Coverage Report

Created: 2023-09-25 06:45

/src/openssl111/crypto/ec/ecp_nistp521.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 2011-2020 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the OpenSSL license (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
/* Copyright 2011 Google Inc.
11
 *
12
 * Licensed under the Apache License, Version 2.0 (the "License");
13
 *
14
 * you may not use this file except in compliance with the License.
15
 * You may obtain a copy of the License at
16
 *
17
 *     http://www.apache.org/licenses/LICENSE-2.0
18
 *
19
 *  Unless required by applicable law or agreed to in writing, software
20
 *  distributed under the License is distributed on an "AS IS" BASIS,
21
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
22
 *  See the License for the specific language governing permissions and
23
 *  limitations under the License.
24
 */
25
26
/*
27
 * A 64-bit implementation of the NIST P-521 elliptic curve point multiplication
28
 *
29
 * OpenSSL integration was taken from Emilia Kasper's work in ecp_nistp224.c.
30
 * Otherwise based on Emilia's P224 work, which was inspired by my curve25519
31
 * work which got its smarts from Daniel J. Bernstein's work on the same.
32
 */
33
34
#include <openssl/e_os2.h>
35
#ifdef OPENSSL_NO_EC_NISTP_64_GCC_128
36
NON_EMPTY_TRANSLATION_UNIT
37
#else
38
39
# include <string.h>
40
# include <openssl/err.h>
41
# include "ec_local.h"
42
43
# if defined(__SIZEOF_INT128__) && __SIZEOF_INT128__==16
44
  /* even with gcc, the typedef won't work for 32-bit platforms */
45
typedef __uint128_t uint128_t;  /* nonstandard; implemented by gcc on 64-bit
46
                                 * platforms */
47
# else
48
#  error "Your compiler doesn't appear to support 128-bit integer types"
49
# endif
50
51
typedef uint8_t u8;
52
typedef uint64_t u64;
53
54
/*
55
 * The underlying field. P521 operates over GF(2^521-1). We can serialise an
56
 * element of this field into 66 bytes where the most significant byte
57
 * contains only a single bit. We call this an felem_bytearray.
58
 */
59
60
typedef u8 felem_bytearray[66];
61
62
/*
63
 * These are the parameters of P521, taken from FIPS 186-3, section D.1.2.5.
64
 * These values are big-endian.
65
 */
66
static const felem_bytearray nistp521_curve_params[5] = {
67
    {0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* p */
68
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
69
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
70
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
71
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
72
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
73
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
74
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
75
     0xff, 0xff},
76
    {0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* a = -3 */
77
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
78
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
79
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
80
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
81
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
82
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
83
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
84
     0xff, 0xfc},
85
    {0x00, 0x51, 0x95, 0x3e, 0xb9, 0x61, 0x8e, 0x1c, /* b */
86
     0x9a, 0x1f, 0x92, 0x9a, 0x21, 0xa0, 0xb6, 0x85,
87
     0x40, 0xee, 0xa2, 0xda, 0x72, 0x5b, 0x99, 0xb3,
88
     0x15, 0xf3, 0xb8, 0xb4, 0x89, 0x91, 0x8e, 0xf1,
89
     0x09, 0xe1, 0x56, 0x19, 0x39, 0x51, 0xec, 0x7e,
90
     0x93, 0x7b, 0x16, 0x52, 0xc0, 0xbd, 0x3b, 0xb1,
91
     0xbf, 0x07, 0x35, 0x73, 0xdf, 0x88, 0x3d, 0x2c,
92
     0x34, 0xf1, 0xef, 0x45, 0x1f, 0xd4, 0x6b, 0x50,
93
     0x3f, 0x00},
94
    {0x00, 0xc6, 0x85, 0x8e, 0x06, 0xb7, 0x04, 0x04, /* x */
95
     0xe9, 0xcd, 0x9e, 0x3e, 0xcb, 0x66, 0x23, 0x95,
96
     0xb4, 0x42, 0x9c, 0x64, 0x81, 0x39, 0x05, 0x3f,
97
     0xb5, 0x21, 0xf8, 0x28, 0xaf, 0x60, 0x6b, 0x4d,
98
     0x3d, 0xba, 0xa1, 0x4b, 0x5e, 0x77, 0xef, 0xe7,
99
     0x59, 0x28, 0xfe, 0x1d, 0xc1, 0x27, 0xa2, 0xff,
100
     0xa8, 0xde, 0x33, 0x48, 0xb3, 0xc1, 0x85, 0x6a,
101
     0x42, 0x9b, 0xf9, 0x7e, 0x7e, 0x31, 0xc2, 0xe5,
102
     0xbd, 0x66},
103
    {0x01, 0x18, 0x39, 0x29, 0x6a, 0x78, 0x9a, 0x3b, /* y */
104
     0xc0, 0x04, 0x5c, 0x8a, 0x5f, 0xb4, 0x2c, 0x7d,
105
     0x1b, 0xd9, 0x98, 0xf5, 0x44, 0x49, 0x57, 0x9b,
106
     0x44, 0x68, 0x17, 0xaf, 0xbd, 0x17, 0x27, 0x3e,
107
     0x66, 0x2c, 0x97, 0xee, 0x72, 0x99, 0x5e, 0xf4,
108
     0x26, 0x40, 0xc5, 0x50, 0xb9, 0x01, 0x3f, 0xad,
109
     0x07, 0x61, 0x35, 0x3c, 0x70, 0x86, 0xa2, 0x72,
110
     0xc2, 0x40, 0x88, 0xbe, 0x94, 0x76, 0x9f, 0xd1,
111
     0x66, 0x50}
112
};
113
114
/*-
115
 * The representation of field elements.
116
 * ------------------------------------
117
 *
118
 * We represent field elements with nine values. These values are either 64 or
119
 * 128 bits and the field element represented is:
120
 *   v[0]*2^0 + v[1]*2^58 + v[2]*2^116 + ... + v[8]*2^464  (mod p)
121
 * Each of the nine values is called a 'limb'. Since the limbs are spaced only
122
 * 58 bits apart, but are greater than 58 bits in length, the most significant
123
 * bits of each limb overlap with the least significant bits of the next.
124
 *
125
 * A field element with 64-bit limbs is an 'felem'. One with 128-bit limbs is a
126
 * 'largefelem' */
127
128
42.9M
# define NLIMBS 9
129
130
typedef uint64_t limb;
131
typedef limb limb_aX __attribute((__aligned__(1)));
132
typedef limb felem[NLIMBS];
133
typedef uint128_t largefelem[NLIMBS];
134
135
static const limb bottom57bits = 0x1ffffffffffffff;
136
static const limb bottom58bits = 0x3ffffffffffffff;
137
138
/*
139
 * bin66_to_felem takes a little-endian byte array and converts it into felem
140
 * form. This assumes that the CPU is little-endian.
141
 */
142
static void bin66_to_felem(felem out, const u8 in[66])
143
2.56k
{
144
2.56k
    out[0] = (*((limb *) & in[0])) & bottom58bits;
145
2.56k
    out[1] = (*((limb_aX *) & in[7]) >> 2) & bottom58bits;
146
2.56k
    out[2] = (*((limb_aX *) & in[14]) >> 4) & bottom58bits;
147
2.56k
    out[3] = (*((limb_aX *) & in[21]) >> 6) & bottom58bits;
148
2.56k
    out[4] = (*((limb_aX *) & in[29])) & bottom58bits;
149
2.56k
    out[5] = (*((limb_aX *) & in[36]) >> 2) & bottom58bits;
150
2.56k
    out[6] = (*((limb_aX *) & in[43]) >> 4) & bottom58bits;
151
2.56k
    out[7] = (*((limb_aX *) & in[50]) >> 6) & bottom58bits;
152
2.56k
    out[8] = (*((limb_aX *) & in[58])) & bottom57bits;
153
2.56k
}
154
155
/*
156
 * felem_to_bin66 takes an felem and serialises into a little endian, 66 byte
157
 * array. This assumes that the CPU is little-endian.
158
 */
159
static void felem_to_bin66(u8 out[66], const felem in)
160
4.53k
{
161
4.53k
    memset(out, 0, 66);
162
4.53k
    (*((limb *) & out[0])) = in[0];
163
4.53k
    (*((limb_aX *) & out[7])) |= in[1] << 2;
164
4.53k
    (*((limb_aX *) & out[14])) |= in[2] << 4;
165
4.53k
    (*((limb_aX *) & out[21])) |= in[3] << 6;
166
4.53k
    (*((limb_aX *) & out[29])) = in[4];
167
4.53k
    (*((limb_aX *) & out[36])) |= in[5] << 2;
168
4.53k
    (*((limb_aX *) & out[43])) |= in[6] << 4;
169
4.53k
    (*((limb_aX *) & out[50])) |= in[7] << 6;
170
4.53k
    (*((limb_aX *) & out[58])) = in[8];
171
4.53k
}
172
173
/* BN_to_felem converts an OpenSSL BIGNUM into an felem */
174
static int BN_to_felem(felem out, const BIGNUM *bn)
175
2.56k
{
176
2.56k
    felem_bytearray b_out;
177
2.56k
    int num_bytes;
178
179
2.56k
    if (BN_is_negative(bn)) {
180
0
        ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE);
181
0
        return 0;
182
0
    }
183
2.56k
    num_bytes = BN_bn2lebinpad(bn, b_out, sizeof(b_out));
184
2.56k
    if (num_bytes < 0) {
185
0
        ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE);
186
0
        return 0;
187
0
    }
188
2.56k
    bin66_to_felem(out, b_out);
189
2.56k
    return 1;
190
2.56k
}
191
192
/* felem_to_BN converts an felem into an OpenSSL BIGNUM */
193
static BIGNUM *felem_to_BN(BIGNUM *out, const felem in)
194
4.53k
{
195
4.53k
    felem_bytearray b_out;
196
4.53k
    felem_to_bin66(b_out, in);
197
4.53k
    return BN_lebin2bn(b_out, sizeof(b_out), out);
198
4.53k
}
199
200
/*-
201
 * Field operations
202
 * ----------------
203
 */
204
205
static void felem_one(felem out)
206
0
{
207
0
    out[0] = 1;
208
0
    out[1] = 0;
209
0
    out[2] = 0;
210
0
    out[3] = 0;
211
0
    out[4] = 0;
212
0
    out[5] = 0;
213
0
    out[6] = 0;
214
0
    out[7] = 0;
215
0
    out[8] = 0;
216
0
}
217
218
static void felem_assign(felem out, const felem in)
219
1.57M
{
220
1.57M
    out[0] = in[0];
221
1.57M
    out[1] = in[1];
222
1.57M
    out[2] = in[2];
223
1.57M
    out[3] = in[3];
224
1.57M
    out[4] = in[4];
225
1.57M
    out[5] = in[5];
226
1.57M
    out[6] = in[6];
227
1.57M
    out[7] = in[7];
228
1.57M
    out[8] = in[8];
229
1.57M
}
230
231
/* felem_sum64 sets out = out + in. */
232
static void felem_sum64(felem out, const felem in)
233
527k
{
234
527k
    out[0] += in[0];
235
527k
    out[1] += in[1];
236
527k
    out[2] += in[2];
237
527k
    out[3] += in[3];
238
527k
    out[4] += in[4];
239
527k
    out[5] += in[5];
240
527k
    out[6] += in[6];
241
527k
    out[7] += in[7];
242
527k
    out[8] += in[8];
243
527k
}
244
245
/* felem_scalar sets out = in * scalar */
246
static void felem_scalar(felem out, const felem in, limb scalar)
247
4.26M
{
248
4.26M
    out[0] = in[0] * scalar;
249
4.26M
    out[1] = in[1] * scalar;
250
4.26M
    out[2] = in[2] * scalar;
251
4.26M
    out[3] = in[3] * scalar;
252
4.26M
    out[4] = in[4] * scalar;
253
4.26M
    out[5] = in[5] * scalar;
254
4.26M
    out[6] = in[6] * scalar;
255
4.26M
    out[7] = in[7] * scalar;
256
4.26M
    out[8] = in[8] * scalar;
257
4.26M
}
258
259
/* felem_scalar64 sets out = out * scalar */
260
static void felem_scalar64(felem out, limb scalar)
261
755k
{
262
755k
    out[0] *= scalar;
263
755k
    out[1] *= scalar;
264
755k
    out[2] *= scalar;
265
755k
    out[3] *= scalar;
266
755k
    out[4] *= scalar;
267
755k
    out[5] *= scalar;
268
755k
    out[6] *= scalar;
269
755k
    out[7] *= scalar;
270
755k
    out[8] *= scalar;
271
755k
}
272
273
/* felem_scalar128 sets out = out * scalar */
274
static void felem_scalar128(largefelem out, limb scalar)
275
251k
{
276
251k
    out[0] *= scalar;
277
251k
    out[1] *= scalar;
278
251k
    out[2] *= scalar;
279
251k
    out[3] *= scalar;
280
251k
    out[4] *= scalar;
281
251k
    out[5] *= scalar;
282
251k
    out[6] *= scalar;
283
251k
    out[7] *= scalar;
284
251k
    out[8] *= scalar;
285
251k
}
286
287
/*-
288
 * felem_neg sets |out| to |-in|
289
 * On entry:
290
 *   in[i] < 2^59 + 2^14
291
 * On exit:
292
 *   out[i] < 2^62
293
 */
294
static void felem_neg(felem out, const felem in)
295
21.8k
{
296
    /* In order to prevent underflow, we subtract from 0 mod p. */
297
21.8k
    static const limb two62m3 = (((limb) 1) << 62) - (((limb) 1) << 5);
298
21.8k
    static const limb two62m2 = (((limb) 1) << 62) - (((limb) 1) << 4);
299
300
21.8k
    out[0] = two62m3 - in[0];
301
21.8k
    out[1] = two62m2 - in[1];
302
21.8k
    out[2] = two62m2 - in[2];
303
21.8k
    out[3] = two62m2 - in[3];
304
21.8k
    out[4] = two62m2 - in[4];
305
21.8k
    out[5] = two62m2 - in[5];
306
21.8k
    out[6] = two62m2 - in[6];
307
21.8k
    out[7] = two62m2 - in[7];
308
21.8k
    out[8] = two62m2 - in[8];
309
21.8k
}
310
311
/*-
312
 * felem_diff64 subtracts |in| from |out|
313
 * On entry:
314
 *   in[i] < 2^59 + 2^14
315
 * On exit:
316
 *   out[i] < out[i] + 2^62
317
 */
318
static void felem_diff64(felem out, const felem in)
319
419k
{
320
    /*
321
     * In order to prevent underflow, we add 0 mod p before subtracting.
322
     */
323
419k
    static const limb two62m3 = (((limb) 1) << 62) - (((limb) 1) << 5);
324
419k
    static const limb two62m2 = (((limb) 1) << 62) - (((limb) 1) << 4);
325
326
419k
    out[0] += two62m3 - in[0];
327
419k
    out[1] += two62m2 - in[1];
328
419k
    out[2] += two62m2 - in[2];
329
419k
    out[3] += two62m2 - in[3];
330
419k
    out[4] += two62m2 - in[4];
331
419k
    out[5] += two62m2 - in[5];
332
419k
    out[6] += two62m2 - in[6];
333
419k
    out[7] += two62m2 - in[7];
334
419k
    out[8] += two62m2 - in[8];
335
419k
}
336
337
/*-
338
 * felem_diff_128_64 subtracts |in| from |out|
339
 * On entry:
340
 *   in[i] < 2^62 + 2^17
341
 * On exit:
342
 *   out[i] < out[i] + 2^63
343
 */
344
static void felem_diff_128_64(largefelem out, const felem in)
345
716k
{
346
    /*
347
     * In order to prevent underflow, we add 64p mod p (which is equivalent
348
     * to 0 mod p) before subtracting. p is 2^521 - 1, i.e. in binary a 521
349
     * digit number with all bits set to 1. See "The representation of field
350
     * elements" comment above for a description of how limbs are used to
351
     * represent a number. 64p is represented with 8 limbs containing a number
352
     * with 58 bits set and one limb with a number with 57 bits set.
353
     */
354
716k
    static const limb two63m6 = (((limb) 1) << 63) - (((limb) 1) << 6);
355
716k
    static const limb two63m5 = (((limb) 1) << 63) - (((limb) 1) << 5);
356
357
716k
    out[0] += two63m6 - in[0];
358
716k
    out[1] += two63m5 - in[1];
359
716k
    out[2] += two63m5 - in[2];
360
716k
    out[3] += two63m5 - in[3];
361
716k
    out[4] += two63m5 - in[4];
362
716k
    out[5] += two63m5 - in[5];
363
716k
    out[6] += two63m5 - in[6];
364
716k
    out[7] += two63m5 - in[7];
365
716k
    out[8] += two63m5 - in[8];
366
716k
}
367
368
/*-
369
 * felem_diff_128_64 subtracts |in| from |out|
370
 * On entry:
371
 *   in[i] < 2^126
372
 * On exit:
373
 *   out[i] < out[i] + 2^127 - 2^69
374
 */
375
static void felem_diff128(largefelem out, const largefelem in)
376
251k
{
377
    /*
378
     * In order to prevent underflow, we add 0 mod p before subtracting.
379
     */
380
251k
    static const uint128_t two127m70 =
381
251k
        (((uint128_t) 1) << 127) - (((uint128_t) 1) << 70);
382
251k
    static const uint128_t two127m69 =
383
251k
        (((uint128_t) 1) << 127) - (((uint128_t) 1) << 69);
384
385
251k
    out[0] += (two127m70 - in[0]);
386
251k
    out[1] += (two127m69 - in[1]);
387
251k
    out[2] += (two127m69 - in[2]);
388
251k
    out[3] += (two127m69 - in[3]);
389
251k
    out[4] += (two127m69 - in[4]);
390
251k
    out[5] += (two127m69 - in[5]);
391
251k
    out[6] += (two127m69 - in[6]);
392
251k
    out[7] += (two127m69 - in[7]);
393
251k
    out[8] += (two127m69 - in[8]);
394
251k
}
395
396
/*-
397
 * felem_square sets |out| = |in|^2
398
 * On entry:
399
 *   in[i] < 2^62
400
 * On exit:
401
 *   out[i] < 17 * max(in[i]) * max(in[i])
402
 */
403
static void felem_square(largefelem out, const felem in)
404
646k
{
405
646k
    felem inx2, inx4;
406
646k
    felem_scalar(inx2, in, 2);
407
646k
    felem_scalar(inx4, in, 4);
408
409
    /*-
410
     * We have many cases were we want to do
411
     *   in[x] * in[y] +
412
     *   in[y] * in[x]
413
     * This is obviously just
414
     *   2 * in[x] * in[y]
415
     * However, rather than do the doubling on the 128 bit result, we
416
     * double one of the inputs to the multiplication by reading from
417
     * |inx2|
418
     */
419
420
646k
    out[0] = ((uint128_t) in[0]) * in[0];
421
646k
    out[1] = ((uint128_t) in[0]) * inx2[1];
422
646k
    out[2] = ((uint128_t) in[0]) * inx2[2] + ((uint128_t) in[1]) * in[1];
423
646k
    out[3] = ((uint128_t) in[0]) * inx2[3] + ((uint128_t) in[1]) * inx2[2];
424
646k
    out[4] = ((uint128_t) in[0]) * inx2[4] +
425
646k
             ((uint128_t) in[1]) * inx2[3] + ((uint128_t) in[2]) * in[2];
426
646k
    out[5] = ((uint128_t) in[0]) * inx2[5] +
427
646k
             ((uint128_t) in[1]) * inx2[4] + ((uint128_t) in[2]) * inx2[3];
428
646k
    out[6] = ((uint128_t) in[0]) * inx2[6] +
429
646k
             ((uint128_t) in[1]) * inx2[5] +
430
646k
             ((uint128_t) in[2]) * inx2[4] + ((uint128_t) in[3]) * in[3];
431
646k
    out[7] = ((uint128_t) in[0]) * inx2[7] +
432
646k
             ((uint128_t) in[1]) * inx2[6] +
433
646k
             ((uint128_t) in[2]) * inx2[5] + ((uint128_t) in[3]) * inx2[4];
434
646k
    out[8] = ((uint128_t) in[0]) * inx2[8] +
435
646k
             ((uint128_t) in[1]) * inx2[7] +
436
646k
             ((uint128_t) in[2]) * inx2[6] +
437
646k
             ((uint128_t) in[3]) * inx2[5] + ((uint128_t) in[4]) * in[4];
438
439
    /*
440
     * The remaining limbs fall above 2^521, with the first falling at 2^522.
441
     * They correspond to locations one bit up from the limbs produced above
442
     * so we would have to multiply by two to align them. Again, rather than
443
     * operate on the 128-bit result, we double one of the inputs to the
444
     * multiplication. If we want to double for both this reason, and the
445
     * reason above, then we end up multiplying by four.
446
     */
447
448
    /* 9 */
449
646k
    out[0] += ((uint128_t) in[1]) * inx4[8] +
450
646k
              ((uint128_t) in[2]) * inx4[7] +
451
646k
              ((uint128_t) in[3]) * inx4[6] + ((uint128_t) in[4]) * inx4[5];
452
453
    /* 10 */
454
646k
    out[1] += ((uint128_t) in[2]) * inx4[8] +
455
646k
              ((uint128_t) in[3]) * inx4[7] +
456
646k
              ((uint128_t) in[4]) * inx4[6] + ((uint128_t) in[5]) * inx2[5];
457
458
    /* 11 */
459
646k
    out[2] += ((uint128_t) in[3]) * inx4[8] +
460
646k
              ((uint128_t) in[4]) * inx4[7] + ((uint128_t) in[5]) * inx4[6];
461
462
    /* 12 */
463
646k
    out[3] += ((uint128_t) in[4]) * inx4[8] +
464
646k
              ((uint128_t) in[5]) * inx4[7] + ((uint128_t) in[6]) * inx2[6];
465
466
    /* 13 */
467
646k
    out[4] += ((uint128_t) in[5]) * inx4[8] + ((uint128_t) in[6]) * inx4[7];
468
469
    /* 14 */
470
646k
    out[5] += ((uint128_t) in[6]) * inx4[8] + ((uint128_t) in[7]) * inx2[7];
471
472
    /* 15 */
473
646k
    out[6] += ((uint128_t) in[7]) * inx4[8];
474
475
    /* 16 */
476
646k
    out[7] += ((uint128_t) in[8]) * inx2[8];
477
646k
}
478
479
/*-
480
 * felem_mul sets |out| = |in1| * |in2|
481
 * On entry:
482
 *   in1[i] < 2^64
483
 *   in2[i] < 2^63
484
 * On exit:
485
 *   out[i] < 17 * max(in1[i]) * max(in2[i])
486
 */
487
static void felem_mul(largefelem out, const felem in1, const felem in2)
488
534k
{
489
534k
    felem in2x2;
490
534k
    felem_scalar(in2x2, in2, 2);
491
492
534k
    out[0] = ((uint128_t) in1[0]) * in2[0];
493
494
534k
    out[1] = ((uint128_t) in1[0]) * in2[1] +
495
534k
             ((uint128_t) in1[1]) * in2[0];
496
497
534k
    out[2] = ((uint128_t) in1[0]) * in2[2] +
498
534k
             ((uint128_t) in1[1]) * in2[1] +
499
534k
             ((uint128_t) in1[2]) * in2[0];
500
501
534k
    out[3] = ((uint128_t) in1[0]) * in2[3] +
502
534k
             ((uint128_t) in1[1]) * in2[2] +
503
534k
             ((uint128_t) in1[2]) * in2[1] +
504
534k
             ((uint128_t) in1[3]) * in2[0];
505
506
534k
    out[4] = ((uint128_t) in1[0]) * in2[4] +
507
534k
             ((uint128_t) in1[1]) * in2[3] +
508
534k
             ((uint128_t) in1[2]) * in2[2] +
509
534k
             ((uint128_t) in1[3]) * in2[1] +
510
534k
             ((uint128_t) in1[4]) * in2[0];
511
512
534k
    out[5] = ((uint128_t) in1[0]) * in2[5] +
513
534k
             ((uint128_t) in1[1]) * in2[4] +
514
534k
             ((uint128_t) in1[2]) * in2[3] +
515
534k
             ((uint128_t) in1[3]) * in2[2] +
516
534k
             ((uint128_t) in1[4]) * in2[1] +
517
534k
             ((uint128_t) in1[5]) * in2[0];
518
519
534k
    out[6] = ((uint128_t) in1[0]) * in2[6] +
520
534k
             ((uint128_t) in1[1]) * in2[5] +
521
534k
             ((uint128_t) in1[2]) * in2[4] +
522
534k
             ((uint128_t) in1[3]) * in2[3] +
523
534k
             ((uint128_t) in1[4]) * in2[2] +
524
534k
             ((uint128_t) in1[5]) * in2[1] +
525
534k
             ((uint128_t) in1[6]) * in2[0];
526
527
534k
    out[7] = ((uint128_t) in1[0]) * in2[7] +
528
534k
             ((uint128_t) in1[1]) * in2[6] +
529
534k
             ((uint128_t) in1[2]) * in2[5] +
530
534k
             ((uint128_t) in1[3]) * in2[4] +
531
534k
             ((uint128_t) in1[4]) * in2[3] +
532
534k
             ((uint128_t) in1[5]) * in2[2] +
533
534k
             ((uint128_t) in1[6]) * in2[1] +
534
534k
             ((uint128_t) in1[7]) * in2[0];
535
536
534k
    out[8] = ((uint128_t) in1[0]) * in2[8] +
537
534k
             ((uint128_t) in1[1]) * in2[7] +
538
534k
             ((uint128_t) in1[2]) * in2[6] +
539
534k
             ((uint128_t) in1[3]) * in2[5] +
540
534k
             ((uint128_t) in1[4]) * in2[4] +
541
534k
             ((uint128_t) in1[5]) * in2[3] +
542
534k
             ((uint128_t) in1[6]) * in2[2] +
543
534k
             ((uint128_t) in1[7]) * in2[1] +
544
534k
             ((uint128_t) in1[8]) * in2[0];
545
546
    /* See comment in felem_square about the use of in2x2 here */
547
548
534k
    out[0] += ((uint128_t) in1[1]) * in2x2[8] +
549
534k
              ((uint128_t) in1[2]) * in2x2[7] +
550
534k
              ((uint128_t) in1[3]) * in2x2[6] +
551
534k
              ((uint128_t) in1[4]) * in2x2[5] +
552
534k
              ((uint128_t) in1[5]) * in2x2[4] +
553
534k
              ((uint128_t) in1[6]) * in2x2[3] +
554
534k
              ((uint128_t) in1[7]) * in2x2[2] +
555
534k
              ((uint128_t) in1[8]) * in2x2[1];
556
557
534k
    out[1] += ((uint128_t) in1[2]) * in2x2[8] +
558
534k
              ((uint128_t) in1[3]) * in2x2[7] +
559
534k
              ((uint128_t) in1[4]) * in2x2[6] +
560
534k
              ((uint128_t) in1[5]) * in2x2[5] +
561
534k
              ((uint128_t) in1[6]) * in2x2[4] +
562
534k
              ((uint128_t) in1[7]) * in2x2[3] +
563
534k
              ((uint128_t) in1[8]) * in2x2[2];
564
565
534k
    out[2] += ((uint128_t) in1[3]) * in2x2[8] +
566
534k
              ((uint128_t) in1[4]) * in2x2[7] +
567
534k
              ((uint128_t) in1[5]) * in2x2[6] +
568
534k
              ((uint128_t) in1[6]) * in2x2[5] +
569
534k
              ((uint128_t) in1[7]) * in2x2[4] +
570
534k
              ((uint128_t) in1[8]) * in2x2[3];
571
572
534k
    out[3] += ((uint128_t) in1[4]) * in2x2[8] +
573
534k
              ((uint128_t) in1[5]) * in2x2[7] +
574
534k
              ((uint128_t) in1[6]) * in2x2[6] +
575
534k
              ((uint128_t) in1[7]) * in2x2[5] +
576
534k
              ((uint128_t) in1[8]) * in2x2[4];
577
578
534k
    out[4] += ((uint128_t) in1[5]) * in2x2[8] +
579
534k
              ((uint128_t) in1[6]) * in2x2[7] +
580
534k
              ((uint128_t) in1[7]) * in2x2[6] +
581
534k
              ((uint128_t) in1[8]) * in2x2[5];
582
583
534k
    out[5] += ((uint128_t) in1[6]) * in2x2[8] +
584
534k
              ((uint128_t) in1[7]) * in2x2[7] +
585
534k
              ((uint128_t) in1[8]) * in2x2[6];
586
587
534k
    out[6] += ((uint128_t) in1[7]) * in2x2[8] +
588
534k
              ((uint128_t) in1[8]) * in2x2[7];
589
590
534k
    out[7] += ((uint128_t) in1[8]) * in2x2[8];
591
534k
}
592
593
static const limb bottom52bits = 0xfffffffffffff;
594
595
/*-
596
 * felem_reduce converts a largefelem to an felem.
597
 * On entry:
598
 *   in[i] < 2^128
599
 * On exit:
600
 *   out[i] < 2^59 + 2^14
601
 */
602
static void felem_reduce(felem out, const largefelem in)
603
2.47M
{
604
2.47M
    u64 overflow1, overflow2;
605
606
2.47M
    out[0] = ((limb) in[0]) & bottom58bits;
607
2.47M
    out[1] = ((limb) in[1]) & bottom58bits;
608
2.47M
    out[2] = ((limb) in[2]) & bottom58bits;
609
2.47M
    out[3] = ((limb) in[3]) & bottom58bits;
610
2.47M
    out[4] = ((limb) in[4]) & bottom58bits;
611
2.47M
    out[5] = ((limb) in[5]) & bottom58bits;
612
2.47M
    out[6] = ((limb) in[6]) & bottom58bits;
613
2.47M
    out[7] = ((limb) in[7]) & bottom58bits;
614
2.47M
    out[8] = ((limb) in[8]) & bottom58bits;
615
616
    /* out[i] < 2^58 */
617
618
2.47M
    out[1] += ((limb) in[0]) >> 58;
619
2.47M
    out[1] += (((limb) (in[0] >> 64)) & bottom52bits) << 6;
620
    /*-
621
     * out[1] < 2^58 + 2^6 + 2^58
622
     *        = 2^59 + 2^6
623
     */
624
2.47M
    out[2] += ((limb) (in[0] >> 64)) >> 52;
625
626
2.47M
    out[2] += ((limb) in[1]) >> 58;
627
2.47M
    out[2] += (((limb) (in[1] >> 64)) & bottom52bits) << 6;
628
2.47M
    out[3] += ((limb) (in[1] >> 64)) >> 52;
629
630
2.47M
    out[3] += ((limb) in[2]) >> 58;
631
2.47M
    out[3] += (((limb) (in[2] >> 64)) & bottom52bits) << 6;
632
2.47M
    out[4] += ((limb) (in[2] >> 64)) >> 52;
633
634
2.47M
    out[4] += ((limb) in[3]) >> 58;
635
2.47M
    out[4] += (((limb) (in[3] >> 64)) & bottom52bits) << 6;
636
2.47M
    out[5] += ((limb) (in[3] >> 64)) >> 52;
637
638
2.47M
    out[5] += ((limb) in[4]) >> 58;
639
2.47M
    out[5] += (((limb) (in[4] >> 64)) & bottom52bits) << 6;
640
2.47M
    out[6] += ((limb) (in[4] >> 64)) >> 52;
641
642
2.47M
    out[6] += ((limb) in[5]) >> 58;
643
2.47M
    out[6] += (((limb) (in[5] >> 64)) & bottom52bits) << 6;
644
2.47M
    out[7] += ((limb) (in[5] >> 64)) >> 52;
645
646
2.47M
    out[7] += ((limb) in[6]) >> 58;
647
2.47M
    out[7] += (((limb) (in[6] >> 64)) & bottom52bits) << 6;
648
2.47M
    out[8] += ((limb) (in[6] >> 64)) >> 52;
649
650
2.47M
    out[8] += ((limb) in[7]) >> 58;
651
2.47M
    out[8] += (((limb) (in[7] >> 64)) & bottom52bits) << 6;
652
    /*-
653
     * out[x > 1] < 2^58 + 2^6 + 2^58 + 2^12
654
     *            < 2^59 + 2^13
655
     */
656
2.47M
    overflow1 = ((limb) (in[7] >> 64)) >> 52;
657
658
2.47M
    overflow1 += ((limb) in[8]) >> 58;
659
2.47M
    overflow1 += (((limb) (in[8] >> 64)) & bottom52bits) << 6;
660
2.47M
    overflow2 = ((limb) (in[8] >> 64)) >> 52;
661
662
2.47M
    overflow1 <<= 1;            /* overflow1 < 2^13 + 2^7 + 2^59 */
663
2.47M
    overflow2 <<= 1;            /* overflow2 < 2^13 */
664
665
2.47M
    out[0] += overflow1;        /* out[0] < 2^60 */
666
2.47M
    out[1] += overflow2;        /* out[1] < 2^59 + 2^6 + 2^13 */
667
668
2.47M
    out[1] += out[0] >> 58;
669
2.47M
    out[0] &= bottom58bits;
670
    /*-
671
     * out[0] < 2^58
672
     * out[1] < 2^59 + 2^6 + 2^13 + 2^2
673
     *        < 2^59 + 2^14
674
     */
675
2.47M
}
676
677
static void felem_square_reduce(felem out, const felem in)
678
0
{
679
0
    largefelem tmp;
680
0
    felem_square(tmp, in);
681
0
    felem_reduce(out, tmp);
682
0
}
683
684
static void felem_mul_reduce(felem out, const felem in1, const felem in2)
685
0
{
686
0
    largefelem tmp;
687
0
    felem_mul(tmp, in1, in2);
688
0
    felem_reduce(out, tmp);
689
0
}
690
691
/*-
692
 * felem_inv calculates |out| = |in|^{-1}
693
 *
694
 * Based on Fermat's Little Theorem:
695
 *   a^p = a (mod p)
696
 *   a^{p-1} = 1 (mod p)
697
 *   a^{p-2} = a^{-1} (mod p)
698
 */
699
static void felem_inv(felem out, const felem in)
700
648
{
701
648
    felem ftmp, ftmp2, ftmp3, ftmp4;
702
648
    largefelem tmp;
703
648
    unsigned i;
704
705
648
    felem_square(tmp, in);
706
648
    felem_reduce(ftmp, tmp);    /* 2^1 */
707
648
    felem_mul(tmp, in, ftmp);
708
648
    felem_reduce(ftmp, tmp);    /* 2^2 - 2^0 */
709
648
    felem_assign(ftmp2, ftmp);
710
648
    felem_square(tmp, ftmp);
711
648
    felem_reduce(ftmp, tmp);    /* 2^3 - 2^1 */
712
648
    felem_mul(tmp, in, ftmp);
713
648
    felem_reduce(ftmp, tmp);    /* 2^3 - 2^0 */
714
648
    felem_square(tmp, ftmp);
715
648
    felem_reduce(ftmp, tmp);    /* 2^4 - 2^1 */
716
717
648
    felem_square(tmp, ftmp2);
718
648
    felem_reduce(ftmp3, tmp);   /* 2^3 - 2^1 */
719
648
    felem_square(tmp, ftmp3);
720
648
    felem_reduce(ftmp3, tmp);   /* 2^4 - 2^2 */
721
648
    felem_mul(tmp, ftmp3, ftmp2);
722
648
    felem_reduce(ftmp3, tmp);   /* 2^4 - 2^0 */
723
724
648
    felem_assign(ftmp2, ftmp3);
725
648
    felem_square(tmp, ftmp3);
726
648
    felem_reduce(ftmp3, tmp);   /* 2^5 - 2^1 */
727
648
    felem_square(tmp, ftmp3);
728
648
    felem_reduce(ftmp3, tmp);   /* 2^6 - 2^2 */
729
648
    felem_square(tmp, ftmp3);
730
648
    felem_reduce(ftmp3, tmp);   /* 2^7 - 2^3 */
731
648
    felem_square(tmp, ftmp3);
732
648
    felem_reduce(ftmp3, tmp);   /* 2^8 - 2^4 */
733
648
    felem_assign(ftmp4, ftmp3);
734
648
    felem_mul(tmp, ftmp3, ftmp);
735
648
    felem_reduce(ftmp4, tmp);   /* 2^8 - 2^1 */
736
648
    felem_square(tmp, ftmp4);
737
648
    felem_reduce(ftmp4, tmp);   /* 2^9 - 2^2 */
738
648
    felem_mul(tmp, ftmp3, ftmp2);
739
648
    felem_reduce(ftmp3, tmp);   /* 2^8 - 2^0 */
740
648
    felem_assign(ftmp2, ftmp3);
741
742
5.83k
    for (i = 0; i < 8; i++) {
743
5.18k
        felem_square(tmp, ftmp3);
744
5.18k
        felem_reduce(ftmp3, tmp); /* 2^16 - 2^8 */
745
5.18k
    }
746
648
    felem_mul(tmp, ftmp3, ftmp2);
747
648
    felem_reduce(ftmp3, tmp);   /* 2^16 - 2^0 */
748
648
    felem_assign(ftmp2, ftmp3);
749
750
11.0k
    for (i = 0; i < 16; i++) {
751
10.3k
        felem_square(tmp, ftmp3);
752
10.3k
        felem_reduce(ftmp3, tmp); /* 2^32 - 2^16 */
753
10.3k
    }
754
648
    felem_mul(tmp, ftmp3, ftmp2);
755
648
    felem_reduce(ftmp3, tmp);   /* 2^32 - 2^0 */
756
648
    felem_assign(ftmp2, ftmp3);
757
758
21.3k
    for (i = 0; i < 32; i++) {
759
20.7k
        felem_square(tmp, ftmp3);
760
20.7k
        felem_reduce(ftmp3, tmp); /* 2^64 - 2^32 */
761
20.7k
    }
762
648
    felem_mul(tmp, ftmp3, ftmp2);
763
648
    felem_reduce(ftmp3, tmp);   /* 2^64 - 2^0 */
764
648
    felem_assign(ftmp2, ftmp3);
765
766
42.1k
    for (i = 0; i < 64; i++) {
767
41.4k
        felem_square(tmp, ftmp3);
768
41.4k
        felem_reduce(ftmp3, tmp); /* 2^128 - 2^64 */
769
41.4k
    }
770
648
    felem_mul(tmp, ftmp3, ftmp2);
771
648
    felem_reduce(ftmp3, tmp);   /* 2^128 - 2^0 */
772
648
    felem_assign(ftmp2, ftmp3);
773
774
83.5k
    for (i = 0; i < 128; i++) {
775
82.9k
        felem_square(tmp, ftmp3);
776
82.9k
        felem_reduce(ftmp3, tmp); /* 2^256 - 2^128 */
777
82.9k
    }
778
648
    felem_mul(tmp, ftmp3, ftmp2);
779
648
    felem_reduce(ftmp3, tmp);   /* 2^256 - 2^0 */
780
648
    felem_assign(ftmp2, ftmp3);
781
782
166k
    for (i = 0; i < 256; i++) {
783
165k
        felem_square(tmp, ftmp3);
784
165k
        felem_reduce(ftmp3, tmp); /* 2^512 - 2^256 */
785
165k
    }
786
648
    felem_mul(tmp, ftmp3, ftmp2);
787
648
    felem_reduce(ftmp3, tmp);   /* 2^512 - 2^0 */
788
789
6.48k
    for (i = 0; i < 9; i++) {
790
5.83k
        felem_square(tmp, ftmp3);
791
5.83k
        felem_reduce(ftmp3, tmp); /* 2^521 - 2^9 */
792
5.83k
    }
793
648
    felem_mul(tmp, ftmp3, ftmp4);
794
648
    felem_reduce(ftmp3, tmp);   /* 2^512 - 2^2 */
795
648
    felem_mul(tmp, ftmp3, in);
796
648
    felem_reduce(out, tmp);     /* 2^512 - 3 */
797
648
}
798
799
/* This is 2^521-1, expressed as an felem */
800
static const felem kPrime = {
801
    0x03ffffffffffffff, 0x03ffffffffffffff, 0x03ffffffffffffff,
802
    0x03ffffffffffffff, 0x03ffffffffffffff, 0x03ffffffffffffff,
803
    0x03ffffffffffffff, 0x03ffffffffffffff, 0x01ffffffffffffff
804
};
805
806
/*-
807
 * felem_is_zero returns a limb with all bits set if |in| == 0 (mod p) and 0
808
 * otherwise.
809
 * On entry:
810
 *   in[i] < 2^59 + 2^14
811
 */
812
static limb felem_is_zero(const felem in)
813
334k
{
814
334k
    felem ftmp;
815
334k
    limb is_zero, is_p;
816
334k
    felem_assign(ftmp, in);
817
818
334k
    ftmp[0] += ftmp[8] >> 57;
819
334k
    ftmp[8] &= bottom57bits;
820
    /* ftmp[8] < 2^57 */
821
334k
    ftmp[1] += ftmp[0] >> 58;
822
334k
    ftmp[0] &= bottom58bits;
823
334k
    ftmp[2] += ftmp[1] >> 58;
824
334k
    ftmp[1] &= bottom58bits;
825
334k
    ftmp[3] += ftmp[2] >> 58;
826
334k
    ftmp[2] &= bottom58bits;
827
334k
    ftmp[4] += ftmp[3] >> 58;
828
334k
    ftmp[3] &= bottom58bits;
829
334k
    ftmp[5] += ftmp[4] >> 58;
830
334k
    ftmp[4] &= bottom58bits;
831
334k
    ftmp[6] += ftmp[5] >> 58;
832
334k
    ftmp[5] &= bottom58bits;
833
334k
    ftmp[7] += ftmp[6] >> 58;
834
334k
    ftmp[6] &= bottom58bits;
835
334k
    ftmp[8] += ftmp[7] >> 58;
836
334k
    ftmp[7] &= bottom58bits;
837
    /* ftmp[8] < 2^57 + 4 */
838
839
    /*
840
     * The ninth limb of 2*(2^521-1) is 0x03ffffffffffffff, which is greater
841
     * than our bound for ftmp[8]. Therefore we only have to check if the
842
     * zero is zero or 2^521-1.
843
     */
844
845
334k
    is_zero = 0;
846
334k
    is_zero |= ftmp[0];
847
334k
    is_zero |= ftmp[1];
848
334k
    is_zero |= ftmp[2];
849
334k
    is_zero |= ftmp[3];
850
334k
    is_zero |= ftmp[4];
851
334k
    is_zero |= ftmp[5];
852
334k
    is_zero |= ftmp[6];
853
334k
    is_zero |= ftmp[7];
854
334k
    is_zero |= ftmp[8];
855
856
334k
    is_zero--;
857
    /*
858
     * We know that ftmp[i] < 2^63, therefore the only way that the top bit
859
     * can be set is if is_zero was 0 before the decrement.
860
     */
861
334k
    is_zero = 0 - (is_zero >> 63);
862
863
334k
    is_p = ftmp[0] ^ kPrime[0];
864
334k
    is_p |= ftmp[1] ^ kPrime[1];
865
334k
    is_p |= ftmp[2] ^ kPrime[2];
866
334k
    is_p |= ftmp[3] ^ kPrime[3];
867
334k
    is_p |= ftmp[4] ^ kPrime[4];
868
334k
    is_p |= ftmp[5] ^ kPrime[5];
869
334k
    is_p |= ftmp[6] ^ kPrime[6];
870
334k
    is_p |= ftmp[7] ^ kPrime[7];
871
334k
    is_p |= ftmp[8] ^ kPrime[8];
872
873
334k
    is_p--;
874
334k
    is_p = 0 - (is_p >> 63);
875
876
334k
    is_zero |= is_p;
877
334k
    return is_zero;
878
334k
}
879
880
static int felem_is_zero_int(const void *in)
881
0
{
882
0
    return (int)(felem_is_zero(in) & ((limb) 1));
883
0
}
884
885
/*-
886
 * felem_contract converts |in| to its unique, minimal representation.
887
 * On entry:
888
 *   in[i] < 2^59 + 2^14
889
 */
890
static void felem_contract(felem out, const felem in)
891
3.26k
{
892
3.26k
    limb is_p, is_greater, sign;
893
3.26k
    static const limb two58 = ((limb) 1) << 58;
894
895
3.26k
    felem_assign(out, in);
896
897
3.26k
    out[0] += out[8] >> 57;
898
3.26k
    out[8] &= bottom57bits;
899
    /* out[8] < 2^57 */
900
3.26k
    out[1] += out[0] >> 58;
901
3.26k
    out[0] &= bottom58bits;
902
3.26k
    out[2] += out[1] >> 58;
903
3.26k
    out[1] &= bottom58bits;
904
3.26k
    out[3] += out[2] >> 58;
905
3.26k
    out[2] &= bottom58bits;
906
3.26k
    out[4] += out[3] >> 58;
907
3.26k
    out[3] &= bottom58bits;
908
3.26k
    out[5] += out[4] >> 58;
909
3.26k
    out[4] &= bottom58bits;
910
3.26k
    out[6] += out[5] >> 58;
911
3.26k
    out[5] &= bottom58bits;
912
3.26k
    out[7] += out[6] >> 58;
913
3.26k
    out[6] &= bottom58bits;
914
3.26k
    out[8] += out[7] >> 58;
915
3.26k
    out[7] &= bottom58bits;
916
    /* out[8] < 2^57 + 4 */
917
918
    /*
919
     * If the value is greater than 2^521-1 then we have to subtract 2^521-1
920
     * out. See the comments in felem_is_zero regarding why we don't test for
921
     * other multiples of the prime.
922
     */
923
924
    /*
925
     * First, if |out| is equal to 2^521-1, we subtract it out to get zero.
926
     */
927
928
3.26k
    is_p = out[0] ^ kPrime[0];
929
3.26k
    is_p |= out[1] ^ kPrime[1];
930
3.26k
    is_p |= out[2] ^ kPrime[2];
931
3.26k
    is_p |= out[3] ^ kPrime[3];
932
3.26k
    is_p |= out[4] ^ kPrime[4];
933
3.26k
    is_p |= out[5] ^ kPrime[5];
934
3.26k
    is_p |= out[6] ^ kPrime[6];
935
3.26k
    is_p |= out[7] ^ kPrime[7];
936
3.26k
    is_p |= out[8] ^ kPrime[8];
937
938
3.26k
    is_p--;
939
3.26k
    is_p &= is_p << 32;
940
3.26k
    is_p &= is_p << 16;
941
3.26k
    is_p &= is_p << 8;
942
3.26k
    is_p &= is_p << 4;
943
3.26k
    is_p &= is_p << 2;
944
3.26k
    is_p &= is_p << 1;
945
3.26k
    is_p = 0 - (is_p >> 63);
946
3.26k
    is_p = ~is_p;
947
948
    /* is_p is 0 iff |out| == 2^521-1 and all ones otherwise */
949
950
3.26k
    out[0] &= is_p;
951
3.26k
    out[1] &= is_p;
952
3.26k
    out[2] &= is_p;
953
3.26k
    out[3] &= is_p;
954
3.26k
    out[4] &= is_p;
955
3.26k
    out[5] &= is_p;
956
3.26k
    out[6] &= is_p;
957
3.26k
    out[7] &= is_p;
958
3.26k
    out[8] &= is_p;
959
960
    /*
961
     * In order to test that |out| >= 2^521-1 we need only test if out[8] >>
962
     * 57 is greater than zero as (2^521-1) + x >= 2^522
963
     */
964
3.26k
    is_greater = out[8] >> 57;
965
3.26k
    is_greater |= is_greater << 32;
966
3.26k
    is_greater |= is_greater << 16;
967
3.26k
    is_greater |= is_greater << 8;
968
3.26k
    is_greater |= is_greater << 4;
969
3.26k
    is_greater |= is_greater << 2;
970
3.26k
    is_greater |= is_greater << 1;
971
3.26k
    is_greater = 0 - (is_greater >> 63);
972
973
3.26k
    out[0] -= kPrime[0] & is_greater;
974
3.26k
    out[1] -= kPrime[1] & is_greater;
975
3.26k
    out[2] -= kPrime[2] & is_greater;
976
3.26k
    out[3] -= kPrime[3] & is_greater;
977
3.26k
    out[4] -= kPrime[4] & is_greater;
978
3.26k
    out[5] -= kPrime[5] & is_greater;
979
3.26k
    out[6] -= kPrime[6] & is_greater;
980
3.26k
    out[7] -= kPrime[7] & is_greater;
981
3.26k
    out[8] -= kPrime[8] & is_greater;
982
983
    /* Eliminate negative coefficients */
984
3.26k
    sign = -(out[0] >> 63);
985
3.26k
    out[0] += (two58 & sign);
986
3.26k
    out[1] -= (1 & sign);
987
3.26k
    sign = -(out[1] >> 63);
988
3.26k
    out[1] += (two58 & sign);
989
3.26k
    out[2] -= (1 & sign);
990
3.26k
    sign = -(out[2] >> 63);
991
3.26k
    out[2] += (two58 & sign);
992
3.26k
    out[3] -= (1 & sign);
993
3.26k
    sign = -(out[3] >> 63);
994
3.26k
    out[3] += (two58 & sign);
995
3.26k
    out[4] -= (1 & sign);
996
3.26k
    sign = -(out[4] >> 63);
997
3.26k
    out[4] += (two58 & sign);
998
3.26k
    out[5] -= (1 & sign);
999
3.26k
    sign = -(out[0] >> 63);
1000
3.26k
    out[5] += (two58 & sign);
1001
3.26k
    out[6] -= (1 & sign);
1002
3.26k
    sign = -(out[6] >> 63);
1003
3.26k
    out[6] += (two58 & sign);
1004
3.26k
    out[7] -= (1 & sign);
1005
3.26k
    sign = -(out[7] >> 63);
1006
3.26k
    out[7] += (two58 & sign);
1007
3.26k
    out[8] -= (1 & sign);
1008
3.26k
    sign = -(out[5] >> 63);
1009
3.26k
    out[5] += (two58 & sign);
1010
3.26k
    out[6] -= (1 & sign);
1011
3.26k
    sign = -(out[6] >> 63);
1012
3.26k
    out[6] += (two58 & sign);
1013
3.26k
    out[7] -= (1 & sign);
1014
3.26k
    sign = -(out[7] >> 63);
1015
3.26k
    out[7] += (two58 & sign);
1016
3.26k
    out[8] -= (1 & sign);
1017
3.26k
}
1018
1019
/*-
1020
 * Group operations
1021
 * ----------------
1022
 *
1023
 * Building on top of the field operations we have the operations on the
1024
 * elliptic curve group itself. Points on the curve are represented in Jacobian
1025
 * coordinates */
1026
1027
/*-
1028
 * point_double calculates 2*(x_in, y_in, z_in)
1029
 *
1030
 * The method is taken from:
1031
 *   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
1032
 *
1033
 * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed.
1034
 * while x_out == y_in is not (maybe this works, but it's not tested). */
1035
static void
1036
point_double(felem x_out, felem y_out, felem z_out,
1037
             const felem x_in, const felem y_in, const felem z_in)
1038
168k
{
1039
168k
    largefelem tmp, tmp2;
1040
168k
    felem delta, gamma, beta, alpha, ftmp, ftmp2;
1041
1042
168k
    felem_assign(ftmp, x_in);
1043
168k
    felem_assign(ftmp2, x_in);
1044
1045
    /* delta = z^2 */
1046
168k
    felem_square(tmp, z_in);
1047
168k
    felem_reduce(delta, tmp);   /* delta[i] < 2^59 + 2^14 */
1048
1049
    /* gamma = y^2 */
1050
168k
    felem_square(tmp, y_in);
1051
168k
    felem_reduce(gamma, tmp);   /* gamma[i] < 2^59 + 2^14 */
1052
1053
    /* beta = x*gamma */
1054
168k
    felem_mul(tmp, x_in, gamma);
1055
168k
    felem_reduce(beta, tmp);    /* beta[i] < 2^59 + 2^14 */
1056
1057
    /* alpha = 3*(x-delta)*(x+delta) */
1058
168k
    felem_diff64(ftmp, delta);
1059
    /* ftmp[i] < 2^61 */
1060
168k
    felem_sum64(ftmp2, delta);
1061
    /* ftmp2[i] < 2^60 + 2^15 */
1062
168k
    felem_scalar64(ftmp2, 3);
1063
    /* ftmp2[i] < 3*2^60 + 3*2^15 */
1064
168k
    felem_mul(tmp, ftmp, ftmp2);
1065
    /*-
1066
     * tmp[i] < 17(3*2^121 + 3*2^76)
1067
     *        = 61*2^121 + 61*2^76
1068
     *        < 64*2^121 + 64*2^76
1069
     *        = 2^127 + 2^82
1070
     *        < 2^128
1071
     */
1072
168k
    felem_reduce(alpha, tmp);
1073
1074
    /* x' = alpha^2 - 8*beta */
1075
168k
    felem_square(tmp, alpha);
1076
    /*
1077
     * tmp[i] < 17*2^120 < 2^125
1078
     */
1079
168k
    felem_assign(ftmp, beta);
1080
168k
    felem_scalar64(ftmp, 8);
1081
    /* ftmp[i] < 2^62 + 2^17 */
1082
168k
    felem_diff_128_64(tmp, ftmp);
1083
    /* tmp[i] < 2^125 + 2^63 + 2^62 + 2^17 */
1084
168k
    felem_reduce(x_out, tmp);
1085
1086
    /* z' = (y + z)^2 - gamma - delta */
1087
168k
    felem_sum64(delta, gamma);
1088
    /* delta[i] < 2^60 + 2^15 */
1089
168k
    felem_assign(ftmp, y_in);
1090
168k
    felem_sum64(ftmp, z_in);
1091
    /* ftmp[i] < 2^60 + 2^15 */
1092
168k
    felem_square(tmp, ftmp);
1093
    /*
1094
     * tmp[i] < 17(2^122) < 2^127
1095
     */
1096
168k
    felem_diff_128_64(tmp, delta);
1097
    /* tmp[i] < 2^127 + 2^63 */
1098
168k
    felem_reduce(z_out, tmp);
1099
1100
    /* y' = alpha*(4*beta - x') - 8*gamma^2 */
1101
168k
    felem_scalar64(beta, 4);
1102
    /* beta[i] < 2^61 + 2^16 */
1103
168k
    felem_diff64(beta, x_out);
1104
    /* beta[i] < 2^61 + 2^60 + 2^16 */
1105
168k
    felem_mul(tmp, alpha, beta);
1106
    /*-
1107
     * tmp[i] < 17*((2^59 + 2^14)(2^61 + 2^60 + 2^16))
1108
     *        = 17*(2^120 + 2^75 + 2^119 + 2^74 + 2^75 + 2^30)
1109
     *        = 17*(2^120 + 2^119 + 2^76 + 2^74 + 2^30)
1110
     *        < 2^128
1111
     */
1112
168k
    felem_square(tmp2, gamma);
1113
    /*-
1114
     * tmp2[i] < 17*(2^59 + 2^14)^2
1115
     *         = 17*(2^118 + 2^74 + 2^28)
1116
     */
1117
168k
    felem_scalar128(tmp2, 8);
1118
    /*-
1119
     * tmp2[i] < 8*17*(2^118 + 2^74 + 2^28)
1120
     *         = 2^125 + 2^121 + 2^81 + 2^77 + 2^35 + 2^31
1121
     *         < 2^126
1122
     */
1123
168k
    felem_diff128(tmp, tmp2);
1124
    /*-
1125
     * tmp[i] < 2^127 - 2^69 + 17(2^120 + 2^119 + 2^76 + 2^74 + 2^30)
1126
     *        = 2^127 + 2^124 + 2^122 + 2^120 + 2^118 + 2^80 + 2^78 + 2^76 +
1127
     *          2^74 + 2^69 + 2^34 + 2^30
1128
     *        < 2^128
1129
     */
1130
168k
    felem_reduce(y_out, tmp);
1131
168k
}
1132
1133
/* copy_conditional copies in to out iff mask is all ones. */
1134
static void copy_conditional(felem out, const felem in, limb mask)
1135
523k
{
1136
523k
    unsigned i;
1137
5.23M
    for (i = 0; i < NLIMBS; ++i) {
1138
4.70M
        const limb tmp = mask & (in[i] ^ out[i]);
1139
4.70M
        out[i] ^= tmp;
1140
4.70M
    }
1141
523k
}
1142
1143
/*-
1144
 * point_add calculates (x1, y1, z1) + (x2, y2, z2)
1145
 *
1146
 * The method is taken from
1147
 *   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl,
1148
 * adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity).
1149
 *
1150
 * This function includes a branch for checking whether the two input points
1151
 * are equal (while not equal to the point at infinity). See comment below
1152
 * on constant-time.
1153
 */
1154
static void point_add(felem x3, felem y3, felem z3,
1155
                      const felem x1, const felem y1, const felem z1,
1156
                      const int mixed, const felem x2, const felem y2,
1157
                      const felem z2)
1158
83.5k
{
1159
83.5k
    felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, ftmp6, x_out, y_out, z_out;
1160
83.5k
    largefelem tmp, tmp2;
1161
83.5k
    limb x_equal, y_equal, z1_is_zero, z2_is_zero;
1162
83.5k
    limb points_equal;
1163
1164
83.5k
    z1_is_zero = felem_is_zero(z1);
1165
83.5k
    z2_is_zero = felem_is_zero(z2);
1166
1167
    /* ftmp = z1z1 = z1**2 */
1168
83.5k
    felem_square(tmp, z1);
1169
83.5k
    felem_reduce(ftmp, tmp);
1170
1171
83.5k
    if (!mixed) {
1172
        /* ftmp2 = z2z2 = z2**2 */
1173
23.0k
        felem_square(tmp, z2);
1174
23.0k
        felem_reduce(ftmp2, tmp);
1175
1176
        /* u1 = ftmp3 = x1*z2z2 */
1177
23.0k
        felem_mul(tmp, x1, ftmp2);
1178
23.0k
        felem_reduce(ftmp3, tmp);
1179
1180
        /* ftmp5 = z1 + z2 */
1181
23.0k
        felem_assign(ftmp5, z1);
1182
23.0k
        felem_sum64(ftmp5, z2);
1183
        /* ftmp5[i] < 2^61 */
1184
1185
        /* ftmp5 = (z1 + z2)**2 - z1z1 - z2z2 = 2*z1z2 */
1186
23.0k
        felem_square(tmp, ftmp5);
1187
        /* tmp[i] < 17*2^122 */
1188
23.0k
        felem_diff_128_64(tmp, ftmp);
1189
        /* tmp[i] < 17*2^122 + 2^63 */
1190
23.0k
        felem_diff_128_64(tmp, ftmp2);
1191
        /* tmp[i] < 17*2^122 + 2^64 */
1192
23.0k
        felem_reduce(ftmp5, tmp);
1193
1194
        /* ftmp2 = z2 * z2z2 */
1195
23.0k
        felem_mul(tmp, ftmp2, z2);
1196
23.0k
        felem_reduce(ftmp2, tmp);
1197
1198
        /* s1 = ftmp6 = y1 * z2**3 */
1199
23.0k
        felem_mul(tmp, y1, ftmp2);
1200
23.0k
        felem_reduce(ftmp6, tmp);
1201
60.4k
    } else {
1202
        /*
1203
         * We'll assume z2 = 1 (special case z2 = 0 is handled later)
1204
         */
1205
1206
        /* u1 = ftmp3 = x1*z2z2 */
1207
60.4k
        felem_assign(ftmp3, x1);
1208
1209
        /* ftmp5 = 2*z1z2 */
1210
60.4k
        felem_scalar(ftmp5, z1, 2);
1211
1212
        /* s1 = ftmp6 = y1 * z2**3 */
1213
60.4k
        felem_assign(ftmp6, y1);
1214
60.4k
    }
1215
1216
    /* u2 = x2*z1z1 */
1217
83.5k
    felem_mul(tmp, x2, ftmp);
1218
    /* tmp[i] < 17*2^120 */
1219
1220
    /* h = ftmp4 = u2 - u1 */
1221
83.5k
    felem_diff_128_64(tmp, ftmp3);
1222
    /* tmp[i] < 17*2^120 + 2^63 */
1223
83.5k
    felem_reduce(ftmp4, tmp);
1224
1225
83.5k
    x_equal = felem_is_zero(ftmp4);
1226
1227
    /* z_out = ftmp5 * h */
1228
83.5k
    felem_mul(tmp, ftmp5, ftmp4);
1229
83.5k
    felem_reduce(z_out, tmp);
1230
1231
    /* ftmp = z1 * z1z1 */
1232
83.5k
    felem_mul(tmp, ftmp, z1);
1233
83.5k
    felem_reduce(ftmp, tmp);
1234
1235
    /* s2 = tmp = y2 * z1**3 */
1236
83.5k
    felem_mul(tmp, y2, ftmp);
1237
    /* tmp[i] < 17*2^120 */
1238
1239
    /* r = ftmp5 = (s2 - s1)*2 */
1240
83.5k
    felem_diff_128_64(tmp, ftmp6);
1241
    /* tmp[i] < 17*2^120 + 2^63 */
1242
83.5k
    felem_reduce(ftmp5, tmp);
1243
83.5k
    y_equal = felem_is_zero(ftmp5);
1244
83.5k
    felem_scalar64(ftmp5, 2);
1245
    /* ftmp5[i] < 2^61 */
1246
1247
    /*
1248
     * The formulae are incorrect if the points are equal, in affine coordinates
1249
     * (X_1, Y_1) == (X_2, Y_2), so we check for this and do doubling if this
1250
     * happens.
1251
     *
1252
     * We use bitwise operations to avoid potential side-channels introduced by
1253
     * the short-circuiting behaviour of boolean operators.
1254
     *
1255
     * The special case of either point being the point at infinity (z1 and/or
1256
     * z2 are zero), is handled separately later on in this function, so we
1257
     * avoid jumping to point_double here in those special cases.
1258
     *
1259
     * Notice the comment below on the implications of this branching for timing
1260
     * leaks and why it is considered practically irrelevant.
1261
     */
1262
83.5k
    points_equal = (x_equal & y_equal & (~z1_is_zero) & (~z2_is_zero));
1263
1264
83.5k
    if (points_equal) {
1265
        /*
1266
         * This is obviously not constant-time but it will almost-never happen
1267
         * for ECDH / ECDSA. The case where it can happen is during scalar-mult
1268
         * where the intermediate value gets very close to the group order.
1269
         * Since |ec_GFp_nistp_recode_scalar_bits| produces signed digits for
1270
         * the scalar, it's possible for the intermediate value to be a small
1271
         * negative multiple of the base point, and for the final signed digit
1272
         * to be the same value. We believe that this only occurs for the scalar
1273
         * 1fffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
1274
         * ffffffa51868783bf2f966b7fcc0148f709a5d03bb5c9b8899c47aebb6fb
1275
         * 71e913863f7, in that case the penultimate intermediate is -9G and
1276
         * the final digit is also -9G. Since this only happens for a single
1277
         * scalar, the timing leak is irrelevant. (Any attacker who wanted to
1278
         * check whether a secret scalar was that exact value, can already do
1279
         * so.)
1280
         */
1281
0
        point_double(x3, y3, z3, x1, y1, z1);
1282
0
        return;
1283
0
    }
1284
1285
    /* I = ftmp = (2h)**2 */
1286
83.5k
    felem_assign(ftmp, ftmp4);
1287
83.5k
    felem_scalar64(ftmp, 2);
1288
    /* ftmp[i] < 2^61 */
1289
83.5k
    felem_square(tmp, ftmp);
1290
    /* tmp[i] < 17*2^122 */
1291
83.5k
    felem_reduce(ftmp, tmp);
1292
1293
    /* J = ftmp2 = h * I */
1294
83.5k
    felem_mul(tmp, ftmp4, ftmp);
1295
83.5k
    felem_reduce(ftmp2, tmp);
1296
1297
    /* V = ftmp4 = U1 * I */
1298
83.5k
    felem_mul(tmp, ftmp3, ftmp);
1299
83.5k
    felem_reduce(ftmp4, tmp);
1300
1301
    /* x_out = r**2 - J - 2V */
1302
83.5k
    felem_square(tmp, ftmp5);
1303
    /* tmp[i] < 17*2^122 */
1304
83.5k
    felem_diff_128_64(tmp, ftmp2);
1305
    /* tmp[i] < 17*2^122 + 2^63 */
1306
83.5k
    felem_assign(ftmp3, ftmp4);
1307
83.5k
    felem_scalar64(ftmp4, 2);
1308
    /* ftmp4[i] < 2^61 */
1309
83.5k
    felem_diff_128_64(tmp, ftmp4);
1310
    /* tmp[i] < 17*2^122 + 2^64 */
1311
83.5k
    felem_reduce(x_out, tmp);
1312
1313
    /* y_out = r(V-x_out) - 2 * s1 * J */
1314
83.5k
    felem_diff64(ftmp3, x_out);
1315
    /*
1316
     * ftmp3[i] < 2^60 + 2^60 = 2^61
1317
     */
1318
83.5k
    felem_mul(tmp, ftmp5, ftmp3);
1319
    /* tmp[i] < 17*2^122 */
1320
83.5k
    felem_mul(tmp2, ftmp6, ftmp2);
1321
    /* tmp2[i] < 17*2^120 */
1322
83.5k
    felem_scalar128(tmp2, 2);
1323
    /* tmp2[i] < 17*2^121 */
1324
83.5k
    felem_diff128(tmp, tmp2);
1325
        /*-
1326
         * tmp[i] < 2^127 - 2^69 + 17*2^122
1327
         *        = 2^126 - 2^122 - 2^6 - 2^2 - 1
1328
         *        < 2^127
1329
         */
1330
83.5k
    felem_reduce(y_out, tmp);
1331
1332
83.5k
    copy_conditional(x_out, x2, z1_is_zero);
1333
83.5k
    copy_conditional(x_out, x1, z2_is_zero);
1334
83.5k
    copy_conditional(y_out, y2, z1_is_zero);
1335
83.5k
    copy_conditional(y_out, y1, z2_is_zero);
1336
83.5k
    copy_conditional(z_out, z2, z1_is_zero);
1337
83.5k
    copy_conditional(z_out, z1, z2_is_zero);
1338
83.5k
    felem_assign(x3, x_out);
1339
83.5k
    felem_assign(y3, y_out);
1340
83.5k
    felem_assign(z3, z_out);
1341
83.5k
}
1342
1343
/*-
1344
 * Base point pre computation
1345
 * --------------------------
1346
 *
1347
 * Two different sorts of precomputed tables are used in the following code.
1348
 * Each contain various points on the curve, where each point is three field
1349
 * elements (x, y, z).
1350
 *
1351
 * For the base point table, z is usually 1 (0 for the point at infinity).
1352
 * This table has 16 elements:
1353
 * index | bits    | point
1354
 * ------+---------+------------------------------
1355
 *     0 | 0 0 0 0 | 0G
1356
 *     1 | 0 0 0 1 | 1G
1357
 *     2 | 0 0 1 0 | 2^130G
1358
 *     3 | 0 0 1 1 | (2^130 + 1)G
1359
 *     4 | 0 1 0 0 | 2^260G
1360
 *     5 | 0 1 0 1 | (2^260 + 1)G
1361
 *     6 | 0 1 1 0 | (2^260 + 2^130)G
1362
 *     7 | 0 1 1 1 | (2^260 + 2^130 + 1)G
1363
 *     8 | 1 0 0 0 | 2^390G
1364
 *     9 | 1 0 0 1 | (2^390 + 1)G
1365
 *    10 | 1 0 1 0 | (2^390 + 2^130)G
1366
 *    11 | 1 0 1 1 | (2^390 + 2^130 + 1)G
1367
 *    12 | 1 1 0 0 | (2^390 + 2^260)G
1368
 *    13 | 1 1 0 1 | (2^390 + 2^260 + 1)G
1369
 *    14 | 1 1 1 0 | (2^390 + 2^260 + 2^130)G
1370
 *    15 | 1 1 1 1 | (2^390 + 2^260 + 2^130 + 1)G
1371
 *
1372
 * The reason for this is so that we can clock bits into four different
1373
 * locations when doing simple scalar multiplies against the base point.
1374
 *
1375
 * Tables for other points have table[i] = iG for i in 0 .. 16. */
1376
1377
/* gmul is the table of precomputed base points */
1378
static const felem gmul[16][3] = {
1379
{{0, 0, 0, 0, 0, 0, 0, 0, 0},
1380
 {0, 0, 0, 0, 0, 0, 0, 0, 0},
1381
 {0, 0, 0, 0, 0, 0, 0, 0, 0}},
1382
{{0x017e7e31c2e5bd66, 0x022cf0615a90a6fe, 0x00127a2ffa8de334,
1383
  0x01dfbf9d64a3f877, 0x006b4d3dbaa14b5e, 0x014fed487e0a2bd8,
1384
  0x015b4429c6481390, 0x03a73678fb2d988e, 0x00c6858e06b70404},
1385
 {0x00be94769fd16650, 0x031c21a89cb09022, 0x039013fad0761353,
1386
  0x02657bd099031542, 0x03273e662c97ee72, 0x01e6d11a05ebef45,
1387
  0x03d1bd998f544495, 0x03001172297ed0b1, 0x011839296a789a3b},
1388
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1389
{{0x0373faacbc875bae, 0x00f325023721c671, 0x00f666fd3dbde5ad,
1390
  0x01a6932363f88ea7, 0x01fc6d9e13f9c47b, 0x03bcbffc2bbf734e,
1391
  0x013ee3c3647f3a92, 0x029409fefe75d07d, 0x00ef9199963d85e5},
1392
 {0x011173743ad5b178, 0x02499c7c21bf7d46, 0x035beaeabb8b1a58,
1393
  0x00f989c4752ea0a3, 0x0101e1de48a9c1a3, 0x01a20076be28ba6c,
1394
  0x02f8052e5eb2de95, 0x01bfe8f82dea117c, 0x0160074d3c36ddb7},
1395
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1396
{{0x012f3fc373393b3b, 0x03d3d6172f1419fa, 0x02adc943c0b86873,
1397
  0x00d475584177952b, 0x012a4d1673750ee2, 0x00512517a0f13b0c,
1398
  0x02b184671a7b1734, 0x0315b84236f1a50a, 0x00a4afc472edbdb9},
1399
 {0x00152a7077f385c4, 0x03044007d8d1c2ee, 0x0065829d61d52b52,
1400
  0x00494ff6b6631d0d, 0x00a11d94d5f06bcf, 0x02d2f89474d9282e,
1401
  0x0241c5727c06eeb9, 0x0386928710fbdb9d, 0x01f883f727b0dfbe},
1402
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1403
{{0x019b0c3c9185544d, 0x006243a37c9d97db, 0x02ee3cbe030a2ad2,
1404
  0x00cfdd946bb51e0d, 0x0271c00932606b91, 0x03f817d1ec68c561,
1405
  0x03f37009806a369c, 0x03c1f30baf184fd5, 0x01091022d6d2f065},
1406
 {0x0292c583514c45ed, 0x0316fca51f9a286c, 0x00300af507c1489a,
1407
  0x0295f69008298cf1, 0x02c0ed8274943d7b, 0x016509b9b47a431e,
1408
  0x02bc9de9634868ce, 0x005b34929bffcb09, 0x000c1a0121681524},
1409
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1410
{{0x0286abc0292fb9f2, 0x02665eee9805b3f7, 0x01ed7455f17f26d6,
1411
  0x0346355b83175d13, 0x006284944cd0a097, 0x0191895bcdec5e51,
1412
  0x02e288370afda7d9, 0x03b22312bfefa67a, 0x01d104d3fc0613fe},
1413
 {0x0092421a12f7e47f, 0x0077a83fa373c501, 0x03bd25c5f696bd0d,
1414
  0x035c41e4d5459761, 0x01ca0d1742b24f53, 0x00aaab27863a509c,
1415
  0x018b6de47df73917, 0x025c0b771705cd01, 0x01fd51d566d760a7},
1416
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1417
{{0x01dd92ff6b0d1dbd, 0x039c5e2e8f8afa69, 0x0261ed13242c3b27,
1418
  0x0382c6e67026e6a0, 0x01d60b10be2089f9, 0x03c15f3dce86723f,
1419
  0x03c764a32d2a062d, 0x017307eac0fad056, 0x018207c0b96c5256},
1420
 {0x0196a16d60e13154, 0x03e6ce74c0267030, 0x00ddbf2b4e52a5aa,
1421
  0x012738241bbf31c8, 0x00ebe8dc04685a28, 0x024c2ad6d380d4a2,
1422
  0x035ee062a6e62d0e, 0x0029ed74af7d3a0f, 0x00eef32aec142ebd},
1423
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1424
{{0x00c31ec398993b39, 0x03a9f45bcda68253, 0x00ac733c24c70890,
1425
  0x00872b111401ff01, 0x01d178c23195eafb, 0x03bca2c816b87f74,
1426
  0x0261a9af46fbad7a, 0x0324b2a8dd3d28f9, 0x00918121d8f24e23},
1427
 {0x032bc8c1ca983cd7, 0x00d869dfb08fc8c6, 0x01693cb61fce1516,
1428
  0x012a5ea68f4e88a8, 0x010869cab88d7ae3, 0x009081ad277ceee1,
1429
  0x033a77166d064cdc, 0x03955235a1fb3a95, 0x01251a4a9b25b65e},
1430
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1431
{{0x00148a3a1b27f40b, 0x0123186df1b31fdc, 0x00026e7beaad34ce,
1432
  0x01db446ac1d3dbba, 0x0299c1a33437eaec, 0x024540610183cbb7,
1433
  0x0173bb0e9ce92e46, 0x02b937e43921214b, 0x01ab0436a9bf01b5},
1434
 {0x0383381640d46948, 0x008dacbf0e7f330f, 0x03602122bcc3f318,
1435
  0x01ee596b200620d6, 0x03bd0585fda430b3, 0x014aed77fd123a83,
1436
  0x005ace749e52f742, 0x0390fe041da2b842, 0x0189a8ceb3299242},
1437
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1438
{{0x012a19d6b3282473, 0x00c0915918b423ce, 0x023a954eb94405ae,
1439
  0x00529f692be26158, 0x0289fa1b6fa4b2aa, 0x0198ae4ceea346ef,
1440
  0x0047d8cdfbdedd49, 0x00cc8c8953f0f6b8, 0x001424abbff49203},
1441
 {0x0256732a1115a03a, 0x0351bc38665c6733, 0x03f7b950fb4a6447,
1442
  0x000afffa94c22155, 0x025763d0a4dab540, 0x000511e92d4fc283,
1443
  0x030a7e9eda0ee96c, 0x004c3cd93a28bf0a, 0x017edb3a8719217f},
1444
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1445
{{0x011de5675a88e673, 0x031d7d0f5e567fbe, 0x0016b2062c970ae5,
1446
  0x03f4a2be49d90aa7, 0x03cef0bd13822866, 0x03f0923dcf774a6c,
1447
  0x0284bebc4f322f72, 0x016ab2645302bb2c, 0x01793f95dace0e2a},
1448
 {0x010646e13527a28f, 0x01ca1babd59dc5e7, 0x01afedfd9a5595df,
1449
  0x01f15785212ea6b1, 0x0324e5d64f6ae3f4, 0x02d680f526d00645,
1450
  0x0127920fadf627a7, 0x03b383f75df4f684, 0x0089e0057e783b0a},
1451
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1452
{{0x00f334b9eb3c26c6, 0x0298fdaa98568dce, 0x01c2d24843a82292,
1453
  0x020bcb24fa1b0711, 0x02cbdb3d2b1875e6, 0x0014907598f89422,
1454
  0x03abe3aa43b26664, 0x02cbf47f720bc168, 0x0133b5e73014b79b},
1455
 {0x034aab5dab05779d, 0x00cdc5d71fee9abb, 0x0399f16bd4bd9d30,
1456
  0x03582fa592d82647, 0x02be1cdfb775b0e9, 0x0034f7cea32e94cb,
1457
  0x0335a7f08f56f286, 0x03b707e9565d1c8b, 0x0015c946ea5b614f},
1458
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1459
{{0x024676f6cff72255, 0x00d14625cac96378, 0x00532b6008bc3767,
1460
  0x01fc16721b985322, 0x023355ea1b091668, 0x029de7afdc0317c3,
1461
  0x02fc8a7ca2da037c, 0x02de1217d74a6f30, 0x013f7173175b73bf},
1462
 {0x0344913f441490b5, 0x0200f9e272b61eca, 0x0258a246b1dd55d2,
1463
  0x03753db9ea496f36, 0x025e02937a09c5ef, 0x030cbd3d14012692,
1464
  0x01793a67e70dc72a, 0x03ec1d37048a662e, 0x006550f700c32a8d},
1465
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1466
{{0x00d3f48a347eba27, 0x008e636649b61bd8, 0x00d3b93716778fb3,
1467
  0x004d1915757bd209, 0x019d5311a3da44e0, 0x016d1afcbbe6aade,
1468
  0x0241bf5f73265616, 0x0384672e5d50d39b, 0x005009fee522b684},
1469
 {0x029b4fab064435fe, 0x018868ee095bbb07, 0x01ea3d6936cc92b8,
1470
  0x000608b00f78a2f3, 0x02db911073d1c20f, 0x018205938470100a,
1471
  0x01f1e4964cbe6ff2, 0x021a19a29eed4663, 0x01414485f42afa81},
1472
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1473
{{0x01612b3a17f63e34, 0x03813992885428e6, 0x022b3c215b5a9608,
1474
  0x029b4057e19f2fcb, 0x0384059a587af7e6, 0x02d6400ace6fe610,
1475
  0x029354d896e8e331, 0x00c047ee6dfba65e, 0x0037720542e9d49d},
1476
 {0x02ce9eed7c5e9278, 0x0374ed703e79643b, 0x01316c54c4072006,
1477
  0x005aaa09054b2ee8, 0x002824000c840d57, 0x03d4eba24771ed86,
1478
  0x0189c50aabc3bdae, 0x0338c01541e15510, 0x00466d56e38eed42},
1479
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1480
{{0x007efd8330ad8bd6, 0x02465ed48047710b, 0x0034c6606b215e0c,
1481
  0x016ae30c53cbf839, 0x01fa17bd37161216, 0x018ead4e61ce8ab9,
1482
  0x005482ed5f5dee46, 0x037543755bba1d7f, 0x005e5ac7e70a9d0f},
1483
 {0x0117e1bb2fdcb2a2, 0x03deea36249f40c4, 0x028d09b4a6246cb7,
1484
  0x03524b8855bcf756, 0x023d7d109d5ceb58, 0x0178e43e3223ef9c,
1485
  0x0154536a0c6e966a, 0x037964d1286ee9fe, 0x0199bcd90e125055},
1486
 {1, 0, 0, 0, 0, 0, 0, 0, 0}}
1487
};
1488
1489
/*
1490
 * select_point selects the |idx|th point from a precomputation table and
1491
 * copies it to out.
1492
 */
1493
 /* pre_comp below is of the size provided in |size| */
1494
static void select_point(const limb idx, unsigned int size,
1495
                         const felem pre_comp[][3], felem out[3])
1496
82.7k
{
1497
82.7k
    unsigned i, j;
1498
82.7k
    limb *outlimbs = &out[0][0];
1499
1500
82.7k
    memset(out, 0, sizeof(*out) * 3);
1501
1502
1.42M
    for (i = 0; i < size; i++) {
1503
1.34M
        const limb *inlimbs = &pre_comp[i][0][0];
1504
1.34M
        limb mask = i ^ idx;
1505
1.34M
        mask |= mask >> 4;
1506
1.34M
        mask |= mask >> 2;
1507
1.34M
        mask |= mask >> 1;
1508
1.34M
        mask &= 1;
1509
1.34M
        mask--;
1510
37.6M
        for (j = 0; j < NLIMBS * 3; j++)
1511
36.3M
            outlimbs[j] |= inlimbs[j] & mask;
1512
1.34M
    }
1513
82.7k
}
1514
1515
/* get_bit returns the |i|th bit in |in| */
1516
static char get_bit(const felem_bytearray in, int i)
1517
373k
{
1518
373k
    if (i < 0)
1519
208
        return 0;
1520
373k
    return (in[i >> 3] >> (i & 7)) & 1;
1521
373k
}
1522
1523
/*
1524
 * Interleaved point multiplication using precomputed point multiples: The
1525
 * small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[], the scalars
1526
 * in scalars[]. If g_scalar is non-NULL, we also add this multiple of the
1527
 * generator, using certain (large) precomputed multiples in g_pre_comp.
1528
 * Output point (X, Y, Z) is stored in x_out, y_out, z_out
1529
 */
1530
static void batch_mul(felem x_out, felem y_out, felem z_out,
1531
                      const felem_bytearray scalars[],
1532
                      const unsigned num_points, const u8 *g_scalar,
1533
                      const int mixed, const felem pre_comp[][17][3],
1534
                      const felem g_pre_comp[16][3])
1535
657
{
1536
657
    int i, skip;
1537
657
    unsigned num, gen_mul = (g_scalar != NULL);
1538
657
    felem nq[3], tmp[4];
1539
657
    limb bits;
1540
657
    u8 sign, digit;
1541
1542
    /* set nq to the point at infinity */
1543
657
    memset(nq, 0, sizeof(nq));
1544
1545
    /*
1546
     * Loop over all scalars msb-to-lsb, interleaving additions of multiples
1547
     * of the generator (last quarter of rounds) and additions of other
1548
     * points multiples (every 5th round).
1549
     */
1550
657
    skip = 1;                   /* save two point operations in the first
1551
                                 * round */
1552
167k
    for (i = (num_points ? 520 : 130); i >= 0; --i) {
1553
        /* double */
1554
167k
        if (!skip)
1555
166k
            point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
1556
1557
        /* add multiples of the generator */
1558
167k
        if (gen_mul && (i <= 130)) {
1559
60.9k
            bits = get_bit(g_scalar, i + 390) << 3;
1560
60.9k
            if (i < 130) {
1561
60.4k
                bits |= get_bit(g_scalar, i + 260) << 2;
1562
60.4k
                bits |= get_bit(g_scalar, i + 130) << 1;
1563
60.4k
                bits |= get_bit(g_scalar, i);
1564
60.4k
            }
1565
            /* select the point to add, in constant time */
1566
60.9k
            select_point(bits, 16, g_pre_comp, tmp);
1567
60.9k
            if (!skip) {
1568
                /* The 1 argument below is for "mixed" */
1569
60.4k
                point_add(nq[0], nq[1], nq[2],
1570
60.4k
                          nq[0], nq[1], nq[2], 1, tmp[0], tmp[1], tmp[2]);
1571
60.4k
            } else {
1572
449
                memcpy(nq, tmp, 3 * sizeof(felem));
1573
449
                skip = 0;
1574
449
            }
1575
60.9k
        }
1576
1577
        /* do other additions every 5 doublings */
1578
167k
        if (num_points && (i % 5 == 0)) {
1579
            /* loop over all scalars */
1580
43.6k
            for (num = 0; num < num_points; ++num) {
1581
21.8k
                bits = get_bit(scalars[num], i + 4) << 5;
1582
21.8k
                bits |= get_bit(scalars[num], i + 3) << 4;
1583
21.8k
                bits |= get_bit(scalars[num], i + 2) << 3;
1584
21.8k
                bits |= get_bit(scalars[num], i + 1) << 2;
1585
21.8k
                bits |= get_bit(scalars[num], i) << 1;
1586
21.8k
                bits |= get_bit(scalars[num], i - 1);
1587
21.8k
                ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
1588
1589
                /*
1590
                 * select the point to add or subtract, in constant time
1591
                 */
1592
21.8k
                select_point(digit, 17, pre_comp[num], tmp);
1593
21.8k
                felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the negative
1594
                                            * point */
1595
21.8k
                copy_conditional(tmp[1], tmp[3], (-(limb) sign));
1596
1597
21.8k
                if (!skip) {
1598
21.6k
                    point_add(nq[0], nq[1], nq[2],
1599
21.6k
                              nq[0], nq[1], nq[2],
1600
21.6k
                              mixed, tmp[0], tmp[1], tmp[2]);
1601
21.6k
                } else {
1602
208
                    memcpy(nq, tmp, 3 * sizeof(felem));
1603
208
                    skip = 0;
1604
208
                }
1605
21.8k
            }
1606
21.8k
        }
1607
167k
    }
1608
657
    felem_assign(x_out, nq[0]);
1609
657
    felem_assign(y_out, nq[1]);
1610
657
    felem_assign(z_out, nq[2]);
1611
657
}
1612
1613
/* Precomputation for the group generator. */
1614
struct nistp521_pre_comp_st {
1615
    felem g_pre_comp[16][3];
1616
    CRYPTO_REF_COUNT references;
1617
    CRYPTO_RWLOCK *lock;
1618
};
1619
1620
const EC_METHOD *EC_GFp_nistp521_method(void)
1621
11.5k
{
1622
11.5k
    static const EC_METHOD ret = {
1623
11.5k
        EC_FLAGS_DEFAULT_OCT,
1624
11.5k
        NID_X9_62_prime_field,
1625
11.5k
        ec_GFp_nistp521_group_init,
1626
11.5k
        ec_GFp_simple_group_finish,
1627
11.5k
        ec_GFp_simple_group_clear_finish,
1628
11.5k
        ec_GFp_nist_group_copy,
1629
11.5k
        ec_GFp_nistp521_group_set_curve,
1630
11.5k
        ec_GFp_simple_group_get_curve,
1631
11.5k
        ec_GFp_simple_group_get_degree,
1632
11.5k
        ec_group_simple_order_bits,
1633
11.5k
        ec_GFp_simple_group_check_discriminant,
1634
11.5k
        ec_GFp_simple_point_init,
1635
11.5k
        ec_GFp_simple_point_finish,
1636
11.5k
        ec_GFp_simple_point_clear_finish,
1637
11.5k
        ec_GFp_simple_point_copy,
1638
11.5k
        ec_GFp_simple_point_set_to_infinity,
1639
11.5k
        ec_GFp_simple_set_Jprojective_coordinates_GFp,
1640
11.5k
        ec_GFp_simple_get_Jprojective_coordinates_GFp,
1641
11.5k
        ec_GFp_simple_point_set_affine_coordinates,
1642
11.5k
        ec_GFp_nistp521_point_get_affine_coordinates,
1643
11.5k
        0 /* point_set_compressed_coordinates */ ,
1644
11.5k
        0 /* point2oct */ ,
1645
11.5k
        0 /* oct2point */ ,
1646
11.5k
        ec_GFp_simple_add,
1647
11.5k
        ec_GFp_simple_dbl,
1648
11.5k
        ec_GFp_simple_invert,
1649
11.5k
        ec_GFp_simple_is_at_infinity,
1650
11.5k
        ec_GFp_simple_is_on_curve,
1651
11.5k
        ec_GFp_simple_cmp,
1652
11.5k
        ec_GFp_simple_make_affine,
1653
11.5k
        ec_GFp_simple_points_make_affine,
1654
11.5k
        ec_GFp_nistp521_points_mul,
1655
11.5k
        ec_GFp_nistp521_precompute_mult,
1656
11.5k
        ec_GFp_nistp521_have_precompute_mult,
1657
11.5k
        ec_GFp_nist_field_mul,
1658
11.5k
        ec_GFp_nist_field_sqr,
1659
11.5k
        0 /* field_div */ ,
1660
11.5k
        ec_GFp_simple_field_inv,
1661
11.5k
        0 /* field_encode */ ,
1662
11.5k
        0 /* field_decode */ ,
1663
11.5k
        0,                      /* field_set_to_one */
1664
11.5k
        ec_key_simple_priv2oct,
1665
11.5k
        ec_key_simple_oct2priv,
1666
11.5k
        0, /* set private */
1667
11.5k
        ec_key_simple_generate_key,
1668
11.5k
        ec_key_simple_check_key,
1669
11.5k
        ec_key_simple_generate_public_key,
1670
11.5k
        0, /* keycopy */
1671
11.5k
        0, /* keyfinish */
1672
11.5k
        ecdh_simple_compute_key,
1673
11.5k
        0, /* field_inverse_mod_ord */
1674
11.5k
        0, /* blind_coordinates */
1675
11.5k
        0, /* ladder_pre */
1676
11.5k
        0, /* ladder_step */
1677
11.5k
        0  /* ladder_post */
1678
11.5k
    };
1679
1680
11.5k
    return &ret;
1681
11.5k
}
1682
1683
/******************************************************************************/
1684
/*
1685
 * FUNCTIONS TO MANAGE PRECOMPUTATION
1686
 */
1687
1688
static NISTP521_PRE_COMP *nistp521_pre_comp_new(void)
1689
0
{
1690
0
    NISTP521_PRE_COMP *ret = OPENSSL_zalloc(sizeof(*ret));
1691
1692
0
    if (ret == NULL) {
1693
0
        ECerr(EC_F_NISTP521_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
1694
0
        return ret;
1695
0
    }
1696
1697
0
    ret->references = 1;
1698
1699
0
    ret->lock = CRYPTO_THREAD_lock_new();
1700
0
    if (ret->lock == NULL) {
1701
0
        ECerr(EC_F_NISTP521_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
1702
0
        OPENSSL_free(ret);
1703
0
        return NULL;
1704
0
    }
1705
0
    return ret;
1706
0
}
1707
1708
NISTP521_PRE_COMP *EC_nistp521_pre_comp_dup(NISTP521_PRE_COMP *p)
1709
0
{
1710
0
    int i;
1711
0
    if (p != NULL)
1712
0
        CRYPTO_UP_REF(&p->references, &i, p->lock);
1713
0
    return p;
1714
0
}
1715
1716
void EC_nistp521_pre_comp_free(NISTP521_PRE_COMP *p)
1717
0
{
1718
0
    int i;
1719
1720
0
    if (p == NULL)
1721
0
        return;
1722
1723
0
    CRYPTO_DOWN_REF(&p->references, &i, p->lock);
1724
0
    REF_PRINT_COUNT("EC_nistp521", x);
1725
0
    if (i > 0)
1726
0
        return;
1727
0
    REF_ASSERT_ISNT(i < 0);
1728
1729
0
    CRYPTO_THREAD_lock_free(p->lock);
1730
0
    OPENSSL_free(p);
1731
0
}
1732
1733
/******************************************************************************/
1734
/*
1735
 * OPENSSL EC_METHOD FUNCTIONS
1736
 */
1737
1738
int ec_GFp_nistp521_group_init(EC_GROUP *group)
1739
5.50k
{
1740
5.50k
    int ret;
1741
5.50k
    ret = ec_GFp_simple_group_init(group);
1742
5.50k
    group->a_is_minus3 = 1;
1743
5.50k
    return ret;
1744
5.50k
}
1745
1746
int ec_GFp_nistp521_group_set_curve(EC_GROUP *group, const BIGNUM *p,
1747
                                    const BIGNUM *a, const BIGNUM *b,
1748
                                    BN_CTX *ctx)
1749
2.63k
{
1750
2.63k
    int ret = 0;
1751
2.63k
    BN_CTX *new_ctx = NULL;
1752
2.63k
    BIGNUM *curve_p, *curve_a, *curve_b;
1753
1754
2.63k
    if (ctx == NULL)
1755
0
        if ((ctx = new_ctx = BN_CTX_new()) == NULL)
1756
0
            return 0;
1757
2.63k
    BN_CTX_start(ctx);
1758
2.63k
    curve_p = BN_CTX_get(ctx);
1759
2.63k
    curve_a = BN_CTX_get(ctx);
1760
2.63k
    curve_b = BN_CTX_get(ctx);
1761
2.63k
    if (curve_b == NULL)
1762
0
        goto err;
1763
2.63k
    BN_bin2bn(nistp521_curve_params[0], sizeof(felem_bytearray), curve_p);
1764
2.63k
    BN_bin2bn(nistp521_curve_params[1], sizeof(felem_bytearray), curve_a);
1765
2.63k
    BN_bin2bn(nistp521_curve_params[2], sizeof(felem_bytearray), curve_b);
1766
2.63k
    if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || (BN_cmp(curve_b, b))) {
1767
0
        ECerr(EC_F_EC_GFP_NISTP521_GROUP_SET_CURVE,
1768
0
              EC_R_WRONG_CURVE_PARAMETERS);
1769
0
        goto err;
1770
0
    }
1771
2.63k
    group->field_mod_func = BN_nist_mod_521;
1772
2.63k
    ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
1773
2.63k
 err:
1774
2.63k
    BN_CTX_end(ctx);
1775
2.63k
    BN_CTX_free(new_ctx);
1776
2.63k
    return ret;
1777
2.63k
}
1778
1779
/*
1780
 * Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') =
1781
 * (X/Z^2, Y/Z^3)
1782
 */
1783
int ec_GFp_nistp521_point_get_affine_coordinates(const EC_GROUP *group,
1784
                                                 const EC_POINT *point,
1785
                                                 BIGNUM *x, BIGNUM *y,
1786
                                                 BN_CTX *ctx)
1787
266
{
1788
266
    felem z1, z2, x_in, y_in, x_out, y_out;
1789
266
    largefelem tmp;
1790
1791
266
    if (EC_POINT_is_at_infinity(group, point)) {
1792
0
        ECerr(EC_F_EC_GFP_NISTP521_POINT_GET_AFFINE_COORDINATES,
1793
0
              EC_R_POINT_AT_INFINITY);
1794
0
        return 0;
1795
0
    }
1796
266
    if ((!BN_to_felem(x_in, point->X)) || (!BN_to_felem(y_in, point->Y)) ||
1797
266
        (!BN_to_felem(z1, point->Z)))
1798
0
        return 0;
1799
266
    felem_inv(z2, z1);
1800
266
    felem_square(tmp, z2);
1801
266
    felem_reduce(z1, tmp);
1802
266
    felem_mul(tmp, x_in, z1);
1803
266
    felem_reduce(x_in, tmp);
1804
266
    felem_contract(x_out, x_in);
1805
266
    if (x != NULL) {
1806
266
        if (!felem_to_BN(x, x_out)) {
1807
0
            ECerr(EC_F_EC_GFP_NISTP521_POINT_GET_AFFINE_COORDINATES,
1808
0
                  ERR_R_BN_LIB);
1809
0
            return 0;
1810
0
        }
1811
266
    }
1812
266
    felem_mul(tmp, z1, z2);
1813
266
    felem_reduce(z1, tmp);
1814
266
    felem_mul(tmp, y_in, z1);
1815
266
    felem_reduce(y_in, tmp);
1816
266
    felem_contract(y_out, y_in);
1817
266
    if (y != NULL) {
1818
162
        if (!felem_to_BN(y, y_out)) {
1819
0
            ECerr(EC_F_EC_GFP_NISTP521_POINT_GET_AFFINE_COORDINATES,
1820
0
                  ERR_R_BN_LIB);
1821
0
            return 0;
1822
0
        }
1823
162
    }
1824
266
    return 1;
1825
266
}
1826
1827
/* points below is of size |num|, and tmp_felems is of size |num+1/ */
1828
static void make_points_affine(size_t num, felem points[][3],
1829
                               felem tmp_felems[])
1830
0
{
1831
    /*
1832
     * Runs in constant time, unless an input is the point at infinity (which
1833
     * normally shouldn't happen).
1834
     */
1835
0
    ec_GFp_nistp_points_make_affine_internal(num,
1836
0
                                             points,
1837
0
                                             sizeof(felem),
1838
0
                                             tmp_felems,
1839
0
                                             (void (*)(void *))felem_one,
1840
0
                                             felem_is_zero_int,
1841
0
                                             (void (*)(void *, const void *))
1842
0
                                             felem_assign,
1843
0
                                             (void (*)(void *, const void *))
1844
0
                                             felem_square_reduce, (void (*)
1845
0
                                                                   (void *,
1846
0
                                                                    const void
1847
0
                                                                    *,
1848
0
                                                                    const void
1849
0
                                                                    *))
1850
0
                                             felem_mul_reduce,
1851
0
                                             (void (*)(void *, const void *))
1852
0
                                             felem_inv,
1853
0
                                             (void (*)(void *, const void *))
1854
0
                                             felem_contract);
1855
0
}
1856
1857
/*
1858
 * Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL
1859
 * values Result is stored in r (r can equal one of the inputs).
1860
 */
1861
int ec_GFp_nistp521_points_mul(const EC_GROUP *group, EC_POINT *r,
1862
                               const BIGNUM *scalar, size_t num,
1863
                               const EC_POINT *points[],
1864
                               const BIGNUM *scalars[], BN_CTX *ctx)
1865
261
{
1866
261
    int ret = 0;
1867
261
    int j;
1868
261
    int mixed = 0;
1869
261
    BIGNUM *x, *y, *z, *tmp_scalar;
1870
261
    felem_bytearray g_secret;
1871
261
    felem_bytearray *secrets = NULL;
1872
261
    felem (*pre_comp)[17][3] = NULL;
1873
261
    felem *tmp_felems = NULL;
1874
261
    unsigned i;
1875
261
    int num_bytes;
1876
261
    int have_pre_comp = 0;
1877
261
    size_t num_points = num;
1878
261
    felem x_in, y_in, z_in, x_out, y_out, z_out;
1879
261
    NISTP521_PRE_COMP *pre = NULL;
1880
261
    felem(*g_pre_comp)[3] = NULL;
1881
261
    EC_POINT *generator = NULL;
1882
261
    const EC_POINT *p = NULL;
1883
261
    const BIGNUM *p_scalar = NULL;
1884
1885
261
    BN_CTX_start(ctx);
1886
261
    x = BN_CTX_get(ctx);
1887
261
    y = BN_CTX_get(ctx);
1888
261
    z = BN_CTX_get(ctx);
1889
261
    tmp_scalar = BN_CTX_get(ctx);
1890
261
    if (tmp_scalar == NULL)
1891
0
        goto err;
1892
1893
261
    if (scalar != NULL) {
1894
161
        pre = group->pre_comp.nistp521;
1895
161
        if (pre)
1896
            /* we have precomputation, try to use it */
1897
0
            g_pre_comp = &pre->g_pre_comp[0];
1898
161
        else
1899
            /* try to use the standard precomputation */
1900
161
            g_pre_comp = (felem(*)[3]) gmul;
1901
161
        generator = EC_POINT_new(group);
1902
161
        if (generator == NULL)
1903
0
            goto err;
1904
        /* get the generator from precomputation */
1905
161
        if (!felem_to_BN(x, g_pre_comp[1][0]) ||
1906
161
            !felem_to_BN(y, g_pre_comp[1][1]) ||
1907
161
            !felem_to_BN(z, g_pre_comp[1][2])) {
1908
0
            ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB);
1909
0
            goto err;
1910
0
        }
1911
161
        if (!EC_POINT_set_Jprojective_coordinates_GFp(group,
1912
161
                                                      generator, x, y, z,
1913
161
                                                      ctx))
1914
0
            goto err;
1915
161
        if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
1916
            /* precomputation matches generator */
1917
161
            have_pre_comp = 1;
1918
0
        else
1919
            /*
1920
             * we don't have valid precomputation: treat the generator as a
1921
             * random point
1922
             */
1923
0
            num_points++;
1924
161
    }
1925
1926
261
    if (num_points > 0) {
1927
108
        if (num_points >= 2) {
1928
            /*
1929
             * unless we precompute multiples for just one point, converting
1930
             * those into affine form is time well spent
1931
             */
1932
0
            mixed = 1;
1933
0
        }
1934
108
        secrets = OPENSSL_zalloc(sizeof(*secrets) * num_points);
1935
108
        pre_comp = OPENSSL_zalloc(sizeof(*pre_comp) * num_points);
1936
108
        if (mixed)
1937
0
            tmp_felems =
1938
0
                OPENSSL_malloc(sizeof(*tmp_felems) * (num_points * 17 + 1));
1939
108
        if ((secrets == NULL) || (pre_comp == NULL)
1940
108
            || (mixed && (tmp_felems == NULL))) {
1941
0
            ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_MALLOC_FAILURE);
1942
0
            goto err;
1943
0
        }
1944
1945
        /*
1946
         * we treat NULL scalars as 0, and NULL points as points at infinity,
1947
         * i.e., they contribute nothing to the linear combination
1948
         */
1949
216
        for (i = 0; i < num_points; ++i) {
1950
108
            if (i == num) {
1951
                /*
1952
                 * we didn't have a valid precomputation, so we pick the
1953
                 * generator
1954
                 */
1955
0
                p = EC_GROUP_get0_generator(group);
1956
0
                p_scalar = scalar;
1957
108
            } else {
1958
                /* the i^th point */
1959
108
                p = points[i];
1960
108
                p_scalar = scalars[i];
1961
108
            }
1962
108
            if ((p_scalar != NULL) && (p != NULL)) {
1963
                /* reduce scalar to 0 <= scalar < 2^521 */
1964
108
                if ((BN_num_bits(p_scalar) > 521)
1965
108
                    || (BN_is_negative(p_scalar))) {
1966
                    /*
1967
                     * this is an unusual input, and we don't guarantee
1968
                     * constant-timeness
1969
                     */
1970
0
                    if (!BN_nnmod(tmp_scalar, p_scalar, group->order, ctx)) {
1971
0
                        ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB);
1972
0
                        goto err;
1973
0
                    }
1974
0
                    num_bytes = BN_bn2lebinpad(tmp_scalar,
1975
0
                                               secrets[i], sizeof(secrets[i]));
1976
108
                } else {
1977
108
                    num_bytes = BN_bn2lebinpad(p_scalar,
1978
108
                                               secrets[i], sizeof(secrets[i]));
1979
108
                }
1980
108
                if (num_bytes < 0) {
1981
0
                    ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB);
1982
0
                    goto err;
1983
0
                }
1984
                /* precompute multiples */
1985
108
                if ((!BN_to_felem(x_out, p->X)) ||
1986
108
                    (!BN_to_felem(y_out, p->Y)) ||
1987
108
                    (!BN_to_felem(z_out, p->Z)))
1988
0
                    goto err;
1989
108
                memcpy(pre_comp[i][1][0], x_out, sizeof(felem));
1990
108
                memcpy(pre_comp[i][1][1], y_out, sizeof(felem));
1991
108
                memcpy(pre_comp[i][1][2], z_out, sizeof(felem));
1992
1.72k
                for (j = 2; j <= 16; ++j) {
1993
1.62k
                    if (j & 1) {
1994
756
                        point_add(pre_comp[i][j][0], pre_comp[i][j][1],
1995
756
                                  pre_comp[i][j][2], pre_comp[i][1][0],
1996
756
                                  pre_comp[i][1][1], pre_comp[i][1][2], 0,
1997
756
                                  pre_comp[i][j - 1][0],
1998
756
                                  pre_comp[i][j - 1][1],
1999
756
                                  pre_comp[i][j - 1][2]);
2000
864
                    } else {
2001
864
                        point_double(pre_comp[i][j][0], pre_comp[i][j][1],
2002
864
                                     pre_comp[i][j][2], pre_comp[i][j / 2][0],
2003
864
                                     pre_comp[i][j / 2][1],
2004
864
                                     pre_comp[i][j / 2][2]);
2005
864
                    }
2006
1.62k
                }
2007
108
            }
2008
108
        }
2009
108
        if (mixed)
2010
0
            make_points_affine(num_points * 17, pre_comp[0], tmp_felems);
2011
108
    }
2012
2013
    /* the scalar for the generator */
2014
261
    if ((scalar != NULL) && (have_pre_comp)) {
2015
161
        memset(g_secret, 0, sizeof(g_secret));
2016
        /* reduce scalar to 0 <= scalar < 2^521 */
2017
161
        if ((BN_num_bits(scalar) > 521) || (BN_is_negative(scalar))) {
2018
            /*
2019
             * this is an unusual input, and we don't guarantee
2020
             * constant-timeness
2021
             */
2022
3
            if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) {
2023
0
                ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB);
2024
0
                goto err;
2025
0
            }
2026
3
            num_bytes = BN_bn2lebinpad(tmp_scalar, g_secret, sizeof(g_secret));
2027
158
        } else {
2028
158
            num_bytes = BN_bn2lebinpad(scalar, g_secret, sizeof(g_secret));
2029
158
        }
2030
        /* do the multiplication with generator precomputation */
2031
161
        batch_mul(x_out, y_out, z_out,
2032
161
                  (const felem_bytearray(*))secrets, num_points,
2033
161
                  g_secret,
2034
161
                  mixed, (const felem(*)[17][3])pre_comp,
2035
161
                  (const felem(*)[3])g_pre_comp);
2036
161
    } else {
2037
        /* do the multiplication without generator precomputation */
2038
100
        batch_mul(x_out, y_out, z_out,
2039
100
                  (const felem_bytearray(*))secrets, num_points,
2040
100
                  NULL, mixed, (const felem(*)[17][3])pre_comp, NULL);
2041
100
    }
2042
    /* reduce the output to its unique minimal representation */
2043
261
    felem_contract(x_in, x_out);
2044
261
    felem_contract(y_in, y_out);
2045
261
    felem_contract(z_in, z_out);
2046
261
    if ((!felem_to_BN(x, x_in)) || (!felem_to_BN(y, y_in)) ||
2047
261
        (!felem_to_BN(z, z_in))) {
2048
0
        ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB);
2049
0
        goto err;
2050
0
    }
2051
261
    ret = EC_POINT_set_Jprojective_coordinates_GFp(group, r, x, y, z, ctx);
2052
2053
261
 err:
2054
261
    BN_CTX_end(ctx);
2055
261
    EC_POINT_free(generator);
2056
261
    OPENSSL_free(secrets);
2057
261
    OPENSSL_free(pre_comp);
2058
261
    OPENSSL_free(tmp_felems);
2059
261
    return ret;
2060
261
}
2061
2062
int ec_GFp_nistp521_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
2063
0
{
2064
0
    int ret = 0;
2065
0
    NISTP521_PRE_COMP *pre = NULL;
2066
0
    int i, j;
2067
0
    BN_CTX *new_ctx = NULL;
2068
0
    BIGNUM *x, *y;
2069
0
    EC_POINT *generator = NULL;
2070
0
    felem tmp_felems[16];
2071
2072
    /* throw away old precomputation */
2073
0
    EC_pre_comp_free(group);
2074
0
    if (ctx == NULL)
2075
0
        if ((ctx = new_ctx = BN_CTX_new()) == NULL)
2076
0
            return 0;
2077
0
    BN_CTX_start(ctx);
2078
0
    x = BN_CTX_get(ctx);
2079
0
    y = BN_CTX_get(ctx);
2080
0
    if (y == NULL)
2081
0
        goto err;
2082
    /* get the generator */
2083
0
    if (group->generator == NULL)
2084
0
        goto err;
2085
0
    generator = EC_POINT_new(group);
2086
0
    if (generator == NULL)
2087
0
        goto err;
2088
0
    BN_bin2bn(nistp521_curve_params[3], sizeof(felem_bytearray), x);
2089
0
    BN_bin2bn(nistp521_curve_params[4], sizeof(felem_bytearray), y);
2090
0
    if (!EC_POINT_set_affine_coordinates(group, generator, x, y, ctx))
2091
0
        goto err;
2092
0
    if ((pre = nistp521_pre_comp_new()) == NULL)
2093
0
        goto err;
2094
    /*
2095
     * if the generator is the standard one, use built-in precomputation
2096
     */
2097
0
    if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) {
2098
0
        memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp));
2099
0
        goto done;
2100
0
    }
2101
0
    if ((!BN_to_felem(pre->g_pre_comp[1][0], group->generator->X)) ||
2102
0
        (!BN_to_felem(pre->g_pre_comp[1][1], group->generator->Y)) ||
2103
0
        (!BN_to_felem(pre->g_pre_comp[1][2], group->generator->Z)))
2104
0
        goto err;
2105
    /* compute 2^130*G, 2^260*G, 2^390*G */
2106
0
    for (i = 1; i <= 4; i <<= 1) {
2107
0
        point_double(pre->g_pre_comp[2 * i][0], pre->g_pre_comp[2 * i][1],
2108
0
                     pre->g_pre_comp[2 * i][2], pre->g_pre_comp[i][0],
2109
0
                     pre->g_pre_comp[i][1], pre->g_pre_comp[i][2]);
2110
0
        for (j = 0; j < 129; ++j) {
2111
0
            point_double(pre->g_pre_comp[2 * i][0],
2112
0
                         pre->g_pre_comp[2 * i][1],
2113
0
                         pre->g_pre_comp[2 * i][2],
2114
0
                         pre->g_pre_comp[2 * i][0],
2115
0
                         pre->g_pre_comp[2 * i][1],
2116
0
                         pre->g_pre_comp[2 * i][2]);
2117
0
        }
2118
0
    }
2119
    /* g_pre_comp[0] is the point at infinity */
2120
0
    memset(pre->g_pre_comp[0], 0, sizeof(pre->g_pre_comp[0]));
2121
    /* the remaining multiples */
2122
    /* 2^130*G + 2^260*G */
2123
0
    point_add(pre->g_pre_comp[6][0], pre->g_pre_comp[6][1],
2124
0
              pre->g_pre_comp[6][2], pre->g_pre_comp[4][0],
2125
0
              pre->g_pre_comp[4][1], pre->g_pre_comp[4][2],
2126
0
              0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
2127
0
              pre->g_pre_comp[2][2]);
2128
    /* 2^130*G + 2^390*G */
2129
0
    point_add(pre->g_pre_comp[10][0], pre->g_pre_comp[10][1],
2130
0
              pre->g_pre_comp[10][2], pre->g_pre_comp[8][0],
2131
0
              pre->g_pre_comp[8][1], pre->g_pre_comp[8][2],
2132
0
              0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
2133
0
              pre->g_pre_comp[2][2]);
2134
    /* 2^260*G + 2^390*G */
2135
0
    point_add(pre->g_pre_comp[12][0], pre->g_pre_comp[12][1],
2136
0
              pre->g_pre_comp[12][2], pre->g_pre_comp[8][0],
2137
0
              pre->g_pre_comp[8][1], pre->g_pre_comp[8][2],
2138
0
              0, pre->g_pre_comp[4][0], pre->g_pre_comp[4][1],
2139
0
              pre->g_pre_comp[4][2]);
2140
    /* 2^130*G + 2^260*G + 2^390*G */
2141
0
    point_add(pre->g_pre_comp[14][0], pre->g_pre_comp[14][1],
2142
0
              pre->g_pre_comp[14][2], pre->g_pre_comp[12][0],
2143
0
              pre->g_pre_comp[12][1], pre->g_pre_comp[12][2],
2144
0
              0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
2145
0
              pre->g_pre_comp[2][2]);
2146
0
    for (i = 1; i < 8; ++i) {
2147
        /* odd multiples: add G */
2148
0
        point_add(pre->g_pre_comp[2 * i + 1][0],
2149
0
                  pre->g_pre_comp[2 * i + 1][1],
2150
0
                  pre->g_pre_comp[2 * i + 1][2], pre->g_pre_comp[2 * i][0],
2151
0
                  pre->g_pre_comp[2 * i][1], pre->g_pre_comp[2 * i][2], 0,
2152
0
                  pre->g_pre_comp[1][0], pre->g_pre_comp[1][1],
2153
0
                  pre->g_pre_comp[1][2]);
2154
0
    }
2155
0
    make_points_affine(15, &(pre->g_pre_comp[1]), tmp_felems);
2156
2157
0
 done:
2158
0
    SETPRECOMP(group, nistp521, pre);
2159
0
    ret = 1;
2160
0
    pre = NULL;
2161
0
 err:
2162
0
    BN_CTX_end(ctx);
2163
0
    EC_POINT_free(generator);
2164
0
    BN_CTX_free(new_ctx);
2165
0
    EC_nistp521_pre_comp_free(pre);
2166
0
    return ret;
2167
0
}
2168
2169
int ec_GFp_nistp521_have_precompute_mult(const EC_GROUP *group)
2170
0
{
2171
0
    return HAVEPRECOMP(group, nistp521);
2172
0
}
2173
2174
#endif