Coverage Report

Created: 2023-09-25 06:45

/src/openssl30/crypto/ec/ec2_smpl.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 2002-2021 The OpenSSL Project Authors. All Rights Reserved.
3
 * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
4
 *
5
 * Licensed under the Apache License 2.0 (the "License").  You may not use
6
 * this file except in compliance with the License.  You can obtain a copy
7
 * in the file LICENSE in the source distribution or at
8
 * https://www.openssl.org/source/license.html
9
 */
10
11
/*
12
 * ECDSA low level APIs are deprecated for public use, but still ok for
13
 * internal use.
14
 */
15
#include "internal/deprecated.h"
16
17
#include <openssl/err.h>
18
19
#include "crypto/bn.h"
20
#include "ec_local.h"
21
22
#ifndef OPENSSL_NO_EC2M
23
24
/*
25
 * Initialize a GF(2^m)-based EC_GROUP structure. Note that all other members
26
 * are handled by EC_GROUP_new.
27
 */
28
int ossl_ec_GF2m_simple_group_init(EC_GROUP *group)
29
140k
{
30
140k
    group->field = BN_new();
31
140k
    group->a = BN_new();
32
140k
    group->b = BN_new();
33
34
140k
    if (group->field == NULL || group->a == NULL || group->b == NULL) {
35
0
        BN_free(group->field);
36
0
        BN_free(group->a);
37
0
        BN_free(group->b);
38
0
        return 0;
39
0
    }
40
140k
    return 1;
41
140k
}
42
43
/*
44
 * Free a GF(2^m)-based EC_GROUP structure. Note that all other members are
45
 * handled by EC_GROUP_free.
46
 */
47
void ossl_ec_GF2m_simple_group_finish(EC_GROUP *group)
48
140k
{
49
140k
    BN_free(group->field);
50
140k
    BN_free(group->a);
51
140k
    BN_free(group->b);
52
140k
}
53
54
/*
55
 * Clear and free a GF(2^m)-based EC_GROUP structure. Note that all other
56
 * members are handled by EC_GROUP_clear_free.
57
 */
58
void ossl_ec_GF2m_simple_group_clear_finish(EC_GROUP *group)
59
0
{
60
0
    BN_clear_free(group->field);
61
0
    BN_clear_free(group->a);
62
0
    BN_clear_free(group->b);
63
0
    group->poly[0] = 0;
64
0
    group->poly[1] = 0;
65
0
    group->poly[2] = 0;
66
0
    group->poly[3] = 0;
67
0
    group->poly[4] = 0;
68
0
    group->poly[5] = -1;
69
0
}
70
71
/*
72
 * Copy a GF(2^m)-based EC_GROUP structure. Note that all other members are
73
 * handled by EC_GROUP_copy.
74
 */
75
int ossl_ec_GF2m_simple_group_copy(EC_GROUP *dest, const EC_GROUP *src)
76
69.7k
{
77
69.7k
    if (!BN_copy(dest->field, src->field))
78
0
        return 0;
79
69.7k
    if (!BN_copy(dest->a, src->a))
80
0
        return 0;
81
69.7k
    if (!BN_copy(dest->b, src->b))
82
0
        return 0;
83
69.7k
    dest->poly[0] = src->poly[0];
84
69.7k
    dest->poly[1] = src->poly[1];
85
69.7k
    dest->poly[2] = src->poly[2];
86
69.7k
    dest->poly[3] = src->poly[3];
87
69.7k
    dest->poly[4] = src->poly[4];
88
69.7k
    dest->poly[5] = src->poly[5];
89
69.7k
    if (bn_wexpand(dest->a, (int)(dest->poly[0] + BN_BITS2 - 1) / BN_BITS2) ==
90
69.7k
        NULL)
91
0
        return 0;
92
69.7k
    if (bn_wexpand(dest->b, (int)(dest->poly[0] + BN_BITS2 - 1) / BN_BITS2) ==
93
69.7k
        NULL)
94
0
        return 0;
95
69.7k
    bn_set_all_zero(dest->a);
96
69.7k
    bn_set_all_zero(dest->b);
97
69.7k
    return 1;
98
69.7k
}
99
100
/* Set the curve parameters of an EC_GROUP structure. */
101
int ossl_ec_GF2m_simple_group_set_curve(EC_GROUP *group,
102
                                        const BIGNUM *p, const BIGNUM *a,
103
                                        const BIGNUM *b, BN_CTX *ctx)
104
70.9k
{
105
70.9k
    int ret = 0, i;
106
107
    /* group->field */
108
70.9k
    if (!BN_copy(group->field, p))
109
0
        goto err;
110
70.9k
    i = BN_GF2m_poly2arr(group->field, group->poly, 6) - 1;
111
70.9k
    if ((i != 5) && (i != 3)) {
112
0
        ERR_raise(ERR_LIB_EC, EC_R_UNSUPPORTED_FIELD);
113
0
        goto err;
114
0
    }
115
116
    /* group->a */
117
70.9k
    if (!BN_GF2m_mod_arr(group->a, a, group->poly))
118
0
        goto err;
119
70.9k
    if (bn_wexpand(group->a, (int)(group->poly[0] + BN_BITS2 - 1) / BN_BITS2)
120
70.9k
        == NULL)
121
0
        goto err;
122
70.9k
    bn_set_all_zero(group->a);
123
124
    /* group->b */
125
70.9k
    if (!BN_GF2m_mod_arr(group->b, b, group->poly))
126
0
        goto err;
127
70.9k
    if (bn_wexpand(group->b, (int)(group->poly[0] + BN_BITS2 - 1) / BN_BITS2)
128
70.9k
        == NULL)
129
0
        goto err;
130
70.9k
    bn_set_all_zero(group->b);
131
132
70.9k
    ret = 1;
133
70.9k
 err:
134
70.9k
    return ret;
135
70.9k
}
136
137
/*
138
 * Get the curve parameters of an EC_GROUP structure. If p, a, or b are NULL
139
 * then there values will not be set but the method will return with success.
140
 */
141
int ossl_ec_GF2m_simple_group_get_curve(const EC_GROUP *group, BIGNUM *p,
142
                                        BIGNUM *a, BIGNUM *b, BN_CTX *ctx)
143
624
{
144
624
    int ret = 0;
145
146
624
    if (p != NULL) {
147
624
        if (!BN_copy(p, group->field))
148
0
            return 0;
149
624
    }
150
151
624
    if (a != NULL) {
152
624
        if (!BN_copy(a, group->a))
153
0
            goto err;
154
624
    }
155
156
624
    if (b != NULL) {
157
624
        if (!BN_copy(b, group->b))
158
0
            goto err;
159
624
    }
160
161
624
    ret = 1;
162
163
624
 err:
164
624
    return ret;
165
624
}
166
167
/*
168
 * Gets the degree of the field.  For a curve over GF(2^m) this is the value
169
 * m.
170
 */
171
int ossl_ec_GF2m_simple_group_get_degree(const EC_GROUP *group)
172
97.5k
{
173
97.5k
    return BN_num_bits(group->field) - 1;
174
97.5k
}
175
176
/*
177
 * Checks the discriminant of the curve. y^2 + x*y = x^3 + a*x^2 + b is an
178
 * elliptic curve <=> b != 0 (mod p)
179
 */
180
int ossl_ec_GF2m_simple_group_check_discriminant(const EC_GROUP *group,
181
                                                 BN_CTX *ctx)
182
312
{
183
312
    int ret = 0;
184
312
    BIGNUM *b;
185
312
#ifndef FIPS_MODULE
186
312
    BN_CTX *new_ctx = NULL;
187
188
312
    if (ctx == NULL) {
189
0
        ctx = new_ctx = BN_CTX_new();
190
0
        if (ctx == NULL) {
191
0
            ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
192
0
            goto err;
193
0
        }
194
0
    }
195
312
#endif
196
312
    BN_CTX_start(ctx);
197
312
    b = BN_CTX_get(ctx);
198
312
    if (b == NULL)
199
0
        goto err;
200
201
312
    if (!BN_GF2m_mod_arr(b, group->b, group->poly))
202
0
        goto err;
203
204
    /*
205
     * check the discriminant: y^2 + x*y = x^3 + a*x^2 + b is an elliptic
206
     * curve <=> b != 0 (mod p)
207
     */
208
312
    if (BN_is_zero(b))
209
0
        goto err;
210
211
312
    ret = 1;
212
213
312
 err:
214
312
    BN_CTX_end(ctx);
215
312
#ifndef FIPS_MODULE
216
312
    BN_CTX_free(new_ctx);
217
312
#endif
218
312
    return ret;
219
312
}
220
221
/* Initializes an EC_POINT. */
222
int ossl_ec_GF2m_simple_point_init(EC_POINT *point)
223
288k
{
224
288k
    point->X = BN_new();
225
288k
    point->Y = BN_new();
226
288k
    point->Z = BN_new();
227
228
288k
    if (point->X == NULL || point->Y == NULL || point->Z == NULL) {
229
0
        BN_free(point->X);
230
0
        BN_free(point->Y);
231
0
        BN_free(point->Z);
232
0
        return 0;
233
0
    }
234
288k
    return 1;
235
288k
}
236
237
/* Frees an EC_POINT. */
238
void ossl_ec_GF2m_simple_point_finish(EC_POINT *point)
239
286k
{
240
286k
    BN_free(point->X);
241
286k
    BN_free(point->Y);
242
286k
    BN_free(point->Z);
243
286k
}
244
245
/* Clears and frees an EC_POINT. */
246
void ossl_ec_GF2m_simple_point_clear_finish(EC_POINT *point)
247
2.28k
{
248
2.28k
    BN_clear_free(point->X);
249
2.28k
    BN_clear_free(point->Y);
250
2.28k
    BN_clear_free(point->Z);
251
2.28k
    point->Z_is_one = 0;
252
2.28k
}
253
254
/*
255
 * Copy the contents of one EC_POINT into another.  Assumes dest is
256
 * initialized.
257
 */
258
int ossl_ec_GF2m_simple_point_copy(EC_POINT *dest, const EC_POINT *src)
259
143k
{
260
143k
    if (!BN_copy(dest->X, src->X))
261
0
        return 0;
262
143k
    if (!BN_copy(dest->Y, src->Y))
263
0
        return 0;
264
143k
    if (!BN_copy(dest->Z, src->Z))
265
0
        return 0;
266
143k
    dest->Z_is_one = src->Z_is_one;
267
143k
    dest->curve_name = src->curve_name;
268
269
143k
    return 1;
270
143k
}
271
272
/*
273
 * Set an EC_POINT to the point at infinity. A point at infinity is
274
 * represented by having Z=0.
275
 */
276
int ossl_ec_GF2m_simple_point_set_to_infinity(const EC_GROUP *group,
277
                                              EC_POINT *point)
278
15.3k
{
279
15.3k
    point->Z_is_one = 0;
280
15.3k
    BN_zero(point->Z);
281
15.3k
    return 1;
282
15.3k
}
283
284
/*
285
 * Set the coordinates of an EC_POINT using affine coordinates. Note that
286
 * the simple implementation only uses affine coordinates.
287
 */
288
int ossl_ec_GF2m_simple_point_set_affine_coordinates(const EC_GROUP *group,
289
                                                     EC_POINT *point,
290
                                                     const BIGNUM *x,
291
                                                     const BIGNUM *y,
292
                                                     BN_CTX *ctx)
293
105k
{
294
105k
    int ret = 0;
295
105k
    if (x == NULL || y == NULL) {
296
0
        ERR_raise(ERR_LIB_EC, ERR_R_PASSED_NULL_PARAMETER);
297
0
        return 0;
298
0
    }
299
300
105k
    if (!BN_copy(point->X, x))
301
0
        goto err;
302
105k
    BN_set_negative(point->X, 0);
303
105k
    if (!BN_copy(point->Y, y))
304
0
        goto err;
305
105k
    BN_set_negative(point->Y, 0);
306
105k
    if (!BN_copy(point->Z, BN_value_one()))
307
0
        goto err;
308
105k
    BN_set_negative(point->Z, 0);
309
105k
    point->Z_is_one = 1;
310
105k
    ret = 1;
311
312
105k
 err:
313
105k
    return ret;
314
105k
}
315
316
/*
317
 * Gets the affine coordinates of an EC_POINT. Note that the simple
318
 * implementation only uses affine coordinates.
319
 */
320
int ossl_ec_GF2m_simple_point_get_affine_coordinates(const EC_GROUP *group,
321
                                                     const EC_POINT *point,
322
                                                     BIGNUM *x, BIGNUM *y,
323
                                                     BN_CTX *ctx)
324
1.59k
{
325
1.59k
    int ret = 0;
326
327
1.59k
    if (EC_POINT_is_at_infinity(group, point)) {
328
0
        ERR_raise(ERR_LIB_EC, EC_R_POINT_AT_INFINITY);
329
0
        return 0;
330
0
    }
331
332
1.59k
    if (BN_cmp(point->Z, BN_value_one())) {
333
0
        ERR_raise(ERR_LIB_EC, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
334
0
        return 0;
335
0
    }
336
1.59k
    if (x != NULL) {
337
1.59k
        if (!BN_copy(x, point->X))
338
0
            goto err;
339
1.59k
        BN_set_negative(x, 0);
340
1.59k
    }
341
1.59k
    if (y != NULL) {
342
1.54k
        if (!BN_copy(y, point->Y))
343
0
            goto err;
344
1.54k
        BN_set_negative(y, 0);
345
1.54k
    }
346
1.59k
    ret = 1;
347
348
1.59k
 err:
349
1.59k
    return ret;
350
1.59k
}
351
352
/*
353
 * Computes a + b and stores the result in r.  r could be a or b, a could be
354
 * b. Uses algorithm A.10.2 of IEEE P1363.
355
 */
356
int ossl_ec_GF2m_simple_add(const EC_GROUP *group, EC_POINT *r,
357
                            const EC_POINT *a, const EC_POINT *b, BN_CTX *ctx)
358
55
{
359
55
    BIGNUM *x0, *y0, *x1, *y1, *x2, *y2, *s, *t;
360
55
    int ret = 0;
361
55
#ifndef FIPS_MODULE
362
55
    BN_CTX *new_ctx = NULL;
363
55
#endif
364
365
55
    if (EC_POINT_is_at_infinity(group, a)) {
366
0
        if (!EC_POINT_copy(r, b))
367
0
            return 0;
368
0
        return 1;
369
0
    }
370
371
55
    if (EC_POINT_is_at_infinity(group, b)) {
372
0
        if (!EC_POINT_copy(r, a))
373
0
            return 0;
374
0
        return 1;
375
0
    }
376
377
55
#ifndef FIPS_MODULE
378
55
    if (ctx == NULL) {
379
0
        ctx = new_ctx = BN_CTX_new();
380
0
        if (ctx == NULL)
381
0
            return 0;
382
0
    }
383
55
#endif
384
385
55
    BN_CTX_start(ctx);
386
55
    x0 = BN_CTX_get(ctx);
387
55
    y0 = BN_CTX_get(ctx);
388
55
    x1 = BN_CTX_get(ctx);
389
55
    y1 = BN_CTX_get(ctx);
390
55
    x2 = BN_CTX_get(ctx);
391
55
    y2 = BN_CTX_get(ctx);
392
55
    s = BN_CTX_get(ctx);
393
55
    t = BN_CTX_get(ctx);
394
55
    if (t == NULL)
395
0
        goto err;
396
397
55
    if (a->Z_is_one) {
398
55
        if (!BN_copy(x0, a->X))
399
0
            goto err;
400
55
        if (!BN_copy(y0, a->Y))
401
0
            goto err;
402
55
    } else {
403
0
        if (!EC_POINT_get_affine_coordinates(group, a, x0, y0, ctx))
404
0
            goto err;
405
0
    }
406
55
    if (b->Z_is_one) {
407
55
        if (!BN_copy(x1, b->X))
408
0
            goto err;
409
55
        if (!BN_copy(y1, b->Y))
410
0
            goto err;
411
55
    } else {
412
0
        if (!EC_POINT_get_affine_coordinates(group, b, x1, y1, ctx))
413
0
            goto err;
414
0
    }
415
416
55
    if (BN_GF2m_cmp(x0, x1)) {
417
55
        if (!BN_GF2m_add(t, x0, x1))
418
0
            goto err;
419
55
        if (!BN_GF2m_add(s, y0, y1))
420
0
            goto err;
421
55
        if (!group->meth->field_div(group, s, s, t, ctx))
422
0
            goto err;
423
55
        if (!group->meth->field_sqr(group, x2, s, ctx))
424
0
            goto err;
425
55
        if (!BN_GF2m_add(x2, x2, group->a))
426
0
            goto err;
427
55
        if (!BN_GF2m_add(x2, x2, s))
428
0
            goto err;
429
55
        if (!BN_GF2m_add(x2, x2, t))
430
0
            goto err;
431
55
    } else {
432
0
        if (BN_GF2m_cmp(y0, y1) || BN_is_zero(x1)) {
433
0
            if (!EC_POINT_set_to_infinity(group, r))
434
0
                goto err;
435
0
            ret = 1;
436
0
            goto err;
437
0
        }
438
0
        if (!group->meth->field_div(group, s, y1, x1, ctx))
439
0
            goto err;
440
0
        if (!BN_GF2m_add(s, s, x1))
441
0
            goto err;
442
443
0
        if (!group->meth->field_sqr(group, x2, s, ctx))
444
0
            goto err;
445
0
        if (!BN_GF2m_add(x2, x2, s))
446
0
            goto err;
447
0
        if (!BN_GF2m_add(x2, x2, group->a))
448
0
            goto err;
449
0
    }
450
451
55
    if (!BN_GF2m_add(y2, x1, x2))
452
0
        goto err;
453
55
    if (!group->meth->field_mul(group, y2, y2, s, ctx))
454
0
        goto err;
455
55
    if (!BN_GF2m_add(y2, y2, x2))
456
0
        goto err;
457
55
    if (!BN_GF2m_add(y2, y2, y1))
458
0
        goto err;
459
460
55
    if (!EC_POINT_set_affine_coordinates(group, r, x2, y2, ctx))
461
0
        goto err;
462
463
55
    ret = 1;
464
465
55
 err:
466
55
    BN_CTX_end(ctx);
467
55
#ifndef FIPS_MODULE
468
55
    BN_CTX_free(new_ctx);
469
55
#endif
470
55
    return ret;
471
55
}
472
473
/*
474
 * Computes 2 * a and stores the result in r.  r could be a. Uses algorithm
475
 * A.10.2 of IEEE P1363.
476
 */
477
int ossl_ec_GF2m_simple_dbl(const EC_GROUP *group, EC_POINT *r,
478
                            const EC_POINT *a, BN_CTX *ctx)
479
0
{
480
0
    return ossl_ec_GF2m_simple_add(group, r, a, a, ctx);
481
0
}
482
483
int ossl_ec_GF2m_simple_invert(const EC_GROUP *group, EC_POINT *point,
484
                               BN_CTX *ctx)
485
14
{
486
14
    if (EC_POINT_is_at_infinity(group, point) || BN_is_zero(point->Y))
487
        /* point is its own inverse */
488
2
        return 1;
489
490
12
    if (group->meth->make_affine == NULL
491
12
        || !group->meth->make_affine(group, point, ctx))
492
0
        return 0;
493
12
    return BN_GF2m_add(point->Y, point->X, point->Y);
494
12
}
495
496
/* Indicates whether the given point is the point at infinity. */
497
int ossl_ec_GF2m_simple_is_at_infinity(const EC_GROUP *group,
498
                                       const EC_POINT *point)
499
115k
{
500
115k
    return BN_is_zero(point->Z);
501
115k
}
502
503
/*-
504
 * Determines whether the given EC_POINT is an actual point on the curve defined
505
 * in the EC_GROUP.  A point is valid if it satisfies the Weierstrass equation:
506
 *      y^2 + x*y = x^3 + a*x^2 + b.
507
 */
508
int ossl_ec_GF2m_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point,
509
                                    BN_CTX *ctx)
510
106k
{
511
106k
    int ret = -1;
512
106k
    BIGNUM *lh, *y2;
513
106k
    int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *,
514
106k
                      const BIGNUM *, BN_CTX *);
515
106k
    int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
516
106k
#ifndef FIPS_MODULE
517
106k
    BN_CTX *new_ctx = NULL;
518
106k
#endif
519
520
106k
    if (EC_POINT_is_at_infinity(group, point))
521
0
        return 1;
522
523
106k
    field_mul = group->meth->field_mul;
524
106k
    field_sqr = group->meth->field_sqr;
525
526
    /* only support affine coordinates */
527
106k
    if (!point->Z_is_one)
528
0
        return -1;
529
530
106k
#ifndef FIPS_MODULE
531
106k
    if (ctx == NULL) {
532
0
        ctx = new_ctx = BN_CTX_new();
533
0
        if (ctx == NULL)
534
0
            return -1;
535
0
    }
536
106k
#endif
537
538
106k
    BN_CTX_start(ctx);
539
106k
    y2 = BN_CTX_get(ctx);
540
106k
    lh = BN_CTX_get(ctx);
541
106k
    if (lh == NULL)
542
0
        goto err;
543
544
    /*-
545
     * We have a curve defined by a Weierstrass equation
546
     *      y^2 + x*y = x^3 + a*x^2 + b.
547
     *  <=> x^3 + a*x^2 + x*y + b + y^2 = 0
548
     *  <=> ((x + a) * x + y ) * x + b + y^2 = 0
549
     */
550
106k
    if (!BN_GF2m_add(lh, point->X, group->a))
551
0
        goto err;
552
106k
    if (!field_mul(group, lh, lh, point->X, ctx))
553
0
        goto err;
554
106k
    if (!BN_GF2m_add(lh, lh, point->Y))
555
0
        goto err;
556
106k
    if (!field_mul(group, lh, lh, point->X, ctx))
557
0
        goto err;
558
106k
    if (!BN_GF2m_add(lh, lh, group->b))
559
0
        goto err;
560
106k
    if (!field_sqr(group, y2, point->Y, ctx))
561
0
        goto err;
562
106k
    if (!BN_GF2m_add(lh, lh, y2))
563
0
        goto err;
564
106k
    ret = BN_is_zero(lh);
565
566
106k
 err:
567
106k
    BN_CTX_end(ctx);
568
106k
#ifndef FIPS_MODULE
569
106k
    BN_CTX_free(new_ctx);
570
106k
#endif
571
106k
    return ret;
572
106k
}
573
574
/*-
575
 * Indicates whether two points are equal.
576
 * Return values:
577
 *  -1   error
578
 *   0   equal (in affine coordinates)
579
 *   1   not equal
580
 */
581
int ossl_ec_GF2m_simple_cmp(const EC_GROUP *group, const EC_POINT *a,
582
                            const EC_POINT *b, BN_CTX *ctx)
583
726
{
584
726
    BIGNUM *aX, *aY, *bX, *bY;
585
726
    int ret = -1;
586
726
#ifndef FIPS_MODULE
587
726
    BN_CTX *new_ctx = NULL;
588
726
#endif
589
590
726
    if (EC_POINT_is_at_infinity(group, a)) {
591
23
        return EC_POINT_is_at_infinity(group, b) ? 0 : 1;
592
23
    }
593
594
703
    if (EC_POINT_is_at_infinity(group, b))
595
0
        return 1;
596
597
703
    if (a->Z_is_one && b->Z_is_one) {
598
703
        return ((BN_cmp(a->X, b->X) == 0) && BN_cmp(a->Y, b->Y) == 0) ? 0 : 1;
599
703
    }
600
601
0
#ifndef FIPS_MODULE
602
0
    if (ctx == NULL) {
603
0
        ctx = new_ctx = BN_CTX_new();
604
0
        if (ctx == NULL)
605
0
            return -1;
606
0
    }
607
0
#endif
608
609
0
    BN_CTX_start(ctx);
610
0
    aX = BN_CTX_get(ctx);
611
0
    aY = BN_CTX_get(ctx);
612
0
    bX = BN_CTX_get(ctx);
613
0
    bY = BN_CTX_get(ctx);
614
0
    if (bY == NULL)
615
0
        goto err;
616
617
0
    if (!EC_POINT_get_affine_coordinates(group, a, aX, aY, ctx))
618
0
        goto err;
619
0
    if (!EC_POINT_get_affine_coordinates(group, b, bX, bY, ctx))
620
0
        goto err;
621
0
    ret = ((BN_cmp(aX, bX) == 0) && BN_cmp(aY, bY) == 0) ? 0 : 1;
622
623
0
 err:
624
0
    BN_CTX_end(ctx);
625
0
#ifndef FIPS_MODULE
626
0
    BN_CTX_free(new_ctx);
627
0
#endif
628
0
    return ret;
629
0
}
630
631
/* Forces the given EC_POINT to internally use affine coordinates. */
632
int ossl_ec_GF2m_simple_make_affine(const EC_GROUP *group, EC_POINT *point,
633
                                    BN_CTX *ctx)
634
12
{
635
12
    BIGNUM *x, *y;
636
12
    int ret = 0;
637
12
#ifndef FIPS_MODULE
638
12
    BN_CTX *new_ctx = NULL;
639
12
#endif
640
641
12
    if (point->Z_is_one || EC_POINT_is_at_infinity(group, point))
642
12
        return 1;
643
644
0
#ifndef FIPS_MODULE
645
0
    if (ctx == NULL) {
646
0
        ctx = new_ctx = BN_CTX_new();
647
0
        if (ctx == NULL)
648
0
            return 0;
649
0
    }
650
0
#endif
651
652
0
    BN_CTX_start(ctx);
653
0
    x = BN_CTX_get(ctx);
654
0
    y = BN_CTX_get(ctx);
655
0
    if (y == NULL)
656
0
        goto err;
657
658
0
    if (!EC_POINT_get_affine_coordinates(group, point, x, y, ctx))
659
0
        goto err;
660
0
    if (!BN_copy(point->X, x))
661
0
        goto err;
662
0
    if (!BN_copy(point->Y, y))
663
0
        goto err;
664
0
    if (!BN_one(point->Z))
665
0
        goto err;
666
0
    point->Z_is_one = 1;
667
668
0
    ret = 1;
669
670
0
 err:
671
0
    BN_CTX_end(ctx);
672
0
#ifndef FIPS_MODULE
673
0
    BN_CTX_free(new_ctx);
674
0
#endif
675
0
    return ret;
676
0
}
677
678
/*
679
 * Forces each of the EC_POINTs in the given array to use affine coordinates.
680
 */
681
int ossl_ec_GF2m_simple_points_make_affine(const EC_GROUP *group, size_t num,
682
                                           EC_POINT *points[], BN_CTX *ctx)
683
0
{
684
0
    size_t i;
685
686
0
    for (i = 0; i < num; i++) {
687
0
        if (!group->meth->make_affine(group, points[i], ctx))
688
0
            return 0;
689
0
    }
690
691
0
    return 1;
692
0
}
693
694
/* Wrapper to simple binary polynomial field multiplication implementation. */
695
int ossl_ec_GF2m_simple_field_mul(const EC_GROUP *group, BIGNUM *r,
696
                                  const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
697
3.45M
{
698
3.45M
    return BN_GF2m_mod_mul_arr(r, a, b, group->poly, ctx);
699
3.45M
}
700
701
/* Wrapper to simple binary polynomial field squaring implementation. */
702
int ossl_ec_GF2m_simple_field_sqr(const EC_GROUP *group, BIGNUM *r,
703
                                  const BIGNUM *a, BN_CTX *ctx)
704
2.81M
{
705
2.81M
    return BN_GF2m_mod_sqr_arr(r, a, group->poly, ctx);
706
2.81M
}
707
708
/* Wrapper to simple binary polynomial field division implementation. */
709
int ossl_ec_GF2m_simple_field_div(const EC_GROUP *group, BIGNUM *r,
710
                                  const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
711
40.9k
{
712
40.9k
    return BN_GF2m_mod_div(r, a, b, group->field, ctx);
713
40.9k
}
714
715
/*-
716
 * Lopez-Dahab ladder, pre step.
717
 * See e.g. "Guide to ECC" Alg 3.40.
718
 * Modified to blind s and r independently.
719
 * s:= p, r := 2p
720
 */
721
static
722
int ec_GF2m_simple_ladder_pre(const EC_GROUP *group,
723
                              EC_POINT *r, EC_POINT *s,
724
                              EC_POINT *p, BN_CTX *ctx)
725
2.54k
{
726
    /* if p is not affine, something is wrong */
727
2.54k
    if (p->Z_is_one == 0)
728
0
        return 0;
729
730
    /* s blinding: make sure lambda (s->Z here) is not zero */
731
2.54k
    do {
732
2.54k
        if (!BN_priv_rand_ex(s->Z, BN_num_bits(group->field) - 1,
733
2.54k
                             BN_RAND_TOP_ANY, BN_RAND_BOTTOM_ANY, 0, ctx)) {
734
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
735
0
            return 0;
736
0
        }
737
2.54k
    } while (BN_is_zero(s->Z));
738
739
    /* if field_encode defined convert between representations */
740
2.54k
    if ((group->meth->field_encode != NULL
741
2.54k
         && !group->meth->field_encode(group, s->Z, s->Z, ctx))
742
2.54k
        || !group->meth->field_mul(group, s->X, p->X, s->Z, ctx))
743
0
        return 0;
744
745
    /* r blinding: make sure lambda (r->Y here for storage) is not zero */
746
2.54k
    do {
747
2.54k
        if (!BN_priv_rand_ex(r->Y, BN_num_bits(group->field) - 1,
748
2.54k
                             BN_RAND_TOP_ANY, BN_RAND_BOTTOM_ANY, 0, ctx)) {
749
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
750
0
            return 0;
751
0
        }
752
2.54k
    } while (BN_is_zero(r->Y));
753
754
2.54k
    if ((group->meth->field_encode != NULL
755
2.54k
         && !group->meth->field_encode(group, r->Y, r->Y, ctx))
756
2.54k
        || !group->meth->field_sqr(group, r->Z, p->X, ctx)
757
2.54k
        || !group->meth->field_sqr(group, r->X, r->Z, ctx)
758
2.54k
        || !BN_GF2m_add(r->X, r->X, group->b)
759
2.54k
        || !group->meth->field_mul(group, r->Z, r->Z, r->Y, ctx)
760
2.54k
        || !group->meth->field_mul(group, r->X, r->X, r->Y, ctx))
761
0
        return 0;
762
763
2.54k
    s->Z_is_one = 0;
764
2.54k
    r->Z_is_one = 0;
765
766
2.54k
    return 1;
767
2.54k
}
768
769
/*-
770
 * Ladder step: differential addition-and-doubling, mixed Lopez-Dahab coords.
771
 * http://www.hyperelliptic.org/EFD/g12o/auto-code/shortw/xz/ladder/mladd-2003-s.op3
772
 * s := r + s, r := 2r
773
 */
774
static
775
int ec_GF2m_simple_ladder_step(const EC_GROUP *group,
776
                               EC_POINT *r, EC_POINT *s,
777
                               EC_POINT *p, BN_CTX *ctx)
778
591k
{
779
591k
    if (!group->meth->field_mul(group, r->Y, r->Z, s->X, ctx)
780
591k
        || !group->meth->field_mul(group, s->X, r->X, s->Z, ctx)
781
591k
        || !group->meth->field_sqr(group, s->Y, r->Z, ctx)
782
591k
        || !group->meth->field_sqr(group, r->Z, r->X, ctx)
783
591k
        || !BN_GF2m_add(s->Z, r->Y, s->X)
784
591k
        || !group->meth->field_sqr(group, s->Z, s->Z, ctx)
785
591k
        || !group->meth->field_mul(group, s->X, r->Y, s->X, ctx)
786
591k
        || !group->meth->field_mul(group, r->Y, s->Z, p->X, ctx)
787
591k
        || !BN_GF2m_add(s->X, s->X, r->Y)
788
591k
        || !group->meth->field_sqr(group, r->Y, r->Z, ctx)
789
591k
        || !group->meth->field_mul(group, r->Z, r->Z, s->Y, ctx)
790
591k
        || !group->meth->field_sqr(group, s->Y, s->Y, ctx)
791
591k
        || !group->meth->field_mul(group, s->Y, s->Y, group->b, ctx)
792
591k
        || !BN_GF2m_add(r->X, r->Y, s->Y))
793
0
        return 0;
794
795
591k
    return 1;
796
591k
}
797
798
/*-
799
 * Recover affine (x,y) result from Lopez-Dahab r and s, affine p.
800
 * See e.g. "Fast Multiplication on Elliptic Curves over GF(2**m)
801
 * without Precomputation" (Lopez and Dahab, CHES 1999),
802
 * Appendix Alg Mxy.
803
 */
804
static
805
int ec_GF2m_simple_ladder_post(const EC_GROUP *group,
806
                               EC_POINT *r, EC_POINT *s,
807
                               EC_POINT *p, BN_CTX *ctx)
808
2.54k
{
809
2.54k
    int ret = 0;
810
2.54k
    BIGNUM *t0, *t1, *t2 = NULL;
811
812
2.54k
    if (BN_is_zero(r->Z))
813
836
        return EC_POINT_set_to_infinity(group, r);
814
815
1.70k
    if (BN_is_zero(s->Z)) {
816
14
        if (!EC_POINT_copy(r, p)
817
14
            || !EC_POINT_invert(group, r, ctx)) {
818
0
            ERR_raise(ERR_LIB_EC, ERR_R_EC_LIB);
819
0
            return 0;
820
0
        }
821
14
        return 1;
822
14
    }
823
824
1.69k
    BN_CTX_start(ctx);
825
1.69k
    t0 = BN_CTX_get(ctx);
826
1.69k
    t1 = BN_CTX_get(ctx);
827
1.69k
    t2 = BN_CTX_get(ctx);
828
1.69k
    if (t2 == NULL) {
829
0
        ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
830
0
        goto err;
831
0
    }
832
833
1.69k
    if (!group->meth->field_mul(group, t0, r->Z, s->Z, ctx)
834
1.69k
        || !group->meth->field_mul(group, t1, p->X, r->Z, ctx)
835
1.69k
        || !BN_GF2m_add(t1, r->X, t1)
836
1.69k
        || !group->meth->field_mul(group, t2, p->X, s->Z, ctx)
837
1.69k
        || !group->meth->field_mul(group, r->Z, r->X, t2, ctx)
838
1.69k
        || !BN_GF2m_add(t2, t2, s->X)
839
1.69k
        || !group->meth->field_mul(group, t1, t1, t2, ctx)
840
1.69k
        || !group->meth->field_sqr(group, t2, p->X, ctx)
841
1.69k
        || !BN_GF2m_add(t2, p->Y, t2)
842
1.69k
        || !group->meth->field_mul(group, t2, t2, t0, ctx)
843
1.69k
        || !BN_GF2m_add(t1, t2, t1)
844
1.69k
        || !group->meth->field_mul(group, t2, p->X, t0, ctx)
845
1.69k
        || !group->meth->field_inv(group, t2, t2, ctx)
846
1.69k
        || !group->meth->field_mul(group, t1, t1, t2, ctx)
847
1.69k
        || !group->meth->field_mul(group, r->X, r->Z, t2, ctx)
848
1.69k
        || !BN_GF2m_add(t2, p->X, r->X)
849
1.69k
        || !group->meth->field_mul(group, t2, t2, t1, ctx)
850
1.69k
        || !BN_GF2m_add(r->Y, p->Y, t2)
851
1.69k
        || !BN_one(r->Z))
852
0
        goto err;
853
854
1.69k
    r->Z_is_one = 1;
855
856
    /* GF(2^m) field elements should always have BIGNUM::neg = 0 */
857
1.69k
    BN_set_negative(r->X, 0);
858
1.69k
    BN_set_negative(r->Y, 0);
859
860
1.69k
    ret = 1;
861
862
1.69k
 err:
863
1.69k
    BN_CTX_end(ctx);
864
1.69k
    return ret;
865
1.69k
}
866
867
static
868
int ec_GF2m_simple_points_mul(const EC_GROUP *group, EC_POINT *r,
869
                              const BIGNUM *scalar, size_t num,
870
                              const EC_POINT *points[],
871
                              const BIGNUM *scalars[],
872
                              BN_CTX *ctx)
873
2.49k
{
874
2.49k
    int ret = 0;
875
2.49k
    EC_POINT *t = NULL;
876
877
    /*-
878
     * We limit use of the ladder only to the following cases:
879
     * - r := scalar * G
880
     *   Fixed point mul: scalar != NULL && num == 0;
881
     * - r := scalars[0] * points[0]
882
     *   Variable point mul: scalar == NULL && num == 1;
883
     * - r := scalar * G + scalars[0] * points[0]
884
     *   used, e.g., in ECDSA verification: scalar != NULL && num == 1
885
     *
886
     * In any other case (num > 1) we use the default wNAF implementation.
887
     *
888
     * We also let the default implementation handle degenerate cases like group
889
     * order or cofactor set to 0.
890
     */
891
2.49k
    if (num > 1 || BN_is_zero(group->order) || BN_is_zero(group->cofactor))
892
0
        return ossl_ec_wNAF_mul(group, r, scalar, num, points, scalars, ctx);
893
894
2.49k
    if (scalar != NULL && num == 0)
895
        /* Fixed point multiplication */
896
1.92k
        return ossl_ec_scalar_mul_ladder(group, r, scalar, NULL, ctx);
897
898
563
    if (scalar == NULL && num == 1)
899
        /* Variable point multiplication */
900
508
        return ossl_ec_scalar_mul_ladder(group, r, scalars[0], points[0], ctx);
901
902
    /*-
903
     * Double point multiplication:
904
     *  r := scalar * G + scalars[0] * points[0]
905
     */
906
907
55
    if ((t = EC_POINT_new(group)) == NULL) {
908
0
        ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
909
0
        return 0;
910
0
    }
911
912
55
    if (!ossl_ec_scalar_mul_ladder(group, t, scalar, NULL, ctx)
913
55
        || !ossl_ec_scalar_mul_ladder(group, r, scalars[0], points[0], ctx)
914
55
        || !EC_POINT_add(group, r, t, r, ctx))
915
0
        goto err;
916
917
55
    ret = 1;
918
919
55
 err:
920
55
    EC_POINT_free(t);
921
55
    return ret;
922
55
}
923
924
/*-
925
 * Computes the multiplicative inverse of a in GF(2^m), storing the result in r.
926
 * If a is zero (or equivalent), you'll get a EC_R_CANNOT_INVERT error.
927
 * SCA hardening is with blinding: BN_GF2m_mod_inv does that.
928
 */
929
static int ec_GF2m_simple_field_inv(const EC_GROUP *group, BIGNUM *r,
930
                                    const BIGNUM *a, BN_CTX *ctx)
931
1.69k
{
932
1.69k
    int ret;
933
934
1.69k
    if (!(ret = BN_GF2m_mod_inv(r, a, group->field, ctx)))
935
1.69k
        ERR_raise(ERR_LIB_EC, EC_R_CANNOT_INVERT);
936
1.69k
    return ret;
937
1.69k
}
938
939
const EC_METHOD *EC_GF2m_simple_method(void)
940
94.2k
{
941
94.2k
    static const EC_METHOD ret = {
942
94.2k
        EC_FLAGS_DEFAULT_OCT,
943
94.2k
        NID_X9_62_characteristic_two_field,
944
94.2k
        ossl_ec_GF2m_simple_group_init,
945
94.2k
        ossl_ec_GF2m_simple_group_finish,
946
94.2k
        ossl_ec_GF2m_simple_group_clear_finish,
947
94.2k
        ossl_ec_GF2m_simple_group_copy,
948
94.2k
        ossl_ec_GF2m_simple_group_set_curve,
949
94.2k
        ossl_ec_GF2m_simple_group_get_curve,
950
94.2k
        ossl_ec_GF2m_simple_group_get_degree,
951
94.2k
        ossl_ec_group_simple_order_bits,
952
94.2k
        ossl_ec_GF2m_simple_group_check_discriminant,
953
94.2k
        ossl_ec_GF2m_simple_point_init,
954
94.2k
        ossl_ec_GF2m_simple_point_finish,
955
94.2k
        ossl_ec_GF2m_simple_point_clear_finish,
956
94.2k
        ossl_ec_GF2m_simple_point_copy,
957
94.2k
        ossl_ec_GF2m_simple_point_set_to_infinity,
958
94.2k
        ossl_ec_GF2m_simple_point_set_affine_coordinates,
959
94.2k
        ossl_ec_GF2m_simple_point_get_affine_coordinates,
960
94.2k
        0, /* point_set_compressed_coordinates */
961
94.2k
        0, /* point2oct */
962
94.2k
        0, /* oct2point */
963
94.2k
        ossl_ec_GF2m_simple_add,
964
94.2k
        ossl_ec_GF2m_simple_dbl,
965
94.2k
        ossl_ec_GF2m_simple_invert,
966
94.2k
        ossl_ec_GF2m_simple_is_at_infinity,
967
94.2k
        ossl_ec_GF2m_simple_is_on_curve,
968
94.2k
        ossl_ec_GF2m_simple_cmp,
969
94.2k
        ossl_ec_GF2m_simple_make_affine,
970
94.2k
        ossl_ec_GF2m_simple_points_make_affine,
971
94.2k
        ec_GF2m_simple_points_mul,
972
94.2k
        0, /* precompute_mult */
973
94.2k
        0, /* have_precompute_mult */
974
94.2k
        ossl_ec_GF2m_simple_field_mul,
975
94.2k
        ossl_ec_GF2m_simple_field_sqr,
976
94.2k
        ossl_ec_GF2m_simple_field_div,
977
94.2k
        ec_GF2m_simple_field_inv,
978
94.2k
        0, /* field_encode */
979
94.2k
        0, /* field_decode */
980
94.2k
        0, /* field_set_to_one */
981
94.2k
        ossl_ec_key_simple_priv2oct,
982
94.2k
        ossl_ec_key_simple_oct2priv,
983
94.2k
        0, /* set private */
984
94.2k
        ossl_ec_key_simple_generate_key,
985
94.2k
        ossl_ec_key_simple_check_key,
986
94.2k
        ossl_ec_key_simple_generate_public_key,
987
94.2k
        0, /* keycopy */
988
94.2k
        0, /* keyfinish */
989
94.2k
        ossl_ecdh_simple_compute_key,
990
94.2k
        ossl_ecdsa_simple_sign_setup,
991
94.2k
        ossl_ecdsa_simple_sign_sig,
992
94.2k
        ossl_ecdsa_simple_verify_sig,
993
94.2k
        0, /* field_inverse_mod_ord */
994
94.2k
        0, /* blind_coordinates */
995
94.2k
        ec_GF2m_simple_ladder_pre,
996
94.2k
        ec_GF2m_simple_ladder_step,
997
94.2k
        ec_GF2m_simple_ladder_post
998
94.2k
    };
999
1000
94.2k
    return &ret;
1001
94.2k
}
1002
1003
#endif