;
1927
265
    felem (*pre_comp)[17][3] = NULL;
1928
265
    felem *tmp_felems = NULL;
1929
265
    unsigned i;
1930
265
    int num_bytes;
1931
265
    int have_pre_comp = 0;
1932
265
    size_t num_points = num;
1933
265
    felem x_in, y_in, z_in, x_out, y_out, z_out;
1934
265
    NISTP521_PRE_COMP *pre = NULL;
1935
265
    felem(*g_pre_comp)[3] = NULL;
1936
265
    EC_POINT *generator = NULL;
1937
265
    const EC_POINT *p = NULL;
1938
265
    const BIGNUM *p_scalar = NULL;
1939
1940
265
    BN_CTX_start(ctx);
1941
265
    x = BN_CTX_get(ctx);
1942
265
    y = BN_CTX_get(ctx);
1943
265
    z = BN_CTX_get(ctx);
1944
265
    tmp_scalar = BN_CTX_get(ctx);
1945
265
    if (tmp_scalar == NULL)
1946
0
        goto err;
1947
1948
265
    if (scalar != NULL) {
1949
211
        pre = group->pre_comp.nistp521;
1950
211
        if (pre)
1951
            /* we have precomputation, try to use it */
1952
0
            g_pre_comp = &pre->g_pre_comp[0];
1953
211
        else
1954
            /* try to use the standard precomputation */
1955
211
            g_pre_comp = (felem(*)[3]) gmul;
1956
211
        generator = EC_POINT_new(group);
1957
211
        if (generator == NULL)
1958
0
            goto err;
1959
        /* get the generator from precomputation */
1960
211
        if (!felem_to_BN(x, g_pre_comp[1][0]) ||
1961
211
            !felem_to_BN(y, g_pre_comp[1][1]) ||
1962
211
            !felem_to_BN(z, g_pre_comp[1][2])) {
1963
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1964
0
            goto err;
1965
0
        }
1966
211
        if (!ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group,
1967
211
                                                                generator,
1968
211
                                                                x, y, z, ctx))
1969
0
            goto err;
1970
211
        if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
1971
            /* precomputation matches generator */
1972
211
            have_pre_comp = 1;
1973
0
        else
1974
            /*
1975
             * we don't have valid precomputation: treat the generator as a
1976
             * random point
1977
             */
1978
0
            num_points++;
1979
211
    }
1980
1981
265
    if (num_points > 0) {
1982
66
        if (num_points >= 2) {
1983
            /*
1984
             * unless we precompute multiples for just one point, converting
1985
             * those into affine form is time well spent
1986
             */
1987
0
            mixed = 1;
1988
0
        }
1989
66
        secrets = OPENSSL_zalloc(sizeof(*secrets) * num_points);
1990
66
        pre_comp = OPENSSL_zalloc(sizeof(*pre_comp) * num_points);
1991
66
        if (mixed)
1992
0
            tmp_felems =
1993
0
                OPENSSL_malloc(sizeof(*tmp_felems) * (num_points * 17 + 1));
1994
66
        if ((secrets == NULL) || (pre_comp == NULL)
1995
66
            || (mixed && (tmp_felems == NULL))) {
1996
0
            ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
1997
0
            goto err;
1998
0
        }
1999
2000
        /*
2001
         * we treat NULL scalars as 0, and NULL points as points at infinity,
2002
         * i.e., they contribute nothing to the linear combination
2003
         */
2004
132
        for (i = 0; i < num_points; ++i) {
2005
66
            if (i == num) {
2006
                /*
2007
                 * we didn't have a valid precomputation, so we pick the
2008
                 * generator
2009
                 */
2010
0
                p = EC_GROUP_get0_generator(group);
2011
0
                p_scalar = scalar;
2012
66
            } else {
2013
                /* the i^th point */
2014
66
                p = points[i];
2015
66
                p_scalar = scalars[i];
2016
66
            }
2017
66
            if ((p_scalar != NULL) && (p != NULL)) {
2018
                /* reduce scalar to 0 <= scalar < 2^521 */
2019
66
                if ((BN_num_bits(p_scalar) > 521)
2020
66
                    || (BN_is_negative(p_scalar))) {
2021
                    /*
2022
                     * this is an unusual input, and we don't guarantee
2023
                     * constant-timeness
2024
                     */
2025
0
                    if (!BN_nnmod(tmp_scalar, p_scalar, group->order, ctx)) {
2026
0
                        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
2027
0
                        goto err;
2028
0
                    }
2029
0
                    num_bytes = BN_bn2lebinpad(tmp_scalar,
2030
0
                                               secrets[i], sizeof(secrets[i]));
2031
66
                } else {
2032
66
                    num_bytes = BN_bn2lebinpad(p_scalar,
2033
66
                                               secrets[i], sizeof(secrets[i]));
2034
66
                }
2035
66
                if (num_bytes < 0) {
2036
0
                    ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
2037
0
                    goto err;
2038
0
                }
2039
                /* precompute multiples */
2040
66
                if ((!BN_to_felem(x_out, p->X)) ||
2041
66
                    (!BN_to_felem(y_out, p->Y)) ||
2042
66
                    (!BN_to_felem(z_out, p->Z)))
2043
0
                    goto err;
2044
66
                memcpy(pre_comp[i][1][0], x_out, sizeof(felem));
2045
66
                memcpy(pre_comp[i][1][1], y_out, sizeof(felem));
2046
66
                memcpy(pre_comp[i][1][2], z_out, sizeof(felem));
2047
1.05k
                for (j = 2; j <= 16; ++j) {
2048
990
                    if (j & 1) {
2049
462
                        point_add(pre_comp[i][j][0], pre_comp[i][j][1],
2050
462
                                  pre_comp[i][j][2], pre_comp[i][1][0],
2051
462
                                  pre_comp[i][1][1], pre_comp[i][1][2], 0,
2052
462
                                  pre_comp[i][j - 1][0],
2053
462
                                  pre_comp[i][j - 1][1],
2054
462
                                  pre_comp[i][j - 1][2]);
2055
528
                    } else {
2056
528
                        point_double(pre_comp[i][j][0], pre_comp[i][j][1],
2057
528
                                     pre_comp[i][j][2], pre_comp[i][j / 2][0],
2058
528
                                     pre_comp[i][j / 2][1],
2059
528
                                     pre_comp[i][j / 2][2]);
2060
528
                    }
2061
990
                }
2062
66
            }
2063
66
        }
2064
66
        if (mixed)
2065
0
            make_points_affine(num_points * 17, pre_comp[0], tmp_felems);
2066
66
    }
2067
2068
    /* the scalar for the generator */
2069
265
    if ((scalar != NULL) && (have_pre_comp)) {
2070
211
        memset(g_secret, 0, sizeof(g_secret));
2071
        /* reduce scalar to 0 <= scalar < 2^521 */
2072
211
        if ((BN_num_bits(scalar) > 521) || (BN_is_negative(scalar))) {
2073
            /*
2074
             * this is an unusual input, and we don't guarantee
2075
             * constant-timeness
2076
             */
2077
17
            if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) {
2078
0
                ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
2079
0
                goto err;
2080
0
            }
2081
17
            num_bytes = BN_bn2lebinpad(tmp_scalar, g_secret, sizeof(g_secret));
2082
194
        } else {
2083
194
            num_bytes = BN_bn2lebinpad(scalar, g_secret, sizeof(g_secret));
2084
194
        }
2085
        /* do the multiplication with generator precomputation */
2086
211
        batch_mul(x_out, y_out, z_out,
2087
211
                  (const felem_bytearray(*))secrets, num_points,
2088
211
                  g_secret,
2089
211
                  mixed, (const felem(*)[17][3])pre_comp,
2090
211
                  (const felem(*)[3])g_pre_comp);
2091
211
    } else {
2092
        /* do the multiplication without generator precomputation */
2093
54
        batch_mul(x_out, y_out, z_out,
2094
54
                  (const felem_bytearray(*))secrets, num_points,
2095
54
                  NULL, mixed, (const felem(*)[17][3])pre_comp, NULL);
2096
54
    }
2097
    /* reduce the output to its unique minimal representation */
2098
265
    felem_contract(x_in, x_out);
2099
265
    felem_contract(y_in, y_out);
2100
265
    felem_contract(z_in, z_out);
2101
265
    if ((!felem_to_BN(x, x_in)) || (!felem_to_BN(y, y_in)) ||
2102
265
        (!felem_to_BN(z, z_in))) {
2103
0
        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
2104
0
        goto err;
2105
0
    }
2106
265
    ret = ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group, r, x, y, z,
2107
265
                                                             ctx);
2108
2109
265
 err:
2110
265
    BN_CTX_end(ctx);
2111
265
    EC_POINT_free(generator);
2112
265
    OPENSSL_free(secrets);
2113
265
    OPENSSL_free(pre_comp);
2114
265
    OPENSSL_free(tmp_felems);
2115
265
    return ret;
2116
265
}
2117
2118
int ossl_ec_GFp_nistp521_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
2119
0
{
2120
0
    int ret = 0;
2121
0
    NISTP521_PRE_COMP *pre = NULL;
2122
0
    int i, j;
2123
0
    BIGNUM *x, *y;
2124
0
    EC_POINT *generator = NULL;
2125
0
    felem tmp_felems[16];
2126
0
#ifndef FIPS_MODULE
2127
0
    BN_CTX *new_ctx = NULL;
2128
0
#endif
2129
2130
    /* throw away old precomputation */
2131
0
    EC_pre_comp_free(group);
2132
2133
0
#ifndef FIPS_MODULE
2134
0
    if (ctx == NULL)
2135
0
        ctx = new_ctx = BN_CTX_new();
2136
0
#endif
2137
0
    if (ctx == NULL)
2138
0
        return 0;
2139
2140
0
    BN_CTX_start(ctx);
2141
0
    x = BN_CTX_get(ctx);
2142
0
    y = BN_CTX_get(ctx);
2143
0
    if (y == NULL)
2144
0
        goto err;
2145
    /* get the generator */
2146
0
    if (group->generator == NULL)
2147
0
        goto err;
2148
0
    generator = EC_POINT_new(group);
2149
0
    if (generator == NULL)
2150
0
        goto err;
2151
0
    BN_bin2bn(nistp521_curve_params[3], sizeof(felem_bytearray), x);
2152
0
    BN_bin2bn(nistp521_curve_params[4], sizeof(felem_bytearray), y);
2153
0
    if (!EC_POINT_set_affine_coordinates(group, generator, x, y, ctx))
2154
0
        goto err;
2155
0
    if ((pre = nistp521_pre_comp_new()) == NULL)
2156
0
        goto err;
2157
    /*
2158
     * if the generator is the standard one, use built-in precomputation
2159
     */
2160
0
    if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) {
2161
0
        memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp));
2162
0
        goto done;
2163
0
    }
2164
0
    if ((!BN_to_felem(pre->g_pre_comp[1][0], group->generator->X)) ||
2165
0
        (!BN_to_felem(pre->g_pre_comp[1][1], group->generator->Y)) ||
2166
0
        (!BN_to_felem(pre->g_pre_comp[1][2], group->generator->Z)))
2167
0
        goto err;
2168
    /* compute 2^130*G, 2^260*G, 2^390*G */
2169
0
    for (i = 1; i <= 4; i <<= 1) {
2170
0
        point_double(pre->g_pre_comp[2 * i][0], pre->g_pre_comp[2 * i][1],
2171
0
                     pre->g_pre_comp[2 * i][2], pre->g_pre_comp[i][0],
2172
0
                     pre->g_pre_comp[i][1], pre->g_pre_comp[i][2]);
2173
0
        for (j = 0; j < 129; ++j) {
2174
0
            point_double(pre->g_pre_comp[2 * i][0],
2175
0
                         pre->g_pre_comp[2 * i][1],
2176
0
                         pre->g_pre_comp[2 * i][2],
2177
0
                         pre->g_pre_comp[2 * i][0],
2178
0
                         pre->g_pre_comp[2 * i][1],
2179
0
                         pre->g_pre_comp[2 * i][2]);
2180
0
        }
2181
0
    }
2182
    /* g_pre_comp[0] is the point at infinity */
2183
0
    memset(pre->g_pre_comp[0], 0, sizeof(pre->g_pre_comp[0]));
2184
    /* the remaining multiples */
2185
    /* 2^130*G + 2^260*G */
2186
0
    point_add(pre->g_pre_comp[6][0], pre->g_pre_comp[6][1],
2187
0
              pre->g_pre_comp[6][2], pre->g_pre_comp[4][0],
2188
0
              pre->g_pre_comp[4][1], pre->g_pre_comp[4][2],
2189
0
              0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
2190
0
              pre->g_pre_comp[2][2]);
2191
    /* 2^130*G + 2^390*G */
2192
0
    point_add(pre->g_pre_comp[10][0], pre->g_pre_comp[10][1],
2193
0
              pre->g_pre_comp[10][2], pre->g_pre_comp[8][0],
2194
0
              pre->g_pre_comp[8][1], pre->g_pre_comp[8][2],
2195
0
              0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
2196
0
              pre->g_pre_comp[2][2]);
2197
    /* 2^260*G + 2^390*G */
2198
0
    point_add(pre->g_pre_comp[12][0], pre->g_pre_comp[12][1],
2199
0
              pre->g_pre_comp[12][2], pre->g_pre_comp[8][0],
2200
0
              pre->g_pre_comp[8][1], pre->g_pre_comp[8][2],
2201
0
              0, pre->g_pre_comp[4][0], pre->g_pre_comp[4][1],
2202
0
              pre->g_pre_comp[4][2]);
2203
    /* 2^130*G + 2^260*G + 2^390*G */
2204
0
    point_add(pre->g_pre_comp[14][0], pre->g_pre_comp[14][1],
2205
0
              pre->g_pre_comp[14][2], pre->g_pre_comp[12][0],
2206
0
              pre->g_pre_comp[12][1], pre->g_pre_comp[12][2],
2207
0
              0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
2208
0
              pre->g_pre_comp[2][2]);
2209
0
    for (i = 1; i < 8; ++i) {
2210
        /* odd multiples: add G */
2211
0
        point_add(pre->g_pre_comp[2 * i + 1][0],
2212
0
                  pre->g_pre_comp[2 * i + 1][1],
2213
0
                  pre->g_pre_comp[2 * i + 1][2], pre->g_pre_comp[2 * i][0],
2214
0
                  pre->g_pre_comp[2 * i][1], pre->g_pre_comp[2 * i][2], 0,
2215
0
                  pre->g_pre_comp[1][0], pre->g_pre_comp[1][1],
2216
0
                  pre->g_pre_comp[1][2]);
2217
0
    }
2218
0
    make_points_affine(15, &(pre->g_pre_comp[1]), tmp_felems);
2219
2220
0
 done:
2221
0
    SETPRECOMP(group, nistp521, pre);
2222
0
    ret = 1;
2223
0
    pre = NULL;
2224
0
 err:
2225
0
    BN_CTX_end(ctx);
2226
0
    EC_POINT_free(generator);
2227
0
#ifndef FIPS_MODULE
2228
0
    BN_CTX_free(new_ctx);
2229
0
#endif
2230
0
    EC_nistp521_pre_comp_free(pre);
2231
0
    return ret;
2232
0
}
2233
2234
int ossl_ec_GFp_nistp521_have_precompute_mult(const EC_GROUP *group)
2235
0
{
2236
0
    return HAVEPRECOMP(group, nistp521);
2237
0
}