/src/openssl30/crypto/ec/ecp_nistp224.c
| Line | Count | Source (jump to first uncovered line) | 
| 1 |  | /* | 
| 2 |  |  * Copyright 2010-2021 The OpenSSL Project Authors. All Rights Reserved. | 
| 3 |  |  * | 
| 4 |  |  * Licensed under the Apache License 2.0 (the "License").  You may not use | 
| 5 |  |  * this file except in compliance with the License.  You can obtain a copy | 
| 6 |  |  * in the file LICENSE in the source distribution or at | 
| 7 |  |  * https://www.openssl.org/source/license.html | 
| 8 |  |  */ | 
| 9 |  |  | 
| 10 |  | /* Copyright 2011 Google Inc. | 
| 11 |  |  * | 
| 12 |  |  * Licensed under the Apache License, Version 2.0 (the "License"); | 
| 13 |  |  * | 
| 14 |  |  * you may not use this file except in compliance with the License. | 
| 15 |  |  * You may obtain a copy of the License at | 
| 16 |  |  * | 
| 17 |  |  *     http://www.apache.org/licenses/LICENSE-2.0 | 
| 18 |  |  * | 
| 19 |  |  *  Unless required by applicable law or agreed to in writing, software | 
| 20 |  |  *  distributed under the License is distributed on an "AS IS" BASIS, | 
| 21 |  |  *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
| 22 |  |  *  See the License for the specific language governing permissions and | 
| 23 |  |  *  limitations under the License. | 
| 24 |  |  */ | 
| 25 |  |  | 
| 26 |  | /* | 
| 27 |  |  * ECDSA low level APIs are deprecated for public use, but still ok for | 
| 28 |  |  * internal use. | 
| 29 |  |  */ | 
| 30 |  | #include "internal/deprecated.h" | 
| 31 |  |  | 
| 32 |  | /* | 
| 33 |  |  * A 64-bit implementation of the NIST P-224 elliptic curve point multiplication | 
| 34 |  |  * | 
| 35 |  |  * Inspired by Daniel J. Bernstein's public domain nistp224 implementation | 
| 36 |  |  * and Adam Langley's public domain 64-bit C implementation of curve25519 | 
| 37 |  |  */ | 
| 38 |  |  | 
| 39 |  | #include <openssl/opensslconf.h> | 
| 40 |  |  | 
| 41 |  | #include <stdint.h> | 
| 42 |  | #include <string.h> | 
| 43 |  | #include <openssl/err.h> | 
| 44 |  | #include "ec_local.h" | 
| 45 |  |  | 
| 46 |  | #include "internal/numbers.h" | 
| 47 |  |  | 
| 48 |  | #ifndef INT128_MAX | 
| 49 |  | # error "Your compiler doesn't appear to support 128-bit integer types" | 
| 50 |  | #endif | 
| 51 |  |  | 
| 52 |  | typedef uint8_t u8; | 
| 53 |  | typedef uint64_t u64; | 
| 54 |  |  | 
| 55 |  | /******************************************************************************/ | 
| 56 |  | /*- | 
| 57 |  |  * INTERNAL REPRESENTATION OF FIELD ELEMENTS | 
| 58 |  |  * | 
| 59 |  |  * Field elements are represented as a_0 + 2^56*a_1 + 2^112*a_2 + 2^168*a_3 | 
| 60 |  |  * using 64-bit coefficients called 'limbs', | 
| 61 |  |  * and sometimes (for multiplication results) as | 
| 62 |  |  * b_0 + 2^56*b_1 + 2^112*b_2 + 2^168*b_3 + 2^224*b_4 + 2^280*b_5 + 2^336*b_6 | 
| 63 |  |  * using 128-bit coefficients called 'widelimbs'. | 
| 64 |  |  * A 4-limb representation is an 'felem'; | 
| 65 |  |  * a 7-widelimb representation is a 'widefelem'. | 
| 66 |  |  * Even within felems, bits of adjacent limbs overlap, and we don't always | 
| 67 |  |  * reduce the representations: we ensure that inputs to each felem | 
| 68 |  |  * multiplication satisfy a_i < 2^60, so outputs satisfy b_i < 4*2^60*2^60, | 
| 69 |  |  * and fit into a 128-bit word without overflow. The coefficients are then | 
| 70 |  |  * again partially reduced to obtain an felem satisfying a_i < 2^57. | 
| 71 |  |  * We only reduce to the unique minimal representation at the end of the | 
| 72 |  |  * computation. | 
| 73 |  |  */ | 
| 74 |  |  | 
| 75 |  | typedef uint64_t limb; | 
| 76 |  | typedef uint64_t limb_aX __attribute((__aligned__(1))); | 
| 77 |  | typedef uint128_t widelimb; | 
| 78 |  |  | 
| 79 |  | typedef limb felem[4]; | 
| 80 |  | typedef widelimb widefelem[7]; | 
| 81 |  |  | 
| 82 |  | /* | 
| 83 |  |  * Field element represented as a byte array. 28*8 = 224 bits is also the | 
| 84 |  |  * group order size for the elliptic curve, and we also use this type for | 
| 85 |  |  * scalars for point multiplication. | 
| 86 |  |  */ | 
| 87 |  | typedef u8 felem_bytearray[28]; | 
| 88 |  |  | 
| 89 |  | static const felem_bytearray nistp224_curve_params[5] = { | 
| 90 |  |     {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* p */ | 
| 91 |  |      0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, | 
| 92 |  |      0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01}, | 
| 93 |  |     {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* a */ | 
| 94 |  |      0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, | 
| 95 |  |      0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE}, | 
| 96 |  |     {0xB4, 0x05, 0x0A, 0x85, 0x0C, 0x04, 0xB3, 0xAB, 0xF5, 0x41, /* b */ | 
| 97 |  |      0x32, 0x56, 0x50, 0x44, 0xB0, 0xB7, 0xD7, 0xBF, 0xD8, 0xBA, | 
| 98 |  |      0x27, 0x0B, 0x39, 0x43, 0x23, 0x55, 0xFF, 0xB4}, | 
| 99 |  |     {0xB7, 0x0E, 0x0C, 0xBD, 0x6B, 0xB4, 0xBF, 0x7F, 0x32, 0x13, /* x */ | 
| 100 |  |      0x90, 0xB9, 0x4A, 0x03, 0xC1, 0xD3, 0x56, 0xC2, 0x11, 0x22, | 
| 101 |  |      0x34, 0x32, 0x80, 0xD6, 0x11, 0x5C, 0x1D, 0x21}, | 
| 102 |  |     {0xbd, 0x37, 0x63, 0x88, 0xb5, 0xf7, 0x23, 0xfb, 0x4c, 0x22, /* y */ | 
| 103 |  |      0xdf, 0xe6, 0xcd, 0x43, 0x75, 0xa0, 0x5a, 0x07, 0x47, 0x64, | 
| 104 |  |      0x44, 0xd5, 0x81, 0x99, 0x85, 0x00, 0x7e, 0x34} | 
| 105 |  | }; | 
| 106 |  |  | 
| 107 |  | /*- | 
| 108 |  |  * Precomputed multiples of the standard generator | 
| 109 |  |  * Points are given in coordinates (X, Y, Z) where Z normally is 1 | 
| 110 |  |  * (0 for the point at infinity). | 
| 111 |  |  * For each field element, slice a_0 is word 0, etc. | 
| 112 |  |  * | 
| 113 |  |  * The table has 2 * 16 elements, starting with the following: | 
| 114 |  |  * index | bits    | point | 
| 115 |  |  * ------+---------+------------------------------ | 
| 116 |  |  *     0 | 0 0 0 0 | 0G | 
| 117 |  |  *     1 | 0 0 0 1 | 1G | 
| 118 |  |  *     2 | 0 0 1 0 | 2^56G | 
| 119 |  |  *     3 | 0 0 1 1 | (2^56 + 1)G | 
| 120 |  |  *     4 | 0 1 0 0 | 2^112G | 
| 121 |  |  *     5 | 0 1 0 1 | (2^112 + 1)G | 
| 122 |  |  *     6 | 0 1 1 0 | (2^112 + 2^56)G | 
| 123 |  |  *     7 | 0 1 1 1 | (2^112 + 2^56 + 1)G | 
| 124 |  |  *     8 | 1 0 0 0 | 2^168G | 
| 125 |  |  *     9 | 1 0 0 1 | (2^168 + 1)G | 
| 126 |  |  *    10 | 1 0 1 0 | (2^168 + 2^56)G | 
| 127 |  |  *    11 | 1 0 1 1 | (2^168 + 2^56 + 1)G | 
| 128 |  |  *    12 | 1 1 0 0 | (2^168 + 2^112)G | 
| 129 |  |  *    13 | 1 1 0 1 | (2^168 + 2^112 + 1)G | 
| 130 |  |  *    14 | 1 1 1 0 | (2^168 + 2^112 + 2^56)G | 
| 131 |  |  *    15 | 1 1 1 1 | (2^168 + 2^112 + 2^56 + 1)G | 
| 132 |  |  * followed by a copy of this with each element multiplied by 2^28. | 
| 133 |  |  * | 
| 134 |  |  * The reason for this is so that we can clock bits into four different | 
| 135 |  |  * locations when doing simple scalar multiplies against the base point, | 
| 136 |  |  * and then another four locations using the second 16 elements. | 
| 137 |  |  */ | 
| 138 |  | static const felem gmul[2][16][3] = { | 
| 139 |  | {{{0, 0, 0, 0}, | 
| 140 |  |   {0, 0, 0, 0}, | 
| 141 |  |   {0, 0, 0, 0}}, | 
| 142 |  |  {{0x3280d6115c1d21, 0xc1d356c2112234, 0x7f321390b94a03, 0xb70e0cbd6bb4bf}, | 
| 143 |  |   {0xd5819985007e34, 0x75a05a07476444, 0xfb4c22dfe6cd43, 0xbd376388b5f723}, | 
| 144 |  |   {1, 0, 0, 0}}, | 
| 145 |  |  {{0xfd9675666ebbe9, 0xbca7664d40ce5e, 0x2242df8d8a2a43, 0x1f49bbb0f99bc5}, | 
| 146 |  |   {0x29e0b892dc9c43, 0xece8608436e662, 0xdc858f185310d0, 0x9812dd4eb8d321}, | 
| 147 |  |   {1, 0, 0, 0}}, | 
| 148 |  |  {{0x6d3e678d5d8eb8, 0x559eed1cb362f1, 0x16e9a3bbce8a3f, 0xeedcccd8c2a748}, | 
| 149 |  |   {0xf19f90ed50266d, 0xabf2b4bf65f9df, 0x313865468fafec, 0x5cb379ba910a17}, | 
| 150 |  |   {1, 0, 0, 0}}, | 
| 151 |  |  {{0x0641966cab26e3, 0x91fb2991fab0a0, 0xefec27a4e13a0b, 0x0499aa8a5f8ebe}, | 
| 152 |  |   {0x7510407766af5d, 0x84d929610d5450, 0x81d77aae82f706, 0x6916f6d4338c5b}, | 
| 153 |  |   {1, 0, 0, 0}}, | 
| 154 |  |  {{0xea95ac3b1f15c6, 0x086000905e82d4, 0xdd323ae4d1c8b1, 0x932b56be7685a3}, | 
| 155 |  |   {0x9ef93dea25dbbf, 0x41665960f390f0, 0xfdec76dbe2a8a7, 0x523e80f019062a}, | 
| 156 |  |   {1, 0, 0, 0}}, | 
| 157 |  |  {{0x822fdd26732c73, 0xa01c83531b5d0f, 0x363f37347c1ba4, 0xc391b45c84725c}, | 
| 158 |  |   {0xbbd5e1b2d6ad24, 0xddfbcde19dfaec, 0xc393da7e222a7f, 0x1efb7890ede244}, | 
| 159 |  |   {1, 0, 0, 0}}, | 
| 160 |  |  {{0x4c9e90ca217da1, 0xd11beca79159bb, 0xff8d33c2c98b7c, 0x2610b39409f849}, | 
| 161 |  |   {0x44d1352ac64da0, 0xcdbb7b2c46b4fb, 0x966c079b753c89, 0xfe67e4e820b112}, | 
| 162 |  |   {1, 0, 0, 0}}, | 
| 163 |  |  {{0xe28cae2df5312d, 0xc71b61d16f5c6e, 0x79b7619a3e7c4c, 0x05c73240899b47}, | 
| 164 |  |   {0x9f7f6382c73e3a, 0x18615165c56bda, 0x641fab2116fd56, 0x72855882b08394}, | 
| 165 |  |   {1, 0, 0, 0}}, | 
| 166 |  |  {{0x0469182f161c09, 0x74a98ca8d00fb5, 0xb89da93489a3e0, 0x41c98768fb0c1d}, | 
| 167 |  |   {0xe5ea05fb32da81, 0x3dce9ffbca6855, 0x1cfe2d3fbf59e6, 0x0e5e03408738a7}, | 
| 168 |  |   {1, 0, 0, 0}}, | 
| 169 |  |  {{0xdab22b2333e87f, 0x4430137a5dd2f6, 0xe03ab9f738beb8, 0xcb0c5d0dc34f24}, | 
| 170 |  |   {0x764a7df0c8fda5, 0x185ba5c3fa2044, 0x9281d688bcbe50, 0xc40331df893881}, | 
| 171 |  |   {1, 0, 0, 0}}, | 
| 172 |  |  {{0xb89530796f0f60, 0xade92bd26909a3, 0x1a0c83fb4884da, 0x1765bf22a5a984}, | 
| 173 |  |   {0x772a9ee75db09e, 0x23bc6c67cec16f, 0x4c1edba8b14e2f, 0xe2a215d9611369}, | 
| 174 |  |   {1, 0, 0, 0}}, | 
| 175 |  |  {{0x571e509fb5efb3, 0xade88696410552, 0xc8ae85fada74fe, 0x6c7e4be83bbde3}, | 
| 176 |  |   {0xff9f51160f4652, 0xb47ce2495a6539, 0xa2946c53b582f4, 0x286d2db3ee9a60}, | 
| 177 |  |   {1, 0, 0, 0}}, | 
| 178 |  |  {{0x40bbd5081a44af, 0x0995183b13926c, 0xbcefba6f47f6d0, 0x215619e9cc0057}, | 
| 179 |  |   {0x8bc94d3b0df45e, 0xf11c54a3694f6f, 0x8631b93cdfe8b5, 0xe7e3f4b0982db9}, | 
| 180 |  |   {1, 0, 0, 0}}, | 
| 181 |  |  {{0xb17048ab3e1c7b, 0xac38f36ff8a1d8, 0x1c29819435d2c6, 0xc813132f4c07e9}, | 
| 182 |  |   {0x2891425503b11f, 0x08781030579fea, 0xf5426ba5cc9674, 0x1e28ebf18562bc}, | 
| 183 |  |   {1, 0, 0, 0}}, | 
| 184 |  |  {{0x9f31997cc864eb, 0x06cd91d28b5e4c, 0xff17036691a973, 0xf1aef351497c58}, | 
| 185 |  |   {0xdd1f2d600564ff, 0xdead073b1402db, 0x74a684435bd693, 0xeea7471f962558}, | 
| 186 |  |   {1, 0, 0, 0}}}, | 
| 187 |  | {{{0, 0, 0, 0}, | 
| 188 |  |   {0, 0, 0, 0}, | 
| 189 |  |   {0, 0, 0, 0}}, | 
| 190 |  |  {{0x9665266dddf554, 0x9613d78b60ef2d, 0xce27a34cdba417, 0xd35ab74d6afc31}, | 
| 191 |  |   {0x85ccdd22deb15e, 0x2137e5783a6aab, 0xa141cffd8c93c6, 0x355a1830e90f2d}, | 
| 192 |  |   {1, 0, 0, 0}}, | 
| 193 |  |  {{0x1a494eadaade65, 0xd6da4da77fe53c, 0xe7992996abec86, 0x65c3553c6090e3}, | 
| 194 |  |   {0xfa610b1fb09346, 0xf1c6540b8a4aaf, 0xc51a13ccd3cbab, 0x02995b1b18c28a}, | 
| 195 |  |   {1, 0, 0, 0}}, | 
| 196 |  |  {{0x7874568e7295ef, 0x86b419fbe38d04, 0xdc0690a7550d9a, 0xd3966a44beac33}, | 
| 197 |  |   {0x2b7280ec29132f, 0xbeaa3b6a032df3, 0xdc7dd88ae41200, 0xd25e2513e3a100}, | 
| 198 |  |   {1, 0, 0, 0}}, | 
| 199 |  |  {{0x924857eb2efafd, 0xac2bce41223190, 0x8edaa1445553fc, 0x825800fd3562d5}, | 
| 200 |  |   {0x8d79148ea96621, 0x23a01c3dd9ed8d, 0xaf8b219f9416b5, 0xd8db0cc277daea}, | 
| 201 |  |   {1, 0, 0, 0}}, | 
| 202 |  |  {{0x76a9c3b1a700f0, 0xe9acd29bc7e691, 0x69212d1a6b0327, 0x6322e97fe154be}, | 
| 203 |  |   {0x469fc5465d62aa, 0x8d41ed18883b05, 0x1f8eae66c52b88, 0xe4fcbe9325be51}, | 
| 204 |  |   {1, 0, 0, 0}}, | 
| 205 |  |  {{0x825fdf583cac16, 0x020b857c7b023a, 0x683c17744b0165, 0x14ffd0a2daf2f1}, | 
| 206 |  |   {0x323b36184218f9, 0x4944ec4e3b47d4, 0xc15b3080841acf, 0x0bced4b01a28bb}, | 
| 207 |  |   {1, 0, 0, 0}}, | 
| 208 |  |  {{0x92ac22230df5c4, 0x52f33b4063eda8, 0xcb3f19870c0c93, 0x40064f2ba65233}, | 
| 209 |  |   {0xfe16f0924f8992, 0x012da25af5b517, 0x1a57bb24f723a6, 0x06f8bc76760def}, | 
| 210 |  |   {1, 0, 0, 0}}, | 
| 211 |  |  {{0x4a7084f7817cb9, 0xbcab0738ee9a78, 0x3ec11e11d9c326, 0xdc0fe90e0f1aae}, | 
| 212 |  |   {0xcf639ea5f98390, 0x5c350aa22ffb74, 0x9afae98a4047b7, 0x956ec2d617fc45}, | 
| 213 |  |   {1, 0, 0, 0}}, | 
| 214 |  |  {{0x4306d648c1be6a, 0x9247cd8bc9a462, 0xf5595e377d2f2e, 0xbd1c3caff1a52e}, | 
| 215 |  |   {0x045e14472409d0, 0x29f3e17078f773, 0x745a602b2d4f7d, 0x191837685cdfbb}, | 
| 216 |  |   {1, 0, 0, 0}}, | 
| 217 |  |  {{0x5b6ee254a8cb79, 0x4953433f5e7026, 0xe21faeb1d1def4, 0xc4c225785c09de}, | 
| 218 |  |   {0x307ce7bba1e518, 0x31b125b1036db8, 0x47e91868839e8f, 0xc765866e33b9f3}, | 
| 219 |  |   {1, 0, 0, 0}}, | 
| 220 |  |  {{0x3bfece24f96906, 0x4794da641e5093, 0xde5df64f95db26, 0x297ecd89714b05}, | 
| 221 |  |   {0x701bd3ebb2c3aa, 0x7073b4f53cb1d5, 0x13c5665658af16, 0x9895089d66fe58}, | 
| 222 |  |   {1, 0, 0, 0}}, | 
| 223 |  |  {{0x0fef05f78c4790, 0x2d773633b05d2e, 0x94229c3a951c94, 0xbbbd70df4911bb}, | 
| 224 |  |   {0xb2c6963d2c1168, 0x105f47a72b0d73, 0x9fdf6111614080, 0x7b7e94b39e67b0}, | 
| 225 |  |   {1, 0, 0, 0}}, | 
| 226 |  |  {{0xad1a7d6efbe2b3, 0xf012482c0da69d, 0x6b3bdf12438345, 0x40d7558d7aa4d9}, | 
| 227 |  |   {0x8a09fffb5c6d3d, 0x9a356e5d9ffd38, 0x5973f15f4f9b1c, 0xdcd5f59f63c3ea}, | 
| 228 |  |   {1, 0, 0, 0}}, | 
| 229 |  |  {{0xacf39f4c5ca7ab, 0x4c8071cc5fd737, 0xc64e3602cd1184, 0x0acd4644c9abba}, | 
| 230 |  |   {0x6c011a36d8bf6e, 0xfecd87ba24e32a, 0x19f6f56574fad8, 0x050b204ced9405}, | 
| 231 |  |   {1, 0, 0, 0}}, | 
| 232 |  |  {{0xed4f1cae7d9a96, 0x5ceef7ad94c40a, 0x778e4a3bf3ef9b, 0x7405783dc3b55e}, | 
| 233 |  |   {0x32477c61b6e8c6, 0xb46a97570f018b, 0x91176d0a7e95d1, 0x3df90fbc4c7d0e}, | 
| 234 |  |   {1, 0, 0, 0}}} | 
| 235 |  | }; | 
| 236 |  |  | 
| 237 |  | /* Precomputation for the group generator. */ | 
| 238 |  | struct nistp224_pre_comp_st { | 
| 239 |  |     felem g_pre_comp[2][16][3]; | 
| 240 |  |     CRYPTO_REF_COUNT references; | 
| 241 |  |     CRYPTO_RWLOCK *lock; | 
| 242 |  | }; | 
| 243 |  |  | 
| 244 |  | const EC_METHOD *EC_GFp_nistp224_method(void) | 
| 245 | 23.8k | { | 
| 246 | 23.8k |     static const EC_METHOD ret = { | 
| 247 | 23.8k |         EC_FLAGS_DEFAULT_OCT, | 
| 248 | 23.8k |         NID_X9_62_prime_field, | 
| 249 | 23.8k |         ossl_ec_GFp_nistp224_group_init, | 
| 250 | 23.8k |         ossl_ec_GFp_simple_group_finish, | 
| 251 | 23.8k |         ossl_ec_GFp_simple_group_clear_finish, | 
| 252 | 23.8k |         ossl_ec_GFp_nist_group_copy, | 
| 253 | 23.8k |         ossl_ec_GFp_nistp224_group_set_curve, | 
| 254 | 23.8k |         ossl_ec_GFp_simple_group_get_curve, | 
| 255 | 23.8k |         ossl_ec_GFp_simple_group_get_degree, | 
| 256 | 23.8k |         ossl_ec_group_simple_order_bits, | 
| 257 | 23.8k |         ossl_ec_GFp_simple_group_check_discriminant, | 
| 258 | 23.8k |         ossl_ec_GFp_simple_point_init, | 
| 259 | 23.8k |         ossl_ec_GFp_simple_point_finish, | 
| 260 | 23.8k |         ossl_ec_GFp_simple_point_clear_finish, | 
| 261 | 23.8k |         ossl_ec_GFp_simple_point_copy, | 
| 262 | 23.8k |         ossl_ec_GFp_simple_point_set_to_infinity, | 
| 263 | 23.8k |         ossl_ec_GFp_simple_point_set_affine_coordinates, | 
| 264 | 23.8k |         ossl_ec_GFp_nistp224_point_get_affine_coordinates, | 
| 265 | 23.8k |         0 /* point_set_compressed_coordinates */ , | 
| 266 | 23.8k |         0 /* point2oct */ , | 
| 267 | 23.8k |         0 /* oct2point */ , | 
| 268 | 23.8k |         ossl_ec_GFp_simple_add, | 
| 269 | 23.8k |         ossl_ec_GFp_simple_dbl, | 
| 270 | 23.8k |         ossl_ec_GFp_simple_invert, | 
| 271 | 23.8k |         ossl_ec_GFp_simple_is_at_infinity, | 
| 272 | 23.8k |         ossl_ec_GFp_simple_is_on_curve, | 
| 273 | 23.8k |         ossl_ec_GFp_simple_cmp, | 
| 274 | 23.8k |         ossl_ec_GFp_simple_make_affine, | 
| 275 | 23.8k |         ossl_ec_GFp_simple_points_make_affine, | 
| 276 | 23.8k |         ossl_ec_GFp_nistp224_points_mul, | 
| 277 | 23.8k |         ossl_ec_GFp_nistp224_precompute_mult, | 
| 278 | 23.8k |         ossl_ec_GFp_nistp224_have_precompute_mult, | 
| 279 | 23.8k |         ossl_ec_GFp_nist_field_mul, | 
| 280 | 23.8k |         ossl_ec_GFp_nist_field_sqr, | 
| 281 | 23.8k |         0 /* field_div */ , | 
| 282 | 23.8k |         ossl_ec_GFp_simple_field_inv, | 
| 283 | 23.8k |         0 /* field_encode */ , | 
| 284 | 23.8k |         0 /* field_decode */ , | 
| 285 | 23.8k |         0,                      /* field_set_to_one */ | 
| 286 | 23.8k |         ossl_ec_key_simple_priv2oct, | 
| 287 | 23.8k |         ossl_ec_key_simple_oct2priv, | 
| 288 | 23.8k |         0, /* set private */ | 
| 289 | 23.8k |         ossl_ec_key_simple_generate_key, | 
| 290 | 23.8k |         ossl_ec_key_simple_check_key, | 
| 291 | 23.8k |         ossl_ec_key_simple_generate_public_key, | 
| 292 | 23.8k |         0, /* keycopy */ | 
| 293 | 23.8k |         0, /* keyfinish */ | 
| 294 | 23.8k |         ossl_ecdh_simple_compute_key, | 
| 295 | 23.8k |         ossl_ecdsa_simple_sign_setup, | 
| 296 | 23.8k |         ossl_ecdsa_simple_sign_sig, | 
| 297 | 23.8k |         ossl_ecdsa_simple_verify_sig, | 
| 298 | 23.8k |         0, /* field_inverse_mod_ord */ | 
| 299 | 23.8k |         0, /* blind_coordinates */ | 
| 300 | 23.8k |         0, /* ladder_pre */ | 
| 301 | 23.8k |         0, /* ladder_step */ | 
| 302 | 23.8k |         0  /* ladder_post */ | 
| 303 | 23.8k |     }; | 
| 304 |  |  | 
| 305 | 23.8k |     return &ret; | 
| 306 | 23.8k | } | 
| 307 |  |  | 
| 308 |  | /* | 
| 309 |  |  * Helper functions to convert field elements to/from internal representation | 
| 310 |  |  */ | 
| 311 |  | static void bin28_to_felem(felem out, const u8 in[28]) | 
| 312 | 2.85k | { | 
| 313 | 2.85k |     out[0] = *((const limb *)(in)) & 0x00ffffffffffffff; | 
| 314 | 2.85k |     out[1] = (*((const limb_aX *)(in + 7))) & 0x00ffffffffffffff; | 
| 315 | 2.85k |     out[2] = (*((const limb_aX *)(in + 14))) & 0x00ffffffffffffff; | 
| 316 | 2.85k |     out[3] = (*((const limb_aX *)(in + 20))) >> 8; | 
| 317 | 2.85k | } | 
| 318 |  |  | 
| 319 |  | static void felem_to_bin28(u8 out[28], const felem in) | 
| 320 | 3.37k | { | 
| 321 | 3.37k |     unsigned i; | 
| 322 | 26.9k |     for (i = 0; i < 7; ++i) { | 
| 323 | 23.5k |         out[i] = in[0] >> (8 * i); | 
| 324 | 23.5k |         out[i + 7] = in[1] >> (8 * i); | 
| 325 | 23.5k |         out[i + 14] = in[2] >> (8 * i); | 
| 326 | 23.5k |         out[i + 21] = in[3] >> (8 * i); | 
| 327 | 23.5k |     } | 
| 328 | 3.37k | } | 
| 329 |  |  | 
| 330 |  | /* From OpenSSL BIGNUM to internal representation */ | 
| 331 |  | static int BN_to_felem(felem out, const BIGNUM *bn) | 
| 332 | 2.85k | { | 
| 333 | 2.85k |     felem_bytearray b_out; | 
| 334 | 2.85k |     int num_bytes; | 
| 335 |  |  | 
| 336 | 2.85k |     if (BN_is_negative(bn)) { | 
| 337 | 0 |         ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE); | 
| 338 | 0 |         return 0; | 
| 339 | 0 |     } | 
| 340 | 2.85k |     num_bytes = BN_bn2lebinpad(bn, b_out, sizeof(b_out)); | 
| 341 | 2.85k |     if (num_bytes < 0) { | 
| 342 | 0 |         ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE); | 
| 343 | 0 |         return 0; | 
| 344 | 0 |     } | 
| 345 | 2.85k |     bin28_to_felem(out, b_out); | 
| 346 | 2.85k |     return 1; | 
| 347 | 2.85k | } | 
| 348 |  |  | 
| 349 |  | /* From internal representation to OpenSSL BIGNUM */ | 
| 350 |  | static BIGNUM *felem_to_BN(BIGNUM *out, const felem in) | 
| 351 | 3.37k | { | 
| 352 | 3.37k |     felem_bytearray b_out; | 
| 353 | 3.37k |     felem_to_bin28(b_out, in); | 
| 354 | 3.37k |     return BN_lebin2bn(b_out, sizeof(b_out), out); | 
| 355 | 3.37k | } | 
| 356 |  |  | 
| 357 |  | /******************************************************************************/ | 
| 358 |  | /*- | 
| 359 |  |  *                              FIELD OPERATIONS | 
| 360 |  |  * | 
| 361 |  |  * Field operations, using the internal representation of field elements. | 
| 362 |  |  * NB! These operations are specific to our point multiplication and cannot be | 
| 363 |  |  * expected to be correct in general - e.g., multiplication with a large scalar | 
| 364 |  |  * will cause an overflow. | 
| 365 |  |  * | 
| 366 |  |  */ | 
| 367 |  |  | 
| 368 |  | static void felem_one(felem out) | 
| 369 | 0 | { | 
| 370 | 0 |     out[0] = 1; | 
| 371 | 0 |     out[1] = 0; | 
| 372 | 0 |     out[2] = 0; | 
| 373 | 0 |     out[3] = 0; | 
| 374 | 0 | } | 
| 375 |  |  | 
| 376 |  | static void felem_assign(felem out, const felem in) | 
| 377 | 279k | { | 
| 378 | 279k |     out[0] = in[0]; | 
| 379 | 279k |     out[1] = in[1]; | 
| 380 | 279k |     out[2] = in[2]; | 
| 381 | 279k |     out[3] = in[3]; | 
| 382 | 279k | } | 
| 383 |  |  | 
| 384 |  | /* Sum two field elements: out += in */ | 
| 385 |  | static void felem_sum(felem out, const felem in) | 
| 386 | 109k | { | 
| 387 | 109k |     out[0] += in[0]; | 
| 388 | 109k |     out[1] += in[1]; | 
| 389 | 109k |     out[2] += in[2]; | 
| 390 | 109k |     out[3] += in[3]; | 
| 391 | 109k | } | 
| 392 |  |  | 
| 393 |  | /* Subtract field elements: out -= in */ | 
| 394 |  | /* Assumes in[i] < 2^57 */ | 
| 395 |  | static void felem_diff(felem out, const felem in) | 
| 396 | 92.1k | { | 
| 397 | 92.1k |     static const limb two58p2 = (((limb) 1) << 58) + (((limb) 1) << 2); | 
| 398 | 92.1k |     static const limb two58m2 = (((limb) 1) << 58) - (((limb) 1) << 2); | 
| 399 | 92.1k |     static const limb two58m42m2 = (((limb) 1) << 58) - | 
| 400 | 92.1k |         (((limb) 1) << 42) - (((limb) 1) << 2); | 
| 401 |  |  | 
| 402 |  |     /* Add 0 mod 2^224-2^96+1 to ensure out > in */ | 
| 403 | 92.1k |     out[0] += two58p2; | 
| 404 | 92.1k |     out[1] += two58m42m2; | 
| 405 | 92.1k |     out[2] += two58m2; | 
| 406 | 92.1k |     out[3] += two58m2; | 
| 407 |  |  | 
| 408 | 92.1k |     out[0] -= in[0]; | 
| 409 | 92.1k |     out[1] -= in[1]; | 
| 410 | 92.1k |     out[2] -= in[2]; | 
| 411 | 92.1k |     out[3] -= in[3]; | 
| 412 | 92.1k | } | 
| 413 |  |  | 
| 414 |  | /* Subtract in unreduced 128-bit mode: out -= in */ | 
| 415 |  | /* Assumes in[i] < 2^119 */ | 
| 416 |  | static void widefelem_diff(widefelem out, const widefelem in) | 
| 417 | 55.5k | { | 
| 418 | 55.5k |     static const widelimb two120 = ((widelimb) 1) << 120; | 
| 419 | 55.5k |     static const widelimb two120m64 = (((widelimb) 1) << 120) - | 
| 420 | 55.5k |         (((widelimb) 1) << 64); | 
| 421 | 55.5k |     static const widelimb two120m104m64 = (((widelimb) 1) << 120) - | 
| 422 | 55.5k |         (((widelimb) 1) << 104) - (((widelimb) 1) << 64); | 
| 423 |  |  | 
| 424 |  |     /* Add 0 mod 2^224-2^96+1 to ensure out > in */ | 
| 425 | 55.5k |     out[0] += two120; | 
| 426 | 55.5k |     out[1] += two120m64; | 
| 427 | 55.5k |     out[2] += two120m64; | 
| 428 | 55.5k |     out[3] += two120; | 
| 429 | 55.5k |     out[4] += two120m104m64; | 
| 430 | 55.5k |     out[5] += two120m64; | 
| 431 | 55.5k |     out[6] += two120m64; | 
| 432 |  |  | 
| 433 | 55.5k |     out[0] -= in[0]; | 
| 434 | 55.5k |     out[1] -= in[1]; | 
| 435 | 55.5k |     out[2] -= in[2]; | 
| 436 | 55.5k |     out[3] -= in[3]; | 
| 437 | 55.5k |     out[4] -= in[4]; | 
| 438 | 55.5k |     out[5] -= in[5]; | 
| 439 | 55.5k |     out[6] -= in[6]; | 
| 440 | 55.5k | } | 
| 441 |  |  | 
| 442 |  | /* Subtract in mixed mode: out128 -= in64 */ | 
| 443 |  | /* in[i] < 2^63 */ | 
| 444 |  | static void felem_diff_128_64(widefelem out, const felem in) | 
| 445 | 155k | { | 
| 446 | 155k |     static const widelimb two64p8 = (((widelimb) 1) << 64) + | 
| 447 | 155k |         (((widelimb) 1) << 8); | 
| 448 | 155k |     static const widelimb two64m8 = (((widelimb) 1) << 64) - | 
| 449 | 155k |         (((widelimb) 1) << 8); | 
| 450 | 155k |     static const widelimb two64m48m8 = (((widelimb) 1) << 64) - | 
| 451 | 155k |         (((widelimb) 1) << 48) - (((widelimb) 1) << 8); | 
| 452 |  |  | 
| 453 |  |     /* Add 0 mod 2^224-2^96+1 to ensure out > in */ | 
| 454 | 155k |     out[0] += two64p8; | 
| 455 | 155k |     out[1] += two64m48m8; | 
| 456 | 155k |     out[2] += two64m8; | 
| 457 | 155k |     out[3] += two64m8; | 
| 458 |  |  | 
| 459 | 155k |     out[0] -= in[0]; | 
| 460 | 155k |     out[1] -= in[1]; | 
| 461 | 155k |     out[2] -= in[2]; | 
| 462 | 155k |     out[3] -= in[3]; | 
| 463 | 155k | } | 
| 464 |  |  | 
| 465 |  | /* | 
| 466 |  |  * Multiply a field element by a scalar: out = out * scalar The scalars we | 
| 467 |  |  * actually use are small, so results fit without overflow | 
| 468 |  |  */ | 
| 469 |  | static void felem_scalar(felem out, const limb scalar) | 
| 470 | 128k | { | 
| 471 | 128k |     out[0] *= scalar; | 
| 472 | 128k |     out[1] *= scalar; | 
| 473 | 128k |     out[2] *= scalar; | 
| 474 | 128k |     out[3] *= scalar; | 
| 475 | 128k | } | 
| 476 |  |  | 
| 477 |  | /* | 
| 478 |  |  * Multiply an unreduced field element by a scalar: out = out * scalar The | 
| 479 |  |  * scalars we actually use are small, so results fit without overflow | 
| 480 |  |  */ | 
| 481 |  | static void widefelem_scalar(widefelem out, const widelimb scalar) | 
| 482 | 36.5k | { | 
| 483 | 36.5k |     out[0] *= scalar; | 
| 484 | 36.5k |     out[1] *= scalar; | 
| 485 | 36.5k |     out[2] *= scalar; | 
| 486 | 36.5k |     out[3] *= scalar; | 
| 487 | 36.5k |     out[4] *= scalar; | 
| 488 | 36.5k |     out[5] *= scalar; | 
| 489 | 36.5k |     out[6] *= scalar; | 
| 490 | 36.5k | } | 
| 491 |  |  | 
| 492 |  | /* Square a field element: out = in^2 */ | 
| 493 |  | static void felem_square(widefelem out, const felem in) | 
| 494 | 429k | { | 
| 495 | 429k |     limb tmp0, tmp1, tmp2; | 
| 496 | 429k |     tmp0 = 2 * in[0]; | 
| 497 | 429k |     tmp1 = 2 * in[1]; | 
| 498 | 429k |     tmp2 = 2 * in[2]; | 
| 499 | 429k |     out[0] = ((widelimb) in[0]) * in[0]; | 
| 500 | 429k |     out[1] = ((widelimb) in[0]) * tmp1; | 
| 501 | 429k |     out[2] = ((widelimb) in[0]) * tmp2 + ((widelimb) in[1]) * in[1]; | 
| 502 | 429k |     out[3] = ((widelimb) in[3]) * tmp0 + ((widelimb) in[1]) * tmp2; | 
| 503 | 429k |     out[4] = ((widelimb) in[3]) * tmp1 + ((widelimb) in[2]) * in[2]; | 
| 504 | 429k |     out[5] = ((widelimb) in[3]) * tmp2; | 
| 505 | 429k |     out[6] = ((widelimb) in[3]) * in[3]; | 
| 506 | 429k | } | 
| 507 |  |  | 
| 508 |  | /* Multiply two field elements: out = in1 * in2 */ | 
| 509 |  | static void felem_mul(widefelem out, const felem in1, const felem in2) | 
| 510 | 300k | { | 
| 511 | 300k |     out[0] = ((widelimb) in1[0]) * in2[0]; | 
| 512 | 300k |     out[1] = ((widelimb) in1[0]) * in2[1] + ((widelimb) in1[1]) * in2[0]; | 
| 513 | 300k |     out[2] = ((widelimb) in1[0]) * in2[2] + ((widelimb) in1[1]) * in2[1] + | 
| 514 | 300k |              ((widelimb) in1[2]) * in2[0]; | 
| 515 | 300k |     out[3] = ((widelimb) in1[0]) * in2[3] + ((widelimb) in1[1]) * in2[2] + | 
| 516 | 300k |              ((widelimb) in1[2]) * in2[1] + ((widelimb) in1[3]) * in2[0]; | 
| 517 | 300k |     out[4] = ((widelimb) in1[1]) * in2[3] + ((widelimb) in1[2]) * in2[2] + | 
| 518 | 300k |              ((widelimb) in1[3]) * in2[1]; | 
| 519 | 300k |     out[5] = ((widelimb) in1[2]) * in2[3] + ((widelimb) in1[3]) * in2[2]; | 
| 520 | 300k |     out[6] = ((widelimb) in1[3]) * in2[3]; | 
| 521 | 300k | } | 
| 522 |  |  | 
| 523 |  | /*- | 
| 524 |  |  * Reduce seven 128-bit coefficients to four 64-bit coefficients. | 
| 525 |  |  * Requires in[i] < 2^126, | 
| 526 |  |  * ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16 */ | 
| 527 |  | static void felem_reduce(felem out, const widefelem in) | 
| 528 | 681k | { | 
| 529 | 681k |     static const widelimb two127p15 = (((widelimb) 1) << 127) + | 
| 530 | 681k |         (((widelimb) 1) << 15); | 
| 531 | 681k |     static const widelimb two127m71 = (((widelimb) 1) << 127) - | 
| 532 | 681k |         (((widelimb) 1) << 71); | 
| 533 | 681k |     static const widelimb two127m71m55 = (((widelimb) 1) << 127) - | 
| 534 | 681k |         (((widelimb) 1) << 71) - (((widelimb) 1) << 55); | 
| 535 | 681k |     widelimb output[5]; | 
| 536 |  |  | 
| 537 |  |     /* Add 0 mod 2^224-2^96+1 to ensure all differences are positive */ | 
| 538 | 681k |     output[0] = in[0] + two127p15; | 
| 539 | 681k |     output[1] = in[1] + two127m71m55; | 
| 540 | 681k |     output[2] = in[2] + two127m71; | 
| 541 | 681k |     output[3] = in[3]; | 
| 542 | 681k |     output[4] = in[4]; | 
| 543 |  |  | 
| 544 |  |     /* Eliminate in[4], in[5], in[6] */ | 
| 545 | 681k |     output[4] += in[6] >> 16; | 
| 546 | 681k |     output[3] += (in[6] & 0xffff) << 40; | 
| 547 | 681k |     output[2] -= in[6]; | 
| 548 |  |  | 
| 549 | 681k |     output[3] += in[5] >> 16; | 
| 550 | 681k |     output[2] += (in[5] & 0xffff) << 40; | 
| 551 | 681k |     output[1] -= in[5]; | 
| 552 |  |  | 
| 553 | 681k |     output[2] += output[4] >> 16; | 
| 554 | 681k |     output[1] += (output[4] & 0xffff) << 40; | 
| 555 | 681k |     output[0] -= output[4]; | 
| 556 |  |  | 
| 557 |  |     /* Carry 2 -> 3 -> 4 */ | 
| 558 | 681k |     output[3] += output[2] >> 56; | 
| 559 | 681k |     output[2] &= 0x00ffffffffffffff; | 
| 560 |  |  | 
| 561 | 681k |     output[4] = output[3] >> 56; | 
| 562 | 681k |     output[3] &= 0x00ffffffffffffff; | 
| 563 |  |  | 
| 564 |  |     /* Now output[2] < 2^56, output[3] < 2^56, output[4] < 2^72 */ | 
| 565 |  |  | 
| 566 |  |     /* Eliminate output[4] */ | 
| 567 | 681k |     output[2] += output[4] >> 16; | 
| 568 |  |     /* output[2] < 2^56 + 2^56 = 2^57 */ | 
| 569 | 681k |     output[1] += (output[4] & 0xffff) << 40; | 
| 570 | 681k |     output[0] -= output[4]; | 
| 571 |  |  | 
| 572 |  |     /* Carry 0 -> 1 -> 2 -> 3 */ | 
| 573 | 681k |     output[1] += output[0] >> 56; | 
| 574 | 681k |     out[0] = output[0] & 0x00ffffffffffffff; | 
| 575 |  |  | 
| 576 | 681k |     output[2] += output[1] >> 56; | 
| 577 |  |     /* output[2] < 2^57 + 2^72 */ | 
| 578 | 681k |     out[1] = output[1] & 0x00ffffffffffffff; | 
| 579 | 681k |     output[3] += output[2] >> 56; | 
| 580 |  |     /* output[3] <= 2^56 + 2^16 */ | 
| 581 | 681k |     out[2] = output[2] & 0x00ffffffffffffff; | 
| 582 |  |  | 
| 583 |  |     /*- | 
| 584 |  |      * out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, | 
| 585 |  |      * out[3] <= 2^56 + 2^16 (due to final carry), | 
| 586 |  |      * so out < 2*p | 
| 587 |  |      */ | 
| 588 | 681k |     out[3] = output[3]; | 
| 589 | 681k | } | 
| 590 |  |  | 
| 591 |  | static void felem_square_reduce(felem out, const felem in) | 
| 592 | 0 | { | 
| 593 | 0 |     widefelem tmp; | 
| 594 | 0 |     felem_square(tmp, in); | 
| 595 | 0 |     felem_reduce(out, tmp); | 
| 596 | 0 | } | 
| 597 |  |  | 
| 598 |  | static void felem_mul_reduce(felem out, const felem in1, const felem in2) | 
| 599 | 0 | { | 
| 600 | 0 |     widefelem tmp; | 
| 601 | 0 |     felem_mul(tmp, in1, in2); | 
| 602 | 0 |     felem_reduce(out, tmp); | 
| 603 | 0 | } | 
| 604 |  |  | 
| 605 |  | /* | 
| 606 |  |  * Reduce to unique minimal representation. Requires 0 <= in < 2*p (always | 
| 607 |  |  * call felem_reduce first) | 
| 608 |  |  */ | 
| 609 |  | static void felem_contract(felem out, const felem in) | 
| 610 | 2.70k | { | 
| 611 | 2.70k |     static const int64_t two56 = ((limb) 1) << 56; | 
| 612 |  |     /* 0 <= in < 2*p, p = 2^224 - 2^96 + 1 */ | 
| 613 |  |     /* if in > p , reduce in = in - 2^224 + 2^96 - 1 */ | 
| 614 | 2.70k |     int64_t tmp[4], a; | 
| 615 | 2.70k |     tmp[0] = in[0]; | 
| 616 | 2.70k |     tmp[1] = in[1]; | 
| 617 | 2.70k |     tmp[2] = in[2]; | 
| 618 | 2.70k |     tmp[3] = in[3]; | 
| 619 |  |     /* Case 1: a = 1 iff in >= 2^224 */ | 
| 620 | 2.70k |     a = (in[3] >> 56); | 
| 621 | 2.70k |     tmp[0] -= a; | 
| 622 | 2.70k |     tmp[1] += a << 40; | 
| 623 | 2.70k |     tmp[3] &= 0x00ffffffffffffff; | 
| 624 |  |     /* | 
| 625 |  |      * Case 2: a = 0 iff p <= in < 2^224, i.e., the high 128 bits are all 1 | 
| 626 |  |      * and the lower part is non-zero | 
| 627 |  |      */ | 
| 628 | 2.70k |     a = ((in[3] & in[2] & (in[1] | 0x000000ffffffffff)) + 1) | | 
| 629 | 2.70k |         (((int64_t) (in[0] + (in[1] & 0x000000ffffffffff)) - 1) >> 63); | 
| 630 | 2.70k |     a &= 0x00ffffffffffffff; | 
| 631 |  |     /* turn a into an all-one mask (if a = 0) or an all-zero mask */ | 
| 632 | 2.70k |     a = (a - 1) >> 63; | 
| 633 |  |     /* subtract 2^224 - 2^96 + 1 if a is all-one */ | 
| 634 | 2.70k |     tmp[3] &= a ^ 0xffffffffffffffff; | 
| 635 | 2.70k |     tmp[2] &= a ^ 0xffffffffffffffff; | 
| 636 | 2.70k |     tmp[1] &= (a ^ 0xffffffffffffffff) | 0x000000ffffffffff; | 
| 637 | 2.70k |     tmp[0] -= 1 & a; | 
| 638 |  |  | 
| 639 |  |     /* | 
| 640 |  |      * eliminate negative coefficients: if tmp[0] is negative, tmp[1] must be | 
| 641 |  |      * non-zero, so we only need one step | 
| 642 |  |      */ | 
| 643 | 2.70k |     a = tmp[0] >> 63; | 
| 644 | 2.70k |     tmp[0] += two56 & a; | 
| 645 | 2.70k |     tmp[1] -= 1 & a; | 
| 646 |  |  | 
| 647 |  |     /* carry 1 -> 2 -> 3 */ | 
| 648 | 2.70k |     tmp[2] += tmp[1] >> 56; | 
| 649 | 2.70k |     tmp[1] &= 0x00ffffffffffffff; | 
| 650 |  |  | 
| 651 | 2.70k |     tmp[3] += tmp[2] >> 56; | 
| 652 | 2.70k |     tmp[2] &= 0x00ffffffffffffff; | 
| 653 |  |  | 
| 654 |  |     /* Now 0 <= out < p */ | 
| 655 | 2.70k |     out[0] = tmp[0]; | 
| 656 | 2.70k |     out[1] = tmp[1]; | 
| 657 | 2.70k |     out[2] = tmp[2]; | 
| 658 | 2.70k |     out[3] = tmp[3]; | 
| 659 | 2.70k | } | 
| 660 |  |  | 
| 661 |  | /* | 
| 662 |  |  * Get negative value: out = -in | 
| 663 |  |  * Requires in[i] < 2^63, | 
| 664 |  |  * ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16 | 
| 665 |  |  */ | 
| 666 |  | static void felem_neg(felem out, const felem in) | 
| 667 | 6.03k | { | 
| 668 | 6.03k |     widefelem tmp; | 
| 669 |  |  | 
| 670 | 6.03k |     memset(tmp, 0, sizeof(tmp)); | 
| 671 | 6.03k |     felem_diff_128_64(tmp, in); | 
| 672 | 6.03k |     felem_reduce(out, tmp); | 
| 673 | 6.03k | } | 
| 674 |  |  | 
| 675 |  | /* | 
| 676 |  |  * Zero-check: returns 1 if input is 0, and 0 otherwise. We know that field | 
| 677 |  |  * elements are reduced to in < 2^225, so we only need to check three cases: | 
| 678 |  |  * 0, 2^224 - 2^96 + 1, and 2^225 - 2^97 + 2 | 
| 679 |  |  */ | 
| 680 |  | static limb felem_is_zero(const felem in) | 
| 681 | 76.1k | { | 
| 682 | 76.1k |     limb zero, two224m96p1, two225m97p2; | 
| 683 |  |  | 
| 684 | 76.1k |     zero = in[0] | in[1] | in[2] | in[3]; | 
| 685 | 76.1k |     zero = (((int64_t) (zero) - 1) >> 63) & 1; | 
| 686 | 76.1k |     two224m96p1 = (in[0] ^ 1) | (in[1] ^ 0x00ffff0000000000) | 
| 687 | 76.1k |         | (in[2] ^ 0x00ffffffffffffff) | (in[3] ^ 0x00ffffffffffffff); | 
| 688 | 76.1k |     two224m96p1 = (((int64_t) (two224m96p1) - 1) >> 63) & 1; | 
| 689 | 76.1k |     two225m97p2 = (in[0] ^ 2) | (in[1] ^ 0x00fffe0000000000) | 
| 690 | 76.1k |         | (in[2] ^ 0x00ffffffffffffff) | (in[3] ^ 0x01ffffffffffffff); | 
| 691 | 76.1k |     two225m97p2 = (((int64_t) (two225m97p2) - 1) >> 63) & 1; | 
| 692 | 76.1k |     return (zero | two224m96p1 | two225m97p2); | 
| 693 | 76.1k | } | 
| 694 |  |  | 
| 695 |  | static int felem_is_zero_int(const void *in) | 
| 696 | 0 | { | 
| 697 | 0 |     return (int)(felem_is_zero(in) & ((limb) 1)); | 
| 698 | 0 | } | 
| 699 |  |  | 
| 700 |  | /* Invert a field element */ | 
| 701 |  | /* Computation chain copied from djb's code */ | 
| 702 |  | static void felem_inv(felem out, const felem in) | 
| 703 | 818 | { | 
| 704 | 818 |     felem ftmp, ftmp2, ftmp3, ftmp4; | 
| 705 | 818 |     widefelem tmp; | 
| 706 | 818 |     unsigned i; | 
| 707 |  |  | 
| 708 | 818 |     felem_square(tmp, in); | 
| 709 | 818 |     felem_reduce(ftmp, tmp);    /* 2 */ | 
| 710 | 818 |     felem_mul(tmp, in, ftmp); | 
| 711 | 818 |     felem_reduce(ftmp, tmp);    /* 2^2 - 1 */ | 
| 712 | 818 |     felem_square(tmp, ftmp); | 
| 713 | 818 |     felem_reduce(ftmp, tmp);    /* 2^3 - 2 */ | 
| 714 | 818 |     felem_mul(tmp, in, ftmp); | 
| 715 | 818 |     felem_reduce(ftmp, tmp);    /* 2^3 - 1 */ | 
| 716 | 818 |     felem_square(tmp, ftmp); | 
| 717 | 818 |     felem_reduce(ftmp2, tmp);   /* 2^4 - 2 */ | 
| 718 | 818 |     felem_square(tmp, ftmp2); | 
| 719 | 818 |     felem_reduce(ftmp2, tmp);   /* 2^5 - 4 */ | 
| 720 | 818 |     felem_square(tmp, ftmp2); | 
| 721 | 818 |     felem_reduce(ftmp2, tmp);   /* 2^6 - 8 */ | 
| 722 | 818 |     felem_mul(tmp, ftmp2, ftmp); | 
| 723 | 818 |     felem_reduce(ftmp, tmp);    /* 2^6 - 1 */ | 
| 724 | 818 |     felem_square(tmp, ftmp); | 
| 725 | 818 |     felem_reduce(ftmp2, tmp);   /* 2^7 - 2 */ | 
| 726 | 4.90k |     for (i = 0; i < 5; ++i) {   /* 2^12 - 2^6 */ | 
| 727 | 4.09k |         felem_square(tmp, ftmp2); | 
| 728 | 4.09k |         felem_reduce(ftmp2, tmp); | 
| 729 | 4.09k |     } | 
| 730 | 818 |     felem_mul(tmp, ftmp2, ftmp); | 
| 731 | 818 |     felem_reduce(ftmp2, tmp);   /* 2^12 - 1 */ | 
| 732 | 818 |     felem_square(tmp, ftmp2); | 
| 733 | 818 |     felem_reduce(ftmp3, tmp);   /* 2^13 - 2 */ | 
| 734 | 9.81k |     for (i = 0; i < 11; ++i) {  /* 2^24 - 2^12 */ | 
| 735 | 8.99k |         felem_square(tmp, ftmp3); | 
| 736 | 8.99k |         felem_reduce(ftmp3, tmp); | 
| 737 | 8.99k |     } | 
| 738 | 818 |     felem_mul(tmp, ftmp3, ftmp2); | 
| 739 | 818 |     felem_reduce(ftmp2, tmp);   /* 2^24 - 1 */ | 
| 740 | 818 |     felem_square(tmp, ftmp2); | 
| 741 | 818 |     felem_reduce(ftmp3, tmp);   /* 2^25 - 2 */ | 
| 742 | 19.6k |     for (i = 0; i < 23; ++i) {  /* 2^48 - 2^24 */ | 
| 743 | 18.8k |         felem_square(tmp, ftmp3); | 
| 744 | 18.8k |         felem_reduce(ftmp3, tmp); | 
| 745 | 18.8k |     } | 
| 746 | 818 |     felem_mul(tmp, ftmp3, ftmp2); | 
| 747 | 818 |     felem_reduce(ftmp3, tmp);   /* 2^48 - 1 */ | 
| 748 | 818 |     felem_square(tmp, ftmp3); | 
| 749 | 818 |     felem_reduce(ftmp4, tmp);   /* 2^49 - 2 */ | 
| 750 | 39.2k |     for (i = 0; i < 47; ++i) {  /* 2^96 - 2^48 */ | 
| 751 | 38.4k |         felem_square(tmp, ftmp4); | 
| 752 | 38.4k |         felem_reduce(ftmp4, tmp); | 
| 753 | 38.4k |     } | 
| 754 | 818 |     felem_mul(tmp, ftmp3, ftmp4); | 
| 755 | 818 |     felem_reduce(ftmp3, tmp);   /* 2^96 - 1 */ | 
| 756 | 818 |     felem_square(tmp, ftmp3); | 
| 757 | 818 |     felem_reduce(ftmp4, tmp);   /* 2^97 - 2 */ | 
| 758 | 19.6k |     for (i = 0; i < 23; ++i) {  /* 2^120 - 2^24 */ | 
| 759 | 18.8k |         felem_square(tmp, ftmp4); | 
| 760 | 18.8k |         felem_reduce(ftmp4, tmp); | 
| 761 | 18.8k |     } | 
| 762 | 818 |     felem_mul(tmp, ftmp2, ftmp4); | 
| 763 | 818 |     felem_reduce(ftmp2, tmp);   /* 2^120 - 1 */ | 
| 764 | 5.72k |     for (i = 0; i < 6; ++i) {   /* 2^126 - 2^6 */ | 
| 765 | 4.90k |         felem_square(tmp, ftmp2); | 
| 766 | 4.90k |         felem_reduce(ftmp2, tmp); | 
| 767 | 4.90k |     } | 
| 768 | 818 |     felem_mul(tmp, ftmp2, ftmp); | 
| 769 | 818 |     felem_reduce(ftmp, tmp);    /* 2^126 - 1 */ | 
| 770 | 818 |     felem_square(tmp, ftmp); | 
| 771 | 818 |     felem_reduce(ftmp, tmp);    /* 2^127 - 2 */ | 
| 772 | 818 |     felem_mul(tmp, ftmp, in); | 
| 773 | 818 |     felem_reduce(ftmp, tmp);    /* 2^127 - 1 */ | 
| 774 | 80.1k |     for (i = 0; i < 97; ++i) {  /* 2^224 - 2^97 */ | 
| 775 | 79.3k |         felem_square(tmp, ftmp); | 
| 776 | 79.3k |         felem_reduce(ftmp, tmp); | 
| 777 | 79.3k |     } | 
| 778 | 818 |     felem_mul(tmp, ftmp, ftmp3); | 
| 779 | 818 |     felem_reduce(out, tmp);     /* 2^224 - 2^96 - 1 */ | 
| 780 | 818 | } | 
| 781 |  |  | 
| 782 |  | /* | 
| 783 |  |  * Copy in constant time: if icopy == 1, copy in to out, if icopy == 0, copy | 
| 784 |  |  * out to itself. | 
| 785 |  |  */ | 
| 786 |  | static void copy_conditional(felem out, const felem in, limb icopy) | 
| 787 | 120k | { | 
| 788 | 120k |     unsigned i; | 
| 789 |  |     /* | 
| 790 |  |      * icopy is a (64-bit) 0 or 1, so copy is either all-zero or all-one | 
| 791 |  |      */ | 
| 792 | 120k |     const limb copy = -icopy; | 
| 793 | 601k |     for (i = 0; i < 4; ++i) { | 
| 794 | 481k |         const limb tmp = copy & (in[i] ^ out[i]); | 
| 795 | 481k |         out[i] ^= tmp; | 
| 796 | 481k |     } | 
| 797 | 120k | } | 
| 798 |  |  | 
| 799 |  | /******************************************************************************/ | 
| 800 |  | /*- | 
| 801 |  |  *                       ELLIPTIC CURVE POINT OPERATIONS | 
| 802 |  |  * | 
| 803 |  |  * Points are represented in Jacobian projective coordinates: | 
| 804 |  |  * (X, Y, Z) corresponds to the affine point (X/Z^2, Y/Z^3), | 
| 805 |  |  * or to the point at infinity if Z == 0. | 
| 806 |  |  * | 
| 807 |  |  */ | 
| 808 |  |  | 
| 809 |  | /*- | 
| 810 |  |  * Double an elliptic curve point: | 
| 811 |  |  * (X', Y', Z') = 2 * (X, Y, Z), where | 
| 812 |  |  * X' = (3 * (X - Z^2) * (X + Z^2))^2 - 8 * X * Y^2 | 
| 813 |  |  * Y' = 3 * (X - Z^2) * (X + Z^2) * (4 * X * Y^2 - X') - 8 * Y^4 | 
| 814 |  |  * Z' = (Y + Z)^2 - Y^2 - Z^2 = 2 * Y * Z | 
| 815 |  |  * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed, | 
| 816 |  |  * while x_out == y_in is not (maybe this works, but it's not tested). | 
| 817 |  |  */ | 
| 818 |  | static void | 
| 819 |  | point_double(felem x_out, felem y_out, felem z_out, | 
| 820 |  |              const felem x_in, const felem y_in, const felem z_in) | 
| 821 | 36.5k | { | 
| 822 | 36.5k |     widefelem tmp, tmp2; | 
| 823 | 36.5k |     felem delta, gamma, beta, alpha, ftmp, ftmp2; | 
| 824 |  |  | 
| 825 | 36.5k |     felem_assign(ftmp, x_in); | 
| 826 | 36.5k |     felem_assign(ftmp2, x_in); | 
| 827 |  |  | 
| 828 |  |     /* delta = z^2 */ | 
| 829 | 36.5k |     felem_square(tmp, z_in); | 
| 830 | 36.5k |     felem_reduce(delta, tmp); | 
| 831 |  |  | 
| 832 |  |     /* gamma = y^2 */ | 
| 833 | 36.5k |     felem_square(tmp, y_in); | 
| 834 | 36.5k |     felem_reduce(gamma, tmp); | 
| 835 |  |  | 
| 836 |  |     /* beta = x*gamma */ | 
| 837 | 36.5k |     felem_mul(tmp, x_in, gamma); | 
| 838 | 36.5k |     felem_reduce(beta, tmp); | 
| 839 |  |  | 
| 840 |  |     /* alpha = 3*(x-delta)*(x+delta) */ | 
| 841 | 36.5k |     felem_diff(ftmp, delta); | 
| 842 |  |     /* ftmp[i] < 2^57 + 2^58 + 2 < 2^59 */ | 
| 843 | 36.5k |     felem_sum(ftmp2, delta); | 
| 844 |  |     /* ftmp2[i] < 2^57 + 2^57 = 2^58 */ | 
| 845 | 36.5k |     felem_scalar(ftmp2, 3); | 
| 846 |  |     /* ftmp2[i] < 3 * 2^58 < 2^60 */ | 
| 847 | 36.5k |     felem_mul(tmp, ftmp, ftmp2); | 
| 848 |  |     /* tmp[i] < 2^60 * 2^59 * 4 = 2^121 */ | 
| 849 | 36.5k |     felem_reduce(alpha, tmp); | 
| 850 |  |  | 
| 851 |  |     /* x' = alpha^2 - 8*beta */ | 
| 852 | 36.5k |     felem_square(tmp, alpha); | 
| 853 |  |     /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */ | 
| 854 | 36.5k |     felem_assign(ftmp, beta); | 
| 855 | 36.5k |     felem_scalar(ftmp, 8); | 
| 856 |  |     /* ftmp[i] < 8 * 2^57 = 2^60 */ | 
| 857 | 36.5k |     felem_diff_128_64(tmp, ftmp); | 
| 858 |  |     /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */ | 
| 859 | 36.5k |     felem_reduce(x_out, tmp); | 
| 860 |  |  | 
| 861 |  |     /* z' = (y + z)^2 - gamma - delta */ | 
| 862 | 36.5k |     felem_sum(delta, gamma); | 
| 863 |  |     /* delta[i] < 2^57 + 2^57 = 2^58 */ | 
| 864 | 36.5k |     felem_assign(ftmp, y_in); | 
| 865 | 36.5k |     felem_sum(ftmp, z_in); | 
| 866 |  |     /* ftmp[i] < 2^57 + 2^57 = 2^58 */ | 
| 867 | 36.5k |     felem_square(tmp, ftmp); | 
| 868 |  |     /* tmp[i] < 4 * 2^58 * 2^58 = 2^118 */ | 
| 869 | 36.5k |     felem_diff_128_64(tmp, delta); | 
| 870 |  |     /* tmp[i] < 2^118 + 2^64 + 8 < 2^119 */ | 
| 871 | 36.5k |     felem_reduce(z_out, tmp); | 
| 872 |  |  | 
| 873 |  |     /* y' = alpha*(4*beta - x') - 8*gamma^2 */ | 
| 874 | 36.5k |     felem_scalar(beta, 4); | 
| 875 |  |     /* beta[i] < 4 * 2^57 = 2^59 */ | 
| 876 | 36.5k |     felem_diff(beta, x_out); | 
| 877 |  |     /* beta[i] < 2^59 + 2^58 + 2 < 2^60 */ | 
| 878 | 36.5k |     felem_mul(tmp, alpha, beta); | 
| 879 |  |     /* tmp[i] < 4 * 2^57 * 2^60 = 2^119 */ | 
| 880 | 36.5k |     felem_square(tmp2, gamma); | 
| 881 |  |     /* tmp2[i] < 4 * 2^57 * 2^57 = 2^116 */ | 
| 882 | 36.5k |     widefelem_scalar(tmp2, 8); | 
| 883 |  |     /* tmp2[i] < 8 * 2^116 = 2^119 */ | 
| 884 | 36.5k |     widefelem_diff(tmp, tmp2); | 
| 885 |  |     /* tmp[i] < 2^119 + 2^120 < 2^121 */ | 
| 886 | 36.5k |     felem_reduce(y_out, tmp); | 
| 887 | 36.5k | } | 
| 888 |  |  | 
| 889 |  | /*- | 
| 890 |  |  * Add two elliptic curve points: | 
| 891 |  |  * (X_1, Y_1, Z_1) + (X_2, Y_2, Z_2) = (X_3, Y_3, Z_3), where | 
| 892 |  |  * X_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1)^2 - (Z_1^2 * X_2 - Z_2^2 * X_1)^3 - | 
| 893 |  |  * 2 * Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2 | 
| 894 |  |  * Y_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1) * (Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2 - X_3) - | 
| 895 |  |  *        Z_2^3 * Y_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^3 | 
| 896 |  |  * Z_3 = (Z_1^2 * X_2 - Z_2^2 * X_1) * (Z_1 * Z_2) | 
| 897 |  |  * | 
| 898 |  |  * This runs faster if 'mixed' is set, which requires Z_2 = 1 or Z_2 = 0. | 
| 899 |  |  */ | 
| 900 |  |  | 
| 901 |  | /* | 
| 902 |  |  * This function is not entirely constant-time: it includes a branch for | 
| 903 |  |  * checking whether the two input points are equal, (while not equal to the | 
| 904 |  |  * point at infinity). This case never happens during single point | 
| 905 |  |  * multiplication, so there is no timing leak for ECDH or ECDSA signing. | 
| 906 |  |  */ | 
| 907 |  | static void point_add(felem x3, felem y3, felem z3, | 
| 908 |  |                       const felem x1, const felem y1, const felem z1, | 
| 909 |  |                       const int mixed, const felem x2, const felem y2, | 
| 910 |  |                       const felem z2) | 
| 911 | 19.0k | { | 
| 912 | 19.0k |     felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, x_out, y_out, z_out; | 
| 913 | 19.0k |     widefelem tmp, tmp2; | 
| 914 | 19.0k |     limb z1_is_zero, z2_is_zero, x_equal, y_equal; | 
| 915 | 19.0k |     limb points_equal; | 
| 916 |  |  | 
| 917 | 19.0k |     if (!mixed) { | 
| 918 |  |         /* ftmp2 = z2^2 */ | 
| 919 | 6.83k |         felem_square(tmp, z2); | 
| 920 | 6.83k |         felem_reduce(ftmp2, tmp); | 
| 921 |  |  | 
| 922 |  |         /* ftmp4 = z2^3 */ | 
| 923 | 6.83k |         felem_mul(tmp, ftmp2, z2); | 
| 924 | 6.83k |         felem_reduce(ftmp4, tmp); | 
| 925 |  |  | 
| 926 |  |         /* ftmp4 = z2^3*y1 */ | 
| 927 | 6.83k |         felem_mul(tmp2, ftmp4, y1); | 
| 928 | 6.83k |         felem_reduce(ftmp4, tmp2); | 
| 929 |  |  | 
| 930 |  |         /* ftmp2 = z2^2*x1 */ | 
| 931 | 6.83k |         felem_mul(tmp2, ftmp2, x1); | 
| 932 | 6.83k |         felem_reduce(ftmp2, tmp2); | 
| 933 | 12.2k |     } else { | 
| 934 |  |         /* | 
| 935 |  |          * We'll assume z2 = 1 (special case z2 = 0 is handled later) | 
| 936 |  |          */ | 
| 937 |  |  | 
| 938 |  |         /* ftmp4 = z2^3*y1 */ | 
| 939 | 12.2k |         felem_assign(ftmp4, y1); | 
| 940 |  |  | 
| 941 |  |         /* ftmp2 = z2^2*x1 */ | 
| 942 | 12.2k |         felem_assign(ftmp2, x1); | 
| 943 | 12.2k |     } | 
| 944 |  |  | 
| 945 |  |     /* ftmp = z1^2 */ | 
| 946 | 19.0k |     felem_square(tmp, z1); | 
| 947 | 19.0k |     felem_reduce(ftmp, tmp); | 
| 948 |  |  | 
| 949 |  |     /* ftmp3 = z1^3 */ | 
| 950 | 19.0k |     felem_mul(tmp, ftmp, z1); | 
| 951 | 19.0k |     felem_reduce(ftmp3, tmp); | 
| 952 |  |  | 
| 953 |  |     /* tmp = z1^3*y2 */ | 
| 954 | 19.0k |     felem_mul(tmp, ftmp3, y2); | 
| 955 |  |     /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */ | 
| 956 |  |  | 
| 957 |  |     /* ftmp3 = z1^3*y2 - z2^3*y1 */ | 
| 958 | 19.0k |     felem_diff_128_64(tmp, ftmp4); | 
| 959 |  |     /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */ | 
| 960 | 19.0k |     felem_reduce(ftmp3, tmp); | 
| 961 |  |  | 
| 962 |  |     /* tmp = z1^2*x2 */ | 
| 963 | 19.0k |     felem_mul(tmp, ftmp, x2); | 
| 964 |  |     /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */ | 
| 965 |  |  | 
| 966 |  |     /* ftmp = z1^2*x2 - z2^2*x1 */ | 
| 967 | 19.0k |     felem_diff_128_64(tmp, ftmp2); | 
| 968 |  |     /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */ | 
| 969 | 19.0k |     felem_reduce(ftmp, tmp); | 
| 970 |  |  | 
| 971 |  |     /* | 
| 972 |  |      * The formulae are incorrect if the points are equal, in affine coordinates | 
| 973 |  |      * (X_1, Y_1) == (X_2, Y_2), so we check for this and do doubling if this | 
| 974 |  |      * happens. | 
| 975 |  |      * | 
| 976 |  |      * We use bitwise operations to avoid potential side-channels introduced by | 
| 977 |  |      * the short-circuiting behaviour of boolean operators. | 
| 978 |  |      */ | 
| 979 | 19.0k |     x_equal = felem_is_zero(ftmp); | 
| 980 | 19.0k |     y_equal = felem_is_zero(ftmp3); | 
| 981 |  |     /* | 
| 982 |  |      * The special case of either point being the point at infinity (z1 and/or | 
| 983 |  |      * z2 are zero), is handled separately later on in this function, so we | 
| 984 |  |      * avoid jumping to point_double here in those special cases. | 
| 985 |  |      */ | 
| 986 | 19.0k |     z1_is_zero = felem_is_zero(z1); | 
| 987 | 19.0k |     z2_is_zero = felem_is_zero(z2); | 
| 988 |  |  | 
| 989 |  |     /* | 
| 990 |  |      * Compared to `ecp_nistp256.c` and `ecp_nistp521.c`, in this | 
| 991 |  |      * specific implementation `felem_is_zero()` returns truth as `0x1` | 
| 992 |  |      * (rather than `0xff..ff`). | 
| 993 |  |      * | 
| 994 |  |      * This implies that `~true` in this implementation becomes | 
| 995 |  |      * `0xff..fe` (rather than `0x0`): for this reason, to be used in | 
| 996 |  |      * the if expression, we mask out only the last bit in the next | 
| 997 |  |      * line. | 
| 998 |  |      */ | 
| 999 | 19.0k |     points_equal = (x_equal & y_equal & (~z1_is_zero) & (~z2_is_zero)) & 1; | 
| 1000 |  |  | 
| 1001 | 19.0k |     if (points_equal) { | 
| 1002 |  |         /* | 
| 1003 |  |          * This is obviously not constant-time but, as mentioned before, this | 
| 1004 |  |          * case never happens during single point multiplication, so there is no | 
| 1005 |  |          * timing leak for ECDH or ECDSA signing. | 
| 1006 |  |          */ | 
| 1007 | 0 |         point_double(x3, y3, z3, x1, y1, z1); | 
| 1008 | 0 |         return; | 
| 1009 | 0 |     } | 
| 1010 |  |  | 
| 1011 |  |     /* ftmp5 = z1*z2 */ | 
| 1012 | 19.0k |     if (!mixed) { | 
| 1013 | 6.83k |         felem_mul(tmp, z1, z2); | 
| 1014 | 6.83k |         felem_reduce(ftmp5, tmp); | 
| 1015 | 12.2k |     } else { | 
| 1016 |  |         /* special case z2 = 0 is handled later */ | 
| 1017 | 12.2k |         felem_assign(ftmp5, z1); | 
| 1018 | 12.2k |     } | 
| 1019 |  |  | 
| 1020 |  |     /* z_out = (z1^2*x2 - z2^2*x1)*(z1*z2) */ | 
| 1021 | 19.0k |     felem_mul(tmp, ftmp, ftmp5); | 
| 1022 | 19.0k |     felem_reduce(z_out, tmp); | 
| 1023 |  |  | 
| 1024 |  |     /* ftmp = (z1^2*x2 - z2^2*x1)^2 */ | 
| 1025 | 19.0k |     felem_assign(ftmp5, ftmp); | 
| 1026 | 19.0k |     felem_square(tmp, ftmp); | 
| 1027 | 19.0k |     felem_reduce(ftmp, tmp); | 
| 1028 |  |  | 
| 1029 |  |     /* ftmp5 = (z1^2*x2 - z2^2*x1)^3 */ | 
| 1030 | 19.0k |     felem_mul(tmp, ftmp, ftmp5); | 
| 1031 | 19.0k |     felem_reduce(ftmp5, tmp); | 
| 1032 |  |  | 
| 1033 |  |     /* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */ | 
| 1034 | 19.0k |     felem_mul(tmp, ftmp2, ftmp); | 
| 1035 | 19.0k |     felem_reduce(ftmp2, tmp); | 
| 1036 |  |  | 
| 1037 |  |     /* tmp = z2^3*y1*(z1^2*x2 - z2^2*x1)^3 */ | 
| 1038 | 19.0k |     felem_mul(tmp, ftmp4, ftmp5); | 
| 1039 |  |     /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */ | 
| 1040 |  |  | 
| 1041 |  |     /* tmp2 = (z1^3*y2 - z2^3*y1)^2 */ | 
| 1042 | 19.0k |     felem_square(tmp2, ftmp3); | 
| 1043 |  |     /* tmp2[i] < 4 * 2^57 * 2^57 < 2^116 */ | 
| 1044 |  |  | 
| 1045 |  |     /* tmp2 = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 */ | 
| 1046 | 19.0k |     felem_diff_128_64(tmp2, ftmp5); | 
| 1047 |  |     /* tmp2[i] < 2^116 + 2^64 + 8 < 2^117 */ | 
| 1048 |  |  | 
| 1049 |  |     /* ftmp5 = 2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */ | 
| 1050 | 19.0k |     felem_assign(ftmp5, ftmp2); | 
| 1051 | 19.0k |     felem_scalar(ftmp5, 2); | 
| 1052 |  |     /* ftmp5[i] < 2 * 2^57 = 2^58 */ | 
| 1053 |  |  | 
| 1054 |  |     /*- | 
| 1055 |  |      * x_out = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 - | 
| 1056 |  |      *  2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2 | 
| 1057 |  |      */ | 
| 1058 | 19.0k |     felem_diff_128_64(tmp2, ftmp5); | 
| 1059 |  |     /* tmp2[i] < 2^117 + 2^64 + 8 < 2^118 */ | 
| 1060 | 19.0k |     felem_reduce(x_out, tmp2); | 
| 1061 |  |  | 
| 1062 |  |     /* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out */ | 
| 1063 | 19.0k |     felem_diff(ftmp2, x_out); | 
| 1064 |  |     /* ftmp2[i] < 2^57 + 2^58 + 2 < 2^59 */ | 
| 1065 |  |  | 
| 1066 |  |     /* | 
| 1067 |  |      * tmp2 = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out) | 
| 1068 |  |      */ | 
| 1069 | 19.0k |     felem_mul(tmp2, ftmp3, ftmp2); | 
| 1070 |  |     /* tmp2[i] < 4 * 2^57 * 2^59 = 2^118 */ | 
| 1071 |  |  | 
| 1072 |  |     /*- | 
| 1073 |  |      * y_out = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out) - | 
| 1074 |  |      *  z2^3*y1*(z1^2*x2 - z2^2*x1)^3 | 
| 1075 |  |      */ | 
| 1076 | 19.0k |     widefelem_diff(tmp2, tmp); | 
| 1077 |  |     /* tmp2[i] < 2^118 + 2^120 < 2^121 */ | 
| 1078 | 19.0k |     felem_reduce(y_out, tmp2); | 
| 1079 |  |  | 
| 1080 |  |     /* | 
| 1081 |  |      * the result (x_out, y_out, z_out) is incorrect if one of the inputs is | 
| 1082 |  |      * the point at infinity, so we need to check for this separately | 
| 1083 |  |      */ | 
| 1084 |  |  | 
| 1085 |  |     /* | 
| 1086 |  |      * if point 1 is at infinity, copy point 2 to output, and vice versa | 
| 1087 |  |      */ | 
| 1088 | 19.0k |     copy_conditional(x_out, x2, z1_is_zero); | 
| 1089 | 19.0k |     copy_conditional(x_out, x1, z2_is_zero); | 
| 1090 | 19.0k |     copy_conditional(y_out, y2, z1_is_zero); | 
| 1091 | 19.0k |     copy_conditional(y_out, y1, z2_is_zero); | 
| 1092 | 19.0k |     copy_conditional(z_out, z2, z1_is_zero); | 
| 1093 | 19.0k |     copy_conditional(z_out, z1, z2_is_zero); | 
| 1094 | 19.0k |     felem_assign(x3, x_out); | 
| 1095 | 19.0k |     felem_assign(y3, y_out); | 
| 1096 | 19.0k |     felem_assign(z3, z_out); | 
| 1097 | 19.0k | } | 
| 1098 |  |  | 
| 1099 |  | /* | 
| 1100 |  |  * select_point selects the |idx|th point from a precomputation table and | 
| 1101 |  |  * copies it to out. | 
| 1102 |  |  * The pre_comp array argument should be size of |size| argument | 
| 1103 |  |  */ | 
| 1104 |  | static void select_point(const u64 idx, unsigned int size, | 
| 1105 |  |                          const felem pre_comp[][3], felem out[3]) | 
| 1106 | 18.4k | { | 
| 1107 | 18.4k |     unsigned i, j; | 
| 1108 | 18.4k |     limb *outlimbs = &out[0][0]; | 
| 1109 |  |  | 
| 1110 | 18.4k |     memset(out, 0, sizeof(*out) * 3); | 
| 1111 | 319k |     for (i = 0; i < size; i++) { | 
| 1112 | 301k |         const limb *inlimbs = &pre_comp[i][0][0]; | 
| 1113 | 301k |         u64 mask = i ^ idx; | 
| 1114 | 301k |         mask |= mask >> 4; | 
| 1115 | 301k |         mask |= mask >> 2; | 
| 1116 | 301k |         mask |= mask >> 1; | 
| 1117 | 301k |         mask &= 1; | 
| 1118 | 301k |         mask--; | 
| 1119 | 3.91M |         for (j = 0; j < 4 * 3; j++) | 
| 1120 | 3.61M |             outlimbs[j] |= inlimbs[j] & mask; | 
| 1121 | 301k |     } | 
| 1122 | 18.4k | } | 
| 1123 |  |  | 
| 1124 |  | /* get_bit returns the |i|th bit in |in| */ | 
| 1125 |  | static char get_bit(const felem_bytearray in, unsigned i) | 
| 1126 | 85.9k | { | 
| 1127 | 85.9k |     if (i >= 224) | 
| 1128 | 268 |         return 0; | 
| 1129 | 85.6k |     return (in[i >> 3] >> (i & 7)) & 1; | 
| 1130 | 85.9k | } | 
| 1131 |  |  | 
| 1132 |  | /* | 
| 1133 |  |  * Interleaved point multiplication using precomputed point multiples: The | 
| 1134 |  |  * small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[], the scalars | 
| 1135 |  |  * in scalars[]. If g_scalar is non-NULL, we also add this multiple of the | 
| 1136 |  |  * generator, using certain (large) precomputed multiples in g_pre_comp. | 
| 1137 |  |  * Output point (X, Y, Z) is stored in x_out, y_out, z_out | 
| 1138 |  |  */ | 
| 1139 |  | static void batch_mul(felem x_out, felem y_out, felem z_out, | 
| 1140 |  |                       const felem_bytearray scalars[], | 
| 1141 |  |                       const unsigned num_points, const u8 *g_scalar, | 
| 1142 |  |                       const int mixed, const felem pre_comp[][17][3], | 
| 1143 |  |                       const felem g_pre_comp[2][16][3]) | 
| 1144 | 356 | { | 
| 1145 | 356 |     int i, skip; | 
| 1146 | 356 |     unsigned num; | 
| 1147 | 356 |     unsigned gen_mul = (g_scalar != NULL); | 
| 1148 | 356 |     felem nq[3], tmp[4]; | 
| 1149 | 356 |     u64 bits; | 
| 1150 | 356 |     u8 sign, digit; | 
| 1151 |  |  | 
| 1152 |  |     /* set nq to the point at infinity */ | 
| 1153 | 356 |     memset(nq, 0, sizeof(nq)); | 
| 1154 |  |  | 
| 1155 |  |     /* | 
| 1156 |  |      * Loop over all scalars msb-to-lsb, interleaving additions of multiples | 
| 1157 |  |      * of the generator (two in each of the last 28 rounds) and additions of | 
| 1158 |  |      * other points multiples (every 5th round). | 
| 1159 |  |      */ | 
| 1160 | 356 |     skip = 1;                   /* save two point operations in the first | 
| 1161 |  |                                  * round */ | 
| 1162 | 36.1k |     for (i = (num_points ? 220 : 27); i >= 0; --i) { | 
| 1163 |  |         /* double */ | 
| 1164 | 35.8k |         if (!skip) | 
| 1165 | 35.4k |             point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]); | 
| 1166 |  |  | 
| 1167 |  |         /* add multiples of the generator */ | 
| 1168 | 35.8k |         if (gen_mul && (i <= 27)) { | 
| 1169 |  |             /* first, look 28 bits upwards */ | 
| 1170 | 6.21k |             bits = get_bit(g_scalar, i + 196) << 3; | 
| 1171 | 6.21k |             bits |= get_bit(g_scalar, i + 140) << 2; | 
| 1172 | 6.21k |             bits |= get_bit(g_scalar, i + 84) << 1; | 
| 1173 | 6.21k |             bits |= get_bit(g_scalar, i + 28); | 
| 1174 |  |             /* select the point to add, in constant time */ | 
| 1175 | 6.21k |             select_point(bits, 16, g_pre_comp[1], tmp); | 
| 1176 |  |  | 
| 1177 | 6.21k |             if (!skip) { | 
| 1178 |  |                 /* value 1 below is argument for "mixed" */ | 
| 1179 | 5.99k |                 point_add(nq[0], nq[1], nq[2], | 
| 1180 | 5.99k |                           nq[0], nq[1], nq[2], 1, tmp[0], tmp[1], tmp[2]); | 
| 1181 | 5.99k |             } else { | 
| 1182 | 222 |                 memcpy(nq, tmp, 3 * sizeof(felem)); | 
| 1183 | 222 |                 skip = 0; | 
| 1184 | 222 |             } | 
| 1185 |  |  | 
| 1186 |  |             /* second, look at the current position */ | 
| 1187 | 6.21k |             bits = get_bit(g_scalar, i + 168) << 3; | 
| 1188 | 6.21k |             bits |= get_bit(g_scalar, i + 112) << 2; | 
| 1189 | 6.21k |             bits |= get_bit(g_scalar, i + 56) << 1; | 
| 1190 | 6.21k |             bits |= get_bit(g_scalar, i); | 
| 1191 |  |             /* select the point to add, in constant time */ | 
| 1192 | 6.21k |             select_point(bits, 16, g_pre_comp[0], tmp); | 
| 1193 | 6.21k |             point_add(nq[0], nq[1], nq[2], | 
| 1194 | 6.21k |                       nq[0], nq[1], nq[2], | 
| 1195 | 6.21k |                       1 /* mixed */ , tmp[0], tmp[1], tmp[2]); | 
| 1196 | 6.21k |         } | 
| 1197 |  |  | 
| 1198 |  |         /* do other additions every 5 doublings */ | 
| 1199 | 35.8k |         if (num_points && (i % 5 == 0)) { | 
| 1200 |  |             /* loop over all scalars */ | 
| 1201 | 12.0k |             for (num = 0; num < num_points; ++num) { | 
| 1202 | 6.03k |                 bits = get_bit(scalars[num], i + 4) << 5; | 
| 1203 | 6.03k |                 bits |= get_bit(scalars[num], i + 3) << 4; | 
| 1204 | 6.03k |                 bits |= get_bit(scalars[num], i + 2) << 3; | 
| 1205 | 6.03k |                 bits |= get_bit(scalars[num], i + 1) << 2; | 
| 1206 | 6.03k |                 bits |= get_bit(scalars[num], i) << 1; | 
| 1207 | 6.03k |                 bits |= get_bit(scalars[num], i - 1); | 
| 1208 | 6.03k |                 ossl_ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits); | 
| 1209 |  |  | 
| 1210 |  |                 /* select the point to add or subtract */ | 
| 1211 | 6.03k |                 select_point(digit, 17, pre_comp[num], tmp); | 
| 1212 | 6.03k |                 felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the negative | 
| 1213 |  |                                             * point */ | 
| 1214 | 6.03k |                 copy_conditional(tmp[1], tmp[3], sign); | 
| 1215 |  |  | 
| 1216 | 6.03k |                 if (!skip) { | 
| 1217 | 5.89k |                     point_add(nq[0], nq[1], nq[2], | 
| 1218 | 5.89k |                               nq[0], nq[1], nq[2], | 
| 1219 | 5.89k |                               mixed, tmp[0], tmp[1], tmp[2]); | 
| 1220 | 5.89k |                 } else { | 
| 1221 | 134 |                     memcpy(nq, tmp, 3 * sizeof(felem)); | 
| 1222 | 134 |                     skip = 0; | 
| 1223 | 134 |                 } | 
| 1224 | 6.03k |             } | 
| 1225 | 6.03k |         } | 
| 1226 | 35.8k |     } | 
| 1227 | 356 |     felem_assign(x_out, nq[0]); | 
| 1228 | 356 |     felem_assign(y_out, nq[1]); | 
| 1229 | 356 |     felem_assign(z_out, nq[2]); | 
| 1230 | 356 | } | 
| 1231 |  |  | 
| 1232 |  | /******************************************************************************/ | 
| 1233 |  | /* | 
| 1234 |  |  * FUNCTIONS TO MANAGE PRECOMPUTATION | 
| 1235 |  |  */ | 
| 1236 |  |  | 
| 1237 |  | static NISTP224_PRE_COMP *nistp224_pre_comp_new(void) | 
| 1238 | 0 | { | 
| 1239 | 0 |     NISTP224_PRE_COMP *ret = OPENSSL_zalloc(sizeof(*ret)); | 
| 1240 |  | 
 | 
| 1241 | 0 |     if (!ret) { | 
| 1242 | 0 |         ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE); | 
| 1243 | 0 |         return ret; | 
| 1244 | 0 |     } | 
| 1245 |  |  | 
| 1246 | 0 |     ret->references = 1; | 
| 1247 |  | 
 | 
| 1248 | 0 |     ret->lock = CRYPTO_THREAD_lock_new(); | 
| 1249 | 0 |     if (ret->lock == NULL) { | 
| 1250 | 0 |         ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE); | 
| 1251 | 0 |         OPENSSL_free(ret); | 
| 1252 | 0 |         return NULL; | 
| 1253 | 0 |     } | 
| 1254 | 0 |     return ret; | 
| 1255 | 0 | } | 
| 1256 |  |  | 
| 1257 |  | NISTP224_PRE_COMP *EC_nistp224_pre_comp_dup(NISTP224_PRE_COMP *p) | 
| 1258 | 0 | { | 
| 1259 | 0 |     int i; | 
| 1260 | 0 |     if (p != NULL) | 
| 1261 | 0 |         CRYPTO_UP_REF(&p->references, &i, p->lock); | 
| 1262 | 0 |     return p; | 
| 1263 | 0 | } | 
| 1264 |  |  | 
| 1265 |  | void EC_nistp224_pre_comp_free(NISTP224_PRE_COMP *p) | 
| 1266 | 0 | { | 
| 1267 | 0 |     int i; | 
| 1268 |  | 
 | 
| 1269 | 0 |     if (p == NULL) | 
| 1270 | 0 |         return; | 
| 1271 |  |  | 
| 1272 | 0 |     CRYPTO_DOWN_REF(&p->references, &i, p->lock); | 
| 1273 | 0 |     REF_PRINT_COUNT("EC_nistp224", p); | 
| 1274 | 0 |     if (i > 0) | 
| 1275 | 0 |         return; | 
| 1276 | 0 |     REF_ASSERT_ISNT(i < 0); | 
| 1277 |  | 
 | 
| 1278 | 0 |     CRYPTO_THREAD_lock_free(p->lock); | 
| 1279 | 0 |     OPENSSL_free(p); | 
| 1280 | 0 | } | 
| 1281 |  |  | 
| 1282 |  | /******************************************************************************/ | 
| 1283 |  | /* | 
| 1284 |  |  * OPENSSL EC_METHOD FUNCTIONS | 
| 1285 |  |  */ | 
| 1286 |  |  | 
| 1287 |  | int ossl_ec_GFp_nistp224_group_init(EC_GROUP *group) | 
| 1288 | 30.9k | { | 
| 1289 | 30.9k |     int ret; | 
| 1290 | 30.9k |     ret = ossl_ec_GFp_simple_group_init(group); | 
| 1291 | 30.9k |     group->a_is_minus3 = 1; | 
| 1292 | 30.9k |     return ret; | 
| 1293 | 30.9k | } | 
| 1294 |  |  | 
| 1295 |  | int ossl_ec_GFp_nistp224_group_set_curve(EC_GROUP *group, const BIGNUM *p, | 
| 1296 |  |                                          const BIGNUM *a, const BIGNUM *b, | 
| 1297 |  |                                          BN_CTX *ctx) | 
| 1298 | 15.6k | { | 
| 1299 | 15.6k |     int ret = 0; | 
| 1300 | 15.6k |     BIGNUM *curve_p, *curve_a, *curve_b; | 
| 1301 | 15.6k | #ifndef FIPS_MODULE | 
| 1302 | 15.6k |     BN_CTX *new_ctx = NULL; | 
| 1303 |  |  | 
| 1304 | 15.6k |     if (ctx == NULL) | 
| 1305 | 0 |         ctx = new_ctx = BN_CTX_new(); | 
| 1306 | 15.6k | #endif | 
| 1307 | 15.6k |     if (ctx == NULL) | 
| 1308 | 0 |         return 0; | 
| 1309 |  |  | 
| 1310 | 15.6k |     BN_CTX_start(ctx); | 
| 1311 | 15.6k |     curve_p = BN_CTX_get(ctx); | 
| 1312 | 15.6k |     curve_a = BN_CTX_get(ctx); | 
| 1313 | 15.6k |     curve_b = BN_CTX_get(ctx); | 
| 1314 | 15.6k |     if (curve_b == NULL) | 
| 1315 | 0 |         goto err; | 
| 1316 | 15.6k |     BN_bin2bn(nistp224_curve_params[0], sizeof(felem_bytearray), curve_p); | 
| 1317 | 15.6k |     BN_bin2bn(nistp224_curve_params[1], sizeof(felem_bytearray), curve_a); | 
| 1318 | 15.6k |     BN_bin2bn(nistp224_curve_params[2], sizeof(felem_bytearray), curve_b); | 
| 1319 | 15.6k |     if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || (BN_cmp(curve_b, b))) { | 
| 1320 | 0 |         ERR_raise(ERR_LIB_EC, EC_R_WRONG_CURVE_PARAMETERS); | 
| 1321 | 0 |         goto err; | 
| 1322 | 0 |     } | 
| 1323 | 15.6k |     group->field_mod_func = BN_nist_mod_224; | 
| 1324 | 15.6k |     ret = ossl_ec_GFp_simple_group_set_curve(group, p, a, b, ctx); | 
| 1325 | 15.6k |  err: | 
| 1326 | 15.6k |     BN_CTX_end(ctx); | 
| 1327 | 15.6k | #ifndef FIPS_MODULE | 
| 1328 | 15.6k |     BN_CTX_free(new_ctx); | 
| 1329 | 15.6k | #endif | 
| 1330 | 15.6k |     return ret; | 
| 1331 | 15.6k | } | 
| 1332 |  |  | 
| 1333 |  | /* | 
| 1334 |  |  * Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') = | 
| 1335 |  |  * (X/Z^2, Y/Z^3) | 
| 1336 |  |  */ | 
| 1337 |  | int ossl_ec_GFp_nistp224_point_get_affine_coordinates(const EC_GROUP *group, | 
| 1338 |  |                                                       const EC_POINT *point, | 
| 1339 |  |                                                       BIGNUM *x, BIGNUM *y, | 
| 1340 |  |                                                       BN_CTX *ctx) | 
| 1341 | 650 | { | 
| 1342 | 650 |     felem z1, z2, x_in, y_in, x_out, y_out; | 
| 1343 | 650 |     widefelem tmp; | 
| 1344 |  |  | 
| 1345 | 650 |     if (EC_POINT_is_at_infinity(group, point)) { | 
| 1346 | 0 |         ERR_raise(ERR_LIB_EC, EC_R_POINT_AT_INFINITY); | 
| 1347 | 0 |         return 0; | 
| 1348 | 0 |     } | 
| 1349 | 650 |     if ((!BN_to_felem(x_in, point->X)) || (!BN_to_felem(y_in, point->Y)) || | 
| 1350 | 650 |         (!BN_to_felem(z1, point->Z))) | 
| 1351 | 0 |         return 0; | 
| 1352 | 650 |     felem_inv(z2, z1); | 
| 1353 | 650 |     felem_square(tmp, z2); | 
| 1354 | 650 |     felem_reduce(z1, tmp); | 
| 1355 | 650 |     felem_mul(tmp, x_in, z1); | 
| 1356 | 650 |     felem_reduce(x_in, tmp); | 
| 1357 | 650 |     felem_contract(x_out, x_in); | 
| 1358 | 650 |     if (x != NULL) { | 
| 1359 | 650 |         if (!felem_to_BN(x, x_out)) { | 
| 1360 | 0 |             ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB); | 
| 1361 | 0 |             return 0; | 
| 1362 | 0 |         } | 
| 1363 | 650 |     } | 
| 1364 | 650 |     felem_mul(tmp, z1, z2); | 
| 1365 | 650 |     felem_reduce(z1, tmp); | 
| 1366 | 650 |     felem_mul(tmp, y_in, z1); | 
| 1367 | 650 |     felem_reduce(y_in, tmp); | 
| 1368 | 650 |     felem_contract(y_out, y_in); | 
| 1369 | 650 |     if (y != NULL) { | 
| 1370 | 650 |         if (!felem_to_BN(y, y_out)) { | 
| 1371 | 0 |             ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB); | 
| 1372 | 0 |             return 0; | 
| 1373 | 0 |         } | 
| 1374 | 650 |     } | 
| 1375 | 650 |     return 1; | 
| 1376 | 650 | } | 
| 1377 |  |  | 
| 1378 |  | static void make_points_affine(size_t num, felem points[ /* num */ ][3], | 
| 1379 |  |                                felem tmp_felems[ /* num+1 */ ]) | 
| 1380 | 0 | { | 
| 1381 |  |     /* | 
| 1382 |  |      * Runs in constant time, unless an input is the point at infinity (which | 
| 1383 |  |      * normally shouldn't happen). | 
| 1384 |  |      */ | 
| 1385 | 0 |     ossl_ec_GFp_nistp_points_make_affine_internal(num, | 
| 1386 | 0 |                                                   points, | 
| 1387 | 0 |                                                   sizeof(felem), | 
| 1388 | 0 |                                                   tmp_felems, | 
| 1389 | 0 |                                                   (void (*)(void *))felem_one, | 
| 1390 | 0 |                                                   felem_is_zero_int, | 
| 1391 | 0 |                                                   (void (*)(void *, const void *)) | 
| 1392 | 0 |                                                   felem_assign, | 
| 1393 | 0 |                                                   (void (*)(void *, const void *)) | 
| 1394 | 0 |                                                   felem_square_reduce, (void (*) | 
| 1395 | 0 |                                                                         (void *, | 
| 1396 | 0 |                                                                          const void | 
| 1397 | 0 |                                                                          *, | 
| 1398 | 0 |                                                                          const void | 
| 1399 | 0 |                                                                          *)) | 
| 1400 | 0 |                                                   felem_mul_reduce, | 
| 1401 | 0 |                                                   (void (*)(void *, const void *)) | 
| 1402 | 0 |                                                   felem_inv, | 
| 1403 | 0 |                                                   (void (*)(void *, const void *)) | 
| 1404 | 0 |                                                   felem_contract); | 
| 1405 | 0 | } | 
| 1406 |  |  | 
| 1407 |  | /* | 
| 1408 |  |  * Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL | 
| 1409 |  |  * values Result is stored in r (r can equal one of the inputs). | 
| 1410 |  |  */ | 
| 1411 |  | int ossl_ec_GFp_nistp224_points_mul(const EC_GROUP *group, EC_POINT *r, | 
| 1412 |  |                                     const BIGNUM *scalar, size_t num, | 
| 1413 |  |                                     const EC_POINT *points[], | 
| 1414 |  |                                     const BIGNUM *scalars[], BN_CTX *ctx) | 
| 1415 | 350 | { | 
| 1416 | 350 |     int ret = 0; | 
| 1417 | 350 |     int j; | 
| 1418 | 350 |     unsigned i; | 
| 1419 | 350 |     int mixed = 0; | 
| 1420 | 350 |     BIGNUM *x, *y, *z, *tmp_scalar; | 
| 1421 | 350 |     felem_bytearray g_secret; | 
| 1422 | 350 |     felem_bytearray *secrets = NULL; | 
| 1423 | 350 |     felem (*pre_comp)[17][3] = NULL; | 
| 1424 | 350 |     felem *tmp_felems = NULL; | 
| 1425 | 350 |     int num_bytes; | 
| 1426 | 350 |     int have_pre_comp = 0; | 
| 1427 | 350 |     size_t num_points = num; | 
| 1428 | 350 |     felem x_in, y_in, z_in, x_out, y_out, z_out; | 
| 1429 | 350 |     NISTP224_PRE_COMP *pre = NULL; | 
| 1430 | 350 |     const felem(*g_pre_comp)[16][3] = NULL; | 
| 1431 | 350 |     EC_POINT *generator = NULL; | 
| 1432 | 350 |     const EC_POINT *p = NULL; | 
| 1433 | 350 |     const BIGNUM *p_scalar = NULL; | 
| 1434 |  |  | 
| 1435 | 350 |     BN_CTX_start(ctx); | 
| 1436 | 350 |     x = BN_CTX_get(ctx); | 
| 1437 | 350 |     y = BN_CTX_get(ctx); | 
| 1438 | 350 |     z = BN_CTX_get(ctx); | 
| 1439 | 350 |     tmp_scalar = BN_CTX_get(ctx); | 
| 1440 | 350 |     if (tmp_scalar == NULL) | 
| 1441 | 0 |         goto err; | 
| 1442 |  |  | 
| 1443 | 350 |     if (scalar != NULL) { | 
| 1444 | 216 |         pre = group->pre_comp.nistp224; | 
| 1445 | 216 |         if (pre) | 
| 1446 |  |             /* we have precomputation, try to use it */ | 
| 1447 | 0 |             g_pre_comp = (const felem(*)[16][3])pre->g_pre_comp; | 
| 1448 | 216 |         else | 
| 1449 |  |             /* try to use the standard precomputation */ | 
| 1450 | 216 |             g_pre_comp = &gmul[0]; | 
| 1451 | 216 |         generator = EC_POINT_new(group); | 
| 1452 | 216 |         if (generator == NULL) | 
| 1453 | 0 |             goto err; | 
| 1454 |  |         /* get the generator from precomputation */ | 
| 1455 | 216 |         if (!felem_to_BN(x, g_pre_comp[0][1][0]) || | 
| 1456 | 216 |             !felem_to_BN(y, g_pre_comp[0][1][1]) || | 
| 1457 | 216 |             !felem_to_BN(z, g_pre_comp[0][1][2])) { | 
| 1458 | 0 |             ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB); | 
| 1459 | 0 |             goto err; | 
| 1460 | 0 |         } | 
| 1461 | 216 |         if (!ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group, | 
| 1462 | 216 |                                                                 generator, | 
| 1463 | 216 |                                                                 x, y, z, ctx)) | 
| 1464 | 0 |             goto err; | 
| 1465 | 216 |         if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) | 
| 1466 |  |             /* precomputation matches generator */ | 
| 1467 | 216 |             have_pre_comp = 1; | 
| 1468 | 0 |         else | 
| 1469 |  |             /* | 
| 1470 |  |              * we don't have valid precomputation: treat the generator as a | 
| 1471 |  |              * random point | 
| 1472 |  |              */ | 
| 1473 | 0 |             num_points = num_points + 1; | 
| 1474 | 216 |     } | 
| 1475 |  |  | 
| 1476 | 350 |     if (num_points > 0) { | 
| 1477 | 134 |         if (num_points >= 3) { | 
| 1478 |  |             /* | 
| 1479 |  |              * unless we precompute multiples for just one or two points, | 
| 1480 |  |              * converting those into affine form is time well spent | 
| 1481 |  |              */ | 
| 1482 | 0 |             mixed = 1; | 
| 1483 | 0 |         } | 
| 1484 | 134 |         secrets = OPENSSL_zalloc(sizeof(*secrets) * num_points); | 
| 1485 | 134 |         pre_comp = OPENSSL_zalloc(sizeof(*pre_comp) * num_points); | 
| 1486 | 134 |         if (mixed) | 
| 1487 | 0 |             tmp_felems = | 
| 1488 | 0 |                 OPENSSL_malloc(sizeof(felem) * (num_points * 17 + 1)); | 
| 1489 | 134 |         if ((secrets == NULL) || (pre_comp == NULL) | 
| 1490 | 134 |             || (mixed && (tmp_felems == NULL))) { | 
| 1491 | 0 |             ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE); | 
| 1492 | 0 |             goto err; | 
| 1493 | 0 |         } | 
| 1494 |  |  | 
| 1495 |  |         /* | 
| 1496 |  |          * we treat NULL scalars as 0, and NULL points as points at infinity, | 
| 1497 |  |          * i.e., they contribute nothing to the linear combination | 
| 1498 |  |          */ | 
| 1499 | 268 |         for (i = 0; i < num_points; ++i) { | 
| 1500 | 134 |             if (i == num) { | 
| 1501 |  |                 /* the generator */ | 
| 1502 | 0 |                 p = EC_GROUP_get0_generator(group); | 
| 1503 | 0 |                 p_scalar = scalar; | 
| 1504 | 134 |             } else { | 
| 1505 |  |                 /* the i^th point */ | 
| 1506 | 134 |                 p = points[i]; | 
| 1507 | 134 |                 p_scalar = scalars[i]; | 
| 1508 | 134 |             } | 
| 1509 | 134 |             if ((p_scalar != NULL) && (p != NULL)) { | 
| 1510 |  |                 /* reduce scalar to 0 <= scalar < 2^224 */ | 
| 1511 | 134 |                 if ((BN_num_bits(p_scalar) > 224) | 
| 1512 | 134 |                     || (BN_is_negative(p_scalar))) { | 
| 1513 |  |                     /* | 
| 1514 |  |                      * this is an unusual input, and we don't guarantee | 
| 1515 |  |                      * constant-timeness | 
| 1516 |  |                      */ | 
| 1517 | 0 |                     if (!BN_nnmod(tmp_scalar, p_scalar, group->order, ctx)) { | 
| 1518 | 0 |                         ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB); | 
| 1519 | 0 |                         goto err; | 
| 1520 | 0 |                     } | 
| 1521 | 0 |                     num_bytes = BN_bn2lebinpad(tmp_scalar, | 
| 1522 | 0 |                                                secrets[i], sizeof(secrets[i])); | 
| 1523 | 134 |                 } else { | 
| 1524 | 134 |                     num_bytes = BN_bn2lebinpad(p_scalar, | 
| 1525 | 134 |                                                secrets[i], sizeof(secrets[i])); | 
| 1526 | 134 |                 } | 
| 1527 | 134 |                 if (num_bytes < 0) { | 
| 1528 | 0 |                     ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB); | 
| 1529 | 0 |                     goto err; | 
| 1530 | 0 |                 } | 
| 1531 |  |                 /* precompute multiples */ | 
| 1532 | 134 |                 if ((!BN_to_felem(x_out, p->X)) || | 
| 1533 | 134 |                     (!BN_to_felem(y_out, p->Y)) || | 
| 1534 | 134 |                     (!BN_to_felem(z_out, p->Z))) | 
| 1535 | 0 |                     goto err; | 
| 1536 | 134 |                 felem_assign(pre_comp[i][1][0], x_out); | 
| 1537 | 134 |                 felem_assign(pre_comp[i][1][1], y_out); | 
| 1538 | 134 |                 felem_assign(pre_comp[i][1][2], z_out); | 
| 1539 | 2.14k |                 for (j = 2; j <= 16; ++j) { | 
| 1540 | 2.01k |                     if (j & 1) { | 
| 1541 | 938 |                         point_add(pre_comp[i][j][0], pre_comp[i][j][1], | 
| 1542 | 938 |                                   pre_comp[i][j][2], pre_comp[i][1][0], | 
| 1543 | 938 |                                   pre_comp[i][1][1], pre_comp[i][1][2], 0, | 
| 1544 | 938 |                                   pre_comp[i][j - 1][0], | 
| 1545 | 938 |                                   pre_comp[i][j - 1][1], | 
| 1546 | 938 |                                   pre_comp[i][j - 1][2]); | 
| 1547 | 1.07k |                     } else { | 
| 1548 | 1.07k |                         point_double(pre_comp[i][j][0], pre_comp[i][j][1], | 
| 1549 | 1.07k |                                      pre_comp[i][j][2], pre_comp[i][j / 2][0], | 
| 1550 | 1.07k |                                      pre_comp[i][j / 2][1], | 
| 1551 | 1.07k |                                      pre_comp[i][j / 2][2]); | 
| 1552 | 1.07k |                     } | 
| 1553 | 2.01k |                 } | 
| 1554 | 134 |             } | 
| 1555 | 134 |         } | 
| 1556 | 134 |         if (mixed) | 
| 1557 | 0 |             make_points_affine(num_points * 17, pre_comp[0], tmp_felems); | 
| 1558 | 134 |     } | 
| 1559 |  |  | 
| 1560 |  |     /* the scalar for the generator */ | 
| 1561 | 350 |     if ((scalar != NULL) && (have_pre_comp)) { | 
| 1562 | 216 |         memset(g_secret, 0, sizeof(g_secret)); | 
| 1563 |  |         /* reduce scalar to 0 <= scalar < 2^224 */ | 
| 1564 | 216 |         if ((BN_num_bits(scalar) > 224) || (BN_is_negative(scalar))) { | 
| 1565 |  |             /* | 
| 1566 |  |              * this is an unusual input, and we don't guarantee | 
| 1567 |  |              * constant-timeness | 
| 1568 |  |              */ | 
| 1569 | 11 |             if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) { | 
| 1570 | 0 |                 ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB); | 
| 1571 | 0 |                 goto err; | 
| 1572 | 0 |             } | 
| 1573 | 11 |             num_bytes = BN_bn2lebinpad(tmp_scalar, g_secret, sizeof(g_secret)); | 
| 1574 | 205 |         } else { | 
| 1575 | 205 |             num_bytes = BN_bn2lebinpad(scalar, g_secret, sizeof(g_secret)); | 
| 1576 | 205 |         } | 
| 1577 |  |         /* do the multiplication with generator precomputation */ | 
| 1578 | 216 |         batch_mul(x_out, y_out, z_out, | 
| 1579 | 216 |                   (const felem_bytearray(*))secrets, num_points, | 
| 1580 | 216 |                   g_secret, | 
| 1581 | 216 |                   mixed, (const felem(*)[17][3])pre_comp, g_pre_comp); | 
| 1582 | 216 |     } else { | 
| 1583 |  |         /* do the multiplication without generator precomputation */ | 
| 1584 | 134 |         batch_mul(x_out, y_out, z_out, | 
| 1585 | 134 |                   (const felem_bytearray(*))secrets, num_points, | 
| 1586 | 134 |                   NULL, mixed, (const felem(*)[17][3])pre_comp, NULL); | 
| 1587 | 134 |     } | 
| 1588 |  |     /* reduce the output to its unique minimal representation */ | 
| 1589 | 350 |     felem_contract(x_in, x_out); | 
| 1590 | 350 |     felem_contract(y_in, y_out); | 
| 1591 | 350 |     felem_contract(z_in, z_out); | 
| 1592 | 350 |     if ((!felem_to_BN(x, x_in)) || (!felem_to_BN(y, y_in)) || | 
| 1593 | 350 |         (!felem_to_BN(z, z_in))) { | 
| 1594 | 0 |         ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB); | 
| 1595 | 0 |         goto err; | 
| 1596 | 0 |     } | 
| 1597 | 350 |     ret = ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group, r, x, y, z, | 
| 1598 | 350 |                                                              ctx); | 
| 1599 |  |  | 
| 1600 | 350 |  err: | 
| 1601 | 350 |     BN_CTX_end(ctx); | 
| 1602 | 350 |     EC_POINT_free(generator); | 
| 1603 | 350 |     OPENSSL_free(secrets); | 
| 1604 | 350 |     OPENSSL_free(pre_comp); | 
| 1605 | 350 |     OPENSSL_free(tmp_felems); | 
| 1606 | 350 |     return ret; | 
| 1607 | 350 | } | 
| 1608 |  |  | 
| 1609 |  | int ossl_ec_GFp_nistp224_precompute_mult(EC_GROUP *group, BN_CTX *ctx) | 
| 1610 | 0 | { | 
| 1611 | 0 |     int ret = 0; | 
| 1612 | 0 |     NISTP224_PRE_COMP *pre = NULL; | 
| 1613 | 0 |     int i, j; | 
| 1614 | 0 |     BIGNUM *x, *y; | 
| 1615 | 0 |     EC_POINT *generator = NULL; | 
| 1616 | 0 |     felem tmp_felems[32]; | 
| 1617 | 0 | #ifndef FIPS_MODULE | 
| 1618 | 0 |     BN_CTX *new_ctx = NULL; | 
| 1619 | 0 | #endif | 
| 1620 |  |  | 
| 1621 |  |     /* throw away old precomputation */ | 
| 1622 | 0 |     EC_pre_comp_free(group); | 
| 1623 |  | 
 | 
| 1624 | 0 | #ifndef FIPS_MODULE | 
| 1625 | 0 |     if (ctx == NULL) | 
| 1626 | 0 |         ctx = new_ctx = BN_CTX_new(); | 
| 1627 | 0 | #endif | 
| 1628 | 0 |     if (ctx == NULL) | 
| 1629 | 0 |         return 0; | 
| 1630 |  |  | 
| 1631 | 0 |     BN_CTX_start(ctx); | 
| 1632 | 0 |     x = BN_CTX_get(ctx); | 
| 1633 | 0 |     y = BN_CTX_get(ctx); | 
| 1634 | 0 |     if (y == NULL) | 
| 1635 | 0 |         goto err; | 
| 1636 |  |     /* get the generator */ | 
| 1637 | 0 |     if (group->generator == NULL) | 
| 1638 | 0 |         goto err; | 
| 1639 | 0 |     generator = EC_POINT_new(group); | 
| 1640 | 0 |     if (generator == NULL) | 
| 1641 | 0 |         goto err; | 
| 1642 | 0 |     BN_bin2bn(nistp224_curve_params[3], sizeof(felem_bytearray), x); | 
| 1643 | 0 |     BN_bin2bn(nistp224_curve_params[4], sizeof(felem_bytearray), y); | 
| 1644 | 0 |     if (!EC_POINT_set_affine_coordinates(group, generator, x, y, ctx)) | 
| 1645 | 0 |         goto err; | 
| 1646 | 0 |     if ((pre = nistp224_pre_comp_new()) == NULL) | 
| 1647 | 0 |         goto err; | 
| 1648 |  |     /* | 
| 1649 |  |      * if the generator is the standard one, use built-in precomputation | 
| 1650 |  |      */ | 
| 1651 | 0 |     if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) { | 
| 1652 | 0 |         memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp)); | 
| 1653 | 0 |         goto done; | 
| 1654 | 0 |     } | 
| 1655 | 0 |     if ((!BN_to_felem(pre->g_pre_comp[0][1][0], group->generator->X)) || | 
| 1656 | 0 |         (!BN_to_felem(pre->g_pre_comp[0][1][1], group->generator->Y)) || | 
| 1657 | 0 |         (!BN_to_felem(pre->g_pre_comp[0][1][2], group->generator->Z))) | 
| 1658 | 0 |         goto err; | 
| 1659 |  |     /* | 
| 1660 |  |      * compute 2^56*G, 2^112*G, 2^168*G for the first table, 2^28*G, 2^84*G, | 
| 1661 |  |      * 2^140*G, 2^196*G for the second one | 
| 1662 |  |      */ | 
| 1663 | 0 |     for (i = 1; i <= 8; i <<= 1) { | 
| 1664 | 0 |         point_double(pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], | 
| 1665 | 0 |                      pre->g_pre_comp[1][i][2], pre->g_pre_comp[0][i][0], | 
| 1666 | 0 |                      pre->g_pre_comp[0][i][1], pre->g_pre_comp[0][i][2]); | 
| 1667 | 0 |         for (j = 0; j < 27; ++j) { | 
| 1668 | 0 |             point_double(pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], | 
| 1669 | 0 |                          pre->g_pre_comp[1][i][2], pre->g_pre_comp[1][i][0], | 
| 1670 | 0 |                          pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]); | 
| 1671 | 0 |         } | 
| 1672 | 0 |         if (i == 8) | 
| 1673 | 0 |             break; | 
| 1674 | 0 |         point_double(pre->g_pre_comp[0][2 * i][0], | 
| 1675 | 0 |                      pre->g_pre_comp[0][2 * i][1], | 
| 1676 | 0 |                      pre->g_pre_comp[0][2 * i][2], pre->g_pre_comp[1][i][0], | 
| 1677 | 0 |                      pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]); | 
| 1678 | 0 |         for (j = 0; j < 27; ++j) { | 
| 1679 | 0 |             point_double(pre->g_pre_comp[0][2 * i][0], | 
| 1680 | 0 |                          pre->g_pre_comp[0][2 * i][1], | 
| 1681 | 0 |                          pre->g_pre_comp[0][2 * i][2], | 
| 1682 | 0 |                          pre->g_pre_comp[0][2 * i][0], | 
| 1683 | 0 |                          pre->g_pre_comp[0][2 * i][1], | 
| 1684 | 0 |                          pre->g_pre_comp[0][2 * i][2]); | 
| 1685 | 0 |         } | 
| 1686 | 0 |     } | 
| 1687 | 0 |     for (i = 0; i < 2; i++) { | 
| 1688 |  |         /* g_pre_comp[i][0] is the point at infinity */ | 
| 1689 | 0 |         memset(pre->g_pre_comp[i][0], 0, sizeof(pre->g_pre_comp[i][0])); | 
| 1690 |  |         /* the remaining multiples */ | 
| 1691 |  |         /* 2^56*G + 2^112*G resp. 2^84*G + 2^140*G */ | 
| 1692 | 0 |         point_add(pre->g_pre_comp[i][6][0], pre->g_pre_comp[i][6][1], | 
| 1693 | 0 |                   pre->g_pre_comp[i][6][2], pre->g_pre_comp[i][4][0], | 
| 1694 | 0 |                   pre->g_pre_comp[i][4][1], pre->g_pre_comp[i][4][2], | 
| 1695 | 0 |                   0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1], | 
| 1696 | 0 |                   pre->g_pre_comp[i][2][2]); | 
| 1697 |  |         /* 2^56*G + 2^168*G resp. 2^84*G + 2^196*G */ | 
| 1698 | 0 |         point_add(pre->g_pre_comp[i][10][0], pre->g_pre_comp[i][10][1], | 
| 1699 | 0 |                   pre->g_pre_comp[i][10][2], pre->g_pre_comp[i][8][0], | 
| 1700 | 0 |                   pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2], | 
| 1701 | 0 |                   0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1], | 
| 1702 | 0 |                   pre->g_pre_comp[i][2][2]); | 
| 1703 |  |         /* 2^112*G + 2^168*G resp. 2^140*G + 2^196*G */ | 
| 1704 | 0 |         point_add(pre->g_pre_comp[i][12][0], pre->g_pre_comp[i][12][1], | 
| 1705 | 0 |                   pre->g_pre_comp[i][12][2], pre->g_pre_comp[i][8][0], | 
| 1706 | 0 |                   pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2], | 
| 1707 | 0 |                   0, pre->g_pre_comp[i][4][0], pre->g_pre_comp[i][4][1], | 
| 1708 | 0 |                   pre->g_pre_comp[i][4][2]); | 
| 1709 |  |         /* | 
| 1710 |  |          * 2^56*G + 2^112*G + 2^168*G resp. 2^84*G + 2^140*G + 2^196*G | 
| 1711 |  |          */ | 
| 1712 | 0 |         point_add(pre->g_pre_comp[i][14][0], pre->g_pre_comp[i][14][1], | 
| 1713 | 0 |                   pre->g_pre_comp[i][14][2], pre->g_pre_comp[i][12][0], | 
| 1714 | 0 |                   pre->g_pre_comp[i][12][1], pre->g_pre_comp[i][12][2], | 
| 1715 | 0 |                   0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1], | 
| 1716 | 0 |                   pre->g_pre_comp[i][2][2]); | 
| 1717 | 0 |         for (j = 1; j < 8; ++j) { | 
| 1718 |  |             /* odd multiples: add G resp. 2^28*G */ | 
| 1719 | 0 |             point_add(pre->g_pre_comp[i][2 * j + 1][0], | 
| 1720 | 0 |                       pre->g_pre_comp[i][2 * j + 1][1], | 
| 1721 | 0 |                       pre->g_pre_comp[i][2 * j + 1][2], | 
| 1722 | 0 |                       pre->g_pre_comp[i][2 * j][0], | 
| 1723 | 0 |                       pre->g_pre_comp[i][2 * j][1], | 
| 1724 | 0 |                       pre->g_pre_comp[i][2 * j][2], 0, | 
| 1725 | 0 |                       pre->g_pre_comp[i][1][0], pre->g_pre_comp[i][1][1], | 
| 1726 | 0 |                       pre->g_pre_comp[i][1][2]); | 
| 1727 | 0 |         } | 
| 1728 | 0 |     } | 
| 1729 | 0 |     make_points_affine(31, &(pre->g_pre_comp[0][1]), tmp_felems); | 
| 1730 |  | 
 | 
| 1731 | 0 |  done: | 
| 1732 | 0 |     SETPRECOMP(group, nistp224, pre); | 
| 1733 | 0 |     pre = NULL; | 
| 1734 | 0 |     ret = 1; | 
| 1735 | 0 |  err: | 
| 1736 | 0 |     BN_CTX_end(ctx); | 
| 1737 | 0 |     EC_POINT_free(generator); | 
| 1738 | 0 | #ifndef FIPS_MODULE | 
| 1739 | 0 |     BN_CTX_free(new_ctx); | 
| 1740 | 0 | #endif | 
| 1741 | 0 |     EC_nistp224_pre_comp_free(pre); | 
| 1742 | 0 |     return ret; | 
| 1743 | 0 | } | 
| 1744 |  |  | 
| 1745 |  | int ossl_ec_GFp_nistp224_have_precompute_mult(const EC_GROUP *group) | 
| 1746 | 0 | { | 
| 1747 | 0 |     return HAVEPRECOMP(group, nistp224); | 
| 1748 | 0 | } |