Coverage Report

Created: 2023-09-25 06:45

/src/openssl111/include/crypto/md32_common.h
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 1999-2018 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the OpenSSL license (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
/*-
11
 * This is a generic 32 bit "collector" for message digest algorithms.
12
 * Whenever needed it collects input character stream into chunks of
13
 * 32 bit values and invokes a block function that performs actual hash
14
 * calculations.
15
 *
16
 * Porting guide.
17
 *
18
 * Obligatory macros:
19
 *
20
 * DATA_ORDER_IS_BIG_ENDIAN or DATA_ORDER_IS_LITTLE_ENDIAN
21
 *      this macro defines byte order of input stream.
22
 * HASH_CBLOCK
23
 *      size of a unit chunk HASH_BLOCK operates on.
24
 * HASH_LONG
25
 *      has to be at least 32 bit wide.
26
 * HASH_CTX
27
 *      context structure that at least contains following
28
 *      members:
29
 *              typedef struct {
30
 *                      ...
31
 *                      HASH_LONG       Nl,Nh;
32
 *                      either {
33
 *                      HASH_LONG       data[HASH_LBLOCK];
34
 *                      unsigned char   data[HASH_CBLOCK];
35
 *                      };
36
 *                      unsigned int    num;
37
 *                      ...
38
 *                      } HASH_CTX;
39
 *      data[] vector is expected to be zeroed upon first call to
40
 *      HASH_UPDATE.
41
 * HASH_UPDATE
42
 *      name of "Update" function, implemented here.
43
 * HASH_TRANSFORM
44
 *      name of "Transform" function, implemented here.
45
 * HASH_FINAL
46
 *      name of "Final" function, implemented here.
47
 * HASH_BLOCK_DATA_ORDER
48
 *      name of "block" function capable of treating *unaligned* input
49
 *      message in original (data) byte order, implemented externally.
50
 * HASH_MAKE_STRING
51
 *      macro converting context variables to an ASCII hash string.
52
 *
53
 * MD5 example:
54
 *
55
 *      #define DATA_ORDER_IS_LITTLE_ENDIAN
56
 *
57
 *      #define HASH_LONG               MD5_LONG
58
 *      #define HASH_CTX                MD5_CTX
59
 *      #define HASH_CBLOCK             MD5_CBLOCK
60
 *      #define HASH_UPDATE             MD5_Update
61
 *      #define HASH_TRANSFORM          MD5_Transform
62
 *      #define HASH_FINAL              MD5_Final
63
 *      #define HASH_BLOCK_DATA_ORDER   md5_block_data_order
64
 */
65
66
#include <openssl/crypto.h>
67
68
#if !defined(DATA_ORDER_IS_BIG_ENDIAN) && !defined(DATA_ORDER_IS_LITTLE_ENDIAN)
69
# error "DATA_ORDER must be defined!"
70
#endif
71
72
#ifndef HASH_CBLOCK
73
# error "HASH_CBLOCK must be defined!"
74
#endif
75
#ifndef HASH_LONG
76
# error "HASH_LONG must be defined!"
77
#endif
78
#ifndef HASH_CTX
79
# error "HASH_CTX must be defined!"
80
#endif
81
82
#ifndef HASH_UPDATE
83
# error "HASH_UPDATE must be defined!"
84
#endif
85
#ifndef HASH_TRANSFORM
86
# error "HASH_TRANSFORM must be defined!"
87
#endif
88
#ifndef HASH_FINAL
89
# error "HASH_FINAL must be defined!"
90
#endif
91
92
#ifndef HASH_BLOCK_DATA_ORDER
93
# error "HASH_BLOCK_DATA_ORDER must be defined!"
94
#endif
95
96
153M
#define ROTATE(a,n)     (((a)<<(n))|(((a)&0xffffffff)>>(32-(n))))
97
98
#if defined(DATA_ORDER_IS_BIG_ENDIAN)
99
100
0
# define HOST_c2l(c,l)  (l =(((unsigned long)(*((c)++)))<<24),          \
101
0
                         l|=(((unsigned long)(*((c)++)))<<16),          \
102
0
                         l|=(((unsigned long)(*((c)++)))<< 8),          \
103
0
                         l|=(((unsigned long)(*((c)++)))    )           )
104
4.86M
# define HOST_l2c(l,c)  (*((c)++)=(unsigned char)(((l)>>24)&0xff),      \
105
4.86M
                         *((c)++)=(unsigned char)(((l)>>16)&0xff),      \
106
4.86M
                         *((c)++)=(unsigned char)(((l)>> 8)&0xff),      \
107
4.86M
                         *((c)++)=(unsigned char)(((l)    )&0xff),      \
108
4.86M
                         l)
109
110
#elif defined(DATA_ORDER_IS_LITTLE_ENDIAN)
111
112
7.67M
# define HOST_c2l(c,l)  (l =(((unsigned long)(*((c)++)))    ),          \
113
7.67M
                         l|=(((unsigned long)(*((c)++)))<< 8),          \
114
7.67M
                         l|=(((unsigned long)(*((c)++)))<<16),          \
115
7.67M
                         l|=(((unsigned long)(*((c)++)))<<24)           )
116
4.25M
# define HOST_l2c(l,c)  (*((c)++)=(unsigned char)(((l)    )&0xff),      \
117
4.25M
                         *((c)++)=(unsigned char)(((l)>> 8)&0xff),      \
118
4.25M
                         *((c)++)=(unsigned char)(((l)>>16)&0xff),      \
119
4.25M
                         *((c)++)=(unsigned char)(((l)>>24)&0xff),      \
120
4.25M
                         l)
121
122
#endif
123
124
/*
125
 * Time for some action :-)
126
 */
127
128
int HASH_UPDATE(HASH_CTX *c, const void *data_, size_t len)
129
1.74M
{
130
1.74M
    const unsigned char *data = data_;
131
1.74M
    unsigned char *p;
132
1.74M
    HASH_LONG l;
133
1.74M
    size_t n;
134
135
1.74M
    if (len == 0)
136
2
        return 1;
137
138
1.74M
    l = (c->Nl + (((HASH_LONG) len) << 3)) & 0xffffffffUL;
139
1.74M
    if (l < c->Nl)              /* overflow */
140
0
        c->Nh++;
141
1.74M
    c->Nh += (HASH_LONG) (len >> 29); /* might cause compiler warning on
142
                                       * 16-bit */
143
1.74M
    c->Nl = l;
144
145
1.74M
    n = c->num;
146
1.74M
    if (n != 0) {
147
268k
        p = (unsigned char *)c->data;
148
149
268k
        if (len >= HASH_CBLOCK || len + n >= HASH_CBLOCK) {
150
137k
            memcpy(p + n, data, HASH_CBLOCK - n);
151
137k
            HASH_BLOCK_DATA_ORDER(c, p, 1);
152
137k
            n = HASH_CBLOCK - n;
153
137k
            data += n;
154
137k
            len -= n;
155
137k
            c->num = 0;
156
            /*
157
             * We use memset rather than OPENSSL_cleanse() here deliberately.
158
             * Using OPENSSL_cleanse() here could be a performance issue. It
159
             * will get properly cleansed on finalisation so this isn't a
160
             * security problem.
161
             */
162
137k
            memset(p, 0, HASH_CBLOCK); /* keep it zeroed */
163
137k
        } else {
164
130k
            memcpy(p + n, data, len);
165
130k
            c->num += (unsigned int)len;
166
130k
            return 1;
167
130k
        }
168
268k
    }
169
170
1.61M
    n = len / HASH_CBLOCK;
171
1.61M
    if (n > 0) {
172
295k
        HASH_BLOCK_DATA_ORDER(c, data, n);
173
295k
        n *= HASH_CBLOCK;
174
295k
        data += n;
175
295k
        len -= n;
176
295k
    }
177
178
1.61M
    if (len != 0) {
179
1.49M
        p = (unsigned char *)c->data;
180
1.49M
        c->num = (unsigned int)len;
181
1.49M
        memcpy(p, data, len);
182
1.49M
    }
183
1.61M
    return 1;
184
1.74M
}
MD5_Update
Line
Count
Source
129
227k
{
130
227k
    const unsigned char *data = data_;
131
227k
    unsigned char *p;
132
227k
    HASH_LONG l;
133
227k
    size_t n;
134
135
227k
    if (len == 0)
136
2
        return 1;
137
138
227k
    l = (c->Nl + (((HASH_LONG) len) << 3)) & 0xffffffffUL;
139
227k
    if (l < c->Nl)              /* overflow */
140
0
        c->Nh++;
141
227k
    c->Nh += (HASH_LONG) (len >> 29); /* might cause compiler warning on
142
                                       * 16-bit */
143
227k
    c->Nl = l;
144
145
227k
    n = c->num;
146
227k
    if (n != 0) {
147
75.9k
        p = (unsigned char *)c->data;
148
149
75.9k
        if (len >= HASH_CBLOCK || len + n >= HASH_CBLOCK) {
150
50.8k
            memcpy(p + n, data, HASH_CBLOCK - n);
151
50.8k
            HASH_BLOCK_DATA_ORDER(c, p, 1);
152
50.8k
            n = HASH_CBLOCK - n;
153
50.8k
            data += n;
154
50.8k
            len -= n;
155
50.8k
            c->num = 0;
156
            /*
157
             * We use memset rather than OPENSSL_cleanse() here deliberately.
158
             * Using OPENSSL_cleanse() here could be a performance issue. It
159
             * will get properly cleansed on finalisation so this isn't a
160
             * security problem.
161
             */
162
50.8k
            memset(p, 0, HASH_CBLOCK); /* keep it zeroed */
163
50.8k
        } else {
164
25.0k
            memcpy(p + n, data, len);
165
25.0k
            c->num += (unsigned int)len;
166
25.0k
            return 1;
167
25.0k
        }
168
75.9k
    }
169
170
202k
    n = len / HASH_CBLOCK;
171
202k
    if (n > 0) {
172
27.5k
        HASH_BLOCK_DATA_ORDER(c, data, n);
173
27.5k
        n *= HASH_CBLOCK;
174
27.5k
        data += n;
175
27.5k
        len -= n;
176
27.5k
    }
177
178
202k
    if (len != 0) {
179
187k
        p = (unsigned char *)c->data;
180
187k
        c->num = (unsigned int)len;
181
187k
        memcpy(p, data, len);
182
187k
    }
183
202k
    return 1;
184
227k
}
SHA1_Update
Line
Count
Source
129
593k
{
130
593k
    const unsigned char *data = data_;
131
593k
    unsigned char *p;
132
593k
    HASH_LONG l;
133
593k
    size_t n;
134
135
593k
    if (len == 0)
136
0
        return 1;
137
138
593k
    l = (c->Nl + (((HASH_LONG) len) << 3)) & 0xffffffffUL;
139
593k
    if (l < c->Nl)              /* overflow */
140
0
        c->Nh++;
141
593k
    c->Nh += (HASH_LONG) (len >> 29); /* might cause compiler warning on
142
                                       * 16-bit */
143
593k
    c->Nl = l;
144
145
593k
    n = c->num;
146
593k
    if (n != 0) {
147
109k
        p = (unsigned char *)c->data;
148
149
109k
        if (len >= HASH_CBLOCK || len + n >= HASH_CBLOCK) {
150
51.5k
            memcpy(p + n, data, HASH_CBLOCK - n);
151
51.5k
            HASH_BLOCK_DATA_ORDER(c, p, 1);
152
51.5k
            n = HASH_CBLOCK - n;
153
51.5k
            data += n;
154
51.5k
            len -= n;
155
51.5k
            c->num = 0;
156
            /*
157
             * We use memset rather than OPENSSL_cleanse() here deliberately.
158
             * Using OPENSSL_cleanse() here could be a performance issue. It
159
             * will get properly cleansed on finalisation so this isn't a
160
             * security problem.
161
             */
162
51.5k
            memset(p, 0, HASH_CBLOCK); /* keep it zeroed */
163
57.7k
        } else {
164
57.7k
            memcpy(p + n, data, len);
165
57.7k
            c->num += (unsigned int)len;
166
57.7k
            return 1;
167
57.7k
        }
168
109k
    }
169
170
535k
    n = len / HASH_CBLOCK;
171
535k
    if (n > 0) {
172
165k
        HASH_BLOCK_DATA_ORDER(c, data, n);
173
165k
        n *= HASH_CBLOCK;
174
165k
        data += n;
175
165k
        len -= n;
176
165k
    }
177
178
535k
    if (len != 0) {
179
505k
        p = (unsigned char *)c->data;
180
505k
        c->num = (unsigned int)len;
181
505k
        memcpy(p, data, len);
182
505k
    }
183
535k
    return 1;
184
593k
}
SHA256_Update
Line
Count
Source
129
448k
{
130
448k
    const unsigned char *data = data_;
131
448k
    unsigned char *p;
132
448k
    HASH_LONG l;
133
448k
    size_t n;
134
135
448k
    if (len == 0)
136
0
        return 1;
137
138
448k
    l = (c->Nl + (((HASH_LONG) len) << 3)) & 0xffffffffUL;
139
448k
    if (l < c->Nl)              /* overflow */
140
0
        c->Nh++;
141
448k
    c->Nh += (HASH_LONG) (len >> 29); /* might cause compiler warning on
142
                                       * 16-bit */
143
448k
    c->Nl = l;
144
145
448k
    n = c->num;
146
448k
    if (n != 0) {
147
82.9k
        p = (unsigned char *)c->data;
148
149
82.9k
        if (len >= HASH_CBLOCK || len + n >= HASH_CBLOCK) {
150
35.5k
            memcpy(p + n, data, HASH_CBLOCK - n);
151
35.5k
            HASH_BLOCK_DATA_ORDER(c, p, 1);
152
35.5k
            n = HASH_CBLOCK - n;
153
35.5k
            data += n;
154
35.5k
            len -= n;
155
35.5k
            c->num = 0;
156
            /*
157
             * We use memset rather than OPENSSL_cleanse() here deliberately.
158
             * Using OPENSSL_cleanse() here could be a performance issue. It
159
             * will get properly cleansed on finalisation so this isn't a
160
             * security problem.
161
             */
162
35.5k
            memset(p, 0, HASH_CBLOCK); /* keep it zeroed */
163
47.4k
        } else {
164
47.4k
            memcpy(p + n, data, len);
165
47.4k
            c->num += (unsigned int)len;
166
47.4k
            return 1;
167
47.4k
        }
168
82.9k
    }
169
170
401k
    n = len / HASH_CBLOCK;
171
401k
    if (n > 0) {
172
103k
        HASH_BLOCK_DATA_ORDER(c, data, n);
173
103k
        n *= HASH_CBLOCK;
174
103k
        data += n;
175
103k
        len -= n;
176
103k
    }
177
178
401k
    if (len != 0) {
179
324k
        p = (unsigned char *)c->data;
180
324k
        c->num = (unsigned int)len;
181
324k
        memcpy(p, data, len);
182
324k
    }
183
401k
    return 1;
184
448k
}
Unexecuted instantiation: sm3_update
Unexecuted instantiation: MD4_Update
RIPEMD160_Update
Line
Count
Source
129
479k
{
130
479k
    const unsigned char *data = data_;
131
479k
    unsigned char *p;
132
479k
    HASH_LONG l;
133
479k
    size_t n;
134
135
479k
    if (len == 0)
136
0
        return 1;
137
138
479k
    l = (c->Nl + (((HASH_LONG) len) << 3)) & 0xffffffffUL;
139
479k
    if (l < c->Nl)              /* overflow */
140
0
        c->Nh++;
141
479k
    c->Nh += (HASH_LONG) (len >> 29); /* might cause compiler warning on
142
                                       * 16-bit */
143
479k
    c->Nl = l;
144
145
479k
    n = c->num;
146
479k
    if (n != 0) {
147
0
        p = (unsigned char *)c->data;
148
149
0
        if (len >= HASH_CBLOCK || len + n >= HASH_CBLOCK) {
150
0
            memcpy(p + n, data, HASH_CBLOCK - n);
151
0
            HASH_BLOCK_DATA_ORDER(c, p, 1);
152
0
            n = HASH_CBLOCK - n;
153
0
            data += n;
154
0
            len -= n;
155
0
            c->num = 0;
156
            /*
157
             * We use memset rather than OPENSSL_cleanse() here deliberately.
158
             * Using OPENSSL_cleanse() here could be a performance issue. It
159
             * will get properly cleansed on finalisation so this isn't a
160
             * security problem.
161
             */
162
0
            memset(p, 0, HASH_CBLOCK); /* keep it zeroed */
163
0
        } else {
164
0
            memcpy(p + n, data, len);
165
0
            c->num += (unsigned int)len;
166
0
            return 1;
167
0
        }
168
0
    }
169
170
479k
    n = len / HASH_CBLOCK;
171
479k
    if (n > 0) {
172
0
        HASH_BLOCK_DATA_ORDER(c, data, n);
173
0
        n *= HASH_CBLOCK;
174
0
        data += n;
175
0
        len -= n;
176
0
    }
177
178
479k
    if (len != 0) {
179
479k
        p = (unsigned char *)c->data;
180
479k
        c->num = (unsigned int)len;
181
479k
        memcpy(p, data, len);
182
479k
    }
183
479k
    return 1;
184
479k
}
185
186
void HASH_TRANSFORM(HASH_CTX *c, const unsigned char *data)
187
32.7k
{
188
32.7k
    HASH_BLOCK_DATA_ORDER(c, data, 1);
189
32.7k
}
Unexecuted instantiation: MD5_Transform
SHA1_Transform
Line
Count
Source
187
25.0k
{
188
25.0k
    HASH_BLOCK_DATA_ORDER(c, data, 1);
189
25.0k
}
SHA256_Transform
Line
Count
Source
187
7.66k
{
188
7.66k
    HASH_BLOCK_DATA_ORDER(c, data, 1);
189
7.66k
}
Unexecuted instantiation: sm3_transform
Unexecuted instantiation: MD4_Transform
Unexecuted instantiation: RIPEMD160_Transform
190
191
int HASH_FINAL(unsigned char *md, HASH_CTX *c)
192
1.26M
{
193
1.26M
    unsigned char *p = (unsigned char *)c->data;
194
1.26M
    size_t n = c->num;
195
196
1.26M
    p[n] = 0x80;                /* there is always room for one */
197
1.26M
    n++;
198
199
1.26M
    if (n > (HASH_CBLOCK - 8)) {
200
43.6k
        memset(p + n, 0, HASH_CBLOCK - n);
201
43.6k
        n = 0;
202
43.6k
        HASH_BLOCK_DATA_ORDER(c, p, 1);
203
43.6k
    }
204
1.26M
    memset(p + n, 0, HASH_CBLOCK - 8 - n);
205
206
1.26M
    p += HASH_CBLOCK - 8;
207
#if   defined(DATA_ORDER_IS_BIG_ENDIAN)
208
632k
    (void)HOST_l2c(c->Nh, p);
209
632k
    (void)HOST_l2c(c->Nl, p);
210
#elif defined(DATA_ORDER_IS_LITTLE_ENDIAN)
211
628k
    (void)HOST_l2c(c->Nl, p);
212
628k
    (void)HOST_l2c(c->Nh, p);
213
#endif
214
1.26M
    p -= HASH_CBLOCK;
215
1.26M
    HASH_BLOCK_DATA_ORDER(c, p, 1);
216
1.26M
    c->num = 0;
217
1.26M
    OPENSSL_cleanse(p, HASH_CBLOCK);
218
219
#ifndef HASH_MAKE_STRING
220
# error "HASH_MAKE_STRING must be defined!"
221
#else
222
1.26M
    HASH_MAKE_STRING(c, md);
223
156k
#endif
224
225
156k
    return 1;
226
1.26M
}
MD5_Final
Line
Count
Source
192
148k
{
193
148k
    unsigned char *p = (unsigned char *)c->data;
194
148k
    size_t n = c->num;
195
196
148k
    p[n] = 0x80;                /* there is always room for one */
197
148k
    n++;
198
199
148k
    if (n > (HASH_CBLOCK - 8)) {
200
1.68k
        memset(p + n, 0, HASH_CBLOCK - n);
201
1.68k
        n = 0;
202
1.68k
        HASH_BLOCK_DATA_ORDER(c, p, 1);
203
1.68k
    }
204
148k
    memset(p + n, 0, HASH_CBLOCK - 8 - n);
205
206
148k
    p += HASH_CBLOCK - 8;
207
#if   defined(DATA_ORDER_IS_BIG_ENDIAN)
208
    (void)HOST_l2c(c->Nh, p);
209
    (void)HOST_l2c(c->Nl, p);
210
#elif defined(DATA_ORDER_IS_LITTLE_ENDIAN)
211
148k
    (void)HOST_l2c(c->Nl, p);
212
148k
    (void)HOST_l2c(c->Nh, p);
213
148k
#endif
214
148k
    p -= HASH_CBLOCK;
215
148k
    HASH_BLOCK_DATA_ORDER(c, p, 1);
216
148k
    c->num = 0;
217
148k
    OPENSSL_cleanse(p, HASH_CBLOCK);
218
219
#ifndef HASH_MAKE_STRING
220
# error "HASH_MAKE_STRING must be defined!"
221
#else
222
148k
    HASH_MAKE_STRING(c, md);
223
148k
#endif
224
225
148k
    return 1;
226
148k
}
SHA1_Final
Line
Count
Source
192
476k
{
193
476k
    unsigned char *p = (unsigned char *)c->data;
194
476k
    size_t n = c->num;
195
196
476k
    p[n] = 0x80;                /* there is always room for one */
197
476k
    n++;
198
199
476k
    if (n > (HASH_CBLOCK - 8)) {
200
41.2k
        memset(p + n, 0, HASH_CBLOCK - n);
201
41.2k
        n = 0;
202
41.2k
        HASH_BLOCK_DATA_ORDER(c, p, 1);
203
41.2k
    }
204
476k
    memset(p + n, 0, HASH_CBLOCK - 8 - n);
205
206
476k
    p += HASH_CBLOCK - 8;
207
476k
#if   defined(DATA_ORDER_IS_BIG_ENDIAN)
208
476k
    (void)HOST_l2c(c->Nh, p);
209
476k
    (void)HOST_l2c(c->Nl, p);
210
#elif defined(DATA_ORDER_IS_LITTLE_ENDIAN)
211
    (void)HOST_l2c(c->Nl, p);
212
    (void)HOST_l2c(c->Nh, p);
213
#endif
214
476k
    p -= HASH_CBLOCK;
215
476k
    HASH_BLOCK_DATA_ORDER(c, p, 1);
216
476k
    c->num = 0;
217
476k
    OPENSSL_cleanse(p, HASH_CBLOCK);
218
219
#ifndef HASH_MAKE_STRING
220
# error "HASH_MAKE_STRING must be defined!"
221
#else
222
476k
    HASH_MAKE_STRING(c, md);
223
476k
#endif
224
225
476k
    return 1;
226
476k
}
SHA256_Final
Line
Count
Source
192
156k
{
193
156k
    unsigned char *p = (unsigned char *)c->data;
194
156k
    size_t n = c->num;
195
196
156k
    p[n] = 0x80;                /* there is always room for one */
197
156k
    n++;
198
199
156k
    if (n > (HASH_CBLOCK - 8)) {
200
672
        memset(p + n, 0, HASH_CBLOCK - n);
201
672
        n = 0;
202
672
        HASH_BLOCK_DATA_ORDER(c, p, 1);
203
672
    }
204
156k
    memset(p + n, 0, HASH_CBLOCK - 8 - n);
205
206
156k
    p += HASH_CBLOCK - 8;
207
156k
#if   defined(DATA_ORDER_IS_BIG_ENDIAN)
208
156k
    (void)HOST_l2c(c->Nh, p);
209
156k
    (void)HOST_l2c(c->Nl, p);
210
#elif defined(DATA_ORDER_IS_LITTLE_ENDIAN)
211
    (void)HOST_l2c(c->Nl, p);
212
    (void)HOST_l2c(c->Nh, p);
213
#endif
214
156k
    p -= HASH_CBLOCK;
215
156k
    HASH_BLOCK_DATA_ORDER(c, p, 1);
216
156k
    c->num = 0;
217
156k
    OPENSSL_cleanse(p, HASH_CBLOCK);
218
219
#ifndef HASH_MAKE_STRING
220
# error "HASH_MAKE_STRING must be defined!"
221
#else
222
156k
    HASH_MAKE_STRING(c, md);
223
156k
#endif
224
225
156k
    return 1;
226
156k
}
Unexecuted instantiation: sm3_final
Unexecuted instantiation: MD4_Final
RIPEMD160_Final
Line
Count
Source
192
479k
{
193
479k
    unsigned char *p = (unsigned char *)c->data;
194
479k
    size_t n = c->num;
195
196
479k
    p[n] = 0x80;                /* there is always room for one */
197
479k
    n++;
198
199
479k
    if (n > (HASH_CBLOCK - 8)) {
200
0
        memset(p + n, 0, HASH_CBLOCK - n);
201
0
        n = 0;
202
0
        HASH_BLOCK_DATA_ORDER(c, p, 1);
203
0
    }
204
479k
    memset(p + n, 0, HASH_CBLOCK - 8 - n);
205
206
479k
    p += HASH_CBLOCK - 8;
207
#if   defined(DATA_ORDER_IS_BIG_ENDIAN)
208
    (void)HOST_l2c(c->Nh, p);
209
    (void)HOST_l2c(c->Nl, p);
210
#elif defined(DATA_ORDER_IS_LITTLE_ENDIAN)
211
479k
    (void)HOST_l2c(c->Nl, p);
212
479k
    (void)HOST_l2c(c->Nh, p);
213
479k
#endif
214
479k
    p -= HASH_CBLOCK;
215
479k
    HASH_BLOCK_DATA_ORDER(c, p, 1);
216
479k
    c->num = 0;
217
479k
    OPENSSL_cleanse(p, HASH_CBLOCK);
218
219
#ifndef HASH_MAKE_STRING
220
# error "HASH_MAKE_STRING must be defined!"
221
#else
222
479k
    HASH_MAKE_STRING(c, md);
223
479k
#endif
224
225
479k
    return 1;
226
479k
}
227
228
#ifndef MD32_REG_T
229
# if defined(__alpha) || defined(__sparcv9) || defined(__mips)
230
#  define MD32_REG_T long
231
/*
232
 * This comment was originally written for MD5, which is why it
233
 * discusses A-D. But it basically applies to all 32-bit digests,
234
 * which is why it was moved to common header file.
235
 *
236
 * In case you wonder why A-D are declared as long and not
237
 * as MD5_LONG. Doing so results in slight performance
238
 * boost on LP64 architectures. The catch is we don't
239
 * really care if 32 MSBs of a 64-bit register get polluted
240
 * with eventual overflows as we *save* only 32 LSBs in
241
 * *either* case. Now declaring 'em long excuses the compiler
242
 * from keeping 32 MSBs zeroed resulting in 13% performance
243
 * improvement under SPARC Solaris7/64 and 5% under AlphaLinux.
244
 * Well, to be honest it should say that this *prevents*
245
 * performance degradation.
246
 */
247
# else
248
/*
249
 * Above is not absolute and there are LP64 compilers that
250
 * generate better code if MD32_REG_T is defined int. The above
251
 * pre-processor condition reflects the circumstances under which
252
 * the conclusion was made and is subject to further extension.
253
 */
254
#  define MD32_REG_T int
255
# endif
256
#endif