/src/openssl30/crypto/ec/ecp_nistp521.c
| Line | Count | Source (jump to first uncovered line) | 
| 1 |  | /* | 
| 2 |  |  * Copyright 2011-2021 The OpenSSL Project Authors. All Rights Reserved. | 
| 3 |  |  * | 
| 4 |  |  * Licensed under the Apache License 2.0 (the "License").  You may not use | 
| 5 |  |  * this file except in compliance with the License.  You can obtain a copy | 
| 6 |  |  * in the file LICENSE in the source distribution or at | 
| 7 |  |  * https://www.openssl.org/source/license.html | 
| 8 |  |  */ | 
| 9 |  |  | 
| 10 |  | /* Copyright 2011 Google Inc. | 
| 11 |  |  * | 
| 12 |  |  * Licensed under the Apache License, Version 2.0 (the "License"); | 
| 13 |  |  * | 
| 14 |  |  * you may not use this file except in compliance with the License. | 
| 15 |  |  * You may obtain a copy of the License at | 
| 16 |  |  * | 
| 17 |  |  *     http://www.apache.org/licenses/LICENSE-2.0 | 
| 18 |  |  * | 
| 19 |  |  *  Unless required by applicable law or agreed to in writing, software | 
| 20 |  |  *  distributed under the License is distributed on an "AS IS" BASIS, | 
| 21 |  |  *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
| 22 |  |  *  See the License for the specific language governing permissions and | 
| 23 |  |  *  limitations under the License. | 
| 24 |  |  */ | 
| 25 |  |  | 
| 26 |  | /* | 
| 27 |  |  * ECDSA low level APIs are deprecated for public use, but still ok for | 
| 28 |  |  * internal use. | 
| 29 |  |  */ | 
| 30 |  | #include "internal/deprecated.h" | 
| 31 |  |  | 
| 32 |  | /* | 
| 33 |  |  * A 64-bit implementation of the NIST P-521 elliptic curve point multiplication | 
| 34 |  |  * | 
| 35 |  |  * OpenSSL integration was taken from Emilia Kasper's work in ecp_nistp224.c. | 
| 36 |  |  * Otherwise based on Emilia's P224 work, which was inspired by my curve25519 | 
| 37 |  |  * work which got its smarts from Daniel J. Bernstein's work on the same. | 
| 38 |  |  */ | 
| 39 |  |  | 
| 40 |  | #include <openssl/e_os2.h> | 
| 41 |  |  | 
| 42 |  | #include <string.h> | 
| 43 |  | #include <openssl/err.h> | 
| 44 |  | #include "ec_local.h" | 
| 45 |  |  | 
| 46 |  | #include "internal/numbers.h" | 
| 47 |  |  | 
| 48 |  | #ifndef INT128_MAX | 
| 49 |  | # error "Your compiler doesn't appear to support 128-bit integer types" | 
| 50 |  | #endif | 
| 51 |  |  | 
| 52 |  | typedef uint8_t u8; | 
| 53 |  | typedef uint64_t u64; | 
| 54 |  |  | 
| 55 |  | /* | 
| 56 |  |  * The underlying field. P521 operates over GF(2^521-1). We can serialize an | 
| 57 |  |  * element of this field into 66 bytes where the most significant byte | 
| 58 |  |  * contains only a single bit. We call this an felem_bytearray. | 
| 59 |  |  */ | 
| 60 |  |  | 
| 61 |  | typedef u8 felem_bytearray[66]; | 
| 62 |  |  | 
| 63 |  | /* | 
| 64 |  |  * These are the parameters of P521, taken from FIPS 186-3, section D.1.2.5. | 
| 65 |  |  * These values are big-endian. | 
| 66 |  |  */ | 
| 67 |  | static const felem_bytearray nistp521_curve_params[5] = { | 
| 68 |  |     {0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* p */ | 
| 69 |  |      0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | 
| 70 |  |      0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | 
| 71 |  |      0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | 
| 72 |  |      0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | 
| 73 |  |      0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | 
| 74 |  |      0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | 
| 75 |  |      0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | 
| 76 |  |      0xff, 0xff}, | 
| 77 |  |     {0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* a = -3 */ | 
| 78 |  |      0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | 
| 79 |  |      0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | 
| 80 |  |      0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | 
| 81 |  |      0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | 
| 82 |  |      0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | 
| 83 |  |      0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | 
| 84 |  |      0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | 
| 85 |  |      0xff, 0xfc}, | 
| 86 |  |     {0x00, 0x51, 0x95, 0x3e, 0xb9, 0x61, 0x8e, 0x1c, /* b */ | 
| 87 |  |      0x9a, 0x1f, 0x92, 0x9a, 0x21, 0xa0, 0xb6, 0x85, | 
| 88 |  |      0x40, 0xee, 0xa2, 0xda, 0x72, 0x5b, 0x99, 0xb3, | 
| 89 |  |      0x15, 0xf3, 0xb8, 0xb4, 0x89, 0x91, 0x8e, 0xf1, | 
| 90 |  |      0x09, 0xe1, 0x56, 0x19, 0x39, 0x51, 0xec, 0x7e, | 
| 91 |  |      0x93, 0x7b, 0x16, 0x52, 0xc0, 0xbd, 0x3b, 0xb1, | 
| 92 |  |      0xbf, 0x07, 0x35, 0x73, 0xdf, 0x88, 0x3d, 0x2c, | 
| 93 |  |      0x34, 0xf1, 0xef, 0x45, 0x1f, 0xd4, 0x6b, 0x50, | 
| 94 |  |      0x3f, 0x00}, | 
| 95 |  |     {0x00, 0xc6, 0x85, 0x8e, 0x06, 0xb7, 0x04, 0x04, /* x */ | 
| 96 |  |      0xe9, 0xcd, 0x9e, 0x3e, 0xcb, 0x66, 0x23, 0x95, | 
| 97 |  |      0xb4, 0x42, 0x9c, 0x64, 0x81, 0x39, 0x05, 0x3f, | 
| 98 |  |      0xb5, 0x21, 0xf8, 0x28, 0xaf, 0x60, 0x6b, 0x4d, | 
| 99 |  |      0x3d, 0xba, 0xa1, 0x4b, 0x5e, 0x77, 0xef, 0xe7, | 
| 100 |  |      0x59, 0x28, 0xfe, 0x1d, 0xc1, 0x27, 0xa2, 0xff, | 
| 101 |  |      0xa8, 0xde, 0x33, 0x48, 0xb3, 0xc1, 0x85, 0x6a, | 
| 102 |  |      0x42, 0x9b, 0xf9, 0x7e, 0x7e, 0x31, 0xc2, 0xe5, | 
| 103 |  |      0xbd, 0x66}, | 
| 104 |  |     {0x01, 0x18, 0x39, 0x29, 0x6a, 0x78, 0x9a, 0x3b, /* y */ | 
| 105 |  |      0xc0, 0x04, 0x5c, 0x8a, 0x5f, 0xb4, 0x2c, 0x7d, | 
| 106 |  |      0x1b, 0xd9, 0x98, 0xf5, 0x44, 0x49, 0x57, 0x9b, | 
| 107 |  |      0x44, 0x68, 0x17, 0xaf, 0xbd, 0x17, 0x27, 0x3e, | 
| 108 |  |      0x66, 0x2c, 0x97, 0xee, 0x72, 0x99, 0x5e, 0xf4, | 
| 109 |  |      0x26, 0x40, 0xc5, 0x50, 0xb9, 0x01, 0x3f, 0xad, | 
| 110 |  |      0x07, 0x61, 0x35, 0x3c, 0x70, 0x86, 0xa2, 0x72, | 
| 111 |  |      0xc2, 0x40, 0x88, 0xbe, 0x94, 0x76, 0x9f, 0xd1, | 
| 112 |  |      0x66, 0x50} | 
| 113 |  | }; | 
| 114 |  |  | 
| 115 |  | /*- | 
| 116 |  |  * The representation of field elements. | 
| 117 |  |  * ------------------------------------ | 
| 118 |  |  * | 
| 119 |  |  * We represent field elements with nine values. These values are either 64 or | 
| 120 |  |  * 128 bits and the field element represented is: | 
| 121 |  |  *   v[0]*2^0 + v[1]*2^58 + v[2]*2^116 + ... + v[8]*2^464  (mod p) | 
| 122 |  |  * Each of the nine values is called a 'limb'. Since the limbs are spaced only | 
| 123 |  |  * 58 bits apart, but are greater than 58 bits in length, the most significant | 
| 124 |  |  * bits of each limb overlap with the least significant bits of the next. | 
| 125 |  |  * | 
| 126 |  |  * A field element with 64-bit limbs is an 'felem'. One with 128-bit limbs is a | 
| 127 |  |  * 'largefelem' */ | 
| 128 |  |  | 
| 129 | 42.9M | #define NLIMBS 9 | 
| 130 |  |  | 
| 131 |  | typedef uint64_t limb; | 
| 132 |  | typedef limb limb_aX __attribute((__aligned__(1))); | 
| 133 |  | typedef limb felem[NLIMBS]; | 
| 134 |  | typedef uint128_t largefelem[NLIMBS]; | 
| 135 |  |  | 
| 136 |  | static const limb bottom57bits = 0x1ffffffffffffff; | 
| 137 |  | static const limb bottom58bits = 0x3ffffffffffffff; | 
| 138 |  |  | 
| 139 |  | /* | 
| 140 |  |  * bin66_to_felem takes a little-endian byte array and converts it into felem | 
| 141 |  |  * form. This assumes that the CPU is little-endian. | 
| 142 |  |  */ | 
| 143 |  | static void bin66_to_felem(felem out, const u8 in[66]) | 
| 144 | 2.56k | { | 
| 145 | 2.56k |     out[0] = (*((limb *) & in[0])) & bottom58bits; | 
| 146 | 2.56k |     out[1] = (*((limb_aX *) & in[7]) >> 2) & bottom58bits; | 
| 147 | 2.56k |     out[2] = (*((limb_aX *) & in[14]) >> 4) & bottom58bits; | 
| 148 | 2.56k |     out[3] = (*((limb_aX *) & in[21]) >> 6) & bottom58bits; | 
| 149 | 2.56k |     out[4] = (*((limb_aX *) & in[29])) & bottom58bits; | 
| 150 | 2.56k |     out[5] = (*((limb_aX *) & in[36]) >> 2) & bottom58bits; | 
| 151 | 2.56k |     out[6] = (*((limb_aX *) & in[43]) >> 4) & bottom58bits; | 
| 152 | 2.56k |     out[7] = (*((limb_aX *) & in[50]) >> 6) & bottom58bits; | 
| 153 | 2.56k |     out[8] = (*((limb_aX *) & in[58])) & bottom57bits; | 
| 154 | 2.56k | } | 
| 155 |  |  | 
| 156 |  | /* | 
| 157 |  |  * felem_to_bin66 takes an felem and serializes into a little endian, 66 byte | 
| 158 |  |  * array. This assumes that the CPU is little-endian. | 
| 159 |  |  */ | 
| 160 |  | static void felem_to_bin66(u8 out[66], const felem in) | 
| 161 | 4.53k | { | 
| 162 | 4.53k |     memset(out, 0, 66); | 
| 163 | 4.53k |     (*((limb *) & out[0])) = in[0]; | 
| 164 | 4.53k |     (*((limb_aX *) & out[7])) |= in[1] << 2; | 
| 165 | 4.53k |     (*((limb_aX *) & out[14])) |= in[2] << 4; | 
| 166 | 4.53k |     (*((limb_aX *) & out[21])) |= in[3] << 6; | 
| 167 | 4.53k |     (*((limb_aX *) & out[29])) = in[4]; | 
| 168 | 4.53k |     (*((limb_aX *) & out[36])) |= in[5] << 2; | 
| 169 | 4.53k |     (*((limb_aX *) & out[43])) |= in[6] << 4; | 
| 170 | 4.53k |     (*((limb_aX *) & out[50])) |= in[7] << 6; | 
| 171 | 4.53k |     (*((limb_aX *) & out[58])) = in[8]; | 
| 172 | 4.53k | } | 
| 173 |  |  | 
| 174 |  | /* BN_to_felem converts an OpenSSL BIGNUM into an felem */ | 
| 175 |  | static int BN_to_felem(felem out, const BIGNUM *bn) | 
| 176 | 2.56k | { | 
| 177 | 2.56k |     felem_bytearray b_out; | 
| 178 | 2.56k |     int num_bytes; | 
| 179 |  |  | 
| 180 | 2.56k |     if (BN_is_negative(bn)) { | 
| 181 | 0 |         ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE); | 
| 182 | 0 |         return 0; | 
| 183 | 0 |     } | 
| 184 | 2.56k |     num_bytes = BN_bn2lebinpad(bn, b_out, sizeof(b_out)); | 
| 185 | 2.56k |     if (num_bytes < 0) { | 
| 186 | 0 |         ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE); | 
| 187 | 0 |         return 0; | 
| 188 | 0 |     } | 
| 189 | 2.56k |     bin66_to_felem(out, b_out); | 
| 190 | 2.56k |     return 1; | 
| 191 | 2.56k | } | 
| 192 |  |  | 
| 193 |  | /* felem_to_BN converts an felem into an OpenSSL BIGNUM */ | 
| 194 |  | static BIGNUM *felem_to_BN(BIGNUM *out, const felem in) | 
| 195 | 4.53k | { | 
| 196 | 4.53k |     felem_bytearray b_out; | 
| 197 | 4.53k |     felem_to_bin66(b_out, in); | 
| 198 | 4.53k |     return BN_lebin2bn(b_out, sizeof(b_out), out); | 
| 199 | 4.53k | } | 
| 200 |  |  | 
| 201 |  | /*- | 
| 202 |  |  * Field operations | 
| 203 |  |  * ---------------- | 
| 204 |  |  */ | 
| 205 |  |  | 
| 206 |  | static void felem_one(felem out) | 
| 207 | 0 | { | 
| 208 | 0 |     out[0] = 1; | 
| 209 | 0 |     out[1] = 0; | 
| 210 | 0 |     out[2] = 0; | 
| 211 | 0 |     out[3] = 0; | 
| 212 | 0 |     out[4] = 0; | 
| 213 | 0 |     out[5] = 0; | 
| 214 | 0 |     out[6] = 0; | 
| 215 | 0 |     out[7] = 0; | 
| 216 | 0 |     out[8] = 0; | 
| 217 | 0 | } | 
| 218 |  |  | 
| 219 |  | static void felem_assign(felem out, const felem in) | 
| 220 | 1.57M | { | 
| 221 | 1.57M |     out[0] = in[0]; | 
| 222 | 1.57M |     out[1] = in[1]; | 
| 223 | 1.57M |     out[2] = in[2]; | 
| 224 | 1.57M |     out[3] = in[3]; | 
| 225 | 1.57M |     out[4] = in[4]; | 
| 226 | 1.57M |     out[5] = in[5]; | 
| 227 | 1.57M |     out[6] = in[6]; | 
| 228 | 1.57M |     out[7] = in[7]; | 
| 229 | 1.57M |     out[8] = in[8]; | 
| 230 | 1.57M | } | 
| 231 |  |  | 
| 232 |  | /* felem_sum64 sets out = out + in. */ | 
| 233 |  | static void felem_sum64(felem out, const felem in) | 
| 234 | 527k | { | 
| 235 | 527k |     out[0] += in[0]; | 
| 236 | 527k |     out[1] += in[1]; | 
| 237 | 527k |     out[2] += in[2]; | 
| 238 | 527k |     out[3] += in[3]; | 
| 239 | 527k |     out[4] += in[4]; | 
| 240 | 527k |     out[5] += in[5]; | 
| 241 | 527k |     out[6] += in[6]; | 
| 242 | 527k |     out[7] += in[7]; | 
| 243 | 527k |     out[8] += in[8]; | 
| 244 | 527k | } | 
| 245 |  |  | 
| 246 |  | /* felem_scalar sets out = in * scalar */ | 
| 247 |  | static void felem_scalar(felem out, const felem in, limb scalar) | 
| 248 | 4.26M | { | 
| 249 | 4.26M |     out[0] = in[0] * scalar; | 
| 250 | 4.26M |     out[1] = in[1] * scalar; | 
| 251 | 4.26M |     out[2] = in[2] * scalar; | 
| 252 | 4.26M |     out[3] = in[3] * scalar; | 
| 253 | 4.26M |     out[4] = in[4] * scalar; | 
| 254 | 4.26M |     out[5] = in[5] * scalar; | 
| 255 | 4.26M |     out[6] = in[6] * scalar; | 
| 256 | 4.26M |     out[7] = in[7] * scalar; | 
| 257 | 4.26M |     out[8] = in[8] * scalar; | 
| 258 | 4.26M | } | 
| 259 |  |  | 
| 260 |  | /* felem_scalar64 sets out = out * scalar */ | 
| 261 |  | static void felem_scalar64(felem out, limb scalar) | 
| 262 | 755k | { | 
| 263 | 755k |     out[0] *= scalar; | 
| 264 | 755k |     out[1] *= scalar; | 
| 265 | 755k |     out[2] *= scalar; | 
| 266 | 755k |     out[3] *= scalar; | 
| 267 | 755k |     out[4] *= scalar; | 
| 268 | 755k |     out[5] *= scalar; | 
| 269 | 755k |     out[6] *= scalar; | 
| 270 | 755k |     out[7] *= scalar; | 
| 271 | 755k |     out[8] *= scalar; | 
| 272 | 755k | } | 
| 273 |  |  | 
| 274 |  | /* felem_scalar128 sets out = out * scalar */ | 
| 275 |  | static void felem_scalar128(largefelem out, limb scalar) | 
| 276 | 251k | { | 
| 277 | 251k |     out[0] *= scalar; | 
| 278 | 251k |     out[1] *= scalar; | 
| 279 | 251k |     out[2] *= scalar; | 
| 280 | 251k |     out[3] *= scalar; | 
| 281 | 251k |     out[4] *= scalar; | 
| 282 | 251k |     out[5] *= scalar; | 
| 283 | 251k |     out[6] *= scalar; | 
| 284 | 251k |     out[7] *= scalar; | 
| 285 | 251k |     out[8] *= scalar; | 
| 286 | 251k | } | 
| 287 |  |  | 
| 288 |  | /*- | 
| 289 |  |  * felem_neg sets |out| to |-in| | 
| 290 |  |  * On entry: | 
| 291 |  |  *   in[i] < 2^59 + 2^14 | 
| 292 |  |  * On exit: | 
| 293 |  |  *   out[i] < 2^62 | 
| 294 |  |  */ | 
| 295 |  | static void felem_neg(felem out, const felem in) | 
| 296 | 21.8k | { | 
| 297 |  |     /* In order to prevent underflow, we subtract from 0 mod p. */ | 
| 298 | 21.8k |     static const limb two62m3 = (((limb) 1) << 62) - (((limb) 1) << 5); | 
| 299 | 21.8k |     static const limb two62m2 = (((limb) 1) << 62) - (((limb) 1) << 4); | 
| 300 |  |  | 
| 301 | 21.8k |     out[0] = two62m3 - in[0]; | 
| 302 | 21.8k |     out[1] = two62m2 - in[1]; | 
| 303 | 21.8k |     out[2] = two62m2 - in[2]; | 
| 304 | 21.8k |     out[3] = two62m2 - in[3]; | 
| 305 | 21.8k |     out[4] = two62m2 - in[4]; | 
| 306 | 21.8k |     out[5] = two62m2 - in[5]; | 
| 307 | 21.8k |     out[6] = two62m2 - in[6]; | 
| 308 | 21.8k |     out[7] = two62m2 - in[7]; | 
| 309 | 21.8k |     out[8] = two62m2 - in[8]; | 
| 310 | 21.8k | } | 
| 311 |  |  | 
| 312 |  | /*- | 
| 313 |  |  * felem_diff64 subtracts |in| from |out| | 
| 314 |  |  * On entry: | 
| 315 |  |  *   in[i] < 2^59 + 2^14 | 
| 316 |  |  * On exit: | 
| 317 |  |  *   out[i] < out[i] + 2^62 | 
| 318 |  |  */ | 
| 319 |  | static void felem_diff64(felem out, const felem in) | 
| 320 | 419k | { | 
| 321 |  |     /* | 
| 322 |  |      * In order to prevent underflow, we add 0 mod p before subtracting. | 
| 323 |  |      */ | 
| 324 | 419k |     static const limb two62m3 = (((limb) 1) << 62) - (((limb) 1) << 5); | 
| 325 | 419k |     static const limb two62m2 = (((limb) 1) << 62) - (((limb) 1) << 4); | 
| 326 |  |  | 
| 327 | 419k |     out[0] += two62m3 - in[0]; | 
| 328 | 419k |     out[1] += two62m2 - in[1]; | 
| 329 | 419k |     out[2] += two62m2 - in[2]; | 
| 330 | 419k |     out[3] += two62m2 - in[3]; | 
| 331 | 419k |     out[4] += two62m2 - in[4]; | 
| 332 | 419k |     out[5] += two62m2 - in[5]; | 
| 333 | 419k |     out[6] += two62m2 - in[6]; | 
| 334 | 419k |     out[7] += two62m2 - in[7]; | 
| 335 | 419k |     out[8] += two62m2 - in[8]; | 
| 336 | 419k | } | 
| 337 |  |  | 
| 338 |  | /*- | 
| 339 |  |  * felem_diff_128_64 subtracts |in| from |out| | 
| 340 |  |  * On entry: | 
| 341 |  |  *   in[i] < 2^62 + 2^17 | 
| 342 |  |  * On exit: | 
| 343 |  |  *   out[i] < out[i] + 2^63 | 
| 344 |  |  */ | 
| 345 |  | static void felem_diff_128_64(largefelem out, const felem in) | 
| 346 | 716k | { | 
| 347 |  |     /* | 
| 348 |  |      * In order to prevent underflow, we add 64p mod p (which is equivalent | 
| 349 |  |      * to 0 mod p) before subtracting. p is 2^521 - 1, i.e. in binary a 521 | 
| 350 |  |      * digit number with all bits set to 1. See "The representation of field | 
| 351 |  |      * elements" comment above for a description of how limbs are used to | 
| 352 |  |      * represent a number. 64p is represented with 8 limbs containing a number | 
| 353 |  |      * with 58 bits set and one limb with a number with 57 bits set. | 
| 354 |  |      */ | 
| 355 | 716k |     static const limb two63m6 = (((limb) 1) << 63) - (((limb) 1) << 6); | 
| 356 | 716k |     static const limb two63m5 = (((limb) 1) << 63) - (((limb) 1) << 5); | 
| 357 |  |  | 
| 358 | 716k |     out[0] += two63m6 - in[0]; | 
| 359 | 716k |     out[1] += two63m5 - in[1]; | 
| 360 | 716k |     out[2] += two63m5 - in[2]; | 
| 361 | 716k |     out[3] += two63m5 - in[3]; | 
| 362 | 716k |     out[4] += two63m5 - in[4]; | 
| 363 | 716k |     out[5] += two63m5 - in[5]; | 
| 364 | 716k |     out[6] += two63m5 - in[6]; | 
| 365 | 716k |     out[7] += two63m5 - in[7]; | 
| 366 | 716k |     out[8] += two63m5 - in[8]; | 
| 367 | 716k | } | 
| 368 |  |  | 
| 369 |  | /*- | 
| 370 |  |  * felem_diff_128_64 subtracts |in| from |out| | 
| 371 |  |  * On entry: | 
| 372 |  |  *   in[i] < 2^126 | 
| 373 |  |  * On exit: | 
| 374 |  |  *   out[i] < out[i] + 2^127 - 2^69 | 
| 375 |  |  */ | 
| 376 |  | static void felem_diff128(largefelem out, const largefelem in) | 
| 377 | 251k | { | 
| 378 |  |     /* | 
| 379 |  |      * In order to prevent underflow, we add 0 mod p before subtracting. | 
| 380 |  |      */ | 
| 381 | 251k |     static const uint128_t two127m70 = | 
| 382 | 251k |         (((uint128_t) 1) << 127) - (((uint128_t) 1) << 70); | 
| 383 | 251k |     static const uint128_t two127m69 = | 
| 384 | 251k |         (((uint128_t) 1) << 127) - (((uint128_t) 1) << 69); | 
| 385 |  |  | 
| 386 | 251k |     out[0] += (two127m70 - in[0]); | 
| 387 | 251k |     out[1] += (two127m69 - in[1]); | 
| 388 | 251k |     out[2] += (two127m69 - in[2]); | 
| 389 | 251k |     out[3] += (two127m69 - in[3]); | 
| 390 | 251k |     out[4] += (two127m69 - in[4]); | 
| 391 | 251k |     out[5] += (two127m69 - in[5]); | 
| 392 | 251k |     out[6] += (two127m69 - in[6]); | 
| 393 | 251k |     out[7] += (two127m69 - in[7]); | 
| 394 | 251k |     out[8] += (two127m69 - in[8]); | 
| 395 | 251k | } | 
| 396 |  |  | 
| 397 |  | /*- | 
| 398 |  |  * felem_square sets |out| = |in|^2 | 
| 399 |  |  * On entry: | 
| 400 |  |  *   in[i] < 2^62 | 
| 401 |  |  * On exit: | 
| 402 |  |  *   out[i] < 17 * max(in[i]) * max(in[i]) | 
| 403 |  |  */ | 
| 404 |  | static void felem_square_ref(largefelem out, const felem in) | 
| 405 | 830k | { | 
| 406 | 830k |     felem inx2, inx4; | 
| 407 | 830k |     felem_scalar(inx2, in, 2); | 
| 408 | 830k |     felem_scalar(inx4, in, 4); | 
| 409 |  |  | 
| 410 |  |     /*- | 
| 411 |  |      * We have many cases were we want to do | 
| 412 |  |      *   in[x] * in[y] + | 
| 413 |  |      *   in[y] * in[x] | 
| 414 |  |      * This is obviously just | 
| 415 |  |      *   2 * in[x] * in[y] | 
| 416 |  |      * However, rather than do the doubling on the 128 bit result, we | 
| 417 |  |      * double one of the inputs to the multiplication by reading from | 
| 418 |  |      * |inx2| | 
| 419 |  |      */ | 
| 420 |  |  | 
| 421 | 830k |     out[0] = ((uint128_t) in[0]) * in[0]; | 
| 422 | 830k |     out[1] = ((uint128_t) in[0]) * inx2[1]; | 
| 423 | 830k |     out[2] = ((uint128_t) in[0]) * inx2[2] + ((uint128_t) in[1]) * in[1]; | 
| 424 | 830k |     out[3] = ((uint128_t) in[0]) * inx2[3] + ((uint128_t) in[1]) * inx2[2]; | 
| 425 | 830k |     out[4] = ((uint128_t) in[0]) * inx2[4] + | 
| 426 | 830k |              ((uint128_t) in[1]) * inx2[3] + ((uint128_t) in[2]) * in[2]; | 
| 427 | 830k |     out[5] = ((uint128_t) in[0]) * inx2[5] + | 
| 428 | 830k |              ((uint128_t) in[1]) * inx2[4] + ((uint128_t) in[2]) * inx2[3]; | 
| 429 | 830k |     out[6] = ((uint128_t) in[0]) * inx2[6] + | 
| 430 | 830k |              ((uint128_t) in[1]) * inx2[5] + | 
| 431 | 830k |              ((uint128_t) in[2]) * inx2[4] + ((uint128_t) in[3]) * in[3]; | 
| 432 | 830k |     out[7] = ((uint128_t) in[0]) * inx2[7] + | 
| 433 | 830k |              ((uint128_t) in[1]) * inx2[6] + | 
| 434 | 830k |              ((uint128_t) in[2]) * inx2[5] + ((uint128_t) in[3]) * inx2[4]; | 
| 435 | 830k |     out[8] = ((uint128_t) in[0]) * inx2[8] + | 
| 436 | 830k |              ((uint128_t) in[1]) * inx2[7] + | 
| 437 | 830k |              ((uint128_t) in[2]) * inx2[6] + | 
| 438 | 830k |              ((uint128_t) in[3]) * inx2[5] + ((uint128_t) in[4]) * in[4]; | 
| 439 |  |  | 
| 440 |  |     /* | 
| 441 |  |      * The remaining limbs fall above 2^521, with the first falling at 2^522. | 
| 442 |  |      * They correspond to locations one bit up from the limbs produced above | 
| 443 |  |      * so we would have to multiply by two to align them. Again, rather than | 
| 444 |  |      * operate on the 128-bit result, we double one of the inputs to the | 
| 445 |  |      * multiplication. If we want to double for both this reason, and the | 
| 446 |  |      * reason above, then we end up multiplying by four. | 
| 447 |  |      */ | 
| 448 |  |  | 
| 449 |  |     /* 9 */ | 
| 450 | 830k |     out[0] += ((uint128_t) in[1]) * inx4[8] + | 
| 451 | 830k |               ((uint128_t) in[2]) * inx4[7] + | 
| 452 | 830k |               ((uint128_t) in[3]) * inx4[6] + ((uint128_t) in[4]) * inx4[5]; | 
| 453 |  |  | 
| 454 |  |     /* 10 */ | 
| 455 | 830k |     out[1] += ((uint128_t) in[2]) * inx4[8] + | 
| 456 | 830k |               ((uint128_t) in[3]) * inx4[7] + | 
| 457 | 830k |               ((uint128_t) in[4]) * inx4[6] + ((uint128_t) in[5]) * inx2[5]; | 
| 458 |  |  | 
| 459 |  |     /* 11 */ | 
| 460 | 830k |     out[2] += ((uint128_t) in[3]) * inx4[8] + | 
| 461 | 830k |               ((uint128_t) in[4]) * inx4[7] + ((uint128_t) in[5]) * inx4[6]; | 
| 462 |  |  | 
| 463 |  |     /* 12 */ | 
| 464 | 830k |     out[3] += ((uint128_t) in[4]) * inx4[8] + | 
| 465 | 830k |               ((uint128_t) in[5]) * inx4[7] + ((uint128_t) in[6]) * inx2[6]; | 
| 466 |  |  | 
| 467 |  |     /* 13 */ | 
| 468 | 830k |     out[4] += ((uint128_t) in[5]) * inx4[8] + ((uint128_t) in[6]) * inx4[7]; | 
| 469 |  |  | 
| 470 |  |     /* 14 */ | 
| 471 | 830k |     out[5] += ((uint128_t) in[6]) * inx4[8] + ((uint128_t) in[7]) * inx2[7]; | 
| 472 |  |  | 
| 473 |  |     /* 15 */ | 
| 474 | 830k |     out[6] += ((uint128_t) in[7]) * inx4[8]; | 
| 475 |  |  | 
| 476 |  |     /* 16 */ | 
| 477 | 830k |     out[7] += ((uint128_t) in[8]) * inx2[8]; | 
| 478 | 830k | } | 
| 479 |  |  | 
| 480 |  | /*- | 
| 481 |  |  * felem_mul sets |out| = |in1| * |in2| | 
| 482 |  |  * On entry: | 
| 483 |  |  *   in1[i] < 2^64 | 
| 484 |  |  *   in2[i] < 2^63 | 
| 485 |  |  * On exit: | 
| 486 |  |  *   out[i] < 17 * max(in1[i]) * max(in2[i]) | 
| 487 |  |  */ | 
| 488 |  | static void felem_mul_ref(largefelem out, const felem in1, const felem in2) | 
| 489 | 718k | { | 
| 490 | 718k |     felem in2x2; | 
| 491 | 718k |     felem_scalar(in2x2, in2, 2); | 
| 492 |  |  | 
| 493 | 718k |     out[0] = ((uint128_t) in1[0]) * in2[0]; | 
| 494 |  |  | 
| 495 | 718k |     out[1] = ((uint128_t) in1[0]) * in2[1] + | 
| 496 | 718k |              ((uint128_t) in1[1]) * in2[0]; | 
| 497 |  |  | 
| 498 | 718k |     out[2] = ((uint128_t) in1[0]) * in2[2] + | 
| 499 | 718k |              ((uint128_t) in1[1]) * in2[1] + | 
| 500 | 718k |              ((uint128_t) in1[2]) * in2[0]; | 
| 501 |  |  | 
| 502 | 718k |     out[3] = ((uint128_t) in1[0]) * in2[3] + | 
| 503 | 718k |              ((uint128_t) in1[1]) * in2[2] + | 
| 504 | 718k |              ((uint128_t) in1[2]) * in2[1] + | 
| 505 | 718k |              ((uint128_t) in1[3]) * in2[0]; | 
| 506 |  |  | 
| 507 | 718k |     out[4] = ((uint128_t) in1[0]) * in2[4] + | 
| 508 | 718k |              ((uint128_t) in1[1]) * in2[3] + | 
| 509 | 718k |              ((uint128_t) in1[2]) * in2[2] + | 
| 510 | 718k |              ((uint128_t) in1[3]) * in2[1] + | 
| 511 | 718k |              ((uint128_t) in1[4]) * in2[0]; | 
| 512 |  |  | 
| 513 | 718k |     out[5] = ((uint128_t) in1[0]) * in2[5] + | 
| 514 | 718k |              ((uint128_t) in1[1]) * in2[4] + | 
| 515 | 718k |              ((uint128_t) in1[2]) * in2[3] + | 
| 516 | 718k |              ((uint128_t) in1[3]) * in2[2] + | 
| 517 | 718k |              ((uint128_t) in1[4]) * in2[1] + | 
| 518 | 718k |              ((uint128_t) in1[5]) * in2[0]; | 
| 519 |  |  | 
| 520 | 718k |     out[6] = ((uint128_t) in1[0]) * in2[6] + | 
| 521 | 718k |              ((uint128_t) in1[1]) * in2[5] + | 
| 522 | 718k |              ((uint128_t) in1[2]) * in2[4] + | 
| 523 | 718k |              ((uint128_t) in1[3]) * in2[3] + | 
| 524 | 718k |              ((uint128_t) in1[4]) * in2[2] + | 
| 525 | 718k |              ((uint128_t) in1[5]) * in2[1] + | 
| 526 | 718k |              ((uint128_t) in1[6]) * in2[0]; | 
| 527 |  |  | 
| 528 | 718k |     out[7] = ((uint128_t) in1[0]) * in2[7] + | 
| 529 | 718k |              ((uint128_t) in1[1]) * in2[6] + | 
| 530 | 718k |              ((uint128_t) in1[2]) * in2[5] + | 
| 531 | 718k |              ((uint128_t) in1[3]) * in2[4] + | 
| 532 | 718k |              ((uint128_t) in1[4]) * in2[3] + | 
| 533 | 718k |              ((uint128_t) in1[5]) * in2[2] + | 
| 534 | 718k |              ((uint128_t) in1[6]) * in2[1] + | 
| 535 | 718k |              ((uint128_t) in1[7]) * in2[0]; | 
| 536 |  |  | 
| 537 | 718k |     out[8] = ((uint128_t) in1[0]) * in2[8] + | 
| 538 | 718k |              ((uint128_t) in1[1]) * in2[7] + | 
| 539 | 718k |              ((uint128_t) in1[2]) * in2[6] + | 
| 540 | 718k |              ((uint128_t) in1[3]) * in2[5] + | 
| 541 | 718k |              ((uint128_t) in1[4]) * in2[4] + | 
| 542 | 718k |              ((uint128_t) in1[5]) * in2[3] + | 
| 543 | 718k |              ((uint128_t) in1[6]) * in2[2] + | 
| 544 | 718k |              ((uint128_t) in1[7]) * in2[1] + | 
| 545 | 718k |              ((uint128_t) in1[8]) * in2[0]; | 
| 546 |  |  | 
| 547 |  |     /* See comment in felem_square about the use of in2x2 here */ | 
| 548 |  |  | 
| 549 | 718k |     out[0] += ((uint128_t) in1[1]) * in2x2[8] + | 
| 550 | 718k |               ((uint128_t) in1[2]) * in2x2[7] + | 
| 551 | 718k |               ((uint128_t) in1[3]) * in2x2[6] + | 
| 552 | 718k |               ((uint128_t) in1[4]) * in2x2[5] + | 
| 553 | 718k |               ((uint128_t) in1[5]) * in2x2[4] + | 
| 554 | 718k |               ((uint128_t) in1[6]) * in2x2[3] + | 
| 555 | 718k |               ((uint128_t) in1[7]) * in2x2[2] + | 
| 556 | 718k |               ((uint128_t) in1[8]) * in2x2[1]; | 
| 557 |  |  | 
| 558 | 718k |     out[1] += ((uint128_t) in1[2]) * in2x2[8] + | 
| 559 | 718k |               ((uint128_t) in1[3]) * in2x2[7] + | 
| 560 | 718k |               ((uint128_t) in1[4]) * in2x2[6] + | 
| 561 | 718k |               ((uint128_t) in1[5]) * in2x2[5] + | 
| 562 | 718k |               ((uint128_t) in1[6]) * in2x2[4] + | 
| 563 | 718k |               ((uint128_t) in1[7]) * in2x2[3] + | 
| 564 | 718k |               ((uint128_t) in1[8]) * in2x2[2]; | 
| 565 |  |  | 
| 566 | 718k |     out[2] += ((uint128_t) in1[3]) * in2x2[8] + | 
| 567 | 718k |               ((uint128_t) in1[4]) * in2x2[7] + | 
| 568 | 718k |               ((uint128_t) in1[5]) * in2x2[6] + | 
| 569 | 718k |               ((uint128_t) in1[6]) * in2x2[5] + | 
| 570 | 718k |               ((uint128_t) in1[7]) * in2x2[4] + | 
| 571 | 718k |               ((uint128_t) in1[8]) * in2x2[3]; | 
| 572 |  |  | 
| 573 | 718k |     out[3] += ((uint128_t) in1[4]) * in2x2[8] + | 
| 574 | 718k |               ((uint128_t) in1[5]) * in2x2[7] + | 
| 575 | 718k |               ((uint128_t) in1[6]) * in2x2[6] + | 
| 576 | 718k |               ((uint128_t) in1[7]) * in2x2[5] + | 
| 577 | 718k |               ((uint128_t) in1[8]) * in2x2[4]; | 
| 578 |  |  | 
| 579 | 718k |     out[4] += ((uint128_t) in1[5]) * in2x2[8] + | 
| 580 | 718k |               ((uint128_t) in1[6]) * in2x2[7] + | 
| 581 | 718k |               ((uint128_t) in1[7]) * in2x2[6] + | 
| 582 | 718k |               ((uint128_t) in1[8]) * in2x2[5]; | 
| 583 |  |  | 
| 584 | 718k |     out[5] += ((uint128_t) in1[6]) * in2x2[8] + | 
| 585 | 718k |               ((uint128_t) in1[7]) * in2x2[7] + | 
| 586 | 718k |               ((uint128_t) in1[8]) * in2x2[6]; | 
| 587 |  |  | 
| 588 | 718k |     out[6] += ((uint128_t) in1[7]) * in2x2[8] + | 
| 589 | 718k |               ((uint128_t) in1[8]) * in2x2[7]; | 
| 590 |  |  | 
| 591 | 718k |     out[7] += ((uint128_t) in1[8]) * in2x2[8]; | 
| 592 | 718k | } | 
| 593 |  |  | 
| 594 |  | static const limb bottom52bits = 0xfffffffffffff; | 
| 595 |  |  | 
| 596 |  | /*- | 
| 597 |  |  * felem_reduce converts a largefelem to an felem. | 
| 598 |  |  * On entry: | 
| 599 |  |  *   in[i] < 2^128 | 
| 600 |  |  * On exit: | 
| 601 |  |  *   out[i] < 2^59 + 2^14 | 
| 602 |  |  */ | 
| 603 |  | static void felem_reduce(felem out, const largefelem in) | 
| 604 | 2.47M | { | 
| 605 | 2.47M |     u64 overflow1, overflow2; | 
| 606 |  |  | 
| 607 | 2.47M |     out[0] = ((limb) in[0]) & bottom58bits; | 
| 608 | 2.47M |     out[1] = ((limb) in[1]) & bottom58bits; | 
| 609 | 2.47M |     out[2] = ((limb) in[2]) & bottom58bits; | 
| 610 | 2.47M |     out[3] = ((limb) in[3]) & bottom58bits; | 
| 611 | 2.47M |     out[4] = ((limb) in[4]) & bottom58bits; | 
| 612 | 2.47M |     out[5] = ((limb) in[5]) & bottom58bits; | 
| 613 | 2.47M |     out[6] = ((limb) in[6]) & bottom58bits; | 
| 614 | 2.47M |     out[7] = ((limb) in[7]) & bottom58bits; | 
| 615 | 2.47M |     out[8] = ((limb) in[8]) & bottom58bits; | 
| 616 |  |  | 
| 617 |  |     /* out[i] < 2^58 */ | 
| 618 |  |  | 
| 619 | 2.47M |     out[1] += ((limb) in[0]) >> 58; | 
| 620 | 2.47M |     out[1] += (((limb) (in[0] >> 64)) & bottom52bits) << 6; | 
| 621 |  |     /*- | 
| 622 |  |      * out[1] < 2^58 + 2^6 + 2^58 | 
| 623 |  |      *        = 2^59 + 2^6 | 
| 624 |  |      */ | 
| 625 | 2.47M |     out[2] += ((limb) (in[0] >> 64)) >> 52; | 
| 626 |  |  | 
| 627 | 2.47M |     out[2] += ((limb) in[1]) >> 58; | 
| 628 | 2.47M |     out[2] += (((limb) (in[1] >> 64)) & bottom52bits) << 6; | 
| 629 | 2.47M |     out[3] += ((limb) (in[1] >> 64)) >> 52; | 
| 630 |  |  | 
| 631 | 2.47M |     out[3] += ((limb) in[2]) >> 58; | 
| 632 | 2.47M |     out[3] += (((limb) (in[2] >> 64)) & bottom52bits) << 6; | 
| 633 | 2.47M |     out[4] += ((limb) (in[2] >> 64)) >> 52; | 
| 634 |  |  | 
| 635 | 2.47M |     out[4] += ((limb) in[3]) >> 58; | 
| 636 | 2.47M |     out[4] += (((limb) (in[3] >> 64)) & bottom52bits) << 6; | 
| 637 | 2.47M |     out[5] += ((limb) (in[3] >> 64)) >> 52; | 
| 638 |  |  | 
| 639 | 2.47M |     out[5] += ((limb) in[4]) >> 58; | 
| 640 | 2.47M |     out[5] += (((limb) (in[4] >> 64)) & bottom52bits) << 6; | 
| 641 | 2.47M |     out[6] += ((limb) (in[4] >> 64)) >> 52; | 
| 642 |  |  | 
| 643 | 2.47M |     out[6] += ((limb) in[5]) >> 58; | 
| 644 | 2.47M |     out[6] += (((limb) (in[5] >> 64)) & bottom52bits) << 6; | 
| 645 | 2.47M |     out[7] += ((limb) (in[5] >> 64)) >> 52; | 
| 646 |  |  | 
| 647 | 2.47M |     out[7] += ((limb) in[6]) >> 58; | 
| 648 | 2.47M |     out[7] += (((limb) (in[6] >> 64)) & bottom52bits) << 6; | 
| 649 | 2.47M |     out[8] += ((limb) (in[6] >> 64)) >> 52; | 
| 650 |  |  | 
| 651 | 2.47M |     out[8] += ((limb) in[7]) >> 58; | 
| 652 | 2.47M |     out[8] += (((limb) (in[7] >> 64)) & bottom52bits) << 6; | 
| 653 |  |     /*- | 
| 654 |  |      * out[x > 1] < 2^58 + 2^6 + 2^58 + 2^12 | 
| 655 |  |      *            < 2^59 + 2^13 | 
| 656 |  |      */ | 
| 657 | 2.47M |     overflow1 = ((limb) (in[7] >> 64)) >> 52; | 
| 658 |  |  | 
| 659 | 2.47M |     overflow1 += ((limb) in[8]) >> 58; | 
| 660 | 2.47M |     overflow1 += (((limb) (in[8] >> 64)) & bottom52bits) << 6; | 
| 661 | 2.47M |     overflow2 = ((limb) (in[8] >> 64)) >> 52; | 
| 662 |  |  | 
| 663 | 2.47M |     overflow1 <<= 1;            /* overflow1 < 2^13 + 2^7 + 2^59 */ | 
| 664 | 2.47M |     overflow2 <<= 1;            /* overflow2 < 2^13 */ | 
| 665 |  |  | 
| 666 | 2.47M |     out[0] += overflow1;        /* out[0] < 2^60 */ | 
| 667 | 2.47M |     out[1] += overflow2;        /* out[1] < 2^59 + 2^6 + 2^13 */ | 
| 668 |  |  | 
| 669 | 2.47M |     out[1] += out[0] >> 58; | 
| 670 | 2.47M |     out[0] &= bottom58bits; | 
| 671 |  |     /*- | 
| 672 |  |      * out[0] < 2^58 | 
| 673 |  |      * out[1] < 2^59 + 2^6 + 2^13 + 2^2 | 
| 674 |  |      *        < 2^59 + 2^14 | 
| 675 |  |      */ | 
| 676 | 2.47M | } | 
| 677 |  |  | 
| 678 |  | #if defined(ECP_NISTP521_ASM) | 
| 679 |  | void felem_square_wrapper(largefelem out, const felem in); | 
| 680 |  | void felem_mul_wrapper(largefelem out, const felem in1, const felem in2); | 
| 681 |  |  | 
| 682 |  | static void (*felem_square_p)(largefelem out, const felem in) = | 
| 683 |  |     felem_square_wrapper; | 
| 684 |  | static void (*felem_mul_p)(largefelem out, const felem in1, const felem in2) = | 
| 685 |  |     felem_mul_wrapper; | 
| 686 |  |  | 
| 687 |  | void p521_felem_square(largefelem out, const felem in); | 
| 688 |  | void p521_felem_mul(largefelem out, const felem in1, const felem in2); | 
| 689 |  |  | 
| 690 |  | # if defined(_ARCH_PPC64) | 
| 691 |  | #  include "crypto/ppc_arch.h" | 
| 692 |  | # endif | 
| 693 |  |  | 
| 694 |  | void felem_select(void) | 
| 695 |  | { | 
| 696 |  | # if defined(_ARCH_PPC64) | 
| 697 |  |     if ((OPENSSL_ppccap_P & PPC_MADD300) && (OPENSSL_ppccap_P & PPC_ALTIVEC)) { | 
| 698 |  |         felem_square_p = p521_felem_square; | 
| 699 |  |         felem_mul_p = p521_felem_mul; | 
| 700 |  |  | 
| 701 |  |         return; | 
| 702 |  |     } | 
| 703 |  | # endif | 
| 704 |  |  | 
| 705 |  |     /* Default */ | 
| 706 |  |     felem_square_p = felem_square_ref; | 
| 707 |  |     felem_mul_p = felem_mul_ref; | 
| 708 |  | } | 
| 709 |  |  | 
| 710 |  | void felem_square_wrapper(largefelem out, const felem in) | 
| 711 |  | { | 
| 712 |  |     felem_select(); | 
| 713 |  |     felem_square_p(out, in); | 
| 714 |  | } | 
| 715 |  |  | 
| 716 |  | void felem_mul_wrapper(largefelem out, const felem in1, const felem in2) | 
| 717 |  | { | 
| 718 |  |     felem_select(); | 
| 719 |  |     felem_mul_p(out, in1, in2); | 
| 720 |  | } | 
| 721 |  |  | 
| 722 |  | # define felem_square felem_square_p | 
| 723 |  | # define felem_mul felem_mul_p | 
| 724 |  | #else | 
| 725 | 1.47M | # define felem_square felem_square_ref | 
| 726 | 1.25M | # define felem_mul felem_mul_ref | 
| 727 |  | #endif | 
| 728 |  |  | 
| 729 |  | static void felem_square_reduce(felem out, const felem in) | 
| 730 | 0 | { | 
| 731 | 0 |     largefelem tmp; | 
| 732 | 0 |     felem_square(tmp, in); | 
| 733 | 0 |     felem_reduce(out, tmp); | 
| 734 | 0 | } | 
| 735 |  |  | 
| 736 |  | static void felem_mul_reduce(felem out, const felem in1, const felem in2) | 
| 737 | 0 | { | 
| 738 | 0 |     largefelem tmp; | 
| 739 | 0 |     felem_mul(tmp, in1, in2); | 
| 740 | 0 |     felem_reduce(out, tmp); | 
| 741 | 0 | } | 
| 742 |  |  | 
| 743 |  | /*- | 
| 744 |  |  * felem_inv calculates |out| = |in|^{-1} | 
| 745 |  |  * | 
| 746 |  |  * Based on Fermat's Little Theorem: | 
| 747 |  |  *   a^p = a (mod p) | 
| 748 |  |  *   a^{p-1} = 1 (mod p) | 
| 749 |  |  *   a^{p-2} = a^{-1} (mod p) | 
| 750 |  |  */ | 
| 751 |  | static void felem_inv(felem out, const felem in) | 
| 752 | 648 | { | 
| 753 | 648 |     felem ftmp, ftmp2, ftmp3, ftmp4; | 
| 754 | 648 |     largefelem tmp; | 
| 755 | 648 |     unsigned i; | 
| 756 |  |  | 
| 757 | 648 |     felem_square(tmp, in); | 
| 758 | 648 |     felem_reduce(ftmp, tmp);    /* 2^1 */ | 
| 759 | 648 |     felem_mul(tmp, in, ftmp); | 
| 760 | 648 |     felem_reduce(ftmp, tmp);    /* 2^2 - 2^0 */ | 
| 761 | 648 |     felem_assign(ftmp2, ftmp); | 
| 762 | 648 |     felem_square(tmp, ftmp); | 
| 763 | 648 |     felem_reduce(ftmp, tmp);    /* 2^3 - 2^1 */ | 
| 764 | 648 |     felem_mul(tmp, in, ftmp); | 
| 765 | 648 |     felem_reduce(ftmp, tmp);    /* 2^3 - 2^0 */ | 
| 766 | 648 |     felem_square(tmp, ftmp); | 
| 767 | 648 |     felem_reduce(ftmp, tmp);    /* 2^4 - 2^1 */ | 
| 768 |  |  | 
| 769 | 648 |     felem_square(tmp, ftmp2); | 
| 770 | 648 |     felem_reduce(ftmp3, tmp);   /* 2^3 - 2^1 */ | 
| 771 | 648 |     felem_square(tmp, ftmp3); | 
| 772 | 648 |     felem_reduce(ftmp3, tmp);   /* 2^4 - 2^2 */ | 
| 773 | 648 |     felem_mul(tmp, ftmp3, ftmp2); | 
| 774 | 648 |     felem_reduce(ftmp3, tmp);   /* 2^4 - 2^0 */ | 
| 775 |  |  | 
| 776 | 648 |     felem_assign(ftmp2, ftmp3); | 
| 777 | 648 |     felem_square(tmp, ftmp3); | 
| 778 | 648 |     felem_reduce(ftmp3, tmp);   /* 2^5 - 2^1 */ | 
| 779 | 648 |     felem_square(tmp, ftmp3); | 
| 780 | 648 |     felem_reduce(ftmp3, tmp);   /* 2^6 - 2^2 */ | 
| 781 | 648 |     felem_square(tmp, ftmp3); | 
| 782 | 648 |     felem_reduce(ftmp3, tmp);   /* 2^7 - 2^3 */ | 
| 783 | 648 |     felem_square(tmp, ftmp3); | 
| 784 | 648 |     felem_reduce(ftmp3, tmp);   /* 2^8 - 2^4 */ | 
| 785 | 648 |     felem_assign(ftmp4, ftmp3); | 
| 786 | 648 |     felem_mul(tmp, ftmp3, ftmp); | 
| 787 | 648 |     felem_reduce(ftmp4, tmp);   /* 2^8 - 2^1 */ | 
| 788 | 648 |     felem_square(tmp, ftmp4); | 
| 789 | 648 |     felem_reduce(ftmp4, tmp);   /* 2^9 - 2^2 */ | 
| 790 | 648 |     felem_mul(tmp, ftmp3, ftmp2); | 
| 791 | 648 |     felem_reduce(ftmp3, tmp);   /* 2^8 - 2^0 */ | 
| 792 | 648 |     felem_assign(ftmp2, ftmp3); | 
| 793 |  |  | 
| 794 | 5.83k |     for (i = 0; i < 8; i++) { | 
| 795 | 5.18k |         felem_square(tmp, ftmp3); | 
| 796 | 5.18k |         felem_reduce(ftmp3, tmp); /* 2^16 - 2^8 */ | 
| 797 | 5.18k |     } | 
| 798 | 648 |     felem_mul(tmp, ftmp3, ftmp2); | 
| 799 | 648 |     felem_reduce(ftmp3, tmp);   /* 2^16 - 2^0 */ | 
| 800 | 648 |     felem_assign(ftmp2, ftmp3); | 
| 801 |  |  | 
| 802 | 11.0k |     for (i = 0; i < 16; i++) { | 
| 803 | 10.3k |         felem_square(tmp, ftmp3); | 
| 804 | 10.3k |         felem_reduce(ftmp3, tmp); /* 2^32 - 2^16 */ | 
| 805 | 10.3k |     } | 
| 806 | 648 |     felem_mul(tmp, ftmp3, ftmp2); | 
| 807 | 648 |     felem_reduce(ftmp3, tmp);   /* 2^32 - 2^0 */ | 
| 808 | 648 |     felem_assign(ftmp2, ftmp3); | 
| 809 |  |  | 
| 810 | 21.3k |     for (i = 0; i < 32; i++) { | 
| 811 | 20.7k |         felem_square(tmp, ftmp3); | 
| 812 | 20.7k |         felem_reduce(ftmp3, tmp); /* 2^64 - 2^32 */ | 
| 813 | 20.7k |     } | 
| 814 | 648 |     felem_mul(tmp, ftmp3, ftmp2); | 
| 815 | 648 |     felem_reduce(ftmp3, tmp);   /* 2^64 - 2^0 */ | 
| 816 | 648 |     felem_assign(ftmp2, ftmp3); | 
| 817 |  |  | 
| 818 | 42.1k |     for (i = 0; i < 64; i++) { | 
| 819 | 41.4k |         felem_square(tmp, ftmp3); | 
| 820 | 41.4k |         felem_reduce(ftmp3, tmp); /* 2^128 - 2^64 */ | 
| 821 | 41.4k |     } | 
| 822 | 648 |     felem_mul(tmp, ftmp3, ftmp2); | 
| 823 | 648 |     felem_reduce(ftmp3, tmp);   /* 2^128 - 2^0 */ | 
| 824 | 648 |     felem_assign(ftmp2, ftmp3); | 
| 825 |  |  | 
| 826 | 83.5k |     for (i = 0; i < 128; i++) { | 
| 827 | 82.9k |         felem_square(tmp, ftmp3); | 
| 828 | 82.9k |         felem_reduce(ftmp3, tmp); /* 2^256 - 2^128 */ | 
| 829 | 82.9k |     } | 
| 830 | 648 |     felem_mul(tmp, ftmp3, ftmp2); | 
| 831 | 648 |     felem_reduce(ftmp3, tmp);   /* 2^256 - 2^0 */ | 
| 832 | 648 |     felem_assign(ftmp2, ftmp3); | 
| 833 |  |  | 
| 834 | 166k |     for (i = 0; i < 256; i++) { | 
| 835 | 165k |         felem_square(tmp, ftmp3); | 
| 836 | 165k |         felem_reduce(ftmp3, tmp); /* 2^512 - 2^256 */ | 
| 837 | 165k |     } | 
| 838 | 648 |     felem_mul(tmp, ftmp3, ftmp2); | 
| 839 | 648 |     felem_reduce(ftmp3, tmp);   /* 2^512 - 2^0 */ | 
| 840 |  |  | 
| 841 | 6.48k |     for (i = 0; i < 9; i++) { | 
| 842 | 5.83k |         felem_square(tmp, ftmp3); | 
| 843 | 5.83k |         felem_reduce(ftmp3, tmp); /* 2^521 - 2^9 */ | 
| 844 | 5.83k |     } | 
| 845 | 648 |     felem_mul(tmp, ftmp3, ftmp4); | 
| 846 | 648 |     felem_reduce(ftmp3, tmp);   /* 2^512 - 2^2 */ | 
| 847 | 648 |     felem_mul(tmp, ftmp3, in); | 
| 848 | 648 |     felem_reduce(out, tmp);     /* 2^512 - 3 */ | 
| 849 | 648 | } | 
| 850 |  |  | 
| 851 |  | /* This is 2^521-1, expressed as an felem */ | 
| 852 |  | static const felem kPrime = { | 
| 853 |  |     0x03ffffffffffffff, 0x03ffffffffffffff, 0x03ffffffffffffff, | 
| 854 |  |     0x03ffffffffffffff, 0x03ffffffffffffff, 0x03ffffffffffffff, | 
| 855 |  |     0x03ffffffffffffff, 0x03ffffffffffffff, 0x01ffffffffffffff | 
| 856 |  | }; | 
| 857 |  |  | 
| 858 |  | /*- | 
| 859 |  |  * felem_is_zero returns a limb with all bits set if |in| == 0 (mod p) and 0 | 
| 860 |  |  * otherwise. | 
| 861 |  |  * On entry: | 
| 862 |  |  *   in[i] < 2^59 + 2^14 | 
| 863 |  |  */ | 
| 864 |  | static limb felem_is_zero(const felem in) | 
| 865 | 334k | { | 
| 866 | 334k |     felem ftmp; | 
| 867 | 334k |     limb is_zero, is_p; | 
| 868 | 334k |     felem_assign(ftmp, in); | 
| 869 |  |  | 
| 870 | 334k |     ftmp[0] += ftmp[8] >> 57; | 
| 871 | 334k |     ftmp[8] &= bottom57bits; | 
| 872 |  |     /* ftmp[8] < 2^57 */ | 
| 873 | 334k |     ftmp[1] += ftmp[0] >> 58; | 
| 874 | 334k |     ftmp[0] &= bottom58bits; | 
| 875 | 334k |     ftmp[2] += ftmp[1] >> 58; | 
| 876 | 334k |     ftmp[1] &= bottom58bits; | 
| 877 | 334k |     ftmp[3] += ftmp[2] >> 58; | 
| 878 | 334k |     ftmp[2] &= bottom58bits; | 
| 879 | 334k |     ftmp[4] += ftmp[3] >> 58; | 
| 880 | 334k |     ftmp[3] &= bottom58bits; | 
| 881 | 334k |     ftmp[5] += ftmp[4] >> 58; | 
| 882 | 334k |     ftmp[4] &= bottom58bits; | 
| 883 | 334k |     ftmp[6] += ftmp[5] >> 58; | 
| 884 | 334k |     ftmp[5] &= bottom58bits; | 
| 885 | 334k |     ftmp[7] += ftmp[6] >> 58; | 
| 886 | 334k |     ftmp[6] &= bottom58bits; | 
| 887 | 334k |     ftmp[8] += ftmp[7] >> 58; | 
| 888 | 334k |     ftmp[7] &= bottom58bits; | 
| 889 |  |     /* ftmp[8] < 2^57 + 4 */ | 
| 890 |  |  | 
| 891 |  |     /* | 
| 892 |  |      * The ninth limb of 2*(2^521-1) is 0x03ffffffffffffff, which is greater | 
| 893 |  |      * than our bound for ftmp[8]. Therefore we only have to check if the | 
| 894 |  |      * zero is zero or 2^521-1. | 
| 895 |  |      */ | 
| 896 |  |  | 
| 897 | 334k |     is_zero = 0; | 
| 898 | 334k |     is_zero |= ftmp[0]; | 
| 899 | 334k |     is_zero |= ftmp[1]; | 
| 900 | 334k |     is_zero |= ftmp[2]; | 
| 901 | 334k |     is_zero |= ftmp[3]; | 
| 902 | 334k |     is_zero |= ftmp[4]; | 
| 903 | 334k |     is_zero |= ftmp[5]; | 
| 904 | 334k |     is_zero |= ftmp[6]; | 
| 905 | 334k |     is_zero |= ftmp[7]; | 
| 906 | 334k |     is_zero |= ftmp[8]; | 
| 907 |  |  | 
| 908 | 334k |     is_zero--; | 
| 909 |  |     /* | 
| 910 |  |      * We know that ftmp[i] < 2^63, therefore the only way that the top bit | 
| 911 |  |      * can be set is if is_zero was 0 before the decrement. | 
| 912 |  |      */ | 
| 913 | 334k |     is_zero = 0 - (is_zero >> 63); | 
| 914 |  |  | 
| 915 | 334k |     is_p = ftmp[0] ^ kPrime[0]; | 
| 916 | 334k |     is_p |= ftmp[1] ^ kPrime[1]; | 
| 917 | 334k |     is_p |= ftmp[2] ^ kPrime[2]; | 
| 918 | 334k |     is_p |= ftmp[3] ^ kPrime[3]; | 
| 919 | 334k |     is_p |= ftmp[4] ^ kPrime[4]; | 
| 920 | 334k |     is_p |= ftmp[5] ^ kPrime[5]; | 
| 921 | 334k |     is_p |= ftmp[6] ^ kPrime[6]; | 
| 922 | 334k |     is_p |= ftmp[7] ^ kPrime[7]; | 
| 923 | 334k |     is_p |= ftmp[8] ^ kPrime[8]; | 
| 924 |  |  | 
| 925 | 334k |     is_p--; | 
| 926 | 334k |     is_p = 0 - (is_p >> 63); | 
| 927 |  |  | 
| 928 | 334k |     is_zero |= is_p; | 
| 929 | 334k |     return is_zero; | 
| 930 | 334k | } | 
| 931 |  |  | 
| 932 |  | static int felem_is_zero_int(const void *in) | 
| 933 | 0 | { | 
| 934 | 0 |     return (int)(felem_is_zero(in) & ((limb) 1)); | 
| 935 | 0 | } | 
| 936 |  |  | 
| 937 |  | /*- | 
| 938 |  |  * felem_contract converts |in| to its unique, minimal representation. | 
| 939 |  |  * On entry: | 
| 940 |  |  *   in[i] < 2^59 + 2^14 | 
| 941 |  |  */ | 
| 942 |  | static void felem_contract(felem out, const felem in) | 
| 943 | 3.26k | { | 
| 944 | 3.26k |     limb is_p, is_greater, sign; | 
| 945 | 3.26k |     static const limb two58 = ((limb) 1) << 58; | 
| 946 |  |  | 
| 947 | 3.26k |     felem_assign(out, in); | 
| 948 |  |  | 
| 949 | 3.26k |     out[0] += out[8] >> 57; | 
| 950 | 3.26k |     out[8] &= bottom57bits; | 
| 951 |  |     /* out[8] < 2^57 */ | 
| 952 | 3.26k |     out[1] += out[0] >> 58; | 
| 953 | 3.26k |     out[0] &= bottom58bits; | 
| 954 | 3.26k |     out[2] += out[1] >> 58; | 
| 955 | 3.26k |     out[1] &= bottom58bits; | 
| 956 | 3.26k |     out[3] += out[2] >> 58; | 
| 957 | 3.26k |     out[2] &= bottom58bits; | 
| 958 | 3.26k |     out[4] += out[3] >> 58; | 
| 959 | 3.26k |     out[3] &= bottom58bits; | 
| 960 | 3.26k |     out[5] += out[4] >> 58; | 
| 961 | 3.26k |     out[4] &= bottom58bits; | 
| 962 | 3.26k |     out[6] += out[5] >> 58; | 
| 963 | 3.26k |     out[5] &= bottom58bits; | 
| 964 | 3.26k |     out[7] += out[6] >> 58; | 
| 965 | 3.26k |     out[6] &= bottom58bits; | 
| 966 | 3.26k |     out[8] += out[7] >> 58; | 
| 967 | 3.26k |     out[7] &= bottom58bits; | 
| 968 |  |     /* out[8] < 2^57 + 4 */ | 
| 969 |  |  | 
| 970 |  |     /* | 
| 971 |  |      * If the value is greater than 2^521-1 then we have to subtract 2^521-1 | 
| 972 |  |      * out. See the comments in felem_is_zero regarding why we don't test for | 
| 973 |  |      * other multiples of the prime. | 
| 974 |  |      */ | 
| 975 |  |  | 
| 976 |  |     /* | 
| 977 |  |      * First, if |out| is equal to 2^521-1, we subtract it out to get zero. | 
| 978 |  |      */ | 
| 979 |  |  | 
| 980 | 3.26k |     is_p = out[0] ^ kPrime[0]; | 
| 981 | 3.26k |     is_p |= out[1] ^ kPrime[1]; | 
| 982 | 3.26k |     is_p |= out[2] ^ kPrime[2]; | 
| 983 | 3.26k |     is_p |= out[3] ^ kPrime[3]; | 
| 984 | 3.26k |     is_p |= out[4] ^ kPrime[4]; | 
| 985 | 3.26k |     is_p |= out[5] ^ kPrime[5]; | 
| 986 | 3.26k |     is_p |= out[6] ^ kPrime[6]; | 
| 987 | 3.26k |     is_p |= out[7] ^ kPrime[7]; | 
| 988 | 3.26k |     is_p |= out[8] ^ kPrime[8]; | 
| 989 |  |  | 
| 990 | 3.26k |     is_p--; | 
| 991 | 3.26k |     is_p &= is_p << 32; | 
| 992 | 3.26k |     is_p &= is_p << 16; | 
| 993 | 3.26k |     is_p &= is_p << 8; | 
| 994 | 3.26k |     is_p &= is_p << 4; | 
| 995 | 3.26k |     is_p &= is_p << 2; | 
| 996 | 3.26k |     is_p &= is_p << 1; | 
| 997 | 3.26k |     is_p = 0 - (is_p >> 63); | 
| 998 | 3.26k |     is_p = ~is_p; | 
| 999 |  |  | 
| 1000 |  |     /* is_p is 0 iff |out| == 2^521-1 and all ones otherwise */ | 
| 1001 |  |  | 
| 1002 | 3.26k |     out[0] &= is_p; | 
| 1003 | 3.26k |     out[1] &= is_p; | 
| 1004 | 3.26k |     out[2] &= is_p; | 
| 1005 | 3.26k |     out[3] &= is_p; | 
| 1006 | 3.26k |     out[4] &= is_p; | 
| 1007 | 3.26k |     out[5] &= is_p; | 
| 1008 | 3.26k |     out[6] &= is_p; | 
| 1009 | 3.26k |     out[7] &= is_p; | 
| 1010 | 3.26k |     out[8] &= is_p; | 
| 1011 |  |  | 
| 1012 |  |     /* | 
| 1013 |  |      * In order to test that |out| >= 2^521-1 we need only test if out[8] >> | 
| 1014 |  |      * 57 is greater than zero as (2^521-1) + x >= 2^522 | 
| 1015 |  |      */ | 
| 1016 | 3.26k |     is_greater = out[8] >> 57; | 
| 1017 | 3.26k |     is_greater |= is_greater << 32; | 
| 1018 | 3.26k |     is_greater |= is_greater << 16; | 
| 1019 | 3.26k |     is_greater |= is_greater << 8; | 
| 1020 | 3.26k |     is_greater |= is_greater << 4; | 
| 1021 | 3.26k |     is_greater |= is_greater << 2; | 
| 1022 | 3.26k |     is_greater |= is_greater << 1; | 
| 1023 | 3.26k |     is_greater = 0 - (is_greater >> 63); | 
| 1024 |  |  | 
| 1025 | 3.26k |     out[0] -= kPrime[0] & is_greater; | 
| 1026 | 3.26k |     out[1] -= kPrime[1] & is_greater; | 
| 1027 | 3.26k |     out[2] -= kPrime[2] & is_greater; | 
| 1028 | 3.26k |     out[3] -= kPrime[3] & is_greater; | 
| 1029 | 3.26k |     out[4] -= kPrime[4] & is_greater; | 
| 1030 | 3.26k |     out[5] -= kPrime[5] & is_greater; | 
| 1031 | 3.26k |     out[6] -= kPrime[6] & is_greater; | 
| 1032 | 3.26k |     out[7] -= kPrime[7] & is_greater; | 
| 1033 | 3.26k |     out[8] -= kPrime[8] & is_greater; | 
| 1034 |  |  | 
| 1035 |  |     /* Eliminate negative coefficients */ | 
| 1036 | 3.26k |     sign = -(out[0] >> 63); | 
| 1037 | 3.26k |     out[0] += (two58 & sign); | 
| 1038 | 3.26k |     out[1] -= (1 & sign); | 
| 1039 | 3.26k |     sign = -(out[1] >> 63); | 
| 1040 | 3.26k |     out[1] += (two58 & sign); | 
| 1041 | 3.26k |     out[2] -= (1 & sign); | 
| 1042 | 3.26k |     sign = -(out[2] >> 63); | 
| 1043 | 3.26k |     out[2] += (two58 & sign); | 
| 1044 | 3.26k |     out[3] -= (1 & sign); | 
| 1045 | 3.26k |     sign = -(out[3] >> 63); | 
| 1046 | 3.26k |     out[3] += (two58 & sign); | 
| 1047 | 3.26k |     out[4] -= (1 & sign); | 
| 1048 | 3.26k |     sign = -(out[4] >> 63); | 
| 1049 | 3.26k |     out[4] += (two58 & sign); | 
| 1050 | 3.26k |     out[5] -= (1 & sign); | 
| 1051 | 3.26k |     sign = -(out[0] >> 63); | 
| 1052 | 3.26k |     out[5] += (two58 & sign); | 
| 1053 | 3.26k |     out[6] -= (1 & sign); | 
| 1054 | 3.26k |     sign = -(out[6] >> 63); | 
| 1055 | 3.26k |     out[6] += (two58 & sign); | 
| 1056 | 3.26k |     out[7] -= (1 & sign); | 
| 1057 | 3.26k |     sign = -(out[7] >> 63); | 
| 1058 | 3.26k |     out[7] += (two58 & sign); | 
| 1059 | 3.26k |     out[8] -= (1 & sign); | 
| 1060 | 3.26k |     sign = -(out[5] >> 63); | 
| 1061 | 3.26k |     out[5] += (two58 & sign); | 
| 1062 | 3.26k |     out[6] -= (1 & sign); | 
| 1063 | 3.26k |     sign = -(out[6] >> 63); | 
| 1064 | 3.26k |     out[6] += (two58 & sign); | 
| 1065 | 3.26k |     out[7] -= (1 & sign); | 
| 1066 | 3.26k |     sign = -(out[7] >> 63); | 
| 1067 | 3.26k |     out[7] += (two58 & sign); | 
| 1068 | 3.26k |     out[8] -= (1 & sign); | 
| 1069 | 3.26k | } | 
| 1070 |  |  | 
| 1071 |  | /*- | 
| 1072 |  |  * Group operations | 
| 1073 |  |  * ---------------- | 
| 1074 |  |  * | 
| 1075 |  |  * Building on top of the field operations we have the operations on the | 
| 1076 |  |  * elliptic curve group itself. Points on the curve are represented in Jacobian | 
| 1077 |  |  * coordinates */ | 
| 1078 |  |  | 
| 1079 |  | /*- | 
| 1080 |  |  * point_double calculates 2*(x_in, y_in, z_in) | 
| 1081 |  |  * | 
| 1082 |  |  * The method is taken from: | 
| 1083 |  |  *   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b | 
| 1084 |  |  * | 
| 1085 |  |  * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed. | 
| 1086 |  |  * while x_out == y_in is not (maybe this works, but it's not tested). */ | 
| 1087 |  | static void | 
| 1088 |  | point_double(felem x_out, felem y_out, felem z_out, | 
| 1089 |  |              const felem x_in, const felem y_in, const felem z_in) | 
| 1090 | 168k | { | 
| 1091 | 168k |     largefelem tmp, tmp2; | 
| 1092 | 168k |     felem delta, gamma, beta, alpha, ftmp, ftmp2; | 
| 1093 |  |  | 
| 1094 | 168k |     felem_assign(ftmp, x_in); | 
| 1095 | 168k |     felem_assign(ftmp2, x_in); | 
| 1096 |  |  | 
| 1097 |  |     /* delta = z^2 */ | 
| 1098 | 168k |     felem_square(tmp, z_in); | 
| 1099 | 168k |     felem_reduce(delta, tmp);   /* delta[i] < 2^59 + 2^14 */ | 
| 1100 |  |  | 
| 1101 |  |     /* gamma = y^2 */ | 
| 1102 | 168k |     felem_square(tmp, y_in); | 
| 1103 | 168k |     felem_reduce(gamma, tmp);   /* gamma[i] < 2^59 + 2^14 */ | 
| 1104 |  |  | 
| 1105 |  |     /* beta = x*gamma */ | 
| 1106 | 168k |     felem_mul(tmp, x_in, gamma); | 
| 1107 | 168k |     felem_reduce(beta, tmp);    /* beta[i] < 2^59 + 2^14 */ | 
| 1108 |  |  | 
| 1109 |  |     /* alpha = 3*(x-delta)*(x+delta) */ | 
| 1110 | 168k |     felem_diff64(ftmp, delta); | 
| 1111 |  |     /* ftmp[i] < 2^61 */ | 
| 1112 | 168k |     felem_sum64(ftmp2, delta); | 
| 1113 |  |     /* ftmp2[i] < 2^60 + 2^15 */ | 
| 1114 | 168k |     felem_scalar64(ftmp2, 3); | 
| 1115 |  |     /* ftmp2[i] < 3*2^60 + 3*2^15 */ | 
| 1116 | 168k |     felem_mul(tmp, ftmp, ftmp2); | 
| 1117 |  |     /*- | 
| 1118 |  |      * tmp[i] < 17(3*2^121 + 3*2^76) | 
| 1119 |  |      *        = 61*2^121 + 61*2^76 | 
| 1120 |  |      *        < 64*2^121 + 64*2^76 | 
| 1121 |  |      *        = 2^127 + 2^82 | 
| 1122 |  |      *        < 2^128 | 
| 1123 |  |      */ | 
| 1124 | 168k |     felem_reduce(alpha, tmp); | 
| 1125 |  |  | 
| 1126 |  |     /* x' = alpha^2 - 8*beta */ | 
| 1127 | 168k |     felem_square(tmp, alpha); | 
| 1128 |  |     /* | 
| 1129 |  |      * tmp[i] < 17*2^120 < 2^125 | 
| 1130 |  |      */ | 
| 1131 | 168k |     felem_assign(ftmp, beta); | 
| 1132 | 168k |     felem_scalar64(ftmp, 8); | 
| 1133 |  |     /* ftmp[i] < 2^62 + 2^17 */ | 
| 1134 | 168k |     felem_diff_128_64(tmp, ftmp); | 
| 1135 |  |     /* tmp[i] < 2^125 + 2^63 + 2^62 + 2^17 */ | 
| 1136 | 168k |     felem_reduce(x_out, tmp); | 
| 1137 |  |  | 
| 1138 |  |     /* z' = (y + z)^2 - gamma - delta */ | 
| 1139 | 168k |     felem_sum64(delta, gamma); | 
| 1140 |  |     /* delta[i] < 2^60 + 2^15 */ | 
| 1141 | 168k |     felem_assign(ftmp, y_in); | 
| 1142 | 168k |     felem_sum64(ftmp, z_in); | 
| 1143 |  |     /* ftmp[i] < 2^60 + 2^15 */ | 
| 1144 | 168k |     felem_square(tmp, ftmp); | 
| 1145 |  |     /* | 
| 1146 |  |      * tmp[i] < 17(2^122) < 2^127 | 
| 1147 |  |      */ | 
| 1148 | 168k |     felem_diff_128_64(tmp, delta); | 
| 1149 |  |     /* tmp[i] < 2^127 + 2^63 */ | 
| 1150 | 168k |     felem_reduce(z_out, tmp); | 
| 1151 |  |  | 
| 1152 |  |     /* y' = alpha*(4*beta - x') - 8*gamma^2 */ | 
| 1153 | 168k |     felem_scalar64(beta, 4); | 
| 1154 |  |     /* beta[i] < 2^61 + 2^16 */ | 
| 1155 | 168k |     felem_diff64(beta, x_out); | 
| 1156 |  |     /* beta[i] < 2^61 + 2^60 + 2^16 */ | 
| 1157 | 168k |     felem_mul(tmp, alpha, beta); | 
| 1158 |  |     /*- | 
| 1159 |  |      * tmp[i] < 17*((2^59 + 2^14)(2^61 + 2^60 + 2^16)) | 
| 1160 |  |      *        = 17*(2^120 + 2^75 + 2^119 + 2^74 + 2^75 + 2^30) | 
| 1161 |  |      *        = 17*(2^120 + 2^119 + 2^76 + 2^74 + 2^30) | 
| 1162 |  |      *        < 2^128 | 
| 1163 |  |      */ | 
| 1164 | 168k |     felem_square(tmp2, gamma); | 
| 1165 |  |     /*- | 
| 1166 |  |      * tmp2[i] < 17*(2^59 + 2^14)^2 | 
| 1167 |  |      *         = 17*(2^118 + 2^74 + 2^28) | 
| 1168 |  |      */ | 
| 1169 | 168k |     felem_scalar128(tmp2, 8); | 
| 1170 |  |     /*- | 
| 1171 |  |      * tmp2[i] < 8*17*(2^118 + 2^74 + 2^28) | 
| 1172 |  |      *         = 2^125 + 2^121 + 2^81 + 2^77 + 2^35 + 2^31 | 
| 1173 |  |      *         < 2^126 | 
| 1174 |  |      */ | 
| 1175 | 168k |     felem_diff128(tmp, tmp2); | 
| 1176 |  |     /*- | 
| 1177 |  |      * tmp[i] < 2^127 - 2^69 + 17(2^120 + 2^119 + 2^76 + 2^74 + 2^30) | 
| 1178 |  |      *        = 2^127 + 2^124 + 2^122 + 2^120 + 2^118 + 2^80 + 2^78 + 2^76 + | 
| 1179 |  |      *          2^74 + 2^69 + 2^34 + 2^30 | 
| 1180 |  |      *        < 2^128 | 
| 1181 |  |      */ | 
| 1182 | 168k |     felem_reduce(y_out, tmp); | 
| 1183 | 168k | } | 
| 1184 |  |  | 
| 1185 |  | /* copy_conditional copies in to out iff mask is all ones. */ | 
| 1186 |  | static void copy_conditional(felem out, const felem in, limb mask) | 
| 1187 | 523k | { | 
| 1188 | 523k |     unsigned i; | 
| 1189 | 5.23M |     for (i = 0; i < NLIMBS; ++i) { | 
| 1190 | 4.70M |         const limb tmp = mask & (in[i] ^ out[i]); | 
| 1191 | 4.70M |         out[i] ^= tmp; | 
| 1192 | 4.70M |     } | 
| 1193 | 523k | } | 
| 1194 |  |  | 
| 1195 |  | /*- | 
| 1196 |  |  * point_add calculates (x1, y1, z1) + (x2, y2, z2) | 
| 1197 |  |  * | 
| 1198 |  |  * The method is taken from | 
| 1199 |  |  *   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl, | 
| 1200 |  |  * adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity). | 
| 1201 |  |  * | 
| 1202 |  |  * This function includes a branch for checking whether the two input points | 
| 1203 |  |  * are equal (while not equal to the point at infinity). See comment below | 
| 1204 |  |  * on constant-time. | 
| 1205 |  |  */ | 
| 1206 |  | static void point_add(felem x3, felem y3, felem z3, | 
| 1207 |  |                       const felem x1, const felem y1, const felem z1, | 
| 1208 |  |                       const int mixed, const felem x2, const felem y2, | 
| 1209 |  |                       const felem z2) | 
| 1210 | 83.5k | { | 
| 1211 | 83.5k |     felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, ftmp6, x_out, y_out, z_out; | 
| 1212 | 83.5k |     largefelem tmp, tmp2; | 
| 1213 | 83.5k |     limb x_equal, y_equal, z1_is_zero, z2_is_zero; | 
| 1214 | 83.5k |     limb points_equal; | 
| 1215 |  |  | 
| 1216 | 83.5k |     z1_is_zero = felem_is_zero(z1); | 
| 1217 | 83.5k |     z2_is_zero = felem_is_zero(z2); | 
| 1218 |  |  | 
| 1219 |  |     /* ftmp = z1z1 = z1**2 */ | 
| 1220 | 83.5k |     felem_square(tmp, z1); | 
| 1221 | 83.5k |     felem_reduce(ftmp, tmp); | 
| 1222 |  |  | 
| 1223 | 83.5k |     if (!mixed) { | 
| 1224 |  |         /* ftmp2 = z2z2 = z2**2 */ | 
| 1225 | 23.0k |         felem_square(tmp, z2); | 
| 1226 | 23.0k |         felem_reduce(ftmp2, tmp); | 
| 1227 |  |  | 
| 1228 |  |         /* u1 = ftmp3 = x1*z2z2 */ | 
| 1229 | 23.0k |         felem_mul(tmp, x1, ftmp2); | 
| 1230 | 23.0k |         felem_reduce(ftmp3, tmp); | 
| 1231 |  |  | 
| 1232 |  |         /* ftmp5 = z1 + z2 */ | 
| 1233 | 23.0k |         felem_assign(ftmp5, z1); | 
| 1234 | 23.0k |         felem_sum64(ftmp5, z2); | 
| 1235 |  |         /* ftmp5[i] < 2^61 */ | 
| 1236 |  |  | 
| 1237 |  |         /* ftmp5 = (z1 + z2)**2 - z1z1 - z2z2 = 2*z1z2 */ | 
| 1238 | 23.0k |         felem_square(tmp, ftmp5); | 
| 1239 |  |         /* tmp[i] < 17*2^122 */ | 
| 1240 | 23.0k |         felem_diff_128_64(tmp, ftmp); | 
| 1241 |  |         /* tmp[i] < 17*2^122 + 2^63 */ | 
| 1242 | 23.0k |         felem_diff_128_64(tmp, ftmp2); | 
| 1243 |  |         /* tmp[i] < 17*2^122 + 2^64 */ | 
| 1244 | 23.0k |         felem_reduce(ftmp5, tmp); | 
| 1245 |  |  | 
| 1246 |  |         /* ftmp2 = z2 * z2z2 */ | 
| 1247 | 23.0k |         felem_mul(tmp, ftmp2, z2); | 
| 1248 | 23.0k |         felem_reduce(ftmp2, tmp); | 
| 1249 |  |  | 
| 1250 |  |         /* s1 = ftmp6 = y1 * z2**3 */ | 
| 1251 | 23.0k |         felem_mul(tmp, y1, ftmp2); | 
| 1252 | 23.0k |         felem_reduce(ftmp6, tmp); | 
| 1253 | 60.4k |     } else { | 
| 1254 |  |         /* | 
| 1255 |  |          * We'll assume z2 = 1 (special case z2 = 0 is handled later) | 
| 1256 |  |          */ | 
| 1257 |  |  | 
| 1258 |  |         /* u1 = ftmp3 = x1*z2z2 */ | 
| 1259 | 60.4k |         felem_assign(ftmp3, x1); | 
| 1260 |  |  | 
| 1261 |  |         /* ftmp5 = 2*z1z2 */ | 
| 1262 | 60.4k |         felem_scalar(ftmp5, z1, 2); | 
| 1263 |  |  | 
| 1264 |  |         /* s1 = ftmp6 = y1 * z2**3 */ | 
| 1265 | 60.4k |         felem_assign(ftmp6, y1); | 
| 1266 | 60.4k |     } | 
| 1267 |  |  | 
| 1268 |  |     /* u2 = x2*z1z1 */ | 
| 1269 | 83.5k |     felem_mul(tmp, x2, ftmp); | 
| 1270 |  |     /* tmp[i] < 17*2^120 */ | 
| 1271 |  |  | 
| 1272 |  |     /* h = ftmp4 = u2 - u1 */ | 
| 1273 | 83.5k |     felem_diff_128_64(tmp, ftmp3); | 
| 1274 |  |     /* tmp[i] < 17*2^120 + 2^63 */ | 
| 1275 | 83.5k |     felem_reduce(ftmp4, tmp); | 
| 1276 |  |  | 
| 1277 | 83.5k |     x_equal = felem_is_zero(ftmp4); | 
| 1278 |  |  | 
| 1279 |  |     /* z_out = ftmp5 * h */ | 
| 1280 | 83.5k |     felem_mul(tmp, ftmp5, ftmp4); | 
| 1281 | 83.5k |     felem_reduce(z_out, tmp); | 
| 1282 |  |  | 
| 1283 |  |     /* ftmp = z1 * z1z1 */ | 
| 1284 | 83.5k |     felem_mul(tmp, ftmp, z1); | 
| 1285 | 83.5k |     felem_reduce(ftmp, tmp); | 
| 1286 |  |  | 
| 1287 |  |     /* s2 = tmp = y2 * z1**3 */ | 
| 1288 | 83.5k |     felem_mul(tmp, y2, ftmp); | 
| 1289 |  |     /* tmp[i] < 17*2^120 */ | 
| 1290 |  |  | 
| 1291 |  |     /* r = ftmp5 = (s2 - s1)*2 */ | 
| 1292 | 83.5k |     felem_diff_128_64(tmp, ftmp6); | 
| 1293 |  |     /* tmp[i] < 17*2^120 + 2^63 */ | 
| 1294 | 83.5k |     felem_reduce(ftmp5, tmp); | 
| 1295 | 83.5k |     y_equal = felem_is_zero(ftmp5); | 
| 1296 | 83.5k |     felem_scalar64(ftmp5, 2); | 
| 1297 |  |     /* ftmp5[i] < 2^61 */ | 
| 1298 |  |  | 
| 1299 |  |     /* | 
| 1300 |  |      * The formulae are incorrect if the points are equal, in affine coordinates | 
| 1301 |  |      * (X_1, Y_1) == (X_2, Y_2), so we check for this and do doubling if this | 
| 1302 |  |      * happens. | 
| 1303 |  |      * | 
| 1304 |  |      * We use bitwise operations to avoid potential side-channels introduced by | 
| 1305 |  |      * the short-circuiting behaviour of boolean operators. | 
| 1306 |  |      * | 
| 1307 |  |      * The special case of either point being the point at infinity (z1 and/or | 
| 1308 |  |      * z2 are zero), is handled separately later on in this function, so we | 
| 1309 |  |      * avoid jumping to point_double here in those special cases. | 
| 1310 |  |      * | 
| 1311 |  |      * Notice the comment below on the implications of this branching for timing | 
| 1312 |  |      * leaks and why it is considered practically irrelevant. | 
| 1313 |  |      */ | 
| 1314 | 83.5k |     points_equal = (x_equal & y_equal & (~z1_is_zero) & (~z2_is_zero)); | 
| 1315 |  |  | 
| 1316 | 83.5k |     if (points_equal) { | 
| 1317 |  |         /* | 
| 1318 |  |          * This is obviously not constant-time but it will almost-never happen | 
| 1319 |  |          * for ECDH / ECDSA. The case where it can happen is during scalar-mult | 
| 1320 |  |          * where the intermediate value gets very close to the group order. | 
| 1321 |  |          * Since |ossl_ec_GFp_nistp_recode_scalar_bits| produces signed digits | 
| 1322 |  |          * for the scalar, it's possible for the intermediate value to be a small | 
| 1323 |  |          * negative multiple of the base point, and for the final signed digit | 
| 1324 |  |          * to be the same value. We believe that this only occurs for the scalar | 
| 1325 |  |          * 1fffffffffffffffffffffffffffffffffffffffffffffffffffffffffff | 
| 1326 |  |          * ffffffa51868783bf2f966b7fcc0148f709a5d03bb5c9b8899c47aebb6fb | 
| 1327 |  |          * 71e913863f7, in that case the penultimate intermediate is -9G and | 
| 1328 |  |          * the final digit is also -9G. Since this only happens for a single | 
| 1329 |  |          * scalar, the timing leak is irrelevant. (Any attacker who wanted to | 
| 1330 |  |          * check whether a secret scalar was that exact value, can already do | 
| 1331 |  |          * so.) | 
| 1332 |  |          */ | 
| 1333 | 0 |         point_double(x3, y3, z3, x1, y1, z1); | 
| 1334 | 0 |         return; | 
| 1335 | 0 |     } | 
| 1336 |  |  | 
| 1337 |  |     /* I = ftmp = (2h)**2 */ | 
| 1338 | 83.5k |     felem_assign(ftmp, ftmp4); | 
| 1339 | 83.5k |     felem_scalar64(ftmp, 2); | 
| 1340 |  |     /* ftmp[i] < 2^61 */ | 
| 1341 | 83.5k |     felem_square(tmp, ftmp); | 
| 1342 |  |     /* tmp[i] < 17*2^122 */ | 
| 1343 | 83.5k |     felem_reduce(ftmp, tmp); | 
| 1344 |  |  | 
| 1345 |  |     /* J = ftmp2 = h * I */ | 
| 1346 | 83.5k |     felem_mul(tmp, ftmp4, ftmp); | 
| 1347 | 83.5k |     felem_reduce(ftmp2, tmp); | 
| 1348 |  |  | 
| 1349 |  |     /* V = ftmp4 = U1 * I */ | 
| 1350 | 83.5k |     felem_mul(tmp, ftmp3, ftmp); | 
| 1351 | 83.5k |     felem_reduce(ftmp4, tmp); | 
| 1352 |  |  | 
| 1353 |  |     /* x_out = r**2 - J - 2V */ | 
| 1354 | 83.5k |     felem_square(tmp, ftmp5); | 
| 1355 |  |     /* tmp[i] < 17*2^122 */ | 
| 1356 | 83.5k |     felem_diff_128_64(tmp, ftmp2); | 
| 1357 |  |     /* tmp[i] < 17*2^122 + 2^63 */ | 
| 1358 | 83.5k |     felem_assign(ftmp3, ftmp4); | 
| 1359 | 83.5k |     felem_scalar64(ftmp4, 2); | 
| 1360 |  |     /* ftmp4[i] < 2^61 */ | 
| 1361 | 83.5k |     felem_diff_128_64(tmp, ftmp4); | 
| 1362 |  |     /* tmp[i] < 17*2^122 + 2^64 */ | 
| 1363 | 83.5k |     felem_reduce(x_out, tmp); | 
| 1364 |  |  | 
| 1365 |  |     /* y_out = r(V-x_out) - 2 * s1 * J */ | 
| 1366 | 83.5k |     felem_diff64(ftmp3, x_out); | 
| 1367 |  |     /* | 
| 1368 |  |      * ftmp3[i] < 2^60 + 2^60 = 2^61 | 
| 1369 |  |      */ | 
| 1370 | 83.5k |     felem_mul(tmp, ftmp5, ftmp3); | 
| 1371 |  |     /* tmp[i] < 17*2^122 */ | 
| 1372 | 83.5k |     felem_mul(tmp2, ftmp6, ftmp2); | 
| 1373 |  |     /* tmp2[i] < 17*2^120 */ | 
| 1374 | 83.5k |     felem_scalar128(tmp2, 2); | 
| 1375 |  |     /* tmp2[i] < 17*2^121 */ | 
| 1376 | 83.5k |     felem_diff128(tmp, tmp2); | 
| 1377 |  |         /*- | 
| 1378 |  |          * tmp[i] < 2^127 - 2^69 + 17*2^122 | 
| 1379 |  |          *        = 2^126 - 2^122 - 2^6 - 2^2 - 1 | 
| 1380 |  |          *        < 2^127 | 
| 1381 |  |          */ | 
| 1382 | 83.5k |     felem_reduce(y_out, tmp); | 
| 1383 |  |  | 
| 1384 | 83.5k |     copy_conditional(x_out, x2, z1_is_zero); | 
| 1385 | 83.5k |     copy_conditional(x_out, x1, z2_is_zero); | 
| 1386 | 83.5k |     copy_conditional(y_out, y2, z1_is_zero); | 
| 1387 | 83.5k |     copy_conditional(y_out, y1, z2_is_zero); | 
| 1388 | 83.5k |     copy_conditional(z_out, z2, z1_is_zero); | 
| 1389 | 83.5k |     copy_conditional(z_out, z1, z2_is_zero); | 
| 1390 | 83.5k |     felem_assign(x3, x_out); | 
| 1391 | 83.5k |     felem_assign(y3, y_out); | 
| 1392 | 83.5k |     felem_assign(z3, z_out); | 
| 1393 | 83.5k | } | 
| 1394 |  |  | 
| 1395 |  | /*- | 
| 1396 |  |  * Base point pre computation | 
| 1397 |  |  * -------------------------- | 
| 1398 |  |  * | 
| 1399 |  |  * Two different sorts of precomputed tables are used in the following code. | 
| 1400 |  |  * Each contain various points on the curve, where each point is three field | 
| 1401 |  |  * elements (x, y, z). | 
| 1402 |  |  * | 
| 1403 |  |  * For the base point table, z is usually 1 (0 for the point at infinity). | 
| 1404 |  |  * This table has 16 elements: | 
| 1405 |  |  * index | bits    | point | 
| 1406 |  |  * ------+---------+------------------------------ | 
| 1407 |  |  *     0 | 0 0 0 0 | 0G | 
| 1408 |  |  *     1 | 0 0 0 1 | 1G | 
| 1409 |  |  *     2 | 0 0 1 0 | 2^130G | 
| 1410 |  |  *     3 | 0 0 1 1 | (2^130 + 1)G | 
| 1411 |  |  *     4 | 0 1 0 0 | 2^260G | 
| 1412 |  |  *     5 | 0 1 0 1 | (2^260 + 1)G | 
| 1413 |  |  *     6 | 0 1 1 0 | (2^260 + 2^130)G | 
| 1414 |  |  *     7 | 0 1 1 1 | (2^260 + 2^130 + 1)G | 
| 1415 |  |  *     8 | 1 0 0 0 | 2^390G | 
| 1416 |  |  *     9 | 1 0 0 1 | (2^390 + 1)G | 
| 1417 |  |  *    10 | 1 0 1 0 | (2^390 + 2^130)G | 
| 1418 |  |  *    11 | 1 0 1 1 | (2^390 + 2^130 + 1)G | 
| 1419 |  |  *    12 | 1 1 0 0 | (2^390 + 2^260)G | 
| 1420 |  |  *    13 | 1 1 0 1 | (2^390 + 2^260 + 1)G | 
| 1421 |  |  *    14 | 1 1 1 0 | (2^390 + 2^260 + 2^130)G | 
| 1422 |  |  *    15 | 1 1 1 1 | (2^390 + 2^260 + 2^130 + 1)G | 
| 1423 |  |  * | 
| 1424 |  |  * The reason for this is so that we can clock bits into four different | 
| 1425 |  |  * locations when doing simple scalar multiplies against the base point. | 
| 1426 |  |  * | 
| 1427 |  |  * Tables for other points have table[i] = iG for i in 0 .. 16. */ | 
| 1428 |  |  | 
| 1429 |  | /* gmul is the table of precomputed base points */ | 
| 1430 |  | static const felem gmul[16][3] = { | 
| 1431 |  | {{0, 0, 0, 0, 0, 0, 0, 0, 0}, | 
| 1432 |  |  {0, 0, 0, 0, 0, 0, 0, 0, 0}, | 
| 1433 |  |  {0, 0, 0, 0, 0, 0, 0, 0, 0}}, | 
| 1434 |  | {{0x017e7e31c2e5bd66, 0x022cf0615a90a6fe, 0x00127a2ffa8de334, | 
| 1435 |  |   0x01dfbf9d64a3f877, 0x006b4d3dbaa14b5e, 0x014fed487e0a2bd8, | 
| 1436 |  |   0x015b4429c6481390, 0x03a73678fb2d988e, 0x00c6858e06b70404}, | 
| 1437 |  |  {0x00be94769fd16650, 0x031c21a89cb09022, 0x039013fad0761353, | 
| 1438 |  |   0x02657bd099031542, 0x03273e662c97ee72, 0x01e6d11a05ebef45, | 
| 1439 |  |   0x03d1bd998f544495, 0x03001172297ed0b1, 0x011839296a789a3b}, | 
| 1440 |  |  {1, 0, 0, 0, 0, 0, 0, 0, 0}}, | 
| 1441 |  | {{0x0373faacbc875bae, 0x00f325023721c671, 0x00f666fd3dbde5ad, | 
| 1442 |  |   0x01a6932363f88ea7, 0x01fc6d9e13f9c47b, 0x03bcbffc2bbf734e, | 
| 1443 |  |   0x013ee3c3647f3a92, 0x029409fefe75d07d, 0x00ef9199963d85e5}, | 
| 1444 |  |  {0x011173743ad5b178, 0x02499c7c21bf7d46, 0x035beaeabb8b1a58, | 
| 1445 |  |   0x00f989c4752ea0a3, 0x0101e1de48a9c1a3, 0x01a20076be28ba6c, | 
| 1446 |  |   0x02f8052e5eb2de95, 0x01bfe8f82dea117c, 0x0160074d3c36ddb7}, | 
| 1447 |  |  {1, 0, 0, 0, 0, 0, 0, 0, 0}}, | 
| 1448 |  | {{0x012f3fc373393b3b, 0x03d3d6172f1419fa, 0x02adc943c0b86873, | 
| 1449 |  |   0x00d475584177952b, 0x012a4d1673750ee2, 0x00512517a0f13b0c, | 
| 1450 |  |   0x02b184671a7b1734, 0x0315b84236f1a50a, 0x00a4afc472edbdb9}, | 
| 1451 |  |  {0x00152a7077f385c4, 0x03044007d8d1c2ee, 0x0065829d61d52b52, | 
| 1452 |  |   0x00494ff6b6631d0d, 0x00a11d94d5f06bcf, 0x02d2f89474d9282e, | 
| 1453 |  |   0x0241c5727c06eeb9, 0x0386928710fbdb9d, 0x01f883f727b0dfbe}, | 
| 1454 |  |  {1, 0, 0, 0, 0, 0, 0, 0, 0}}, | 
| 1455 |  | {{0x019b0c3c9185544d, 0x006243a37c9d97db, 0x02ee3cbe030a2ad2, | 
| 1456 |  |   0x00cfdd946bb51e0d, 0x0271c00932606b91, 0x03f817d1ec68c561, | 
| 1457 |  |   0x03f37009806a369c, 0x03c1f30baf184fd5, 0x01091022d6d2f065}, | 
| 1458 |  |  {0x0292c583514c45ed, 0x0316fca51f9a286c, 0x00300af507c1489a, | 
| 1459 |  |   0x0295f69008298cf1, 0x02c0ed8274943d7b, 0x016509b9b47a431e, | 
| 1460 |  |   0x02bc9de9634868ce, 0x005b34929bffcb09, 0x000c1a0121681524}, | 
| 1461 |  |  {1, 0, 0, 0, 0, 0, 0, 0, 0}}, | 
| 1462 |  | {{0x0286abc0292fb9f2, 0x02665eee9805b3f7, 0x01ed7455f17f26d6, | 
| 1463 |  |   0x0346355b83175d13, 0x006284944cd0a097, 0x0191895bcdec5e51, | 
| 1464 |  |   0x02e288370afda7d9, 0x03b22312bfefa67a, 0x01d104d3fc0613fe}, | 
| 1465 |  |  {0x0092421a12f7e47f, 0x0077a83fa373c501, 0x03bd25c5f696bd0d, | 
| 1466 |  |   0x035c41e4d5459761, 0x01ca0d1742b24f53, 0x00aaab27863a509c, | 
| 1467 |  |   0x018b6de47df73917, 0x025c0b771705cd01, 0x01fd51d566d760a7}, | 
| 1468 |  |  {1, 0, 0, 0, 0, 0, 0, 0, 0}}, | 
| 1469 |  | {{0x01dd92ff6b0d1dbd, 0x039c5e2e8f8afa69, 0x0261ed13242c3b27, | 
| 1470 |  |   0x0382c6e67026e6a0, 0x01d60b10be2089f9, 0x03c15f3dce86723f, | 
| 1471 |  |   0x03c764a32d2a062d, 0x017307eac0fad056, 0x018207c0b96c5256}, | 
| 1472 |  |  {0x0196a16d60e13154, 0x03e6ce74c0267030, 0x00ddbf2b4e52a5aa, | 
| 1473 |  |   0x012738241bbf31c8, 0x00ebe8dc04685a28, 0x024c2ad6d380d4a2, | 
| 1474 |  |   0x035ee062a6e62d0e, 0x0029ed74af7d3a0f, 0x00eef32aec142ebd}, | 
| 1475 |  |  {1, 0, 0, 0, 0, 0, 0, 0, 0}}, | 
| 1476 |  | {{0x00c31ec398993b39, 0x03a9f45bcda68253, 0x00ac733c24c70890, | 
| 1477 |  |   0x00872b111401ff01, 0x01d178c23195eafb, 0x03bca2c816b87f74, | 
| 1478 |  |   0x0261a9af46fbad7a, 0x0324b2a8dd3d28f9, 0x00918121d8f24e23}, | 
| 1479 |  |  {0x032bc8c1ca983cd7, 0x00d869dfb08fc8c6, 0x01693cb61fce1516, | 
| 1480 |  |   0x012a5ea68f4e88a8, 0x010869cab88d7ae3, 0x009081ad277ceee1, | 
| 1481 |  |   0x033a77166d064cdc, 0x03955235a1fb3a95, 0x01251a4a9b25b65e}, | 
| 1482 |  |  {1, 0, 0, 0, 0, 0, 0, 0, 0}}, | 
| 1483 |  | {{0x00148a3a1b27f40b, 0x0123186df1b31fdc, 0x00026e7beaad34ce, | 
| 1484 |  |   0x01db446ac1d3dbba, 0x0299c1a33437eaec, 0x024540610183cbb7, | 
| 1485 |  |   0x0173bb0e9ce92e46, 0x02b937e43921214b, 0x01ab0436a9bf01b5}, | 
| 1486 |  |  {0x0383381640d46948, 0x008dacbf0e7f330f, 0x03602122bcc3f318, | 
| 1487 |  |   0x01ee596b200620d6, 0x03bd0585fda430b3, 0x014aed77fd123a83, | 
| 1488 |  |   0x005ace749e52f742, 0x0390fe041da2b842, 0x0189a8ceb3299242}, | 
| 1489 |  |  {1, 0, 0, 0, 0, 0, 0, 0, 0}}, | 
| 1490 |  | {{0x012a19d6b3282473, 0x00c0915918b423ce, 0x023a954eb94405ae, | 
| 1491 |  |   0x00529f692be26158, 0x0289fa1b6fa4b2aa, 0x0198ae4ceea346ef, | 
| 1492 |  |   0x0047d8cdfbdedd49, 0x00cc8c8953f0f6b8, 0x001424abbff49203}, | 
| 1493 |  |  {0x0256732a1115a03a, 0x0351bc38665c6733, 0x03f7b950fb4a6447, | 
| 1494 |  |   0x000afffa94c22155, 0x025763d0a4dab540, 0x000511e92d4fc283, | 
| 1495 |  |   0x030a7e9eda0ee96c, 0x004c3cd93a28bf0a, 0x017edb3a8719217f}, | 
| 1496 |  |  {1, 0, 0, 0, 0, 0, 0, 0, 0}}, | 
| 1497 |  | {{0x011de5675a88e673, 0x031d7d0f5e567fbe, 0x0016b2062c970ae5, | 
| 1498 |  |   0x03f4a2be49d90aa7, 0x03cef0bd13822866, 0x03f0923dcf774a6c, | 
| 1499 |  |   0x0284bebc4f322f72, 0x016ab2645302bb2c, 0x01793f95dace0e2a}, | 
| 1500 |  |  {0x010646e13527a28f, 0x01ca1babd59dc5e7, 0x01afedfd9a5595df, | 
| 1501 |  |   0x01f15785212ea6b1, 0x0324e5d64f6ae3f4, 0x02d680f526d00645, | 
| 1502 |  |   0x0127920fadf627a7, 0x03b383f75df4f684, 0x0089e0057e783b0a}, | 
| 1503 |  |  {1, 0, 0, 0, 0, 0, 0, 0, 0}}, | 
| 1504 |  | {{0x00f334b9eb3c26c6, 0x0298fdaa98568dce, 0x01c2d24843a82292, | 
| 1505 |  |   0x020bcb24fa1b0711, 0x02cbdb3d2b1875e6, 0x0014907598f89422, | 
| 1506 |  |   0x03abe3aa43b26664, 0x02cbf47f720bc168, 0x0133b5e73014b79b}, | 
| 1507 |  |  {0x034aab5dab05779d, 0x00cdc5d71fee9abb, 0x0399f16bd4bd9d30, | 
| 1508 |  |   0x03582fa592d82647, 0x02be1cdfb775b0e9, 0x0034f7cea32e94cb, | 
| 1509 |  |   0x0335a7f08f56f286, 0x03b707e9565d1c8b, 0x0015c946ea5b614f}, | 
| 1510 |  |  {1, 0, 0, 0, 0, 0, 0, 0, 0}}, | 
| 1511 |  | {{0x024676f6cff72255, 0x00d14625cac96378, 0x00532b6008bc3767, | 
| 1512 |  |   0x01fc16721b985322, 0x023355ea1b091668, 0x029de7afdc0317c3, | 
| 1513 |  |   0x02fc8a7ca2da037c, 0x02de1217d74a6f30, 0x013f7173175b73bf}, | 
| 1514 |  |  {0x0344913f441490b5, 0x0200f9e272b61eca, 0x0258a246b1dd55d2, | 
| 1515 |  |   0x03753db9ea496f36, 0x025e02937a09c5ef, 0x030cbd3d14012692, | 
| 1516 |  |   0x01793a67e70dc72a, 0x03ec1d37048a662e, 0x006550f700c32a8d}, | 
| 1517 |  |  {1, 0, 0, 0, 0, 0, 0, 0, 0}}, | 
| 1518 |  | {{0x00d3f48a347eba27, 0x008e636649b61bd8, 0x00d3b93716778fb3, | 
| 1519 |  |   0x004d1915757bd209, 0x019d5311a3da44e0, 0x016d1afcbbe6aade, | 
| 1520 |  |   0x0241bf5f73265616, 0x0384672e5d50d39b, 0x005009fee522b684}, | 
| 1521 |  |  {0x029b4fab064435fe, 0x018868ee095bbb07, 0x01ea3d6936cc92b8, | 
| 1522 |  |   0x000608b00f78a2f3, 0x02db911073d1c20f, 0x018205938470100a, | 
| 1523 |  |   0x01f1e4964cbe6ff2, 0x021a19a29eed4663, 0x01414485f42afa81}, | 
| 1524 |  |  {1, 0, 0, 0, 0, 0, 0, 0, 0}}, | 
| 1525 |  | {{0x01612b3a17f63e34, 0x03813992885428e6, 0x022b3c215b5a9608, | 
| 1526 |  |   0x029b4057e19f2fcb, 0x0384059a587af7e6, 0x02d6400ace6fe610, | 
| 1527 |  |   0x029354d896e8e331, 0x00c047ee6dfba65e, 0x0037720542e9d49d}, | 
| 1528 |  |  {0x02ce9eed7c5e9278, 0x0374ed703e79643b, 0x01316c54c4072006, | 
| 1529 |  |   0x005aaa09054b2ee8, 0x002824000c840d57, 0x03d4eba24771ed86, | 
| 1530 |  |   0x0189c50aabc3bdae, 0x0338c01541e15510, 0x00466d56e38eed42}, | 
| 1531 |  |  {1, 0, 0, 0, 0, 0, 0, 0, 0}}, | 
| 1532 |  | {{0x007efd8330ad8bd6, 0x02465ed48047710b, 0x0034c6606b215e0c, | 
| 1533 |  |   0x016ae30c53cbf839, 0x01fa17bd37161216, 0x018ead4e61ce8ab9, | 
| 1534 |  |   0x005482ed5f5dee46, 0x037543755bba1d7f, 0x005e5ac7e70a9d0f}, | 
| 1535 |  |  {0x0117e1bb2fdcb2a2, 0x03deea36249f40c4, 0x028d09b4a6246cb7, | 
| 1536 |  |   0x03524b8855bcf756, 0x023d7d109d5ceb58, 0x0178e43e3223ef9c, | 
| 1537 |  |   0x0154536a0c6e966a, 0x037964d1286ee9fe, 0x0199bcd90e125055}, | 
| 1538 |  |  {1, 0, 0, 0, 0, 0, 0, 0, 0}} | 
| 1539 |  | }; | 
| 1540 |  |  | 
| 1541 |  | /* | 
| 1542 |  |  * select_point selects the |idx|th point from a precomputation table and | 
| 1543 |  |  * copies it to out. | 
| 1544 |  |  */ | 
| 1545 |  |  /* pre_comp below is of the size provided in |size| */ | 
| 1546 |  | static void select_point(const limb idx, unsigned int size, | 
| 1547 |  |                          const felem pre_comp[][3], felem out[3]) | 
| 1548 | 82.7k | { | 
| 1549 | 82.7k |     unsigned i, j; | 
| 1550 | 82.7k |     limb *outlimbs = &out[0][0]; | 
| 1551 |  |  | 
| 1552 | 82.7k |     memset(out, 0, sizeof(*out) * 3); | 
| 1553 |  |  | 
| 1554 | 1.42M |     for (i = 0; i < size; i++) { | 
| 1555 | 1.34M |         const limb *inlimbs = &pre_comp[i][0][0]; | 
| 1556 | 1.34M |         limb mask = i ^ idx; | 
| 1557 | 1.34M |         mask |= mask >> 4; | 
| 1558 | 1.34M |         mask |= mask >> 2; | 
| 1559 | 1.34M |         mask |= mask >> 1; | 
| 1560 | 1.34M |         mask &= 1; | 
| 1561 | 1.34M |         mask--; | 
| 1562 | 37.6M |         for (j = 0; j < NLIMBS * 3; j++) | 
| 1563 | 36.3M |             outlimbs[j] |= inlimbs[j] & mask; | 
| 1564 | 1.34M |     } | 
| 1565 | 82.7k | } | 
| 1566 |  |  | 
| 1567 |  | /* get_bit returns the |i|th bit in |in| */ | 
| 1568 |  | static char get_bit(const felem_bytearray in, int i) | 
| 1569 | 373k | { | 
| 1570 | 373k |     if (i < 0) | 
| 1571 | 208 |         return 0; | 
| 1572 | 373k |     return (in[i >> 3] >> (i & 7)) & 1; | 
| 1573 | 373k | } | 
| 1574 |  |  | 
| 1575 |  | /* | 
| 1576 |  |  * Interleaved point multiplication using precomputed point multiples: The | 
| 1577 |  |  * small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[], the scalars | 
| 1578 |  |  * in scalars[]. If g_scalar is non-NULL, we also add this multiple of the | 
| 1579 |  |  * generator, using certain (large) precomputed multiples in g_pre_comp. | 
| 1580 |  |  * Output point (X, Y, Z) is stored in x_out, y_out, z_out | 
| 1581 |  |  */ | 
| 1582 |  | static void batch_mul(felem x_out, felem y_out, felem z_out, | 
| 1583 |  |                       const felem_bytearray scalars[], | 
| 1584 |  |                       const unsigned num_points, const u8 *g_scalar, | 
| 1585 |  |                       const int mixed, const felem pre_comp[][17][3], | 
| 1586 |  |                       const felem g_pre_comp[16][3]) | 
| 1587 | 657 | { | 
| 1588 | 657 |     int i, skip; | 
| 1589 | 657 |     unsigned num, gen_mul = (g_scalar != NULL); | 
| 1590 | 657 |     felem nq[3], tmp[4]; | 
| 1591 | 657 |     limb bits; | 
| 1592 | 657 |     u8 sign, digit; | 
| 1593 |  |  | 
| 1594 |  |     /* set nq to the point at infinity */ | 
| 1595 | 657 |     memset(nq, 0, sizeof(nq)); | 
| 1596 |  |  | 
| 1597 |  |     /* | 
| 1598 |  |      * Loop over all scalars msb-to-lsb, interleaving additions of multiples | 
| 1599 |  |      * of the generator (last quarter of rounds) and additions of other | 
| 1600 |  |      * points multiples (every 5th round). | 
| 1601 |  |      */ | 
| 1602 | 657 |     skip = 1;                   /* save two point operations in the first | 
| 1603 |  |                                  * round */ | 
| 1604 | 167k |     for (i = (num_points ? 520 : 130); i >= 0; --i) { | 
| 1605 |  |         /* double */ | 
| 1606 | 167k |         if (!skip) | 
| 1607 | 166k |             point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]); | 
| 1608 |  |  | 
| 1609 |  |         /* add multiples of the generator */ | 
| 1610 | 167k |         if (gen_mul && (i <= 130)) { | 
| 1611 | 60.9k |             bits = get_bit(g_scalar, i + 390) << 3; | 
| 1612 | 60.9k |             if (i < 130) { | 
| 1613 | 60.4k |                 bits |= get_bit(g_scalar, i + 260) << 2; | 
| 1614 | 60.4k |                 bits |= get_bit(g_scalar, i + 130) << 1; | 
| 1615 | 60.4k |                 bits |= get_bit(g_scalar, i); | 
| 1616 | 60.4k |             } | 
| 1617 |  |             /* select the point to add, in constant time */ | 
| 1618 | 60.9k |             select_point(bits, 16, g_pre_comp, tmp); | 
| 1619 | 60.9k |             if (!skip) { | 
| 1620 |  |                 /* The 1 argument below is for "mixed" */ | 
| 1621 | 60.4k |                 point_add(nq[0], nq[1], nq[2], | 
| 1622 | 60.4k |                           nq[0], nq[1], nq[2], 1, tmp[0], tmp[1], tmp[2]); | 
| 1623 | 60.4k |             } else { | 
| 1624 | 449 |                 memcpy(nq, tmp, 3 * sizeof(felem)); | 
| 1625 | 449 |                 skip = 0; | 
| 1626 | 449 |             } | 
| 1627 | 60.9k |         } | 
| 1628 |  |  | 
| 1629 |  |         /* do other additions every 5 doublings */ | 
| 1630 | 167k |         if (num_points && (i % 5 == 0)) { | 
| 1631 |  |             /* loop over all scalars */ | 
| 1632 | 43.6k |             for (num = 0; num < num_points; ++num) { | 
| 1633 | 21.8k |                 bits = get_bit(scalars[num], i + 4) << 5; | 
| 1634 | 21.8k |                 bits |= get_bit(scalars[num], i + 3) << 4; | 
| 1635 | 21.8k |                 bits |= get_bit(scalars[num], i + 2) << 3; | 
| 1636 | 21.8k |                 bits |= get_bit(scalars[num], i + 1) << 2; | 
| 1637 | 21.8k |                 bits |= get_bit(scalars[num], i) << 1; | 
| 1638 | 21.8k |                 bits |= get_bit(scalars[num], i - 1); | 
| 1639 | 21.8k |                 ossl_ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits); | 
| 1640 |  |  | 
| 1641 |  |                 /* | 
| 1642 |  |                  * select the point to add or subtract, in constant time | 
| 1643 |  |                  */ | 
| 1644 | 21.8k |                 select_point(digit, 17, pre_comp[num], tmp); | 
| 1645 | 21.8k |                 felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the negative | 
| 1646 |  |                                             * point */ | 
| 1647 | 21.8k |                 copy_conditional(tmp[1], tmp[3], (-(limb) sign)); | 
| 1648 |  |  | 
| 1649 | 21.8k |                 if (!skip) { | 
| 1650 | 21.6k |                     point_add(nq[0], nq[1], nq[2], | 
| 1651 | 21.6k |                               nq[0], nq[1], nq[2], | 
| 1652 | 21.6k |                               mixed, tmp[0], tmp[1], tmp[2]); | 
| 1653 | 21.6k |                 } else { | 
| 1654 | 208 |                     memcpy(nq, tmp, 3 * sizeof(felem)); | 
| 1655 | 208 |                     skip = 0; | 
| 1656 | 208 |                 } | 
| 1657 | 21.8k |             } | 
| 1658 | 21.8k |         } | 
| 1659 | 167k |     } | 
| 1660 | 657 |     felem_assign(x_out, nq[0]); | 
| 1661 | 657 |     felem_assign(y_out, nq[1]); | 
| 1662 | 657 |     felem_assign(z_out, nq[2]); | 
| 1663 | 657 | } | 
| 1664 |  |  | 
| 1665 |  | /* Precomputation for the group generator. */ | 
| 1666 |  | struct nistp521_pre_comp_st { | 
| 1667 |  |     felem g_pre_comp[16][3]; | 
| 1668 |  |     CRYPTO_REF_COUNT references; | 
| 1669 |  |     CRYPTO_RWLOCK *lock; | 
| 1670 |  | }; | 
| 1671 |  |  | 
| 1672 |  | const EC_METHOD *EC_GFp_nistp521_method(void) | 
| 1673 | 11.5k | { | 
| 1674 | 11.5k |     static const EC_METHOD ret = { | 
| 1675 | 11.5k |         EC_FLAGS_DEFAULT_OCT, | 
| 1676 | 11.5k |         NID_X9_62_prime_field, | 
| 1677 | 11.5k |         ossl_ec_GFp_nistp521_group_init, | 
| 1678 | 11.5k |         ossl_ec_GFp_simple_group_finish, | 
| 1679 | 11.5k |         ossl_ec_GFp_simple_group_clear_finish, | 
| 1680 | 11.5k |         ossl_ec_GFp_nist_group_copy, | 
| 1681 | 11.5k |         ossl_ec_GFp_nistp521_group_set_curve, | 
| 1682 | 11.5k |         ossl_ec_GFp_simple_group_get_curve, | 
| 1683 | 11.5k |         ossl_ec_GFp_simple_group_get_degree, | 
| 1684 | 11.5k |         ossl_ec_group_simple_order_bits, | 
| 1685 | 11.5k |         ossl_ec_GFp_simple_group_check_discriminant, | 
| 1686 | 11.5k |         ossl_ec_GFp_simple_point_init, | 
| 1687 | 11.5k |         ossl_ec_GFp_simple_point_finish, | 
| 1688 | 11.5k |         ossl_ec_GFp_simple_point_clear_finish, | 
| 1689 | 11.5k |         ossl_ec_GFp_simple_point_copy, | 
| 1690 | 11.5k |         ossl_ec_GFp_simple_point_set_to_infinity, | 
| 1691 | 11.5k |         ossl_ec_GFp_simple_point_set_affine_coordinates, | 
| 1692 | 11.5k |         ossl_ec_GFp_nistp521_point_get_affine_coordinates, | 
| 1693 | 11.5k |         0 /* point_set_compressed_coordinates */ , | 
| 1694 | 11.5k |         0 /* point2oct */ , | 
| 1695 | 11.5k |         0 /* oct2point */ , | 
| 1696 | 11.5k |         ossl_ec_GFp_simple_add, | 
| 1697 | 11.5k |         ossl_ec_GFp_simple_dbl, | 
| 1698 | 11.5k |         ossl_ec_GFp_simple_invert, | 
| 1699 | 11.5k |         ossl_ec_GFp_simple_is_at_infinity, | 
| 1700 | 11.5k |         ossl_ec_GFp_simple_is_on_curve, | 
| 1701 | 11.5k |         ossl_ec_GFp_simple_cmp, | 
| 1702 | 11.5k |         ossl_ec_GFp_simple_make_affine, | 
| 1703 | 11.5k |         ossl_ec_GFp_simple_points_make_affine, | 
| 1704 | 11.5k |         ossl_ec_GFp_nistp521_points_mul, | 
| 1705 | 11.5k |         ossl_ec_GFp_nistp521_precompute_mult, | 
| 1706 | 11.5k |         ossl_ec_GFp_nistp521_have_precompute_mult, | 
| 1707 | 11.5k |         ossl_ec_GFp_nist_field_mul, | 
| 1708 | 11.5k |         ossl_ec_GFp_nist_field_sqr, | 
| 1709 | 11.5k |         0 /* field_div */ , | 
| 1710 | 11.5k |         ossl_ec_GFp_simple_field_inv, | 
| 1711 | 11.5k |         0 /* field_encode */ , | 
| 1712 | 11.5k |         0 /* field_decode */ , | 
| 1713 | 11.5k |         0,                      /* field_set_to_one */ | 
| 1714 | 11.5k |         ossl_ec_key_simple_priv2oct, | 
| 1715 | 11.5k |         ossl_ec_key_simple_oct2priv, | 
| 1716 | 11.5k |         0, /* set private */ | 
| 1717 | 11.5k |         ossl_ec_key_simple_generate_key, | 
| 1718 | 11.5k |         ossl_ec_key_simple_check_key, | 
| 1719 | 11.5k |         ossl_ec_key_simple_generate_public_key, | 
| 1720 | 11.5k |         0, /* keycopy */ | 
| 1721 | 11.5k |         0, /* keyfinish */ | 
| 1722 | 11.5k |         ossl_ecdh_simple_compute_key, | 
| 1723 | 11.5k |         ossl_ecdsa_simple_sign_setup, | 
| 1724 | 11.5k |         ossl_ecdsa_simple_sign_sig, | 
| 1725 | 11.5k |         ossl_ecdsa_simple_verify_sig, | 
| 1726 | 11.5k |         0, /* field_inverse_mod_ord */ | 
| 1727 | 11.5k |         0, /* blind_coordinates */ | 
| 1728 | 11.5k |         0, /* ladder_pre */ | 
| 1729 | 11.5k |         0, /* ladder_step */ | 
| 1730 | 11.5k |         0  /* ladder_post */ | 
| 1731 | 11.5k |     }; | 
| 1732 |  |  | 
| 1733 | 11.5k |     return &ret; | 
| 1734 | 11.5k | } | 
| 1735 |  |  | 
| 1736 |  | /******************************************************************************/ | 
| 1737 |  | /* | 
| 1738 |  |  * FUNCTIONS TO MANAGE PRECOMPUTATION | 
| 1739 |  |  */ | 
| 1740 |  |  | 
| 1741 |  | static NISTP521_PRE_COMP *nistp521_pre_comp_new(void) | 
| 1742 | 0 | { | 
| 1743 | 0 |     NISTP521_PRE_COMP *ret = OPENSSL_zalloc(sizeof(*ret)); | 
| 1744 |  | 
 | 
| 1745 | 0 |     if (ret == NULL) { | 
| 1746 | 0 |         ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE); | 
| 1747 | 0 |         return ret; | 
| 1748 | 0 |     } | 
| 1749 |  |  | 
| 1750 | 0 |     ret->references = 1; | 
| 1751 |  | 
 | 
| 1752 | 0 |     ret->lock = CRYPTO_THREAD_lock_new(); | 
| 1753 | 0 |     if (ret->lock == NULL) { | 
| 1754 | 0 |         ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE); | 
| 1755 | 0 |         OPENSSL_free(ret); | 
| 1756 | 0 |         return NULL; | 
| 1757 | 0 |     } | 
| 1758 | 0 |     return ret; | 
| 1759 | 0 | } | 
| 1760 |  |  | 
| 1761 |  | NISTP521_PRE_COMP *EC_nistp521_pre_comp_dup(NISTP521_PRE_COMP *p) | 
| 1762 | 0 | { | 
| 1763 | 0 |     int i; | 
| 1764 | 0 |     if (p != NULL) | 
| 1765 | 0 |         CRYPTO_UP_REF(&p->references, &i, p->lock); | 
| 1766 | 0 |     return p; | 
| 1767 | 0 | } | 
| 1768 |  |  | 
| 1769 |  | void EC_nistp521_pre_comp_free(NISTP521_PRE_COMP *p) | 
| 1770 | 0 | { | 
| 1771 | 0 |     int i; | 
| 1772 |  | 
 | 
| 1773 | 0 |     if (p == NULL) | 
| 1774 | 0 |         return; | 
| 1775 |  |  | 
| 1776 | 0 |     CRYPTO_DOWN_REF(&p->references, &i, p->lock); | 
| 1777 | 0 |     REF_PRINT_COUNT("EC_nistp521", p); | 
| 1778 | 0 |     if (i > 0) | 
| 1779 | 0 |         return; | 
| 1780 | 0 |     REF_ASSERT_ISNT(i < 0); | 
| 1781 |  | 
 | 
| 1782 | 0 |     CRYPTO_THREAD_lock_free(p->lock); | 
| 1783 | 0 |     OPENSSL_free(p); | 
| 1784 | 0 | } | 
| 1785 |  |  | 
| 1786 |  | /******************************************************************************/ | 
| 1787 |  | /* | 
| 1788 |  |  * OPENSSL EC_METHOD FUNCTIONS | 
| 1789 |  |  */ | 
| 1790 |  |  | 
| 1791 |  | int ossl_ec_GFp_nistp521_group_init(EC_GROUP *group) | 
| 1792 | 17.7k | { | 
| 1793 | 17.7k |     int ret; | 
| 1794 | 17.7k |     ret = ossl_ec_GFp_simple_group_init(group); | 
| 1795 | 17.7k |     group->a_is_minus3 = 1; | 
| 1796 | 17.7k |     return ret; | 
| 1797 | 17.7k | } | 
| 1798 |  |  | 
| 1799 |  | int ossl_ec_GFp_nistp521_group_set_curve(EC_GROUP *group, const BIGNUM *p, | 
| 1800 |  |                                          const BIGNUM *a, const BIGNUM *b, | 
| 1801 |  |                                          BN_CTX *ctx) | 
| 1802 | 8.87k | { | 
| 1803 | 8.87k |     int ret = 0; | 
| 1804 | 8.87k |     BIGNUM *curve_p, *curve_a, *curve_b; | 
| 1805 | 8.87k | #ifndef FIPS_MODULE | 
| 1806 | 8.87k |     BN_CTX *new_ctx = NULL; | 
| 1807 |  |  | 
| 1808 | 8.87k |     if (ctx == NULL) | 
| 1809 | 0 |         ctx = new_ctx = BN_CTX_new(); | 
| 1810 | 8.87k | #endif | 
| 1811 | 8.87k |     if (ctx == NULL) | 
| 1812 | 0 |         return 0; | 
| 1813 |  |  | 
| 1814 | 8.87k |     BN_CTX_start(ctx); | 
| 1815 | 8.87k |     curve_p = BN_CTX_get(ctx); | 
| 1816 | 8.87k |     curve_a = BN_CTX_get(ctx); | 
| 1817 | 8.87k |     curve_b = BN_CTX_get(ctx); | 
| 1818 | 8.87k |     if (curve_b == NULL) | 
| 1819 | 0 |         goto err; | 
| 1820 | 8.87k |     BN_bin2bn(nistp521_curve_params[0], sizeof(felem_bytearray), curve_p); | 
| 1821 | 8.87k |     BN_bin2bn(nistp521_curve_params[1], sizeof(felem_bytearray), curve_a); | 
| 1822 | 8.87k |     BN_bin2bn(nistp521_curve_params[2], sizeof(felem_bytearray), curve_b); | 
| 1823 | 8.87k |     if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || (BN_cmp(curve_b, b))) { | 
| 1824 | 0 |         ERR_raise(ERR_LIB_EC, EC_R_WRONG_CURVE_PARAMETERS); | 
| 1825 | 0 |         goto err; | 
| 1826 | 0 |     } | 
| 1827 | 8.87k |     group->field_mod_func = BN_nist_mod_521; | 
| 1828 | 8.87k |     ret = ossl_ec_GFp_simple_group_set_curve(group, p, a, b, ctx); | 
| 1829 | 8.87k |  err: | 
| 1830 | 8.87k |     BN_CTX_end(ctx); | 
| 1831 | 8.87k | #ifndef FIPS_MODULE | 
| 1832 | 8.87k |     BN_CTX_free(new_ctx); | 
| 1833 | 8.87k | #endif | 
| 1834 | 8.87k |     return ret; | 
| 1835 | 8.87k | } | 
| 1836 |  |  | 
| 1837 |  | /* | 
| 1838 |  |  * Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') = | 
| 1839 |  |  * (X/Z^2, Y/Z^3) | 
| 1840 |  |  */ | 
| 1841 |  | int ossl_ec_GFp_nistp521_point_get_affine_coordinates(const EC_GROUP *group, | 
| 1842 |  |                                                       const EC_POINT *point, | 
| 1843 |  |                                                       BIGNUM *x, BIGNUM *y, | 
| 1844 |  |                                                       BN_CTX *ctx) | 
| 1845 | 382 | { | 
| 1846 | 382 |     felem z1, z2, x_in, y_in, x_out, y_out; | 
| 1847 | 382 |     largefelem tmp; | 
| 1848 |  |  | 
| 1849 | 382 |     if (EC_POINT_is_at_infinity(group, point)) { | 
| 1850 | 0 |         ERR_raise(ERR_LIB_EC, EC_R_POINT_AT_INFINITY); | 
| 1851 | 0 |         return 0; | 
| 1852 | 0 |     } | 
| 1853 | 382 |     if ((!BN_to_felem(x_in, point->X)) || (!BN_to_felem(y_in, point->Y)) || | 
| 1854 | 382 |         (!BN_to_felem(z1, point->Z))) | 
| 1855 | 0 |         return 0; | 
| 1856 | 382 |     felem_inv(z2, z1); | 
| 1857 | 382 |     felem_square(tmp, z2); | 
| 1858 | 382 |     felem_reduce(z1, tmp); | 
| 1859 | 382 |     felem_mul(tmp, x_in, z1); | 
| 1860 | 382 |     felem_reduce(x_in, tmp); | 
| 1861 | 382 |     felem_contract(x_out, x_in); | 
| 1862 | 382 |     if (x != NULL) { | 
| 1863 | 382 |         if (!felem_to_BN(x, x_out)) { | 
| 1864 | 0 |             ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB); | 
| 1865 | 0 |             return 0; | 
| 1866 | 0 |         } | 
| 1867 | 382 |     } | 
| 1868 | 382 |     felem_mul(tmp, z1, z2); | 
| 1869 | 382 |     felem_reduce(z1, tmp); | 
| 1870 | 382 |     felem_mul(tmp, y_in, z1); | 
| 1871 | 382 |     felem_reduce(y_in, tmp); | 
| 1872 | 382 |     felem_contract(y_out, y_in); | 
| 1873 | 382 |     if (y != NULL) { | 
| 1874 | 354 |         if (!felem_to_BN(y, y_out)) { | 
| 1875 | 0 |             ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB); | 
| 1876 | 0 |             return 0; | 
| 1877 | 0 |         } | 
| 1878 | 354 |     } | 
| 1879 | 382 |     return 1; | 
| 1880 | 382 | } | 
| 1881 |  |  | 
| 1882 |  | /* points below is of size |num|, and tmp_felems is of size |num+1/ */ | 
| 1883 |  | static void make_points_affine(size_t num, felem points[][3], | 
| 1884 |  |                                felem tmp_felems[]) | 
| 1885 | 0 | { | 
| 1886 |  |     /* | 
| 1887 |  |      * Runs in constant time, unless an input is the point at infinity (which | 
| 1888 |  |      * normally shouldn't happen). | 
| 1889 |  |      */ | 
| 1890 | 0 |     ossl_ec_GFp_nistp_points_make_affine_internal(num, | 
| 1891 | 0 |                                                   points, | 
| 1892 | 0 |                                                   sizeof(felem), | 
| 1893 | 0 |                                                   tmp_felems, | 
| 1894 | 0 |                                                   (void (*)(void *))felem_one, | 
| 1895 | 0 |                                                   felem_is_zero_int, | 
| 1896 | 0 |                                                   (void (*)(void *, const void *)) | 
| 1897 | 0 |                                                   felem_assign, | 
| 1898 | 0 |                                                   (void (*)(void *, const void *)) | 
| 1899 | 0 |                                                   felem_square_reduce, (void (*) | 
| 1900 | 0 |                                                                         (void *, | 
| 1901 | 0 |                                                                          const void | 
| 1902 | 0 |                                                                          *, | 
| 1903 | 0 |                                                                          const void | 
| 1904 | 0 |                                                                          *)) | 
| 1905 | 0 |                                                   felem_mul_reduce, | 
| 1906 | 0 |                                                   (void (*)(void *, const void *)) | 
| 1907 | 0 |                                                   felem_inv, | 
| 1908 | 0 |                                                   (void (*)(void *, const void *)) | 
| 1909 | 0 |                                                   felem_contract); | 
| 1910 | 0 | } | 
| 1911 |  |  | 
| 1912 |  | /* | 
| 1913 |  |  * Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL | 
| 1914 |  |  * values Result is stored in r (r can equal one of the inputs). | 
| 1915 |  |  */ | 
| 1916 |  | int ossl_ec_GFp_nistp521_points_mul(const EC_GROUP *group, EC_POINT *r, | 
| 1917 |  |                                     const BIGNUM *scalar, size_t num, | 
| 1918 |  |                                     const EC_POINT *points[], | 
| 1919 |  |                                     const BIGNUM *scalars[], BN_CTX *ctx) | 
| 1920 | 396 | { | 
| 1921 | 396 |     int ret = 0; | 
| 1922 | 396 |     int j; | 
| 1923 | 396 |     int mixed = 0; | 
| 1924 | 396 |     BIGNUM *x, *y, *z, *tmp_scalar; | 
| 1925 | 396 |     felem_bytearray g_secret; | 
| 1926 | 396 |     felem_bytearray *secrets = NULL; | 
| 1927 | 396 |     felem (*pre_comp)[17][3] = NULL; | 
| 1928 | 396 |     felem *tmp_felems = NULL; | 
| 1929 | 396 |     unsigned i; | 
| 1930 | 396 |     int num_bytes; | 
| 1931 | 396 |     int have_pre_comp = 0; | 
| 1932 | 396 |     size_t num_points = num; | 
| 1933 | 396 |     felem x_in, y_in, z_in, x_out, y_out, z_out; | 
| 1934 | 396 |     NISTP521_PRE_COMP *pre = NULL; | 
| 1935 | 396 |     felem(*g_pre_comp)[3] = NULL; | 
| 1936 | 396 |     EC_POINT *generator = NULL; | 
| 1937 | 396 |     const EC_POINT *p = NULL; | 
| 1938 | 396 |     const BIGNUM *p_scalar = NULL; | 
| 1939 |  |  | 
| 1940 | 396 |     BN_CTX_start(ctx); | 
| 1941 | 396 |     x = BN_CTX_get(ctx); | 
| 1942 | 396 |     y = BN_CTX_get(ctx); | 
| 1943 | 396 |     z = BN_CTX_get(ctx); | 
| 1944 | 396 |     tmp_scalar = BN_CTX_get(ctx); | 
| 1945 | 396 |     if (tmp_scalar == NULL) | 
| 1946 | 0 |         goto err; | 
| 1947 |  |  | 
| 1948 | 396 |     if (scalar != NULL) { | 
| 1949 | 304 |         pre = group->pre_comp.nistp521; | 
| 1950 | 304 |         if (pre) | 
| 1951 |  |             /* we have precomputation, try to use it */ | 
| 1952 | 0 |             g_pre_comp = &pre->g_pre_comp[0]; | 
| 1953 | 304 |         else | 
| 1954 |  |             /* try to use the standard precomputation */ | 
| 1955 | 304 |             g_pre_comp = (felem(*)[3]) gmul; | 
| 1956 | 304 |         generator = EC_POINT_new(group); | 
| 1957 | 304 |         if (generator == NULL) | 
| 1958 | 0 |             goto err; | 
| 1959 |  |         /* get the generator from precomputation */ | 
| 1960 | 304 |         if (!felem_to_BN(x, g_pre_comp[1][0]) || | 
| 1961 | 304 |             !felem_to_BN(y, g_pre_comp[1][1]) || | 
| 1962 | 304 |             !felem_to_BN(z, g_pre_comp[1][2])) { | 
| 1963 | 0 |             ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB); | 
| 1964 | 0 |             goto err; | 
| 1965 | 0 |         } | 
| 1966 | 304 |         if (!ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group, | 
| 1967 | 304 |                                                                 generator, | 
| 1968 | 304 |                                                                 x, y, z, ctx)) | 
| 1969 | 0 |             goto err; | 
| 1970 | 304 |         if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) | 
| 1971 |  |             /* precomputation matches generator */ | 
| 1972 | 304 |             have_pre_comp = 1; | 
| 1973 | 0 |         else | 
| 1974 |  |             /* | 
| 1975 |  |              * we don't have valid precomputation: treat the generator as a | 
| 1976 |  |              * random point | 
| 1977 |  |              */ | 
| 1978 | 0 |             num_points++; | 
| 1979 | 304 |     } | 
| 1980 |  |  | 
| 1981 | 396 |     if (num_points > 0) { | 
| 1982 | 100 |         if (num_points >= 2) { | 
| 1983 |  |             /* | 
| 1984 |  |              * unless we precompute multiples for just one point, converting | 
| 1985 |  |              * those into affine form is time well spent | 
| 1986 |  |              */ | 
| 1987 | 0 |             mixed = 1; | 
| 1988 | 0 |         } | 
| 1989 | 100 |         secrets = OPENSSL_zalloc(sizeof(*secrets) * num_points); | 
| 1990 | 100 |         pre_comp = OPENSSL_zalloc(sizeof(*pre_comp) * num_points); | 
| 1991 | 100 |         if (mixed) | 
| 1992 | 0 |             tmp_felems = | 
| 1993 | 0 |                 OPENSSL_malloc(sizeof(*tmp_felems) * (num_points * 17 + 1)); | 
| 1994 | 100 |         if ((secrets == NULL) || (pre_comp == NULL) | 
| 1995 | 100 |             || (mixed && (tmp_felems == NULL))) { | 
| 1996 | 0 |             ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE); | 
| 1997 | 0 |             goto err; | 
| 1998 | 0 |         } | 
| 1999 |  |  | 
| 2000 |  |         /* | 
| 2001 |  |          * we treat NULL scalars as 0, and NULL points as points at infinity, | 
| 2002 |  |          * i.e., they contribute nothing to the linear combination | 
| 2003 |  |          */ | 
| 2004 | 200 |         for (i = 0; i < num_points; ++i) { | 
| 2005 | 100 |             if (i == num) { | 
| 2006 |  |                 /* | 
| 2007 |  |                  * we didn't have a valid precomputation, so we pick the | 
| 2008 |  |                  * generator | 
| 2009 |  |                  */ | 
| 2010 | 0 |                 p = EC_GROUP_get0_generator(group); | 
| 2011 | 0 |                 p_scalar = scalar; | 
| 2012 | 100 |             } else { | 
| 2013 |  |                 /* the i^th point */ | 
| 2014 | 100 |                 p = points[i]; | 
| 2015 | 100 |                 p_scalar = scalars[i]; | 
| 2016 | 100 |             } | 
| 2017 | 100 |             if ((p_scalar != NULL) && (p != NULL)) { | 
| 2018 |  |                 /* reduce scalar to 0 <= scalar < 2^521 */ | 
| 2019 | 100 |                 if ((BN_num_bits(p_scalar) > 521) | 
| 2020 | 100 |                     || (BN_is_negative(p_scalar))) { | 
| 2021 |  |                     /* | 
| 2022 |  |                      * this is an unusual input, and we don't guarantee | 
| 2023 |  |                      * constant-timeness | 
| 2024 |  |                      */ | 
| 2025 | 0 |                     if (!BN_nnmod(tmp_scalar, p_scalar, group->order, ctx)) { | 
| 2026 | 0 |                         ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB); | 
| 2027 | 0 |                         goto err; | 
| 2028 | 0 |                     } | 
| 2029 | 0 |                     num_bytes = BN_bn2lebinpad(tmp_scalar, | 
| 2030 | 0 |                                                secrets[i], sizeof(secrets[i])); | 
| 2031 | 100 |                 } else { | 
| 2032 | 100 |                     num_bytes = BN_bn2lebinpad(p_scalar, | 
| 2033 | 100 |                                                secrets[i], sizeof(secrets[i])); | 
| 2034 | 100 |                 } | 
| 2035 | 100 |                 if (num_bytes < 0) { | 
| 2036 | 0 |                     ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB); | 
| 2037 | 0 |                     goto err; | 
| 2038 | 0 |                 } | 
| 2039 |  |                 /* precompute multiples */ | 
| 2040 | 100 |                 if ((!BN_to_felem(x_out, p->X)) || | 
| 2041 | 100 |                     (!BN_to_felem(y_out, p->Y)) || | 
| 2042 | 100 |                     (!BN_to_felem(z_out, p->Z))) | 
| 2043 | 0 |                     goto err; | 
| 2044 | 100 |                 memcpy(pre_comp[i][1][0], x_out, sizeof(felem)); | 
| 2045 | 100 |                 memcpy(pre_comp[i][1][1], y_out, sizeof(felem)); | 
| 2046 | 100 |                 memcpy(pre_comp[i][1][2], z_out, sizeof(felem)); | 
| 2047 | 1.60k |                 for (j = 2; j <= 16; ++j) { | 
| 2048 | 1.50k |                     if (j & 1) { | 
| 2049 | 700 |                         point_add(pre_comp[i][j][0], pre_comp[i][j][1], | 
| 2050 | 700 |                                   pre_comp[i][j][2], pre_comp[i][1][0], | 
| 2051 | 700 |                                   pre_comp[i][1][1], pre_comp[i][1][2], 0, | 
| 2052 | 700 |                                   pre_comp[i][j - 1][0], | 
| 2053 | 700 |                                   pre_comp[i][j - 1][1], | 
| 2054 | 700 |                                   pre_comp[i][j - 1][2]); | 
| 2055 | 800 |                     } else { | 
| 2056 | 800 |                         point_double(pre_comp[i][j][0], pre_comp[i][j][1], | 
| 2057 | 800 |                                      pre_comp[i][j][2], pre_comp[i][j / 2][0], | 
| 2058 | 800 |                                      pre_comp[i][j / 2][1], | 
| 2059 | 800 |                                      pre_comp[i][j / 2][2]); | 
| 2060 | 800 |                     } | 
| 2061 | 1.50k |                 } | 
| 2062 | 100 |             } | 
| 2063 | 100 |         } | 
| 2064 | 100 |         if (mixed) | 
| 2065 | 0 |             make_points_affine(num_points * 17, pre_comp[0], tmp_felems); | 
| 2066 | 100 |     } | 
| 2067 |  |  | 
| 2068 |  |     /* the scalar for the generator */ | 
| 2069 | 396 |     if ((scalar != NULL) && (have_pre_comp)) { | 
| 2070 | 304 |         memset(g_secret, 0, sizeof(g_secret)); | 
| 2071 |  |         /* reduce scalar to 0 <= scalar < 2^521 */ | 
| 2072 | 304 |         if ((BN_num_bits(scalar) > 521) || (BN_is_negative(scalar))) { | 
| 2073 |  |             /* | 
| 2074 |  |              * this is an unusual input, and we don't guarantee | 
| 2075 |  |              * constant-timeness | 
| 2076 |  |              */ | 
| 2077 | 21 |             if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) { | 
| 2078 | 0 |                 ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB); | 
| 2079 | 0 |                 goto err; | 
| 2080 | 0 |             } | 
| 2081 | 21 |             num_bytes = BN_bn2lebinpad(tmp_scalar, g_secret, sizeof(g_secret)); | 
| 2082 | 283 |         } else { | 
| 2083 | 283 |             num_bytes = BN_bn2lebinpad(scalar, g_secret, sizeof(g_secret)); | 
| 2084 | 283 |         } | 
| 2085 |  |         /* do the multiplication with generator precomputation */ | 
| 2086 | 304 |         batch_mul(x_out, y_out, z_out, | 
| 2087 | 304 |                   (const felem_bytearray(*))secrets, num_points, | 
| 2088 | 304 |                   g_secret, | 
| 2089 | 304 |                   mixed, (const felem(*)[17][3])pre_comp, | 
| 2090 | 304 |                   (const felem(*)[3])g_pre_comp); | 
| 2091 | 304 |     } else { | 
| 2092 |  |         /* do the multiplication without generator precomputation */ | 
| 2093 | 92 |         batch_mul(x_out, y_out, z_out, | 
| 2094 | 92 |                   (const felem_bytearray(*))secrets, num_points, | 
| 2095 | 92 |                   NULL, mixed, (const felem(*)[17][3])pre_comp, NULL); | 
| 2096 | 92 |     } | 
| 2097 |  |     /* reduce the output to its unique minimal representation */ | 
| 2098 | 396 |     felem_contract(x_in, x_out); | 
| 2099 | 396 |     felem_contract(y_in, y_out); | 
| 2100 | 396 |     felem_contract(z_in, z_out); | 
| 2101 | 396 |     if ((!felem_to_BN(x, x_in)) || (!felem_to_BN(y, y_in)) || | 
| 2102 | 396 |         (!felem_to_BN(z, z_in))) { | 
| 2103 | 0 |         ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB); | 
| 2104 | 0 |         goto err; | 
| 2105 | 0 |     } | 
| 2106 | 396 |     ret = ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group, r, x, y, z, | 
| 2107 | 396 |                                                              ctx); | 
| 2108 |  |  | 
| 2109 | 396 |  err: | 
| 2110 | 396 |     BN_CTX_end(ctx); | 
| 2111 | 396 |     EC_POINT_free(generator); | 
| 2112 | 396 |     OPENSSL_free(secrets); | 
| 2113 | 396 |     OPENSSL_free(pre_comp); | 
| 2114 | 396 |     OPENSSL_free(tmp_felems); | 
| 2115 | 396 |     return ret; | 
| 2116 | 396 | } | 
| 2117 |  |  | 
| 2118 |  | int ossl_ec_GFp_nistp521_precompute_mult(EC_GROUP *group, BN_CTX *ctx) | 
| 2119 | 0 | { | 
| 2120 | 0 |     int ret = 0; | 
| 2121 | 0 |     NISTP521_PRE_COMP *pre = NULL; | 
| 2122 | 0 |     int i, j; | 
| 2123 | 0 |     BIGNUM *x, *y; | 
| 2124 | 0 |     EC_POINT *generator = NULL; | 
| 2125 | 0 |     felem tmp_felems[16]; | 
| 2126 | 0 | #ifndef FIPS_MODULE | 
| 2127 | 0 |     BN_CTX *new_ctx = NULL; | 
| 2128 | 0 | #endif | 
| 2129 |  |  | 
| 2130 |  |     /* throw away old precomputation */ | 
| 2131 | 0 |     EC_pre_comp_free(group); | 
| 2132 |  | 
 | 
| 2133 | 0 | #ifndef FIPS_MODULE | 
| 2134 | 0 |     if (ctx == NULL) | 
| 2135 | 0 |         ctx = new_ctx = BN_CTX_new(); | 
| 2136 | 0 | #endif | 
| 2137 | 0 |     if (ctx == NULL) | 
| 2138 | 0 |         return 0; | 
| 2139 |  |  | 
| 2140 | 0 |     BN_CTX_start(ctx); | 
| 2141 | 0 |     x = BN_CTX_get(ctx); | 
| 2142 | 0 |     y = BN_CTX_get(ctx); | 
| 2143 | 0 |     if (y == NULL) | 
| 2144 | 0 |         goto err; | 
| 2145 |  |     /* get the generator */ | 
| 2146 | 0 |     if (group->generator == NULL) | 
| 2147 | 0 |         goto err; | 
| 2148 | 0 |     generator = EC_POINT_new(group); | 
| 2149 | 0 |     if (generator == NULL) | 
| 2150 | 0 |         goto err; | 
| 2151 | 0 |     BN_bin2bn(nistp521_curve_params[3], sizeof(felem_bytearray), x); | 
| 2152 | 0 |     BN_bin2bn(nistp521_curve_params[4], sizeof(felem_bytearray), y); | 
| 2153 | 0 |     if (!EC_POINT_set_affine_coordinates(group, generator, x, y, ctx)) | 
| 2154 | 0 |         goto err; | 
| 2155 | 0 |     if ((pre = nistp521_pre_comp_new()) == NULL) | 
| 2156 | 0 |         goto err; | 
| 2157 |  |     /* | 
| 2158 |  |      * if the generator is the standard one, use built-in precomputation | 
| 2159 |  |      */ | 
| 2160 | 0 |     if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) { | 
| 2161 | 0 |         memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp)); | 
| 2162 | 0 |         goto done; | 
| 2163 | 0 |     } | 
| 2164 | 0 |     if ((!BN_to_felem(pre->g_pre_comp[1][0], group->generator->X)) || | 
| 2165 | 0 |         (!BN_to_felem(pre->g_pre_comp[1][1], group->generator->Y)) || | 
| 2166 | 0 |         (!BN_to_felem(pre->g_pre_comp[1][2], group->generator->Z))) | 
| 2167 | 0 |         goto err; | 
| 2168 |  |     /* compute 2^130*G, 2^260*G, 2^390*G */ | 
| 2169 | 0 |     for (i = 1; i <= 4; i <<= 1) { | 
| 2170 | 0 |         point_double(pre->g_pre_comp[2 * i][0], pre->g_pre_comp[2 * i][1], | 
| 2171 | 0 |                      pre->g_pre_comp[2 * i][2], pre->g_pre_comp[i][0], | 
| 2172 | 0 |                      pre->g_pre_comp[i][1], pre->g_pre_comp[i][2]); | 
| 2173 | 0 |         for (j = 0; j < 129; ++j) { | 
| 2174 | 0 |             point_double(pre->g_pre_comp[2 * i][0], | 
| 2175 | 0 |                          pre->g_pre_comp[2 * i][1], | 
| 2176 | 0 |                          pre->g_pre_comp[2 * i][2], | 
| 2177 | 0 |                          pre->g_pre_comp[2 * i][0], | 
| 2178 | 0 |                          pre->g_pre_comp[2 * i][1], | 
| 2179 | 0 |                          pre->g_pre_comp[2 * i][2]); | 
| 2180 | 0 |         } | 
| 2181 | 0 |     } | 
| 2182 |  |     /* g_pre_comp[0] is the point at infinity */ | 
| 2183 | 0 |     memset(pre->g_pre_comp[0], 0, sizeof(pre->g_pre_comp[0])); | 
| 2184 |  |     /* the remaining multiples */ | 
| 2185 |  |     /* 2^130*G + 2^260*G */ | 
| 2186 | 0 |     point_add(pre->g_pre_comp[6][0], pre->g_pre_comp[6][1], | 
| 2187 | 0 |               pre->g_pre_comp[6][2], pre->g_pre_comp[4][0], | 
| 2188 | 0 |               pre->g_pre_comp[4][1], pre->g_pre_comp[4][2], | 
| 2189 | 0 |               0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1], | 
| 2190 | 0 |               pre->g_pre_comp[2][2]); | 
| 2191 |  |     /* 2^130*G + 2^390*G */ | 
| 2192 | 0 |     point_add(pre->g_pre_comp[10][0], pre->g_pre_comp[10][1], | 
| 2193 | 0 |               pre->g_pre_comp[10][2], pre->g_pre_comp[8][0], | 
| 2194 | 0 |               pre->g_pre_comp[8][1], pre->g_pre_comp[8][2], | 
| 2195 | 0 |               0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1], | 
| 2196 | 0 |               pre->g_pre_comp[2][2]); | 
| 2197 |  |     /* 2^260*G + 2^390*G */ | 
| 2198 | 0 |     point_add(pre->g_pre_comp[12][0], pre->g_pre_comp[12][1], | 
| 2199 | 0 |               pre->g_pre_comp[12][2], pre->g_pre_comp[8][0], | 
| 2200 | 0 |               pre->g_pre_comp[8][1], pre->g_pre_comp[8][2], | 
| 2201 | 0 |               0, pre->g_pre_comp[4][0], pre->g_pre_comp[4][1], | 
| 2202 | 0 |               pre->g_pre_comp[4][2]); | 
| 2203 |  |     /* 2^130*G + 2^260*G + 2^390*G */ | 
| 2204 | 0 |     point_add(pre->g_pre_comp[14][0], pre->g_pre_comp[14][1], | 
| 2205 | 0 |               pre->g_pre_comp[14][2], pre->g_pre_comp[12][0], | 
| 2206 | 0 |               pre->g_pre_comp[12][1], pre->g_pre_comp[12][2], | 
| 2207 | 0 |               0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1], | 
| 2208 | 0 |               pre->g_pre_comp[2][2]); | 
| 2209 | 0 |     for (i = 1; i < 8; ++i) { | 
| 2210 |  |         /* odd multiples: add G */ | 
| 2211 | 0 |         point_add(pre->g_pre_comp[2 * i + 1][0], | 
| 2212 | 0 |                   pre->g_pre_comp[2 * i + 1][1], | 
| 2213 | 0 |                   pre->g_pre_comp[2 * i + 1][2], pre->g_pre_comp[2 * i][0], | 
| 2214 | 0 |                   pre->g_pre_comp[2 * i][1], pre->g_pre_comp[2 * i][2], 0, | 
| 2215 | 0 |                   pre->g_pre_comp[1][0], pre->g_pre_comp[1][1], | 
| 2216 | 0 |                   pre->g_pre_comp[1][2]); | 
| 2217 | 0 |     } | 
| 2218 | 0 |     make_points_affine(15, &(pre->g_pre_comp[1]), tmp_felems); | 
| 2219 |  | 
 | 
| 2220 | 0 |  done: | 
| 2221 | 0 |     SETPRECOMP(group, nistp521, pre); | 
| 2222 | 0 |     ret = 1; | 
| 2223 | 0 |     pre = NULL; | 
| 2224 | 0 |  err: | 
| 2225 | 0 |     BN_CTX_end(ctx); | 
| 2226 | 0 |     EC_POINT_free(generator); | 
| 2227 | 0 | #ifndef FIPS_MODULE | 
| 2228 | 0 |     BN_CTX_free(new_ctx); | 
| 2229 | 0 | #endif | 
| 2230 | 0 |     EC_nistp521_pre_comp_free(pre); | 
| 2231 | 0 |     return ret; | 
| 2232 | 0 | } | 
| 2233 |  |  | 
| 2234 |  | int ossl_ec_GFp_nistp521_have_precompute_mult(const EC_GROUP *group) | 
| 2235 | 0 | { | 
| 2236 | 0 |     return HAVEPRECOMP(group, nistp521); | 
| 2237 | 0 | } |