/src/openssl30/crypto/bn/bn_gf2m.c
| Line | Count | Source (jump to first uncovered line) | 
| 1 |  | /* | 
| 2 |  |  * Copyright 2002-2021 The OpenSSL Project Authors. All Rights Reserved. | 
| 3 |  |  * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved | 
| 4 |  |  * | 
| 5 |  |  * Licensed under the Apache License 2.0 (the "License").  You may not use | 
| 6 |  |  * this file except in compliance with the License.  You can obtain a copy | 
| 7 |  |  * in the file LICENSE in the source distribution or at | 
| 8 |  |  * https://www.openssl.org/source/license.html | 
| 9 |  |  */ | 
| 10 |  |  | 
| 11 |  | #include <assert.h> | 
| 12 |  | #include <limits.h> | 
| 13 |  | #include <stdio.h> | 
| 14 |  | #include "internal/cryptlib.h" | 
| 15 |  | #include "bn_local.h" | 
| 16 |  |  | 
| 17 |  | #ifndef OPENSSL_NO_EC2M | 
| 18 |  |  | 
| 19 |  | /* | 
| 20 |  |  * Maximum number of iterations before BN_GF2m_mod_solve_quad_arr should | 
| 21 |  |  * fail. | 
| 22 |  |  */ | 
| 23 | 107k | # define MAX_ITERATIONS 50 | 
| 24 |  |  | 
| 25 | 11.7G | # define SQR_nibble(w)   ((((w) & 8) << 3) \ | 
| 26 | 11.7G |                        |  (((w) & 4) << 2) \ | 
| 27 | 11.7G |                        |  (((w) & 2) << 1) \ | 
| 28 | 11.7G |                        |   ((w) & 1)) | 
| 29 |  |  | 
| 30 |  |  | 
| 31 |  | /* Platform-specific macros to accelerate squaring. */ | 
| 32 |  | # if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG) | 
| 33 |  | #  define SQR1(w) \ | 
| 34 | 733M |     SQR_nibble((w) >> 60) << 56 | SQR_nibble((w) >> 56) << 48 | \ | 
| 35 | 733M |     SQR_nibble((w) >> 52) << 40 | SQR_nibble((w) >> 48) << 32 | \ | 
| 36 | 733M |     SQR_nibble((w) >> 44) << 24 | SQR_nibble((w) >> 40) << 16 | \ | 
| 37 | 733M |     SQR_nibble((w) >> 36) <<  8 | SQR_nibble((w) >> 32) | 
| 38 |  | #  define SQR0(w) \ | 
| 39 | 733M |     SQR_nibble((w) >> 28) << 56 | SQR_nibble((w) >> 24) << 48 | \ | 
| 40 | 733M |     SQR_nibble((w) >> 20) << 40 | SQR_nibble((w) >> 16) << 32 | \ | 
| 41 | 733M |     SQR_nibble((w) >> 12) << 24 | SQR_nibble((w) >>  8) << 16 | \ | 
| 42 | 733M |     SQR_nibble((w) >>  4) <<  8 | SQR_nibble((w)      ) | 
| 43 |  | # endif | 
| 44 |  | # ifdef THIRTY_TWO_BIT | 
| 45 |  | #  define SQR1(w) \ | 
| 46 |  |     SQR_nibble((w) >> 28) << 24 | SQR_nibble((w) >> 24) << 16 | \ | 
| 47 |  |     SQR_nibble((w) >> 20) <<  8 | SQR_nibble((w) >> 16) | 
| 48 |  | #  define SQR0(w) \ | 
| 49 |  |     SQR_nibble((w) >> 12) << 24 | SQR_nibble((w) >>  8) << 16 | \ | 
| 50 |  |     SQR_nibble((w) >>  4) <<  8 | SQR_nibble((w)      ) | 
| 51 |  | # endif | 
| 52 |  |  | 
| 53 |  | # if !defined(OPENSSL_BN_ASM_GF2m) | 
| 54 |  | /* | 
| 55 |  |  * Product of two polynomials a, b each with degree < BN_BITS2 - 1, result is | 
| 56 |  |  * a polynomial r with degree < 2 * BN_BITS - 1 The caller MUST ensure that | 
| 57 |  |  * the variables have the right amount of space allocated. | 
| 58 |  |  */ | 
| 59 |  | #  ifdef THIRTY_TWO_BIT | 
| 60 |  | static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, | 
| 61 |  |                             const BN_ULONG b) | 
| 62 |  | { | 
| 63 |  |     register BN_ULONG h, l, s; | 
| 64 |  |     BN_ULONG tab[8], top2b = a >> 30; | 
| 65 |  |     register BN_ULONG a1, a2, a4; | 
| 66 |  |  | 
| 67 |  |     a1 = a & (0x3FFFFFFF); | 
| 68 |  |     a2 = a1 << 1; | 
| 69 |  |     a4 = a2 << 1; | 
| 70 |  |  | 
| 71 |  |     tab[0] = 0; | 
| 72 |  |     tab[1] = a1; | 
| 73 |  |     tab[2] = a2; | 
| 74 |  |     tab[3] = a1 ^ a2; | 
| 75 |  |     tab[4] = a4; | 
| 76 |  |     tab[5] = a1 ^ a4; | 
| 77 |  |     tab[6] = a2 ^ a4; | 
| 78 |  |     tab[7] = a1 ^ a2 ^ a4; | 
| 79 |  |  | 
| 80 |  |     s = tab[b & 0x7]; | 
| 81 |  |     l = s; | 
| 82 |  |     s = tab[b >> 3 & 0x7]; | 
| 83 |  |     l ^= s << 3; | 
| 84 |  |     h = s >> 29; | 
| 85 |  |     s = tab[b >> 6 & 0x7]; | 
| 86 |  |     l ^= s << 6; | 
| 87 |  |     h ^= s >> 26; | 
| 88 |  |     s = tab[b >> 9 & 0x7]; | 
| 89 |  |     l ^= s << 9; | 
| 90 |  |     h ^= s >> 23; | 
| 91 |  |     s = tab[b >> 12 & 0x7]; | 
| 92 |  |     l ^= s << 12; | 
| 93 |  |     h ^= s >> 20; | 
| 94 |  |     s = tab[b >> 15 & 0x7]; | 
| 95 |  |     l ^= s << 15; | 
| 96 |  |     h ^= s >> 17; | 
| 97 |  |     s = tab[b >> 18 & 0x7]; | 
| 98 |  |     l ^= s << 18; | 
| 99 |  |     h ^= s >> 14; | 
| 100 |  |     s = tab[b >> 21 & 0x7]; | 
| 101 |  |     l ^= s << 21; | 
| 102 |  |     h ^= s >> 11; | 
| 103 |  |     s = tab[b >> 24 & 0x7]; | 
| 104 |  |     l ^= s << 24; | 
| 105 |  |     h ^= s >> 8; | 
| 106 |  |     s = tab[b >> 27 & 0x7]; | 
| 107 |  |     l ^= s << 27; | 
| 108 |  |     h ^= s >> 5; | 
| 109 |  |     s = tab[b >> 30]; | 
| 110 |  |     l ^= s << 30; | 
| 111 |  |     h ^= s >> 2; | 
| 112 |  |  | 
| 113 |  |     /* compensate for the top two bits of a */ | 
| 114 |  |  | 
| 115 |  |     if (top2b & 01) { | 
| 116 |  |         l ^= b << 30; | 
| 117 |  |         h ^= b >> 2; | 
| 118 |  |     } | 
| 119 |  |     if (top2b & 02) { | 
| 120 |  |         l ^= b << 31; | 
| 121 |  |         h ^= b >> 1; | 
| 122 |  |     } | 
| 123 |  |  | 
| 124 |  |     *r1 = h; | 
| 125 |  |     *r0 = l; | 
| 126 |  | } | 
| 127 |  | #  endif | 
| 128 |  | #  if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG) | 
| 129 |  | static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, | 
| 130 |  |                             const BN_ULONG b) | 
| 131 |  | { | 
| 132 |  |     register BN_ULONG h, l, s; | 
| 133 |  |     BN_ULONG tab[16], top3b = a >> 61; | 
| 134 |  |     register BN_ULONG a1, a2, a4, a8; | 
| 135 |  |  | 
| 136 |  |     a1 = a & (0x1FFFFFFFFFFFFFFFULL); | 
| 137 |  |     a2 = a1 << 1; | 
| 138 |  |     a4 = a2 << 1; | 
| 139 |  |     a8 = a4 << 1; | 
| 140 |  |  | 
| 141 |  |     tab[0] = 0; | 
| 142 |  |     tab[1] = a1; | 
| 143 |  |     tab[2] = a2; | 
| 144 |  |     tab[3] = a1 ^ a2; | 
| 145 |  |     tab[4] = a4; | 
| 146 |  |     tab[5] = a1 ^ a4; | 
| 147 |  |     tab[6] = a2 ^ a4; | 
| 148 |  |     tab[7] = a1 ^ a2 ^ a4; | 
| 149 |  |     tab[8] = a8; | 
| 150 |  |     tab[9] = a1 ^ a8; | 
| 151 |  |     tab[10] = a2 ^ a8; | 
| 152 |  |     tab[11] = a1 ^ a2 ^ a8; | 
| 153 |  |     tab[12] = a4 ^ a8; | 
| 154 |  |     tab[13] = a1 ^ a4 ^ a8; | 
| 155 |  |     tab[14] = a2 ^ a4 ^ a8; | 
| 156 |  |     tab[15] = a1 ^ a2 ^ a4 ^ a8; | 
| 157 |  |  | 
| 158 |  |     s = tab[b & 0xF]; | 
| 159 |  |     l = s; | 
| 160 |  |     s = tab[b >> 4 & 0xF]; | 
| 161 |  |     l ^= s << 4; | 
| 162 |  |     h = s >> 60; | 
| 163 |  |     s = tab[b >> 8 & 0xF]; | 
| 164 |  |     l ^= s << 8; | 
| 165 |  |     h ^= s >> 56; | 
| 166 |  |     s = tab[b >> 12 & 0xF]; | 
| 167 |  |     l ^= s << 12; | 
| 168 |  |     h ^= s >> 52; | 
| 169 |  |     s = tab[b >> 16 & 0xF]; | 
| 170 |  |     l ^= s << 16; | 
| 171 |  |     h ^= s >> 48; | 
| 172 |  |     s = tab[b >> 20 & 0xF]; | 
| 173 |  |     l ^= s << 20; | 
| 174 |  |     h ^= s >> 44; | 
| 175 |  |     s = tab[b >> 24 & 0xF]; | 
| 176 |  |     l ^= s << 24; | 
| 177 |  |     h ^= s >> 40; | 
| 178 |  |     s = tab[b >> 28 & 0xF]; | 
| 179 |  |     l ^= s << 28; | 
| 180 |  |     h ^= s >> 36; | 
| 181 |  |     s = tab[b >> 32 & 0xF]; | 
| 182 |  |     l ^= s << 32; | 
| 183 |  |     h ^= s >> 32; | 
| 184 |  |     s = tab[b >> 36 & 0xF]; | 
| 185 |  |     l ^= s << 36; | 
| 186 |  |     h ^= s >> 28; | 
| 187 |  |     s = tab[b >> 40 & 0xF]; | 
| 188 |  |     l ^= s << 40; | 
| 189 |  |     h ^= s >> 24; | 
| 190 |  |     s = tab[b >> 44 & 0xF]; | 
| 191 |  |     l ^= s << 44; | 
| 192 |  |     h ^= s >> 20; | 
| 193 |  |     s = tab[b >> 48 & 0xF]; | 
| 194 |  |     l ^= s << 48; | 
| 195 |  |     h ^= s >> 16; | 
| 196 |  |     s = tab[b >> 52 & 0xF]; | 
| 197 |  |     l ^= s << 52; | 
| 198 |  |     h ^= s >> 12; | 
| 199 |  |     s = tab[b >> 56 & 0xF]; | 
| 200 |  |     l ^= s << 56; | 
| 201 |  |     h ^= s >> 8; | 
| 202 |  |     s = tab[b >> 60]; | 
| 203 |  |     l ^= s << 60; | 
| 204 |  |     h ^= s >> 4; | 
| 205 |  |  | 
| 206 |  |     /* compensate for the top three bits of a */ | 
| 207 |  |  | 
| 208 |  |     if (top3b & 01) { | 
| 209 |  |         l ^= b << 61; | 
| 210 |  |         h ^= b >> 3; | 
| 211 |  |     } | 
| 212 |  |     if (top3b & 02) { | 
| 213 |  |         l ^= b << 62; | 
| 214 |  |         h ^= b >> 2; | 
| 215 |  |     } | 
| 216 |  |     if (top3b & 04) { | 
| 217 |  |         l ^= b << 63; | 
| 218 |  |         h ^= b >> 1; | 
| 219 |  |     } | 
| 220 |  |  | 
| 221 |  |     *r1 = h; | 
| 222 |  |     *r0 = l; | 
| 223 |  | } | 
| 224 |  | #  endif | 
| 225 |  |  | 
| 226 |  | /* | 
| 227 |  |  * Product of two polynomials a, b each with degree < 2 * BN_BITS2 - 1, | 
| 228 |  |  * result is a polynomial r with degree < 4 * BN_BITS2 - 1 The caller MUST | 
| 229 |  |  * ensure that the variables have the right amount of space allocated. | 
| 230 |  |  */ | 
| 231 |  | static void bn_GF2m_mul_2x2(BN_ULONG *r, const BN_ULONG a1, const BN_ULONG a0, | 
| 232 |  |                             const BN_ULONG b1, const BN_ULONG b0) | 
| 233 |  | { | 
| 234 |  |     BN_ULONG m1, m0; | 
| 235 |  |     /* r[3] = h1, r[2] = h0; r[1] = l1; r[0] = l0 */ | 
| 236 |  |     bn_GF2m_mul_1x1(r + 3, r + 2, a1, b1); | 
| 237 |  |     bn_GF2m_mul_1x1(r + 1, r, a0, b0); | 
| 238 |  |     bn_GF2m_mul_1x1(&m1, &m0, a0 ^ a1, b0 ^ b1); | 
| 239 |  |     /* Correction on m1 ^= l1 ^ h1; m0 ^= l0 ^ h0; */ | 
| 240 |  |     r[2] ^= m1 ^ r[1] ^ r[3];   /* h0 ^= m1 ^ l1 ^ h1; */ | 
| 241 |  |     r[1] = r[3] ^ r[2] ^ r[0] ^ m1 ^ m0; /* l1 ^= l0 ^ h0 ^ m0; */ | 
| 242 |  | } | 
| 243 |  | # else | 
| 244 |  | void bn_GF2m_mul_2x2(BN_ULONG *r, BN_ULONG a1, BN_ULONG a0, BN_ULONG b1, | 
| 245 |  |                      BN_ULONG b0); | 
| 246 |  | # endif | 
| 247 |  |  | 
| 248 |  | /* | 
| 249 |  |  * Add polynomials a and b and store result in r; r could be a or b, a and b | 
| 250 |  |  * could be equal; r is the bitwise XOR of a and b. | 
| 251 |  |  */ | 
| 252 |  | int BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b) | 
| 253 | 122M | { | 
| 254 | 122M |     int i; | 
| 255 | 122M |     const BIGNUM *at, *bt; | 
| 256 |  |  | 
| 257 | 122M |     bn_check_top(a); | 
| 258 | 122M |     bn_check_top(b); | 
| 259 |  |  | 
| 260 | 122M |     if (a->top < b->top) { | 
| 261 | 327k |         at = b; | 
| 262 | 327k |         bt = a; | 
| 263 | 121M |     } else { | 
| 264 | 121M |         at = a; | 
| 265 | 121M |         bt = b; | 
| 266 | 121M |     } | 
| 267 |  |  | 
| 268 | 122M |     if (bn_wexpand(r, at->top) == NULL) | 
| 269 | 0 |         return 0; | 
| 270 |  |  | 
| 271 | 836M |     for (i = 0; i < bt->top; i++) { | 
| 272 | 714M |         r->d[i] = at->d[i] ^ bt->d[i]; | 
| 273 | 714M |     } | 
| 274 | 123M |     for (; i < at->top; i++) { | 
| 275 | 1.75M |         r->d[i] = at->d[i]; | 
| 276 | 1.75M |     } | 
| 277 |  |  | 
| 278 | 122M |     r->top = at->top; | 
| 279 | 122M |     bn_correct_top(r); | 
| 280 |  |  | 
| 281 | 122M |     return 1; | 
| 282 | 122M | } | 
| 283 |  |  | 
| 284 |  | /*- | 
| 285 |  |  * Some functions allow for representation of the irreducible polynomials | 
| 286 |  |  * as an int[], say p.  The irreducible f(t) is then of the form: | 
| 287 |  |  *     t^p[0] + t^p[1] + ... + t^p[k] | 
| 288 |  |  * where m = p[0] > p[1] > ... > p[k] = 0. | 
| 289 |  |  */ | 
| 290 |  |  | 
| 291 |  | /* Performs modular reduction of a and store result in r.  r could be a. */ | 
| 292 |  | int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const int p[]) | 
| 293 | 135M | { | 
| 294 | 135M |     int j, k; | 
| 295 | 135M |     int n, dN, d0, d1; | 
| 296 | 135M |     BN_ULONG zz, *z; | 
| 297 |  |  | 
| 298 | 135M |     bn_check_top(a); | 
| 299 |  |  | 
| 300 | 135M |     if (p[0] == 0) { | 
| 301 |  |         /* reduction mod 1 => return 0 */ | 
| 302 | 0 |         BN_zero(r); | 
| 303 | 0 |         return 1; | 
| 304 | 0 |     } | 
| 305 |  |  | 
| 306 |  |     /* | 
| 307 |  |      * Since the algorithm does reduction in the r value, if a != r, copy the | 
| 308 |  |      * contents of a into r so we can do reduction in r. | 
| 309 |  |      */ | 
| 310 | 135M |     if (a != r) { | 
| 311 | 135M |         if (!bn_wexpand(r, a->top)) | 
| 312 | 0 |             return 0; | 
| 313 | 1.70G |         for (j = 0; j < a->top; j++) { | 
| 314 | 1.56G |             r->d[j] = a->d[j]; | 
| 315 | 1.56G |         } | 
| 316 | 135M |         r->top = a->top; | 
| 317 | 135M |     } | 
| 318 | 135M |     z = r->d; | 
| 319 |  |  | 
| 320 |  |     /* start reduction */ | 
| 321 | 135M |     dN = p[0] / BN_BITS2; | 
| 322 | 1.69G |     for (j = r->top - 1; j > dN;) { | 
| 323 | 1.55G |         zz = z[j]; | 
| 324 | 1.55G |         if (z[j] == 0) { | 
| 325 | 777M |             j--; | 
| 326 | 777M |             continue; | 
| 327 | 777M |         } | 
| 328 | 777M |         z[j] = 0; | 
| 329 |  |  | 
| 330 | 3.05G |         for (k = 1; p[k] != 0; k++) { | 
| 331 |  |             /* reducing component t^p[k] */ | 
| 332 | 2.28G |             n = p[0] - p[k]; | 
| 333 | 2.28G |             d0 = n % BN_BITS2; | 
| 334 | 2.28G |             d1 = BN_BITS2 - d0; | 
| 335 | 2.28G |             n /= BN_BITS2; | 
| 336 | 2.28G |             z[j - n] ^= (zz >> d0); | 
| 337 | 2.28G |             if (d0) | 
| 338 | 2.27G |                 z[j - n - 1] ^= (zz << d1); | 
| 339 | 2.28G |         } | 
| 340 |  |  | 
| 341 |  |         /* reducing component t^0 */ | 
| 342 | 777M |         n = dN; | 
| 343 | 777M |         d0 = p[0] % BN_BITS2; | 
| 344 | 777M |         d1 = BN_BITS2 - d0; | 
| 345 | 777M |         z[j - n] ^= (zz >> d0); | 
| 346 | 777M |         if (d0) | 
| 347 | 777M |             z[j - n - 1] ^= (zz << d1); | 
| 348 | 777M |     } | 
| 349 |  |  | 
| 350 |  |     /* final round of reduction */ | 
| 351 | 270M |     while (j == dN) { | 
| 352 |  |  | 
| 353 | 270M |         d0 = p[0] % BN_BITS2; | 
| 354 | 270M |         zz = z[dN] >> d0; | 
| 355 | 270M |         if (zz == 0) | 
| 356 | 135M |             break; | 
| 357 | 134M |         d1 = BN_BITS2 - d0; | 
| 358 |  |  | 
| 359 |  |         /* clear up the top d1 bits */ | 
| 360 | 134M |         if (d0) | 
| 361 | 134M |             z[dN] = (z[dN] << d1) >> d1; | 
| 362 | 0 |         else | 
| 363 | 0 |             z[dN] = 0; | 
| 364 | 134M |         z[0] ^= zz;             /* reduction t^0 component */ | 
| 365 |  |  | 
| 366 | 525M |         for (k = 1; p[k] != 0; k++) { | 
| 367 | 390M |             BN_ULONG tmp_ulong; | 
| 368 |  |  | 
| 369 |  |             /* reducing component t^p[k] */ | 
| 370 | 390M |             n = p[k] / BN_BITS2; | 
| 371 | 390M |             d0 = p[k] % BN_BITS2; | 
| 372 | 390M |             d1 = BN_BITS2 - d0; | 
| 373 | 390M |             z[n] ^= (zz << d0); | 
| 374 | 390M |             if (d0 && (tmp_ulong = zz >> d1)) | 
| 375 | 5.03M |                 z[n + 1] ^= tmp_ulong; | 
| 376 | 390M |         } | 
| 377 |  |  | 
| 378 | 134M |     } | 
| 379 |  |  | 
| 380 | 135M |     bn_correct_top(r); | 
| 381 | 135M |     return 1; | 
| 382 | 135M | } | 
| 383 |  |  | 
| 384 |  | /* | 
| 385 |  |  * Performs modular reduction of a by p and store result in r.  r could be a. | 
| 386 |  |  * This function calls down to the BN_GF2m_mod_arr implementation; this wrapper | 
| 387 |  |  * function is only provided for convenience; for best performance, use the | 
| 388 |  |  * BN_GF2m_mod_arr function. | 
| 389 |  |  */ | 
| 390 |  | int BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p) | 
| 391 | 59.9k | { | 
| 392 | 59.9k |     int ret = 0; | 
| 393 | 59.9k |     int arr[6]; | 
| 394 | 59.9k |     bn_check_top(a); | 
| 395 | 59.9k |     bn_check_top(p); | 
| 396 | 59.9k |     ret = BN_GF2m_poly2arr(p, arr, OSSL_NELEM(arr)); | 
| 397 | 59.9k |     if (!ret || ret > (int)OSSL_NELEM(arr)) { | 
| 398 | 0 |         ERR_raise(ERR_LIB_BN, BN_R_INVALID_LENGTH); | 
| 399 | 0 |         return 0; | 
| 400 | 0 |     } | 
| 401 | 59.9k |     ret = BN_GF2m_mod_arr(r, a, arr); | 
| 402 | 59.9k |     bn_check_top(r); | 
| 403 | 59.9k |     return ret; | 
| 404 | 59.9k | } | 
| 405 |  |  | 
| 406 |  | /* | 
| 407 |  |  * Compute the product of two polynomials a and b, reduce modulo p, and store | 
| 408 |  |  * the result in r.  r could be a or b; a could be b. | 
| 409 |  |  */ | 
| 410 |  | int BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, | 
| 411 |  |                         const int p[], BN_CTX *ctx) | 
| 412 | 62.2M | { | 
| 413 | 62.2M |     int zlen, i, j, k, ret = 0; | 
| 414 | 62.2M |     BIGNUM *s; | 
| 415 | 62.2M |     BN_ULONG x1, x0, y1, y0, zz[4]; | 
| 416 |  |  | 
| 417 | 62.2M |     bn_check_top(a); | 
| 418 | 62.2M |     bn_check_top(b); | 
| 419 |  |  | 
| 420 | 62.2M |     if (a == b) { | 
| 421 | 0 |         return BN_GF2m_mod_sqr_arr(r, a, p, ctx); | 
| 422 | 0 |     } | 
| 423 |  |  | 
| 424 | 62.2M |     BN_CTX_start(ctx); | 
| 425 | 62.2M |     if ((s = BN_CTX_get(ctx)) == NULL) | 
| 426 | 0 |         goto err; | 
| 427 |  |  | 
| 428 | 62.2M |     zlen = a->top + b->top + 4; | 
| 429 | 62.2M |     if (!bn_wexpand(s, zlen)) | 
| 430 | 0 |         goto err; | 
| 431 | 62.2M |     s->top = zlen; | 
| 432 |  |  | 
| 433 | 1.04G |     for (i = 0; i < zlen; i++) | 
| 434 | 980M |         s->d[i] = 0; | 
| 435 |  |  | 
| 436 | 247M |     for (j = 0; j < b->top; j += 2) { | 
| 437 | 184M |         y0 = b->d[j]; | 
| 438 | 184M |         y1 = ((j + 1) == b->top) ? 0 : b->d[j + 1]; | 
| 439 | 742M |         for (i = 0; i < a->top; i += 2) { | 
| 440 | 558M |             x0 = a->d[i]; | 
| 441 | 558M |             x1 = ((i + 1) == a->top) ? 0 : a->d[i + 1]; | 
| 442 | 558M |             bn_GF2m_mul_2x2(zz, x1, x0, y1, y0); | 
| 443 | 2.79G |             for (k = 0; k < 4; k++) | 
| 444 | 2.23G |                 s->d[i + j + k] ^= zz[k]; | 
| 445 | 558M |         } | 
| 446 | 184M |     } | 
| 447 |  |  | 
| 448 | 62.2M |     bn_correct_top(s); | 
| 449 | 62.2M |     if (BN_GF2m_mod_arr(r, s, p)) | 
| 450 | 62.2M |         ret = 1; | 
| 451 | 62.2M |     bn_check_top(r); | 
| 452 |  |  | 
| 453 | 62.2M |  err: | 
| 454 | 62.2M |     BN_CTX_end(ctx); | 
| 455 | 62.2M |     return ret; | 
| 456 | 62.2M | } | 
| 457 |  |  | 
| 458 |  | /* | 
| 459 |  |  * Compute the product of two polynomials a and b, reduce modulo p, and store | 
| 460 |  |  * the result in r.  r could be a or b; a could equal b. This function calls | 
| 461 |  |  * down to the BN_GF2m_mod_mul_arr implementation; this wrapper function is | 
| 462 |  |  * only provided for convenience; for best performance, use the | 
| 463 |  |  * BN_GF2m_mod_mul_arr function. | 
| 464 |  |  */ | 
| 465 |  | int BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, | 
| 466 |  |                     const BIGNUM *p, BN_CTX *ctx) | 
| 467 | 125k | { | 
| 468 | 125k |     int ret = 0; | 
| 469 | 125k |     const int max = BN_num_bits(p) + 1; | 
| 470 | 125k |     int *arr; | 
| 471 |  |  | 
| 472 | 125k |     bn_check_top(a); | 
| 473 | 125k |     bn_check_top(b); | 
| 474 | 125k |     bn_check_top(p); | 
| 475 |  |  | 
| 476 | 125k |     arr = OPENSSL_malloc(sizeof(*arr) * max); | 
| 477 | 125k |     if (arr == NULL) { | 
| 478 | 0 |         ERR_raise(ERR_LIB_BN, ERR_R_MALLOC_FAILURE); | 
| 479 | 0 |         return 0; | 
| 480 | 0 |     } | 
| 481 | 125k |     ret = BN_GF2m_poly2arr(p, arr, max); | 
| 482 | 125k |     if (!ret || ret > max) { | 
| 483 | 0 |         ERR_raise(ERR_LIB_BN, BN_R_INVALID_LENGTH); | 
| 484 | 0 |         goto err; | 
| 485 | 0 |     } | 
| 486 | 125k |     ret = BN_GF2m_mod_mul_arr(r, a, b, arr, ctx); | 
| 487 | 125k |     bn_check_top(r); | 
| 488 | 125k |  err: | 
| 489 | 125k |     OPENSSL_free(arr); | 
| 490 | 125k |     return ret; | 
| 491 | 125k | } | 
| 492 |  |  | 
| 493 |  | /* Square a, reduce the result mod p, and store it in a.  r could be a. */ | 
| 494 |  | int BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const int p[], | 
| 495 |  |                         BN_CTX *ctx) | 
| 496 | 127M | { | 
| 497 | 127M |     int i, ret = 0; | 
| 498 | 127M |     BIGNUM *s; | 
| 499 |  |  | 
| 500 | 127M |     bn_check_top(a); | 
| 501 | 127M |     BN_CTX_start(ctx); | 
| 502 | 127M |     if ((s = BN_CTX_get(ctx)) == NULL) | 
| 503 | 0 |         goto err; | 
| 504 | 127M |     if (!bn_wexpand(s, 2 * a->top)) | 
| 505 | 0 |         goto err; | 
| 506 |  |  | 
| 507 | 860M |     for (i = a->top - 1; i >= 0; i--) { | 
| 508 | 733M |         s->d[2 * i + 1] = SQR1(a->d[i]); | 
| 509 | 733M |         s->d[2 * i] = SQR0(a->d[i]); | 
| 510 | 733M |     } | 
| 511 |  |  | 
| 512 | 127M |     s->top = 2 * a->top; | 
| 513 | 127M |     bn_correct_top(s); | 
| 514 | 127M |     if (!BN_GF2m_mod_arr(r, s, p)) | 
| 515 | 0 |         goto err; | 
| 516 | 127M |     bn_check_top(r); | 
| 517 | 127M |     ret = 1; | 
| 518 | 127M |  err: | 
| 519 | 127M |     BN_CTX_end(ctx); | 
| 520 | 127M |     return ret; | 
| 521 | 127M | } | 
| 522 |  |  | 
| 523 |  | /* | 
| 524 |  |  * Square a, reduce the result mod p, and store it in a.  r could be a. This | 
| 525 |  |  * function calls down to the BN_GF2m_mod_sqr_arr implementation; this | 
| 526 |  |  * wrapper function is only provided for convenience; for best performance, | 
| 527 |  |  * use the BN_GF2m_mod_sqr_arr function. | 
| 528 |  |  */ | 
| 529 |  | int BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) | 
| 530 | 0 | { | 
| 531 | 0 |     int ret = 0; | 
| 532 | 0 |     const int max = BN_num_bits(p) + 1; | 
| 533 | 0 |     int *arr; | 
| 534 |  | 
 | 
| 535 | 0 |     bn_check_top(a); | 
| 536 | 0 |     bn_check_top(p); | 
| 537 |  | 
 | 
| 538 | 0 |     arr = OPENSSL_malloc(sizeof(*arr) * max); | 
| 539 | 0 |     if (arr == NULL) { | 
| 540 | 0 |         ERR_raise(ERR_LIB_BN, ERR_R_MALLOC_FAILURE); | 
| 541 | 0 |         return 0; | 
| 542 | 0 |     } | 
| 543 | 0 |     ret = BN_GF2m_poly2arr(p, arr, max); | 
| 544 | 0 |     if (!ret || ret > max) { | 
| 545 | 0 |         ERR_raise(ERR_LIB_BN, BN_R_INVALID_LENGTH); | 
| 546 | 0 |         goto err; | 
| 547 | 0 |     } | 
| 548 | 0 |     ret = BN_GF2m_mod_sqr_arr(r, a, arr, ctx); | 
| 549 | 0 |     bn_check_top(r); | 
| 550 | 0 |  err: | 
| 551 | 0 |     OPENSSL_free(arr); | 
| 552 | 0 |     return ret; | 
| 553 | 0 | } | 
| 554 |  |  | 
| 555 |  | /* | 
| 556 |  |  * Invert a, reduce modulo p, and store the result in r. r could be a. Uses | 
| 557 |  |  * Modified Almost Inverse Algorithm (Algorithm 10) from Hankerson, D., | 
| 558 |  |  * Hernandez, J.L., and Menezes, A.  "Software Implementation of Elliptic | 
| 559 |  |  * Curve Cryptography Over Binary Fields". | 
| 560 |  |  */ | 
| 561 |  | static int BN_GF2m_mod_inv_vartime(BIGNUM *r, const BIGNUM *a, | 
| 562 |  |                                    const BIGNUM *p, BN_CTX *ctx) | 
| 563 | 59.9k | { | 
| 564 | 59.9k |     BIGNUM *b, *c = NULL, *u = NULL, *v = NULL, *tmp; | 
| 565 | 59.9k |     int ret = 0; | 
| 566 |  |  | 
| 567 | 59.9k |     bn_check_top(a); | 
| 568 | 59.9k |     bn_check_top(p); | 
| 569 |  |  | 
| 570 | 59.9k |     BN_CTX_start(ctx); | 
| 571 |  |  | 
| 572 | 59.9k |     b = BN_CTX_get(ctx); | 
| 573 | 59.9k |     c = BN_CTX_get(ctx); | 
| 574 | 59.9k |     u = BN_CTX_get(ctx); | 
| 575 | 59.9k |     v = BN_CTX_get(ctx); | 
| 576 | 59.9k |     if (v == NULL) | 
| 577 | 0 |         goto err; | 
| 578 |  |  | 
| 579 | 59.9k |     if (!BN_GF2m_mod(u, a, p)) | 
| 580 | 0 |         goto err; | 
| 581 | 59.9k |     if (BN_is_zero(u)) | 
| 582 | 0 |         goto err; | 
| 583 |  |  | 
| 584 | 59.9k |     if (!BN_copy(v, p)) | 
| 585 | 0 |         goto err; | 
| 586 |  | # if 0 | 
| 587 |  |     if (!BN_one(b)) | 
| 588 |  |         goto err; | 
| 589 |  |  | 
| 590 |  |     while (1) { | 
| 591 |  |         while (!BN_is_odd(u)) { | 
| 592 |  |             if (BN_is_zero(u)) | 
| 593 |  |                 goto err; | 
| 594 |  |             if (!BN_rshift1(u, u)) | 
| 595 |  |                 goto err; | 
| 596 |  |             if (BN_is_odd(b)) { | 
| 597 |  |                 if (!BN_GF2m_add(b, b, p)) | 
| 598 |  |                     goto err; | 
| 599 |  |             } | 
| 600 |  |             if (!BN_rshift1(b, b)) | 
| 601 |  |                 goto err; | 
| 602 |  |         } | 
| 603 |  |  | 
| 604 |  |         if (BN_abs_is_word(u, 1)) | 
| 605 |  |             break; | 
| 606 |  |  | 
| 607 |  |         if (BN_num_bits(u) < BN_num_bits(v)) { | 
| 608 |  |             tmp = u; | 
| 609 |  |             u = v; | 
| 610 |  |             v = tmp; | 
| 611 |  |             tmp = b; | 
| 612 |  |             b = c; | 
| 613 |  |             c = tmp; | 
| 614 |  |         } | 
| 615 |  |  | 
| 616 |  |         if (!BN_GF2m_add(u, u, v)) | 
| 617 |  |             goto err; | 
| 618 |  |         if (!BN_GF2m_add(b, b, c)) | 
| 619 |  |             goto err; | 
| 620 |  |     } | 
| 621 |  | # else | 
| 622 | 59.9k |     { | 
| 623 | 59.9k |         int i; | 
| 624 | 59.9k |         int ubits = BN_num_bits(u); | 
| 625 | 59.9k |         int vbits = BN_num_bits(v); /* v is copy of p */ | 
| 626 | 59.9k |         int top = p->top; | 
| 627 | 59.9k |         BN_ULONG *udp, *bdp, *vdp, *cdp; | 
| 628 |  |  | 
| 629 | 59.9k |         if (!bn_wexpand(u, top)) | 
| 630 | 0 |             goto err; | 
| 631 | 59.9k |         udp = u->d; | 
| 632 | 62.6k |         for (i = u->top; i < top; i++) | 
| 633 | 2.66k |             udp[i] = 0; | 
| 634 | 59.9k |         u->top = top; | 
| 635 | 59.9k |         if (!bn_wexpand(b, top)) | 
| 636 | 0 |           goto err; | 
| 637 | 59.9k |         bdp = b->d; | 
| 638 | 59.9k |         bdp[0] = 1; | 
| 639 | 223k |         for (i = 1; i < top; i++) | 
| 640 | 163k |             bdp[i] = 0; | 
| 641 | 59.9k |         b->top = top; | 
| 642 | 59.9k |         if (!bn_wexpand(c, top)) | 
| 643 | 0 |           goto err; | 
| 644 | 59.9k |         cdp = c->d; | 
| 645 | 283k |         for (i = 0; i < top; i++) | 
| 646 | 223k |             cdp[i] = 0; | 
| 647 | 59.9k |         c->top = top; | 
| 648 | 59.9k |         vdp = v->d;             /* It pays off to "cache" *->d pointers, | 
| 649 |  |                                  * because it allows optimizer to be more | 
| 650 |  |                                  * aggressive. But we don't have to "cache" | 
| 651 |  |                                  * p->d, because *p is declared 'const'... */ | 
| 652 | 10.4M |         while (1) { | 
| 653 | 31.3M |             while (ubits && !(udp[0] & 1)) { | 
| 654 | 20.8M |                 BN_ULONG u0, u1, b0, b1, mask; | 
| 655 |  |  | 
| 656 | 20.8M |                 u0 = udp[0]; | 
| 657 | 20.8M |                 b0 = bdp[0]; | 
| 658 | 20.8M |                 mask = (BN_ULONG)0 - (b0 & 1); | 
| 659 | 20.8M |                 b0 ^= p->d[0] & mask; | 
| 660 | 90.6M |                 for (i = 0; i < top - 1; i++) { | 
| 661 | 69.7M |                     u1 = udp[i + 1]; | 
| 662 | 69.7M |                     udp[i] = ((u0 >> 1) | (u1 << (BN_BITS2 - 1))) & BN_MASK2; | 
| 663 | 69.7M |                     u0 = u1; | 
| 664 | 69.7M |                     b1 = bdp[i + 1] ^ (p->d[i + 1] & mask); | 
| 665 | 69.7M |                     bdp[i] = ((b0 >> 1) | (b1 << (BN_BITS2 - 1))) & BN_MASK2; | 
| 666 | 69.7M |                     b0 = b1; | 
| 667 | 69.7M |                 } | 
| 668 | 20.8M |                 udp[i] = u0 >> 1; | 
| 669 | 20.8M |                 bdp[i] = b0 >> 1; | 
| 670 | 20.8M |                 ubits--; | 
| 671 | 20.8M |             } | 
| 672 |  |  | 
| 673 | 10.4M |             if (ubits <= BN_BITS2) { | 
| 674 | 3.12M |                 if (udp[0] == 0) /* poly was reducible */ | 
| 675 | 0 |                     goto err; | 
| 676 | 3.12M |                 if (udp[0] == 1) | 
| 677 | 59.9k |                     break; | 
| 678 | 3.12M |             } | 
| 679 |  |  | 
| 680 | 10.4M |             if (ubits < vbits) { | 
| 681 | 4.21M |                 i = ubits; | 
| 682 | 4.21M |                 ubits = vbits; | 
| 683 | 4.21M |                 vbits = i; | 
| 684 | 4.21M |                 tmp = u; | 
| 685 | 4.21M |                 u = v; | 
| 686 | 4.21M |                 v = tmp; | 
| 687 | 4.21M |                 tmp = b; | 
| 688 | 4.21M |                 b = c; | 
| 689 | 4.21M |                 c = tmp; | 
| 690 | 4.21M |                 udp = vdp; | 
| 691 | 4.21M |                 vdp = v->d; | 
| 692 | 4.21M |                 bdp = cdp; | 
| 693 | 4.21M |                 cdp = c->d; | 
| 694 | 4.21M |             } | 
| 695 | 55.6M |             for (i = 0; i < top; i++) { | 
| 696 | 45.2M |                 udp[i] ^= vdp[i]; | 
| 697 | 45.2M |                 bdp[i] ^= cdp[i]; | 
| 698 | 45.2M |             } | 
| 699 | 10.4M |             if (ubits == vbits) { | 
| 700 | 2.06M |                 BN_ULONG ul; | 
| 701 | 2.06M |                 int utop = (ubits - 1) / BN_BITS2; | 
| 702 |  |  | 
| 703 | 2.11M |                 while ((ul = udp[utop]) == 0 && utop) | 
| 704 | 53.8k |                     utop--; | 
| 705 | 2.06M |                 ubits = utop * BN_BITS2 + BN_num_bits_word(ul); | 
| 706 | 2.06M |             } | 
| 707 | 10.4M |         } | 
| 708 | 59.9k |         bn_correct_top(b); | 
| 709 | 59.9k |     } | 
| 710 | 0 | # endif | 
| 711 |  |  | 
| 712 | 59.9k |     if (!BN_copy(r, b)) | 
| 713 | 0 |         goto err; | 
| 714 | 59.9k |     bn_check_top(r); | 
| 715 | 59.9k |     ret = 1; | 
| 716 |  |  | 
| 717 | 59.9k |  err: | 
| 718 |  | # ifdef BN_DEBUG | 
| 719 |  |     /* BN_CTX_end would complain about the expanded form */ | 
| 720 |  |     bn_correct_top(c); | 
| 721 |  |     bn_correct_top(u); | 
| 722 |  |     bn_correct_top(v); | 
| 723 |  | # endif | 
| 724 | 59.9k |     BN_CTX_end(ctx); | 
| 725 | 59.9k |     return ret; | 
| 726 | 59.9k | } | 
| 727 |  |  | 
| 728 |  | /*- | 
| 729 |  |  * Wrapper for BN_GF2m_mod_inv_vartime that blinds the input before calling. | 
| 730 |  |  * This is not constant time. | 
| 731 |  |  * But it does eliminate first order deduction on the input. | 
| 732 |  |  */ | 
| 733 |  | int BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) | 
| 734 | 59.9k | { | 
| 735 | 59.9k |     BIGNUM *b = NULL; | 
| 736 | 59.9k |     int ret = 0; | 
| 737 |  |  | 
| 738 | 59.9k |     BN_CTX_start(ctx); | 
| 739 | 59.9k |     if ((b = BN_CTX_get(ctx)) == NULL) | 
| 740 | 0 |         goto err; | 
| 741 |  |  | 
| 742 |  |     /* generate blinding value */ | 
| 743 | 59.9k |     do { | 
| 744 | 59.9k |         if (!BN_priv_rand_ex(b, BN_num_bits(p) - 1, | 
| 745 | 59.9k |                              BN_RAND_TOP_ANY, BN_RAND_BOTTOM_ANY, 0, ctx)) | 
| 746 | 0 |             goto err; | 
| 747 | 59.9k |     } while (BN_is_zero(b)); | 
| 748 |  |  | 
| 749 |  |     /* r := a * b */ | 
| 750 | 59.9k |     if (!BN_GF2m_mod_mul(r, a, b, p, ctx)) | 
| 751 | 0 |         goto err; | 
| 752 |  |  | 
| 753 |  |     /* r := 1/(a * b) */ | 
| 754 | 59.9k |     if (!BN_GF2m_mod_inv_vartime(r, r, p, ctx)) | 
| 755 | 0 |         goto err; | 
| 756 |  |  | 
| 757 |  |     /* r := b/(a * b) = 1/a */ | 
| 758 | 59.9k |     if (!BN_GF2m_mod_mul(r, r, b, p, ctx)) | 
| 759 | 0 |         goto err; | 
| 760 |  |  | 
| 761 | 59.9k |     ret = 1; | 
| 762 |  |  | 
| 763 | 59.9k |  err: | 
| 764 | 59.9k |     BN_CTX_end(ctx); | 
| 765 | 59.9k |     return ret; | 
| 766 | 59.9k | } | 
| 767 |  |  | 
| 768 |  | /* | 
| 769 |  |  * Invert xx, reduce modulo p, and store the result in r. r could be xx. | 
| 770 |  |  * This function calls down to the BN_GF2m_mod_inv implementation; this | 
| 771 |  |  * wrapper function is only provided for convenience; for best performance, | 
| 772 |  |  * use the BN_GF2m_mod_inv function. | 
| 773 |  |  */ | 
| 774 |  | int BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *xx, const int p[], | 
| 775 |  |                         BN_CTX *ctx) | 
| 776 | 0 | { | 
| 777 | 0 |     BIGNUM *field; | 
| 778 | 0 |     int ret = 0; | 
| 779 |  | 
 | 
| 780 | 0 |     bn_check_top(xx); | 
| 781 | 0 |     BN_CTX_start(ctx); | 
| 782 | 0 |     if ((field = BN_CTX_get(ctx)) == NULL) | 
| 783 | 0 |         goto err; | 
| 784 | 0 |     if (!BN_GF2m_arr2poly(p, field)) | 
| 785 | 0 |         goto err; | 
| 786 |  |  | 
| 787 | 0 |     ret = BN_GF2m_mod_inv(r, xx, field, ctx); | 
| 788 | 0 |     bn_check_top(r); | 
| 789 |  | 
 | 
| 790 | 0 |  err: | 
| 791 | 0 |     BN_CTX_end(ctx); | 
| 792 | 0 |     return ret; | 
| 793 | 0 | } | 
| 794 |  |  | 
| 795 |  | /* | 
| 796 |  |  * Divide y by x, reduce modulo p, and store the result in r. r could be x | 
| 797 |  |  * or y, x could equal y. | 
| 798 |  |  */ | 
| 799 |  | int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, | 
| 800 |  |                     const BIGNUM *p, BN_CTX *ctx) | 
| 801 | 58.2k | { | 
| 802 | 58.2k |     BIGNUM *xinv = NULL; | 
| 803 | 58.2k |     int ret = 0; | 
| 804 |  |  | 
| 805 | 58.2k |     bn_check_top(y); | 
| 806 | 58.2k |     bn_check_top(x); | 
| 807 | 58.2k |     bn_check_top(p); | 
| 808 |  |  | 
| 809 | 58.2k |     BN_CTX_start(ctx); | 
| 810 | 58.2k |     xinv = BN_CTX_get(ctx); | 
| 811 | 58.2k |     if (xinv == NULL) | 
| 812 | 0 |         goto err; | 
| 813 |  |  | 
| 814 | 58.2k |     if (!BN_GF2m_mod_inv(xinv, x, p, ctx)) | 
| 815 | 0 |         goto err; | 
| 816 | 58.2k |     if (!BN_GF2m_mod_mul(r, y, xinv, p, ctx)) | 
| 817 | 0 |         goto err; | 
| 818 | 58.2k |     bn_check_top(r); | 
| 819 | 58.2k |     ret = 1; | 
| 820 |  |  | 
| 821 | 58.2k |  err: | 
| 822 | 58.2k |     BN_CTX_end(ctx); | 
| 823 | 58.2k |     return ret; | 
| 824 | 58.2k | } | 
| 825 |  |  | 
| 826 |  | /* | 
| 827 |  |  * Divide yy by xx, reduce modulo p, and store the result in r. r could be xx | 
| 828 |  |  * * or yy, xx could equal yy. This function calls down to the | 
| 829 |  |  * BN_GF2m_mod_div implementation; this wrapper function is only provided for | 
| 830 |  |  * convenience; for best performance, use the BN_GF2m_mod_div function. | 
| 831 |  |  */ | 
| 832 |  | int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *yy, const BIGNUM *xx, | 
| 833 |  |                         const int p[], BN_CTX *ctx) | 
| 834 | 0 | { | 
| 835 | 0 |     BIGNUM *field; | 
| 836 | 0 |     int ret = 0; | 
| 837 |  | 
 | 
| 838 | 0 |     bn_check_top(yy); | 
| 839 | 0 |     bn_check_top(xx); | 
| 840 |  | 
 | 
| 841 | 0 |     BN_CTX_start(ctx); | 
| 842 | 0 |     if ((field = BN_CTX_get(ctx)) == NULL) | 
| 843 | 0 |         goto err; | 
| 844 | 0 |     if (!BN_GF2m_arr2poly(p, field)) | 
| 845 | 0 |         goto err; | 
| 846 |  |  | 
| 847 | 0 |     ret = BN_GF2m_mod_div(r, yy, xx, field, ctx); | 
| 848 | 0 |     bn_check_top(r); | 
| 849 |  | 
 | 
| 850 | 0 |  err: | 
| 851 | 0 |     BN_CTX_end(ctx); | 
| 852 | 0 |     return ret; | 
| 853 | 0 | } | 
| 854 |  |  | 
| 855 |  | /* | 
| 856 |  |  * Compute the bth power of a, reduce modulo p, and store the result in r.  r | 
| 857 |  |  * could be a. Uses simple square-and-multiply algorithm A.5.1 from IEEE | 
| 858 |  |  * P1363. | 
| 859 |  |  */ | 
| 860 |  | int BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, | 
| 861 |  |                         const int p[], BN_CTX *ctx) | 
| 862 | 6.78k | { | 
| 863 | 6.78k |     int ret = 0, i, n; | 
| 864 | 6.78k |     BIGNUM *u; | 
| 865 |  |  | 
| 866 | 6.78k |     bn_check_top(a); | 
| 867 | 6.78k |     bn_check_top(b); | 
| 868 |  |  | 
| 869 | 6.78k |     if (BN_is_zero(b)) | 
| 870 | 0 |         return BN_one(r); | 
| 871 |  |  | 
| 872 | 6.78k |     if (BN_abs_is_word(b, 1)) | 
| 873 | 0 |         return (BN_copy(r, a) != NULL); | 
| 874 |  |  | 
| 875 | 6.78k |     BN_CTX_start(ctx); | 
| 876 | 6.78k |     if ((u = BN_CTX_get(ctx)) == NULL) | 
| 877 | 0 |         goto err; | 
| 878 |  |  | 
| 879 | 6.78k |     if (!BN_GF2m_mod_arr(u, a, p)) | 
| 880 | 0 |         goto err; | 
| 881 |  |  | 
| 882 | 6.78k |     n = BN_num_bits(b) - 1; | 
| 883 | 881k |     for (i = n - 1; i >= 0; i--) { | 
| 884 | 874k |         if (!BN_GF2m_mod_sqr_arr(u, u, p, ctx)) | 
| 885 | 0 |             goto err; | 
| 886 | 874k |         if (BN_is_bit_set(b, i)) { | 
| 887 | 0 |             if (!BN_GF2m_mod_mul_arr(u, u, a, p, ctx)) | 
| 888 | 0 |                 goto err; | 
| 889 | 0 |         } | 
| 890 | 874k |     } | 
| 891 | 6.78k |     if (!BN_copy(r, u)) | 
| 892 | 0 |         goto err; | 
| 893 | 6.78k |     bn_check_top(r); | 
| 894 | 6.78k |     ret = 1; | 
| 895 | 6.78k |  err: | 
| 896 | 6.78k |     BN_CTX_end(ctx); | 
| 897 | 6.78k |     return ret; | 
| 898 | 6.78k | } | 
| 899 |  |  | 
| 900 |  | /* | 
| 901 |  |  * Compute the bth power of a, reduce modulo p, and store the result in r.  r | 
| 902 |  |  * could be a. This function calls down to the BN_GF2m_mod_exp_arr | 
| 903 |  |  * implementation; this wrapper function is only provided for convenience; | 
| 904 |  |  * for best performance, use the BN_GF2m_mod_exp_arr function. | 
| 905 |  |  */ | 
| 906 |  | int BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, | 
| 907 |  |                     const BIGNUM *p, BN_CTX *ctx) | 
| 908 | 0 | { | 
| 909 | 0 |     int ret = 0; | 
| 910 | 0 |     const int max = BN_num_bits(p) + 1; | 
| 911 | 0 |     int *arr; | 
| 912 |  | 
 | 
| 913 | 0 |     bn_check_top(a); | 
| 914 | 0 |     bn_check_top(b); | 
| 915 | 0 |     bn_check_top(p); | 
| 916 |  | 
 | 
| 917 | 0 |     arr = OPENSSL_malloc(sizeof(*arr) * max); | 
| 918 | 0 |     if (arr == NULL) { | 
| 919 | 0 |         ERR_raise(ERR_LIB_BN, ERR_R_MALLOC_FAILURE); | 
| 920 | 0 |         return 0; | 
| 921 | 0 |     } | 
| 922 | 0 |     ret = BN_GF2m_poly2arr(p, arr, max); | 
| 923 | 0 |     if (!ret || ret > max) { | 
| 924 | 0 |         ERR_raise(ERR_LIB_BN, BN_R_INVALID_LENGTH); | 
| 925 | 0 |         goto err; | 
| 926 | 0 |     } | 
| 927 | 0 |     ret = BN_GF2m_mod_exp_arr(r, a, b, arr, ctx); | 
| 928 | 0 |     bn_check_top(r); | 
| 929 | 0 |  err: | 
| 930 | 0 |     OPENSSL_free(arr); | 
| 931 | 0 |     return ret; | 
| 932 | 0 | } | 
| 933 |  |  | 
| 934 |  | /* | 
| 935 |  |  * Compute the square root of a, reduce modulo p, and store the result in r. | 
| 936 |  |  * r could be a. Uses exponentiation as in algorithm A.4.1 from IEEE P1363. | 
| 937 |  |  */ | 
| 938 |  | int BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, const int p[], | 
| 939 |  |                          BN_CTX *ctx) | 
| 940 | 4.95k | { | 
| 941 | 4.95k |     int ret = 0; | 
| 942 | 4.95k |     BIGNUM *u; | 
| 943 |  |  | 
| 944 | 4.95k |     bn_check_top(a); | 
| 945 |  |  | 
| 946 | 4.95k |     if (p[0] == 0) { | 
| 947 |  |         /* reduction mod 1 => return 0 */ | 
| 948 | 0 |         BN_zero(r); | 
| 949 | 0 |         return 1; | 
| 950 | 0 |     } | 
| 951 |  |  | 
| 952 | 4.95k |     BN_CTX_start(ctx); | 
| 953 | 4.95k |     if ((u = BN_CTX_get(ctx)) == NULL) | 
| 954 | 0 |         goto err; | 
| 955 |  |  | 
| 956 | 4.95k |     if (!BN_set_bit(u, p[0] - 1)) | 
| 957 | 0 |         goto err; | 
| 958 | 4.95k |     ret = BN_GF2m_mod_exp_arr(r, a, u, p, ctx); | 
| 959 | 4.95k |     bn_check_top(r); | 
| 960 |  |  | 
| 961 | 4.95k |  err: | 
| 962 | 4.95k |     BN_CTX_end(ctx); | 
| 963 | 4.95k |     return ret; | 
| 964 | 4.95k | } | 
| 965 |  |  | 
| 966 |  | /* | 
| 967 |  |  * Compute the square root of a, reduce modulo p, and store the result in r. | 
| 968 |  |  * r could be a. This function calls down to the BN_GF2m_mod_sqrt_arr | 
| 969 |  |  * implementation; this wrapper function is only provided for convenience; | 
| 970 |  |  * for best performance, use the BN_GF2m_mod_sqrt_arr function. | 
| 971 |  |  */ | 
| 972 |  | int BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) | 
| 973 | 0 | { | 
| 974 | 0 |     int ret = 0; | 
| 975 | 0 |     const int max = BN_num_bits(p) + 1; | 
| 976 | 0 |     int *arr; | 
| 977 |  | 
 | 
| 978 | 0 |     bn_check_top(a); | 
| 979 | 0 |     bn_check_top(p); | 
| 980 |  | 
 | 
| 981 | 0 |     arr = OPENSSL_malloc(sizeof(*arr) * max); | 
| 982 | 0 |     if (arr == NULL) { | 
| 983 | 0 |         ERR_raise(ERR_LIB_BN, ERR_R_MALLOC_FAILURE); | 
| 984 | 0 |         return 0; | 
| 985 | 0 |     } | 
| 986 | 0 |     ret = BN_GF2m_poly2arr(p, arr, max); | 
| 987 | 0 |     if (!ret || ret > max) { | 
| 988 | 0 |         ERR_raise(ERR_LIB_BN, BN_R_INVALID_LENGTH); | 
| 989 | 0 |         goto err; | 
| 990 | 0 |     } | 
| 991 | 0 |     ret = BN_GF2m_mod_sqrt_arr(r, a, arr, ctx); | 
| 992 | 0 |     bn_check_top(r); | 
| 993 | 0 |  err: | 
| 994 | 0 |     OPENSSL_free(arr); | 
| 995 | 0 |     return ret; | 
| 996 | 0 | } | 
| 997 |  |  | 
| 998 |  | /* | 
| 999 |  |  * Find r such that r^2 + r = a mod p.  r could be a. If no r exists returns | 
| 1000 |  |  * 0. Uses algorithms A.4.7 and A.4.6 from IEEE P1363. | 
| 1001 |  |  */ | 
| 1002 |  | int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a_, const int p[], | 
| 1003 |  |                                BN_CTX *ctx) | 
| 1004 | 37.1k | { | 
| 1005 | 37.1k |     int ret = 0, count = 0, j; | 
| 1006 | 37.1k |     BIGNUM *a, *z, *rho, *w, *w2, *tmp; | 
| 1007 |  |  | 
| 1008 | 37.1k |     bn_check_top(a_); | 
| 1009 |  |  | 
| 1010 | 37.1k |     if (p[0] == 0) { | 
| 1011 |  |         /* reduction mod 1 => return 0 */ | 
| 1012 | 0 |         BN_zero(r); | 
| 1013 | 0 |         return 1; | 
| 1014 | 0 |     } | 
| 1015 |  |  | 
| 1016 | 37.1k |     BN_CTX_start(ctx); | 
| 1017 | 37.1k |     a = BN_CTX_get(ctx); | 
| 1018 | 37.1k |     z = BN_CTX_get(ctx); | 
| 1019 | 37.1k |     w = BN_CTX_get(ctx); | 
| 1020 | 37.1k |     if (w == NULL) | 
| 1021 | 0 |         goto err; | 
| 1022 |  |  | 
| 1023 | 37.1k |     if (!BN_GF2m_mod_arr(a, a_, p)) | 
| 1024 | 0 |         goto err; | 
| 1025 |  |  | 
| 1026 | 37.1k |     if (BN_is_zero(a)) { | 
| 1027 | 822 |         BN_zero(r); | 
| 1028 | 822 |         ret = 1; | 
| 1029 | 822 |         goto err; | 
| 1030 | 822 |     } | 
| 1031 |  |  | 
| 1032 | 36.3k |     if (p[0] & 0x1) {           /* m is odd */ | 
| 1033 |  |         /* compute half-trace of a */ | 
| 1034 | 27.2k |         if (!BN_copy(z, a)) | 
| 1035 | 0 |             goto err; | 
| 1036 | 2.54M |         for (j = 1; j <= (p[0] - 1) / 2; j++) { | 
| 1037 | 2.51M |             if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) | 
| 1038 | 0 |                 goto err; | 
| 1039 | 2.51M |             if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) | 
| 1040 | 0 |                 goto err; | 
| 1041 | 2.51M |             if (!BN_GF2m_add(z, z, a)) | 
| 1042 | 0 |                 goto err; | 
| 1043 | 2.51M |         } | 
| 1044 |  |  | 
| 1045 | 27.2k |     } else {                    /* m is even */ | 
| 1046 |  |  | 
| 1047 | 9.04k |         rho = BN_CTX_get(ctx); | 
| 1048 | 9.04k |         w2 = BN_CTX_get(ctx); | 
| 1049 | 9.04k |         tmp = BN_CTX_get(ctx); | 
| 1050 | 9.04k |         if (tmp == NULL) | 
| 1051 | 0 |             goto err; | 
| 1052 | 114k |         do { | 
| 1053 | 114k |             if (!BN_priv_rand_ex(rho, p[0], BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ANY, | 
| 1054 | 114k |                                  0, ctx)) | 
| 1055 | 0 |                 goto err; | 
| 1056 | 114k |             if (!BN_GF2m_mod_arr(rho, rho, p)) | 
| 1057 | 0 |                 goto err; | 
| 1058 | 114k |             BN_zero(z); | 
| 1059 | 114k |             if (!BN_copy(w, rho)) | 
| 1060 | 0 |                 goto err; | 
| 1061 | 41.2M |             for (j = 1; j <= p[0] - 1; j++) { | 
| 1062 | 41.1M |                 if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) | 
| 1063 | 0 |                     goto err; | 
| 1064 | 41.1M |                 if (!BN_GF2m_mod_sqr_arr(w2, w, p, ctx)) | 
| 1065 | 0 |                     goto err; | 
| 1066 | 41.1M |                 if (!BN_GF2m_mod_mul_arr(tmp, w2, a, p, ctx)) | 
| 1067 | 0 |                     goto err; | 
| 1068 | 41.1M |                 if (!BN_GF2m_add(z, z, tmp)) | 
| 1069 | 0 |                     goto err; | 
| 1070 | 41.1M |                 if (!BN_GF2m_add(w, w2, rho)) | 
| 1071 | 0 |                     goto err; | 
| 1072 | 41.1M |             } | 
| 1073 | 114k |             count++; | 
| 1074 | 114k |         } while (BN_is_zero(w) && (count < MAX_ITERATIONS)); | 
| 1075 | 9.04k |         if (BN_is_zero(w)) { | 
| 1076 | 2.15k |             ERR_raise(ERR_LIB_BN, BN_R_TOO_MANY_ITERATIONS); | 
| 1077 | 2.15k |             goto err; | 
| 1078 | 2.15k |         } | 
| 1079 | 9.04k |     } | 
| 1080 |  |  | 
| 1081 | 34.1k |     if (!BN_GF2m_mod_sqr_arr(w, z, p, ctx)) | 
| 1082 | 0 |         goto err; | 
| 1083 | 34.1k |     if (!BN_GF2m_add(w, z, w)) | 
| 1084 | 0 |         goto err; | 
| 1085 | 34.1k |     if (BN_GF2m_cmp(w, a)) { | 
| 1086 | 9.15k |         ERR_raise(ERR_LIB_BN, BN_R_NO_SOLUTION); | 
| 1087 | 9.15k |         goto err; | 
| 1088 | 9.15k |     } | 
| 1089 |  |  | 
| 1090 | 25.0k |     if (!BN_copy(r, z)) | 
| 1091 | 0 |         goto err; | 
| 1092 | 25.0k |     bn_check_top(r); | 
| 1093 |  |  | 
| 1094 | 25.0k |     ret = 1; | 
| 1095 |  |  | 
| 1096 | 37.1k |  err: | 
| 1097 | 37.1k |     BN_CTX_end(ctx); | 
| 1098 | 37.1k |     return ret; | 
| 1099 | 25.0k | } | 
| 1100 |  |  | 
| 1101 |  | /* | 
| 1102 |  |  * Find r such that r^2 + r = a mod p.  r could be a. If no r exists returns | 
| 1103 |  |  * 0. This function calls down to the BN_GF2m_mod_solve_quad_arr | 
| 1104 |  |  * implementation; this wrapper function is only provided for convenience; | 
| 1105 |  |  * for best performance, use the BN_GF2m_mod_solve_quad_arr function. | 
| 1106 |  |  */ | 
| 1107 |  | int BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, | 
| 1108 |  |                            BN_CTX *ctx) | 
| 1109 | 0 | { | 
| 1110 | 0 |     int ret = 0; | 
| 1111 | 0 |     const int max = BN_num_bits(p) + 1; | 
| 1112 | 0 |     int *arr; | 
| 1113 |  | 
 | 
| 1114 | 0 |     bn_check_top(a); | 
| 1115 | 0 |     bn_check_top(p); | 
| 1116 |  | 
 | 
| 1117 | 0 |     arr = OPENSSL_malloc(sizeof(*arr) * max); | 
| 1118 | 0 |     if (arr == NULL) { | 
| 1119 | 0 |         ERR_raise(ERR_LIB_BN, ERR_R_MALLOC_FAILURE); | 
| 1120 | 0 |         goto err; | 
| 1121 | 0 |     } | 
| 1122 | 0 |     ret = BN_GF2m_poly2arr(p, arr, max); | 
| 1123 | 0 |     if (!ret || ret > max) { | 
| 1124 | 0 |         ERR_raise(ERR_LIB_BN, BN_R_INVALID_LENGTH); | 
| 1125 | 0 |         goto err; | 
| 1126 | 0 |     } | 
| 1127 | 0 |     ret = BN_GF2m_mod_solve_quad_arr(r, a, arr, ctx); | 
| 1128 | 0 |     bn_check_top(r); | 
| 1129 | 0 |  err: | 
| 1130 | 0 |     OPENSSL_free(arr); | 
| 1131 | 0 |     return ret; | 
| 1132 | 0 | } | 
| 1133 |  |  | 
| 1134 |  | /* | 
| 1135 |  |  * Convert the bit-string representation of a polynomial ( \sum_{i=0}^n a_i * | 
| 1136 |  |  * x^i) into an array of integers corresponding to the bits with non-zero | 
| 1137 |  |  * coefficient.  Array is terminated with -1. Up to max elements of the array | 
| 1138 |  |  * will be filled.  Return value is total number of array elements that would | 
| 1139 |  |  * be filled if array was large enough. | 
| 1140 |  |  */ | 
| 1141 |  | int BN_GF2m_poly2arr(const BIGNUM *a, int p[], int max) | 
| 1142 | 332k | { | 
| 1143 | 332k |     int i, j, k = 0; | 
| 1144 | 332k |     BN_ULONG mask; | 
| 1145 |  |  | 
| 1146 | 332k |     if (BN_is_zero(a)) | 
| 1147 | 0 |         return 0; | 
| 1148 |  |  | 
| 1149 | 1.59M |     for (i = a->top - 1; i >= 0; i--) { | 
| 1150 | 1.26M |         if (!a->d[i]) | 
| 1151 |  |             /* skip word if a->d[i] == 0 */ | 
| 1152 | 461k |             continue; | 
| 1153 | 800k |         mask = BN_TBIT; | 
| 1154 | 52.0M |         for (j = BN_BITS2 - 1; j >= 0; j--) { | 
| 1155 | 51.2M |             if (a->d[i] & mask) { | 
| 1156 | 1.35M |                 if (k < max) | 
| 1157 | 1.35M |                     p[k] = BN_BITS2 * i + j; | 
| 1158 | 1.35M |                 k++; | 
| 1159 | 1.35M |             } | 
| 1160 | 51.2M |             mask >>= 1; | 
| 1161 | 51.2M |         } | 
| 1162 | 800k |     } | 
| 1163 |  |  | 
| 1164 | 332k |     if (k < max) { | 
| 1165 | 332k |         p[k] = -1; | 
| 1166 | 332k |         k++; | 
| 1167 | 332k |     } | 
| 1168 |  |  | 
| 1169 | 332k |     return k; | 
| 1170 | 332k | } | 
| 1171 |  |  | 
| 1172 |  | /* | 
| 1173 |  |  * Convert the coefficient array representation of a polynomial to a | 
| 1174 |  |  * bit-string.  The array must be terminated by -1. | 
| 1175 |  |  */ | 
| 1176 |  | int BN_GF2m_arr2poly(const int p[], BIGNUM *a) | 
| 1177 | 0 | { | 
| 1178 | 0 |     int i; | 
| 1179 |  | 
 | 
| 1180 | 0 |     bn_check_top(a); | 
| 1181 | 0 |     BN_zero(a); | 
| 1182 | 0 |     for (i = 0; p[i] != -1; i++) { | 
| 1183 | 0 |         if (BN_set_bit(a, p[i]) == 0) | 
| 1184 | 0 |             return 0; | 
| 1185 | 0 |     } | 
| 1186 | 0 |     bn_check_top(a); | 
| 1187 |  | 
 | 
| 1188 | 0 |     return 1; | 
| 1189 | 0 | } | 
| 1190 |  |  | 
| 1191 |  | #endif |