/src/openssl30/crypto/ec/ecp_nistz256.c
| Line | Count | Source (jump to first uncovered line) | 
| 1 |  | /* | 
| 2 |  |  * Copyright 2014-2022 The OpenSSL Project Authors. All Rights Reserved. | 
| 3 |  |  * Copyright (c) 2014, Intel Corporation. All Rights Reserved. | 
| 4 |  |  * Copyright (c) 2015, CloudFlare, Inc. | 
| 5 |  |  * | 
| 6 |  |  * Licensed under the Apache License 2.0 (the "License").  You may not use | 
| 7 |  |  * this file except in compliance with the License.  You can obtain a copy | 
| 8 |  |  * in the file LICENSE in the source distribution or at | 
| 9 |  |  * https://www.openssl.org/source/license.html | 
| 10 |  |  * | 
| 11 |  |  * Originally written by Shay Gueron (1, 2), and Vlad Krasnov (1, 3) | 
| 12 |  |  * (1) Intel Corporation, Israel Development Center, Haifa, Israel | 
| 13 |  |  * (2) University of Haifa, Israel | 
| 14 |  |  * (3) CloudFlare, Inc. | 
| 15 |  |  * | 
| 16 |  |  * Reference: | 
| 17 |  |  * S.Gueron and V.Krasnov, "Fast Prime Field Elliptic Curve Cryptography with | 
| 18 |  |  *                          256 Bit Primes" | 
| 19 |  |  */ | 
| 20 |  |  | 
| 21 |  | /* | 
| 22 |  |  * ECDSA low level APIs are deprecated for public use, but still ok for | 
| 23 |  |  * internal use. | 
| 24 |  |  */ | 
| 25 |  | #include "internal/deprecated.h" | 
| 26 |  |  | 
| 27 |  | #include <string.h> | 
| 28 |  |  | 
| 29 |  | #include "internal/cryptlib.h" | 
| 30 |  | #include "crypto/bn.h" | 
| 31 |  | #include "ec_local.h" | 
| 32 |  | #include "internal/refcount.h" | 
| 33 |  |  | 
| 34 |  | #if BN_BITS2 != 64 | 
| 35 |  | # define TOBN(hi,lo)    lo,hi | 
| 36 |  | #else | 
| 37 | 17.5k | # define TOBN(hi,lo)    ((BN_ULONG)hi<<32|lo) | 
| 38 |  | #endif | 
| 39 |  |  | 
| 40 |  | #if defined(__GNUC__) | 
| 41 | 4.76k | # define ALIGN32        __attribute((aligned(32))) | 
| 42 |  | #elif defined(_MSC_VER) | 
| 43 |  | # define ALIGN32        __declspec(align(32)) | 
| 44 |  | #else | 
| 45 |  | # define ALIGN32 | 
| 46 |  | #endif | 
| 47 |  |  | 
| 48 | 1.18k | #define ALIGNPTR(p,N)   ((unsigned char *)p+N-(size_t)p%N) | 
| 49 | 389k | #define P256_LIMBS      (256/BN_BITS2) | 
| 50 |  |  | 
| 51 |  | typedef unsigned short u16; | 
| 52 |  |  | 
| 53 |  | typedef struct { | 
| 54 |  |     BN_ULONG X[P256_LIMBS]; | 
| 55 |  |     BN_ULONG Y[P256_LIMBS]; | 
| 56 |  |     BN_ULONG Z[P256_LIMBS]; | 
| 57 |  | } P256_POINT; | 
| 58 |  |  | 
| 59 |  | typedef struct { | 
| 60 |  |     BN_ULONG X[P256_LIMBS]; | 
| 61 |  |     BN_ULONG Y[P256_LIMBS]; | 
| 62 |  | } P256_POINT_AFFINE; | 
| 63 |  |  | 
| 64 |  | typedef P256_POINT_AFFINE PRECOMP256_ROW[64]; | 
| 65 |  |  | 
| 66 |  | /* structure for precomputed multiples of the generator */ | 
| 67 |  | struct nistz256_pre_comp_st { | 
| 68 |  |     const EC_GROUP *group;      /* Parent EC_GROUP object */ | 
| 69 |  |     size_t w;                   /* Window size */ | 
| 70 |  |     /* | 
| 71 |  |      * Constant time access to the X and Y coordinates of the pre-computed, | 
| 72 |  |      * generator multiplies, in the Montgomery domain. Pre-calculated | 
| 73 |  |      * multiplies are stored in affine form. | 
| 74 |  |      */ | 
| 75 |  |     PRECOMP256_ROW *precomp; | 
| 76 |  |     void *precomp_storage; | 
| 77 |  |     CRYPTO_REF_COUNT references; | 
| 78 |  |     CRYPTO_RWLOCK *lock; | 
| 79 |  | }; | 
| 80 |  |  | 
| 81 |  | /* Functions implemented in assembly */ | 
| 82 |  | /* | 
| 83 |  |  * Most of below mentioned functions *preserve* the property of inputs | 
| 84 |  |  * being fully reduced, i.e. being in [0, modulus) range. Simply put if | 
| 85 |  |  * inputs are fully reduced, then output is too. Note that reverse is | 
| 86 |  |  * not true, in sense that given partially reduced inputs output can be | 
| 87 |  |  * either, not unlikely reduced. And "most" in first sentence refers to | 
| 88 |  |  * the fact that given the calculations flow one can tolerate that | 
| 89 |  |  * addition, 1st function below, produces partially reduced result *if* | 
| 90 |  |  * multiplications by 2 and 3, which customarily use addition, fully | 
| 91 |  |  * reduce it. This effectively gives two options: a) addition produces | 
| 92 |  |  * fully reduced result [as long as inputs are, just like remaining | 
| 93 |  |  * functions]; b) addition is allowed to produce partially reduced | 
| 94 |  |  * result, but multiplications by 2 and 3 perform additional reduction | 
| 95 |  |  * step. Choice between the two can be platform-specific, but it was a) | 
| 96 |  |  * in all cases so far... | 
| 97 |  |  */ | 
| 98 |  | /* Modular add: res = a+b mod P   */ | 
| 99 |  | void ecp_nistz256_add(BN_ULONG res[P256_LIMBS], | 
| 100 |  |                       const BN_ULONG a[P256_LIMBS], | 
| 101 |  |                       const BN_ULONG b[P256_LIMBS]); | 
| 102 |  | /* Modular mul by 2: res = 2*a mod P */ | 
| 103 |  | void ecp_nistz256_mul_by_2(BN_ULONG res[P256_LIMBS], | 
| 104 |  |                            const BN_ULONG a[P256_LIMBS]); | 
| 105 |  | /* Modular mul by 3: res = 3*a mod P */ | 
| 106 |  | void ecp_nistz256_mul_by_3(BN_ULONG res[P256_LIMBS], | 
| 107 |  |                            const BN_ULONG a[P256_LIMBS]); | 
| 108 |  |  | 
| 109 |  | /* Modular div by 2: res = a/2 mod P */ | 
| 110 |  | void ecp_nistz256_div_by_2(BN_ULONG res[P256_LIMBS], | 
| 111 |  |                            const BN_ULONG a[P256_LIMBS]); | 
| 112 |  | /* Modular sub: res = a-b mod P   */ | 
| 113 |  | void ecp_nistz256_sub(BN_ULONG res[P256_LIMBS], | 
| 114 |  |                       const BN_ULONG a[P256_LIMBS], | 
| 115 |  |                       const BN_ULONG b[P256_LIMBS]); | 
| 116 |  | /* Modular neg: res = -a mod P    */ | 
| 117 |  | void ecp_nistz256_neg(BN_ULONG res[P256_LIMBS], const BN_ULONG a[P256_LIMBS]); | 
| 118 |  | /* Montgomery mul: res = a*b*2^-256 mod P */ | 
| 119 |  | void ecp_nistz256_mul_mont(BN_ULONG res[P256_LIMBS], | 
| 120 |  |                            const BN_ULONG a[P256_LIMBS], | 
| 121 |  |                            const BN_ULONG b[P256_LIMBS]); | 
| 122 |  | /* Montgomery sqr: res = a*a*2^-256 mod P */ | 
| 123 |  | void ecp_nistz256_sqr_mont(BN_ULONG res[P256_LIMBS], | 
| 124 |  |                            const BN_ULONG a[P256_LIMBS]); | 
| 125 |  | /* Convert a number from Montgomery domain, by multiplying with 1 */ | 
| 126 |  | void ecp_nistz256_from_mont(BN_ULONG res[P256_LIMBS], | 
| 127 |  |                             const BN_ULONG in[P256_LIMBS]); | 
| 128 |  | /* Convert a number to Montgomery domain, by multiplying with 2^512 mod P*/ | 
| 129 |  | void ecp_nistz256_to_mont(BN_ULONG res[P256_LIMBS], | 
| 130 |  |                           const BN_ULONG in[P256_LIMBS]); | 
| 131 |  | /* Functions that perform constant time access to the precomputed tables */ | 
| 132 |  | void ecp_nistz256_scatter_w5(P256_POINT *val, | 
| 133 |  |                              const P256_POINT *in_t, int idx); | 
| 134 |  | void ecp_nistz256_gather_w5(P256_POINT *val, | 
| 135 |  |                             const P256_POINT *in_t, int idx); | 
| 136 |  | void ecp_nistz256_scatter_w7(P256_POINT_AFFINE *val, | 
| 137 |  |                              const P256_POINT_AFFINE *in_t, int idx); | 
| 138 |  | void ecp_nistz256_gather_w7(P256_POINT_AFFINE *val, | 
| 139 |  |                             const P256_POINT_AFFINE *in_t, int idx); | 
| 140 |  |  | 
| 141 |  | /* One converted into the Montgomery domain */ | 
| 142 |  | static const BN_ULONG ONE[P256_LIMBS] = { | 
| 143 |  |     TOBN(0x00000000, 0x00000001), TOBN(0xffffffff, 0x00000000), | 
| 144 |  |     TOBN(0xffffffff, 0xffffffff), TOBN(0x00000000, 0xfffffffe) | 
| 145 |  | }; | 
| 146 |  |  | 
| 147 |  | static NISTZ256_PRE_COMP *ecp_nistz256_pre_comp_new(const EC_GROUP *group); | 
| 148 |  |  | 
| 149 |  | /* Precomputed tables for the default generator */ | 
| 150 |  | extern const PRECOMP256_ROW ecp_nistz256_precomputed[37]; | 
| 151 |  |  | 
| 152 |  | /* Recode window to a signed digit, see ecp_nistputil.c for details */ | 
| 153 |  | static unsigned int _booth_recode_w5(unsigned int in) | 
| 154 | 61.3k | { | 
| 155 | 61.3k |     unsigned int s, d; | 
| 156 |  |  | 
| 157 | 61.3k |     s = ~((in >> 5) - 1); | 
| 158 | 61.3k |     d = (1 << 6) - in - 1; | 
| 159 | 61.3k |     d = (d & s) | (in & ~s); | 
| 160 | 61.3k |     d = (d >> 1) + (d & 1); | 
| 161 |  |  | 
| 162 | 61.3k |     return (d << 1) + (s & 1); | 
| 163 | 61.3k | } | 
| 164 |  |  | 
| 165 |  | static unsigned int _booth_recode_w7(unsigned int in) | 
| 166 | 135k | { | 
| 167 | 135k |     unsigned int s, d; | 
| 168 |  |  | 
| 169 | 135k |     s = ~((in >> 7) - 1); | 
| 170 | 135k |     d = (1 << 8) - in - 1; | 
| 171 | 135k |     d = (d & s) | (in & ~s); | 
| 172 | 135k |     d = (d >> 1) + (d & 1); | 
| 173 |  |  | 
| 174 | 135k |     return (d << 1) + (s & 1); | 
| 175 | 135k | } | 
| 176 |  |  | 
| 177 |  | static void copy_conditional(BN_ULONG dst[P256_LIMBS], | 
| 178 |  |                              const BN_ULONG src[P256_LIMBS], BN_ULONG move) | 
| 179 | 195k | { | 
| 180 | 195k |     BN_ULONG mask1 = 0-move; | 
| 181 | 195k |     BN_ULONG mask2 = ~mask1; | 
| 182 |  |  | 
| 183 | 195k |     dst[0] = (src[0] & mask1) ^ (dst[0] & mask2); | 
| 184 | 195k |     dst[1] = (src[1] & mask1) ^ (dst[1] & mask2); | 
| 185 | 195k |     dst[2] = (src[2] & mask1) ^ (dst[2] & mask2); | 
| 186 | 195k |     dst[3] = (src[3] & mask1) ^ (dst[3] & mask2); | 
| 187 | 195k |     if (P256_LIMBS == 8) { | 
| 188 | 0 |         dst[4] = (src[4] & mask1) ^ (dst[4] & mask2); | 
| 189 | 0 |         dst[5] = (src[5] & mask1) ^ (dst[5] & mask2); | 
| 190 | 0 |         dst[6] = (src[6] & mask1) ^ (dst[6] & mask2); | 
| 191 | 0 |         dst[7] = (src[7] & mask1) ^ (dst[7] & mask2); | 
| 192 | 0 |     } | 
| 193 | 195k | } | 
| 194 |  |  | 
| 195 |  | static BN_ULONG is_zero(BN_ULONG in) | 
| 196 | 18.9k | { | 
| 197 | 18.9k |     in |= (0 - in); | 
| 198 | 18.9k |     in = ~in; | 
| 199 | 18.9k |     in >>= BN_BITS2 - 1; | 
| 200 | 18.9k |     return in; | 
| 201 | 18.9k | } | 
| 202 |  |  | 
| 203 |  | static BN_ULONG is_equal(const BN_ULONG a[P256_LIMBS], | 
| 204 |  |                          const BN_ULONG b[P256_LIMBS]) | 
| 205 | 7.33k | { | 
| 206 | 7.33k |     BN_ULONG res; | 
| 207 |  |  | 
| 208 | 7.33k |     res = a[0] ^ b[0]; | 
| 209 | 7.33k |     res |= a[1] ^ b[1]; | 
| 210 | 7.33k |     res |= a[2] ^ b[2]; | 
| 211 | 7.33k |     res |= a[3] ^ b[3]; | 
| 212 | 7.33k |     if (P256_LIMBS == 8) { | 
| 213 | 0 |         res |= a[4] ^ b[4]; | 
| 214 | 0 |         res |= a[5] ^ b[5]; | 
| 215 | 0 |         res |= a[6] ^ b[6]; | 
| 216 | 0 |         res |= a[7] ^ b[7]; | 
| 217 | 0 |     } | 
| 218 |  |  | 
| 219 | 7.33k |     return is_zero(res); | 
| 220 | 7.33k | } | 
| 221 |  |  | 
| 222 |  | static BN_ULONG is_one(const BIGNUM *z) | 
| 223 | 8.43k | { | 
| 224 | 8.43k |     BN_ULONG res = 0; | 
| 225 | 8.43k |     BN_ULONG *a = bn_get_words(z); | 
| 226 |  |  | 
| 227 | 8.43k |     if (bn_get_top(z) == (P256_LIMBS - P256_LIMBS / 8)) { | 
| 228 | 7.95k |         res = a[0] ^ ONE[0]; | 
| 229 | 7.95k |         res |= a[1] ^ ONE[1]; | 
| 230 | 7.95k |         res |= a[2] ^ ONE[2]; | 
| 231 | 7.95k |         res |= a[3] ^ ONE[3]; | 
| 232 | 7.95k |         if (P256_LIMBS == 8) { | 
| 233 | 0 |             res |= a[4] ^ ONE[4]; | 
| 234 | 0 |             res |= a[5] ^ ONE[5]; | 
| 235 | 0 |             res |= a[6] ^ ONE[6]; | 
| 236 |  |             /* | 
| 237 |  |              * no check for a[7] (being zero) on 32-bit platforms, | 
| 238 |  |              * because value of "one" takes only 7 limbs. | 
| 239 |  |              */ | 
| 240 | 0 |         } | 
| 241 | 7.95k |         res = is_zero(res); | 
| 242 | 7.95k |     } | 
| 243 |  |  | 
| 244 | 8.43k |     return res; | 
| 245 | 8.43k | } | 
| 246 |  |  | 
| 247 |  | /* | 
| 248 |  |  * For reference, this macro is used only when new ecp_nistz256 assembly | 
| 249 |  |  * module is being developed.  For example, configure with | 
| 250 |  |  * -DECP_NISTZ256_REFERENCE_IMPLEMENTATION and implement only functions | 
| 251 |  |  * performing simplest arithmetic operations on 256-bit vectors. Then | 
| 252 |  |  * work on implementation of higher-level functions performing point | 
| 253 |  |  * operations. Then remove ECP_NISTZ256_REFERENCE_IMPLEMENTATION | 
| 254 |  |  * and never define it again. (The correct macro denoting presence of | 
| 255 |  |  * ecp_nistz256 module is ECP_NISTZ256_ASM.) | 
| 256 |  |  */ | 
| 257 |  | #ifndef ECP_NISTZ256_REFERENCE_IMPLEMENTATION | 
| 258 |  | void ecp_nistz256_point_double(P256_POINT *r, const P256_POINT *a); | 
| 259 |  | void ecp_nistz256_point_add(P256_POINT *r, | 
| 260 |  |                             const P256_POINT *a, const P256_POINT *b); | 
| 261 |  | void ecp_nistz256_point_add_affine(P256_POINT *r, | 
| 262 |  |                                    const P256_POINT *a, | 
| 263 |  |                                    const P256_POINT_AFFINE *b); | 
| 264 |  | #else | 
| 265 |  | /* Point double: r = 2*a */ | 
| 266 |  | static void ecp_nistz256_point_double(P256_POINT *r, const P256_POINT *a) | 
| 267 |  | { | 
| 268 |  |     BN_ULONG S[P256_LIMBS]; | 
| 269 |  |     BN_ULONG M[P256_LIMBS]; | 
| 270 |  |     BN_ULONG Zsqr[P256_LIMBS]; | 
| 271 |  |     BN_ULONG tmp0[P256_LIMBS]; | 
| 272 |  |  | 
| 273 |  |     const BN_ULONG *in_x = a->X; | 
| 274 |  |     const BN_ULONG *in_y = a->Y; | 
| 275 |  |     const BN_ULONG *in_z = a->Z; | 
| 276 |  |  | 
| 277 |  |     BN_ULONG *res_x = r->X; | 
| 278 |  |     BN_ULONG *res_y = r->Y; | 
| 279 |  |     BN_ULONG *res_z = r->Z; | 
| 280 |  |  | 
| 281 |  |     ecp_nistz256_mul_by_2(S, in_y); | 
| 282 |  |  | 
| 283 |  |     ecp_nistz256_sqr_mont(Zsqr, in_z); | 
| 284 |  |  | 
| 285 |  |     ecp_nistz256_sqr_mont(S, S); | 
| 286 |  |  | 
| 287 |  |     ecp_nistz256_mul_mont(res_z, in_z, in_y); | 
| 288 |  |     ecp_nistz256_mul_by_2(res_z, res_z); | 
| 289 |  |  | 
| 290 |  |     ecp_nistz256_add(M, in_x, Zsqr); | 
| 291 |  |     ecp_nistz256_sub(Zsqr, in_x, Zsqr); | 
| 292 |  |  | 
| 293 |  |     ecp_nistz256_sqr_mont(res_y, S); | 
| 294 |  |     ecp_nistz256_div_by_2(res_y, res_y); | 
| 295 |  |  | 
| 296 |  |     ecp_nistz256_mul_mont(M, M, Zsqr); | 
| 297 |  |     ecp_nistz256_mul_by_3(M, M); | 
| 298 |  |  | 
| 299 |  |     ecp_nistz256_mul_mont(S, S, in_x); | 
| 300 |  |     ecp_nistz256_mul_by_2(tmp0, S); | 
| 301 |  |  | 
| 302 |  |     ecp_nistz256_sqr_mont(res_x, M); | 
| 303 |  |  | 
| 304 |  |     ecp_nistz256_sub(res_x, res_x, tmp0); | 
| 305 |  |     ecp_nistz256_sub(S, S, res_x); | 
| 306 |  |  | 
| 307 |  |     ecp_nistz256_mul_mont(S, S, M); | 
| 308 |  |     ecp_nistz256_sub(res_y, S, res_y); | 
| 309 |  | } | 
| 310 |  |  | 
| 311 |  | /* Point addition: r = a+b */ | 
| 312 |  | static void ecp_nistz256_point_add(P256_POINT *r, | 
| 313 |  |                                    const P256_POINT *a, const P256_POINT *b) | 
| 314 |  | { | 
| 315 |  |     BN_ULONG U2[P256_LIMBS], S2[P256_LIMBS]; | 
| 316 |  |     BN_ULONG U1[P256_LIMBS], S1[P256_LIMBS]; | 
| 317 |  |     BN_ULONG Z1sqr[P256_LIMBS]; | 
| 318 |  |     BN_ULONG Z2sqr[P256_LIMBS]; | 
| 319 |  |     BN_ULONG H[P256_LIMBS], R[P256_LIMBS]; | 
| 320 |  |     BN_ULONG Hsqr[P256_LIMBS]; | 
| 321 |  |     BN_ULONG Rsqr[P256_LIMBS]; | 
| 322 |  |     BN_ULONG Hcub[P256_LIMBS]; | 
| 323 |  |  | 
| 324 |  |     BN_ULONG res_x[P256_LIMBS]; | 
| 325 |  |     BN_ULONG res_y[P256_LIMBS]; | 
| 326 |  |     BN_ULONG res_z[P256_LIMBS]; | 
| 327 |  |  | 
| 328 |  |     BN_ULONG in1infty, in2infty; | 
| 329 |  |  | 
| 330 |  |     const BN_ULONG *in1_x = a->X; | 
| 331 |  |     const BN_ULONG *in1_y = a->Y; | 
| 332 |  |     const BN_ULONG *in1_z = a->Z; | 
| 333 |  |  | 
| 334 |  |     const BN_ULONG *in2_x = b->X; | 
| 335 |  |     const BN_ULONG *in2_y = b->Y; | 
| 336 |  |     const BN_ULONG *in2_z = b->Z; | 
| 337 |  |  | 
| 338 |  |     /* | 
| 339 |  |      * Infinity in encoded as (,,0) | 
| 340 |  |      */ | 
| 341 |  |     in1infty = (in1_z[0] | in1_z[1] | in1_z[2] | in1_z[3]); | 
| 342 |  |     if (P256_LIMBS == 8) | 
| 343 |  |         in1infty |= (in1_z[4] | in1_z[5] | in1_z[6] | in1_z[7]); | 
| 344 |  |  | 
| 345 |  |     in2infty = (in2_z[0] | in2_z[1] | in2_z[2] | in2_z[3]); | 
| 346 |  |     if (P256_LIMBS == 8) | 
| 347 |  |         in2infty |= (in2_z[4] | in2_z[5] | in2_z[6] | in2_z[7]); | 
| 348 |  |  | 
| 349 |  |     in1infty = is_zero(in1infty); | 
| 350 |  |     in2infty = is_zero(in2infty); | 
| 351 |  |  | 
| 352 |  |     ecp_nistz256_sqr_mont(Z2sqr, in2_z);        /* Z2^2 */ | 
| 353 |  |     ecp_nistz256_sqr_mont(Z1sqr, in1_z);        /* Z1^2 */ | 
| 354 |  |  | 
| 355 |  |     ecp_nistz256_mul_mont(S1, Z2sqr, in2_z);    /* S1 = Z2^3 */ | 
| 356 |  |     ecp_nistz256_mul_mont(S2, Z1sqr, in1_z);    /* S2 = Z1^3 */ | 
| 357 |  |  | 
| 358 |  |     ecp_nistz256_mul_mont(S1, S1, in1_y);       /* S1 = Y1*Z2^3 */ | 
| 359 |  |     ecp_nistz256_mul_mont(S2, S2, in2_y);       /* S2 = Y2*Z1^3 */ | 
| 360 |  |     ecp_nistz256_sub(R, S2, S1);                /* R = S2 - S1 */ | 
| 361 |  |  | 
| 362 |  |     ecp_nistz256_mul_mont(U1, in1_x, Z2sqr);    /* U1 = X1*Z2^2 */ | 
| 363 |  |     ecp_nistz256_mul_mont(U2, in2_x, Z1sqr);    /* U2 = X2*Z1^2 */ | 
| 364 |  |     ecp_nistz256_sub(H, U2, U1);                /* H = U2 - U1 */ | 
| 365 |  |  | 
| 366 |  |     /* | 
| 367 |  |      * The formulae are incorrect if the points are equal so we check for | 
| 368 |  |      * this and do doubling if this happens. | 
| 369 |  |      * | 
| 370 |  |      * Points here are in Jacobian projective coordinates (Xi, Yi, Zi) | 
| 371 |  |      * that are bound to the affine coordinates (xi, yi) by the following | 
| 372 |  |      * equations: | 
| 373 |  |      *     - xi = Xi / (Zi)^2 | 
| 374 |  |      *     - y1 = Yi / (Zi)^3 | 
| 375 |  |      * | 
| 376 |  |      * For the sake of optimization, the algorithm operates over | 
| 377 |  |      * intermediate variables U1, U2 and S1, S2 that are derived from | 
| 378 |  |      * the projective coordinates: | 
| 379 |  |      *     - U1 = X1 * (Z2)^2 ; U2 = X2 * (Z1)^2 | 
| 380 |  |      *     - S1 = Y1 * (Z2)^3 ; S2 = Y2 * (Z1)^3 | 
| 381 |  |      * | 
| 382 |  |      * It is easy to prove that is_equal(U1, U2) implies that the affine | 
| 383 |  |      * x-coordinates are equal, or either point is at infinity. | 
| 384 |  |      * Likewise is_equal(S1, S2) implies that the affine y-coordinates are | 
| 385 |  |      * equal, or either point is at infinity. | 
| 386 |  |      * | 
| 387 |  |      * The special case of either point being the point at infinity (Z1 or Z2 | 
| 388 |  |      * is zero), is handled separately later on in this function, so we avoid | 
| 389 |  |      * jumping to point_double here in those special cases. | 
| 390 |  |      * | 
| 391 |  |      * When both points are inverse of each other, we know that the affine | 
| 392 |  |      * x-coordinates are equal, and the y-coordinates have different sign. | 
| 393 |  |      * Therefore since U1 = U2, we know H = 0, and therefore Z3 = H*Z1*Z2 | 
| 394 |  |      * will equal 0, thus the result is infinity, if we simply let this | 
| 395 |  |      * function continue normally. | 
| 396 |  |      * | 
| 397 |  |      * We use bitwise operations to avoid potential side-channels introduced by | 
| 398 |  |      * the short-circuiting behaviour of boolean operators. | 
| 399 |  |      */ | 
| 400 |  |     if (is_equal(U1, U2) & ~in1infty & ~in2infty & is_equal(S1, S2)) { | 
| 401 |  |         /* | 
| 402 |  |          * This is obviously not constant-time but it should never happen during | 
| 403 |  |          * single point multiplication, so there is no timing leak for ECDH or | 
| 404 |  |          * ECDSA signing. | 
| 405 |  |          */ | 
| 406 |  |         ecp_nistz256_point_double(r, a); | 
| 407 |  |         return; | 
| 408 |  |     } | 
| 409 |  |  | 
| 410 |  |     ecp_nistz256_sqr_mont(Rsqr, R);             /* R^2 */ | 
| 411 |  |     ecp_nistz256_mul_mont(res_z, H, in1_z);     /* Z3 = H*Z1*Z2 */ | 
| 412 |  |     ecp_nistz256_sqr_mont(Hsqr, H);             /* H^2 */ | 
| 413 |  |     ecp_nistz256_mul_mont(res_z, res_z, in2_z); /* Z3 = H*Z1*Z2 */ | 
| 414 |  |     ecp_nistz256_mul_mont(Hcub, Hsqr, H);       /* H^3 */ | 
| 415 |  |  | 
| 416 |  |     ecp_nistz256_mul_mont(U2, U1, Hsqr);        /* U1*H^2 */ | 
| 417 |  |     ecp_nistz256_mul_by_2(Hsqr, U2);            /* 2*U1*H^2 */ | 
| 418 |  |  | 
| 419 |  |     ecp_nistz256_sub(res_x, Rsqr, Hsqr); | 
| 420 |  |     ecp_nistz256_sub(res_x, res_x, Hcub); | 
| 421 |  |  | 
| 422 |  |     ecp_nistz256_sub(res_y, U2, res_x); | 
| 423 |  |  | 
| 424 |  |     ecp_nistz256_mul_mont(S2, S1, Hcub); | 
| 425 |  |     ecp_nistz256_mul_mont(res_y, R, res_y); | 
| 426 |  |     ecp_nistz256_sub(res_y, res_y, S2); | 
| 427 |  |  | 
| 428 |  |     copy_conditional(res_x, in2_x, in1infty); | 
| 429 |  |     copy_conditional(res_y, in2_y, in1infty); | 
| 430 |  |     copy_conditional(res_z, in2_z, in1infty); | 
| 431 |  |  | 
| 432 |  |     copy_conditional(res_x, in1_x, in2infty); | 
| 433 |  |     copy_conditional(res_y, in1_y, in2infty); | 
| 434 |  |     copy_conditional(res_z, in1_z, in2infty); | 
| 435 |  |  | 
| 436 |  |     memcpy(r->X, res_x, sizeof(res_x)); | 
| 437 |  |     memcpy(r->Y, res_y, sizeof(res_y)); | 
| 438 |  |     memcpy(r->Z, res_z, sizeof(res_z)); | 
| 439 |  | } | 
| 440 |  |  | 
| 441 |  | /* Point addition when b is known to be affine: r = a+b */ | 
| 442 |  | static void ecp_nistz256_point_add_affine(P256_POINT *r, | 
| 443 |  |                                           const P256_POINT *a, | 
| 444 |  |                                           const P256_POINT_AFFINE *b) | 
| 445 |  | { | 
| 446 |  |     BN_ULONG U2[P256_LIMBS], S2[P256_LIMBS]; | 
| 447 |  |     BN_ULONG Z1sqr[P256_LIMBS]; | 
| 448 |  |     BN_ULONG H[P256_LIMBS], R[P256_LIMBS]; | 
| 449 |  |     BN_ULONG Hsqr[P256_LIMBS]; | 
| 450 |  |     BN_ULONG Rsqr[P256_LIMBS]; | 
| 451 |  |     BN_ULONG Hcub[P256_LIMBS]; | 
| 452 |  |  | 
| 453 |  |     BN_ULONG res_x[P256_LIMBS]; | 
| 454 |  |     BN_ULONG res_y[P256_LIMBS]; | 
| 455 |  |     BN_ULONG res_z[P256_LIMBS]; | 
| 456 |  |  | 
| 457 |  |     BN_ULONG in1infty, in2infty; | 
| 458 |  |  | 
| 459 |  |     const BN_ULONG *in1_x = a->X; | 
| 460 |  |     const BN_ULONG *in1_y = a->Y; | 
| 461 |  |     const BN_ULONG *in1_z = a->Z; | 
| 462 |  |  | 
| 463 |  |     const BN_ULONG *in2_x = b->X; | 
| 464 |  |     const BN_ULONG *in2_y = b->Y; | 
| 465 |  |  | 
| 466 |  |     /* | 
| 467 |  |      * Infinity in encoded as (,,0) | 
| 468 |  |      */ | 
| 469 |  |     in1infty = (in1_z[0] | in1_z[1] | in1_z[2] | in1_z[3]); | 
| 470 |  |     if (P256_LIMBS == 8) | 
| 471 |  |         in1infty |= (in1_z[4] | in1_z[5] | in1_z[6] | in1_z[7]); | 
| 472 |  |  | 
| 473 |  |     /* | 
| 474 |  |      * In affine representation we encode infinity as (0,0), which is | 
| 475 |  |      * not on the curve, so it is OK | 
| 476 |  |      */ | 
| 477 |  |     in2infty = (in2_x[0] | in2_x[1] | in2_x[2] | in2_x[3] | | 
| 478 |  |                 in2_y[0] | in2_y[1] | in2_y[2] | in2_y[3]); | 
| 479 |  |     if (P256_LIMBS == 8) | 
| 480 |  |         in2infty |= (in2_x[4] | in2_x[5] | in2_x[6] | in2_x[7] | | 
| 481 |  |                      in2_y[4] | in2_y[5] | in2_y[6] | in2_y[7]); | 
| 482 |  |  | 
| 483 |  |     in1infty = is_zero(in1infty); | 
| 484 |  |     in2infty = is_zero(in2infty); | 
| 485 |  |  | 
| 486 |  |     ecp_nistz256_sqr_mont(Z1sqr, in1_z);        /* Z1^2 */ | 
| 487 |  |  | 
| 488 |  |     ecp_nistz256_mul_mont(U2, in2_x, Z1sqr);    /* U2 = X2*Z1^2 */ | 
| 489 |  |     ecp_nistz256_sub(H, U2, in1_x);             /* H = U2 - U1 */ | 
| 490 |  |  | 
| 491 |  |     ecp_nistz256_mul_mont(S2, Z1sqr, in1_z);    /* S2 = Z1^3 */ | 
| 492 |  |  | 
| 493 |  |     ecp_nistz256_mul_mont(res_z, H, in1_z);     /* Z3 = H*Z1*Z2 */ | 
| 494 |  |  | 
| 495 |  |     ecp_nistz256_mul_mont(S2, S2, in2_y);       /* S2 = Y2*Z1^3 */ | 
| 496 |  |     ecp_nistz256_sub(R, S2, in1_y);             /* R = S2 - S1 */ | 
| 497 |  |  | 
| 498 |  |     ecp_nistz256_sqr_mont(Hsqr, H);             /* H^2 */ | 
| 499 |  |     ecp_nistz256_sqr_mont(Rsqr, R);             /* R^2 */ | 
| 500 |  |     ecp_nistz256_mul_mont(Hcub, Hsqr, H);       /* H^3 */ | 
| 501 |  |  | 
| 502 |  |     ecp_nistz256_mul_mont(U2, in1_x, Hsqr);     /* U1*H^2 */ | 
| 503 |  |     ecp_nistz256_mul_by_2(Hsqr, U2);            /* 2*U1*H^2 */ | 
| 504 |  |  | 
| 505 |  |     ecp_nistz256_sub(res_x, Rsqr, Hsqr); | 
| 506 |  |     ecp_nistz256_sub(res_x, res_x, Hcub); | 
| 507 |  |     ecp_nistz256_sub(H, U2, res_x); | 
| 508 |  |  | 
| 509 |  |     ecp_nistz256_mul_mont(S2, in1_y, Hcub); | 
| 510 |  |     ecp_nistz256_mul_mont(H, H, R); | 
| 511 |  |     ecp_nistz256_sub(res_y, H, S2); | 
| 512 |  |  | 
| 513 |  |     copy_conditional(res_x, in2_x, in1infty); | 
| 514 |  |     copy_conditional(res_x, in1_x, in2infty); | 
| 515 |  |  | 
| 516 |  |     copy_conditional(res_y, in2_y, in1infty); | 
| 517 |  |     copy_conditional(res_y, in1_y, in2infty); | 
| 518 |  |  | 
| 519 |  |     copy_conditional(res_z, ONE, in1infty); | 
| 520 |  |     copy_conditional(res_z, in1_z, in2infty); | 
| 521 |  |  | 
| 522 |  |     memcpy(r->X, res_x, sizeof(res_x)); | 
| 523 |  |     memcpy(r->Y, res_y, sizeof(res_y)); | 
| 524 |  |     memcpy(r->Z, res_z, sizeof(res_z)); | 
| 525 |  | } | 
| 526 |  | #endif | 
| 527 |  |  | 
| 528 |  | /* r = in^-1 mod p */ | 
| 529 |  | static void ecp_nistz256_mod_inverse(BN_ULONG r[P256_LIMBS], | 
| 530 |  |                                      const BN_ULONG in[P256_LIMBS]) | 
| 531 | 25.1k | { | 
| 532 |  |     /* | 
| 533 |  |      * The poly is ffffffff 00000001 00000000 00000000 00000000 ffffffff | 
| 534 |  |      * ffffffff ffffffff We use FLT and used poly-2 as exponent | 
| 535 |  |      */ | 
| 536 | 25.1k |     BN_ULONG p2[P256_LIMBS]; | 
| 537 | 25.1k |     BN_ULONG p4[P256_LIMBS]; | 
| 538 | 25.1k |     BN_ULONG p8[P256_LIMBS]; | 
| 539 | 25.1k |     BN_ULONG p16[P256_LIMBS]; | 
| 540 | 25.1k |     BN_ULONG p32[P256_LIMBS]; | 
| 541 | 25.1k |     BN_ULONG res[P256_LIMBS]; | 
| 542 | 25.1k |     int i; | 
| 543 |  |  | 
| 544 | 25.1k |     ecp_nistz256_sqr_mont(res, in); | 
| 545 | 25.1k |     ecp_nistz256_mul_mont(p2, res, in);         /* 3*p */ | 
| 546 |  |  | 
| 547 | 25.1k |     ecp_nistz256_sqr_mont(res, p2); | 
| 548 | 25.1k |     ecp_nistz256_sqr_mont(res, res); | 
| 549 | 25.1k |     ecp_nistz256_mul_mont(p4, res, p2);         /* f*p */ | 
| 550 |  |  | 
| 551 | 25.1k |     ecp_nistz256_sqr_mont(res, p4); | 
| 552 | 25.1k |     ecp_nistz256_sqr_mont(res, res); | 
| 553 | 25.1k |     ecp_nistz256_sqr_mont(res, res); | 
| 554 | 25.1k |     ecp_nistz256_sqr_mont(res, res); | 
| 555 | 25.1k |     ecp_nistz256_mul_mont(p8, res, p4);         /* ff*p */ | 
| 556 |  |  | 
| 557 | 25.1k |     ecp_nistz256_sqr_mont(res, p8); | 
| 558 | 201k |     for (i = 0; i < 7; i++) | 
| 559 | 175k |         ecp_nistz256_sqr_mont(res, res); | 
| 560 | 25.1k |     ecp_nistz256_mul_mont(p16, res, p8);        /* ffff*p */ | 
| 561 |  |  | 
| 562 | 25.1k |     ecp_nistz256_sqr_mont(res, p16); | 
| 563 | 402k |     for (i = 0; i < 15; i++) | 
| 564 | 377k |         ecp_nistz256_sqr_mont(res, res); | 
| 565 | 25.1k |     ecp_nistz256_mul_mont(p32, res, p16);       /* ffffffff*p */ | 
| 566 |  |  | 
| 567 | 25.1k |     ecp_nistz256_sqr_mont(res, p32); | 
| 568 | 804k |     for (i = 0; i < 31; i++) | 
| 569 | 779k |         ecp_nistz256_sqr_mont(res, res); | 
| 570 | 25.1k |     ecp_nistz256_mul_mont(res, res, in); | 
| 571 |  |  | 
| 572 | 3.24M |     for (i = 0; i < 32 * 4; i++) | 
| 573 | 3.21M |         ecp_nistz256_sqr_mont(res, res); | 
| 574 | 25.1k |     ecp_nistz256_mul_mont(res, res, p32); | 
| 575 |  |  | 
| 576 | 829k |     for (i = 0; i < 32; i++) | 
| 577 | 804k |         ecp_nistz256_sqr_mont(res, res); | 
| 578 | 25.1k |     ecp_nistz256_mul_mont(res, res, p32); | 
| 579 |  |  | 
| 580 | 427k |     for (i = 0; i < 16; i++) | 
| 581 | 402k |         ecp_nistz256_sqr_mont(res, res); | 
| 582 | 25.1k |     ecp_nistz256_mul_mont(res, res, p16); | 
| 583 |  |  | 
| 584 | 226k |     for (i = 0; i < 8; i++) | 
| 585 | 201k |         ecp_nistz256_sqr_mont(res, res); | 
| 586 | 25.1k |     ecp_nistz256_mul_mont(res, res, p8); | 
| 587 |  |  | 
| 588 | 25.1k |     ecp_nistz256_sqr_mont(res, res); | 
| 589 | 25.1k |     ecp_nistz256_sqr_mont(res, res); | 
| 590 | 25.1k |     ecp_nistz256_sqr_mont(res, res); | 
| 591 | 25.1k |     ecp_nistz256_sqr_mont(res, res); | 
| 592 | 25.1k |     ecp_nistz256_mul_mont(res, res, p4); | 
| 593 |  |  | 
| 594 | 25.1k |     ecp_nistz256_sqr_mont(res, res); | 
| 595 | 25.1k |     ecp_nistz256_sqr_mont(res, res); | 
| 596 | 25.1k |     ecp_nistz256_mul_mont(res, res, p2); | 
| 597 |  |  | 
| 598 | 25.1k |     ecp_nistz256_sqr_mont(res, res); | 
| 599 | 25.1k |     ecp_nistz256_sqr_mont(res, res); | 
| 600 | 25.1k |     ecp_nistz256_mul_mont(res, res, in); | 
| 601 |  |  | 
| 602 | 25.1k |     memcpy(r, res, sizeof(res)); | 
| 603 | 25.1k | } | 
| 604 |  |  | 
| 605 |  | /* | 
| 606 |  |  * ecp_nistz256_bignum_to_field_elem copies the contents of |in| to |out| and | 
| 607 |  |  * returns one if it fits. Otherwise it returns zero. | 
| 608 |  |  */ | 
| 609 |  | __owur static int ecp_nistz256_bignum_to_field_elem(BN_ULONG out[P256_LIMBS], | 
| 610 |  |                                                     const BIGNUM *in) | 
| 611 | 81.1k | { | 
| 612 | 81.1k |     return bn_copy_words(out, in, P256_LIMBS); | 
| 613 | 81.1k | } | 
| 614 |  |  | 
| 615 |  | /* r = sum(scalar[i]*point[i]) */ | 
| 616 |  | __owur static int ecp_nistz256_windowed_mul(const EC_GROUP *group, | 
| 617 |  |                                             P256_POINT *r, | 
| 618 |  |                                             const BIGNUM **scalar, | 
| 619 |  |                                             const EC_POINT **point, | 
| 620 |  |                                             size_t num, BN_CTX *ctx) | 
| 621 | 1.18k | { | 
| 622 | 1.18k |     size_t i; | 
| 623 | 1.18k |     int j, ret = 0; | 
| 624 | 1.18k |     unsigned int idx; | 
| 625 | 1.18k |     unsigned char (*p_str)[33] = NULL; | 
| 626 | 1.18k |     const unsigned int window_size = 5; | 
| 627 | 1.18k |     const unsigned int mask = (1 << (window_size + 1)) - 1; | 
| 628 | 1.18k |     unsigned int wvalue; | 
| 629 | 1.18k |     P256_POINT *temp;           /* place for 5 temporary points */ | 
| 630 | 1.18k |     const BIGNUM **scalars = NULL; | 
| 631 | 1.18k |     P256_POINT (*table)[16] = NULL; | 
| 632 | 1.18k |     void *table_storage = NULL; | 
| 633 |  |  | 
| 634 | 1.18k |     if ((num * 16 + 6) > OPENSSL_MALLOC_MAX_NELEMS(P256_POINT) | 
| 635 | 1.18k |         || (table_storage = | 
| 636 | 1.18k |             OPENSSL_malloc((num * 16 + 5) * sizeof(P256_POINT) + 64)) == NULL | 
| 637 | 1.18k |         || (p_str = | 
| 638 | 1.18k |             OPENSSL_malloc(num * 33 * sizeof(unsigned char))) == NULL | 
| 639 | 1.18k |         || (scalars = OPENSSL_malloc(num * sizeof(BIGNUM *))) == NULL) { | 
| 640 | 0 |         ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE); | 
| 641 | 0 |         goto err; | 
| 642 | 0 |     } | 
| 643 |  |  | 
| 644 | 1.18k |     table = (void *)ALIGNPTR(table_storage, 64); | 
| 645 | 1.18k |     temp = (P256_POINT *)(table + num); | 
| 646 |  |  | 
| 647 | 2.36k |     for (i = 0; i < num; i++) { | 
| 648 | 1.18k |         P256_POINT *row = table[i]; | 
| 649 |  |  | 
| 650 |  |         /* This is an unusual input, we don't guarantee constant-timeness. */ | 
| 651 | 1.18k |         if ((BN_num_bits(scalar[i]) > 256) || BN_is_negative(scalar[i])) { | 
| 652 | 0 |             BIGNUM *mod; | 
| 653 |  | 
 | 
| 654 | 0 |             if ((mod = BN_CTX_get(ctx)) == NULL) | 
| 655 | 0 |                 goto err; | 
| 656 | 0 |             if (!BN_nnmod(mod, scalar[i], group->order, ctx)) { | 
| 657 | 0 |                 ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB); | 
| 658 | 0 |                 goto err; | 
| 659 | 0 |             } | 
| 660 | 0 |             scalars[i] = mod; | 
| 661 | 0 |         } else | 
| 662 | 1.18k |             scalars[i] = scalar[i]; | 
| 663 |  |  | 
| 664 | 5.87k |         for (j = 0; j < bn_get_top(scalars[i]) * BN_BYTES; j += BN_BYTES) { | 
| 665 | 4.69k |             BN_ULONG d = bn_get_words(scalars[i])[j / BN_BYTES]; | 
| 666 |  |  | 
| 667 | 4.69k |             p_str[i][j + 0] = (unsigned char)d; | 
| 668 | 4.69k |             p_str[i][j + 1] = (unsigned char)(d >> 8); | 
| 669 | 4.69k |             p_str[i][j + 2] = (unsigned char)(d >> 16); | 
| 670 | 4.69k |             p_str[i][j + 3] = (unsigned char)(d >>= 24); | 
| 671 | 4.69k |             if (BN_BYTES == 8) { | 
| 672 | 4.69k |                 d >>= 8; | 
| 673 | 4.69k |                 p_str[i][j + 4] = (unsigned char)d; | 
| 674 | 4.69k |                 p_str[i][j + 5] = (unsigned char)(d >> 8); | 
| 675 | 4.69k |                 p_str[i][j + 6] = (unsigned char)(d >> 16); | 
| 676 | 4.69k |                 p_str[i][j + 7] = (unsigned char)(d >> 24); | 
| 677 | 4.69k |             } | 
| 678 | 4.69k |         } | 
| 679 | 2.52k |         for (; j < 33; j++) | 
| 680 | 1.34k |             p_str[i][j] = 0; | 
| 681 |  |  | 
| 682 | 1.18k |         if (!ecp_nistz256_bignum_to_field_elem(temp[0].X, point[i]->X) | 
| 683 | 1.18k |             || !ecp_nistz256_bignum_to_field_elem(temp[0].Y, point[i]->Y) | 
| 684 | 1.18k |             || !ecp_nistz256_bignum_to_field_elem(temp[0].Z, point[i]->Z)) { | 
| 685 | 0 |             ERR_raise(ERR_LIB_EC, EC_R_COORDINATES_OUT_OF_RANGE); | 
| 686 | 0 |             goto err; | 
| 687 | 0 |         } | 
| 688 |  |  | 
| 689 |  |         /* | 
| 690 |  |          * row[0] is implicitly (0,0,0) (the point at infinity), therefore it | 
| 691 |  |          * is not stored. All other values are actually stored with an offset | 
| 692 |  |          * of -1 in table. | 
| 693 |  |          */ | 
| 694 |  |  | 
| 695 | 1.18k |         ecp_nistz256_scatter_w5  (row, &temp[0], 1); | 
| 696 | 1.18k |         ecp_nistz256_point_double(&temp[1], &temp[0]);              /*1+1=2  */ | 
| 697 | 1.18k |         ecp_nistz256_scatter_w5  (row, &temp[1], 2); | 
| 698 | 1.18k |         ecp_nistz256_point_add   (&temp[2], &temp[1], &temp[0]);    /*2+1=3  */ | 
| 699 | 1.18k |         ecp_nistz256_scatter_w5  (row, &temp[2], 3); | 
| 700 | 1.18k |         ecp_nistz256_point_double(&temp[1], &temp[1]);              /*2*2=4  */ | 
| 701 | 1.18k |         ecp_nistz256_scatter_w5  (row, &temp[1], 4); | 
| 702 | 1.18k |         ecp_nistz256_point_double(&temp[2], &temp[2]);              /*2*3=6  */ | 
| 703 | 1.18k |         ecp_nistz256_scatter_w5  (row, &temp[2], 6); | 
| 704 | 1.18k |         ecp_nistz256_point_add   (&temp[3], &temp[1], &temp[0]);    /*4+1=5  */ | 
| 705 | 1.18k |         ecp_nistz256_scatter_w5  (row, &temp[3], 5); | 
| 706 | 1.18k |         ecp_nistz256_point_add   (&temp[4], &temp[2], &temp[0]);    /*6+1=7  */ | 
| 707 | 1.18k |         ecp_nistz256_scatter_w5  (row, &temp[4], 7); | 
| 708 | 1.18k |         ecp_nistz256_point_double(&temp[1], &temp[1]);              /*2*4=8  */ | 
| 709 | 1.18k |         ecp_nistz256_scatter_w5  (row, &temp[1], 8); | 
| 710 | 1.18k |         ecp_nistz256_point_double(&temp[2], &temp[2]);              /*2*6=12 */ | 
| 711 | 1.18k |         ecp_nistz256_scatter_w5  (row, &temp[2], 12); | 
| 712 | 1.18k |         ecp_nistz256_point_double(&temp[3], &temp[3]);              /*2*5=10 */ | 
| 713 | 1.18k |         ecp_nistz256_scatter_w5  (row, &temp[3], 10); | 
| 714 | 1.18k |         ecp_nistz256_point_double(&temp[4], &temp[4]);              /*2*7=14 */ | 
| 715 | 1.18k |         ecp_nistz256_scatter_w5  (row, &temp[4], 14); | 
| 716 | 1.18k |         ecp_nistz256_point_add   (&temp[2], &temp[2], &temp[0]);    /*12+1=13*/ | 
| 717 | 1.18k |         ecp_nistz256_scatter_w5  (row, &temp[2], 13); | 
| 718 | 1.18k |         ecp_nistz256_point_add   (&temp[3], &temp[3], &temp[0]);    /*10+1=11*/ | 
| 719 | 1.18k |         ecp_nistz256_scatter_w5  (row, &temp[3], 11); | 
| 720 | 1.18k |         ecp_nistz256_point_add   (&temp[4], &temp[4], &temp[0]);    /*14+1=15*/ | 
| 721 | 1.18k |         ecp_nistz256_scatter_w5  (row, &temp[4], 15); | 
| 722 | 1.18k |         ecp_nistz256_point_add   (&temp[2], &temp[1], &temp[0]);    /*8+1=9  */ | 
| 723 | 1.18k |         ecp_nistz256_scatter_w5  (row, &temp[2], 9); | 
| 724 | 1.18k |         ecp_nistz256_point_double(&temp[1], &temp[1]);              /*2*8=16 */ | 
| 725 | 1.18k |         ecp_nistz256_scatter_w5  (row, &temp[1], 16); | 
| 726 | 1.18k |     } | 
| 727 |  |  | 
| 728 | 1.18k |     idx = 255; | 
| 729 |  |  | 
| 730 | 1.18k |     wvalue = p_str[0][(idx - 1) / 8]; | 
| 731 | 1.18k |     wvalue = (wvalue >> ((idx - 1) % 8)) & mask; | 
| 732 |  |  | 
| 733 |  |     /* | 
| 734 |  |      * We gather to temp[0], because we know it's position relative | 
| 735 |  |      * to table | 
| 736 |  |      */ | 
| 737 | 1.18k |     ecp_nistz256_gather_w5(&temp[0], table[0], _booth_recode_w5(wvalue) >> 1); | 
| 738 | 1.18k |     memcpy(r, &temp[0], sizeof(temp[0])); | 
| 739 |  |  | 
| 740 | 61.3k |     while (idx >= 5) { | 
| 741 | 119k |         for (i = (idx == 255 ? 1 : 0); i < num; i++) { | 
| 742 | 59.0k |             unsigned int off = (idx - 1) / 8; | 
| 743 |  |  | 
| 744 | 59.0k |             wvalue = p_str[i][off] | p_str[i][off + 1] << 8; | 
| 745 | 59.0k |             wvalue = (wvalue >> ((idx - 1) % 8)) & mask; | 
| 746 |  |  | 
| 747 | 59.0k |             wvalue = _booth_recode_w5(wvalue); | 
| 748 |  |  | 
| 749 | 59.0k |             ecp_nistz256_gather_w5(&temp[0], table[i], wvalue >> 1); | 
| 750 |  |  | 
| 751 | 59.0k |             ecp_nistz256_neg(temp[1].Y, temp[0].Y); | 
| 752 | 59.0k |             copy_conditional(temp[0].Y, temp[1].Y, (wvalue & 1)); | 
| 753 |  |  | 
| 754 | 59.0k |             ecp_nistz256_point_add(r, r, &temp[0]); | 
| 755 | 59.0k |         } | 
| 756 |  |  | 
| 757 | 60.1k |         idx -= window_size; | 
| 758 |  |  | 
| 759 | 60.1k |         ecp_nistz256_point_double(r, r); | 
| 760 | 60.1k |         ecp_nistz256_point_double(r, r); | 
| 761 | 60.1k |         ecp_nistz256_point_double(r, r); | 
| 762 | 60.1k |         ecp_nistz256_point_double(r, r); | 
| 763 | 60.1k |         ecp_nistz256_point_double(r, r); | 
| 764 | 60.1k |     } | 
| 765 |  |  | 
| 766 |  |     /* Final window */ | 
| 767 | 2.36k |     for (i = 0; i < num; i++) { | 
| 768 | 1.18k |         wvalue = p_str[i][0]; | 
| 769 | 1.18k |         wvalue = (wvalue << 1) & mask; | 
| 770 |  |  | 
| 771 | 1.18k |         wvalue = _booth_recode_w5(wvalue); | 
| 772 |  |  | 
| 773 | 1.18k |         ecp_nistz256_gather_w5(&temp[0], table[i], wvalue >> 1); | 
| 774 |  |  | 
| 775 | 1.18k |         ecp_nistz256_neg(temp[1].Y, temp[0].Y); | 
| 776 | 1.18k |         copy_conditional(temp[0].Y, temp[1].Y, wvalue & 1); | 
| 777 |  |  | 
| 778 | 1.18k |         ecp_nistz256_point_add(r, r, &temp[0]); | 
| 779 | 1.18k |     } | 
| 780 |  |  | 
| 781 | 1.18k |     ret = 1; | 
| 782 | 1.18k |  err: | 
| 783 | 1.18k |     OPENSSL_free(table_storage); | 
| 784 | 1.18k |     OPENSSL_free(p_str); | 
| 785 | 1.18k |     OPENSSL_free(scalars); | 
| 786 | 1.18k |     return ret; | 
| 787 | 1.18k | } | 
| 788 |  |  | 
| 789 |  | /* Coordinates of G, for which we have precomputed tables */ | 
| 790 |  | static const BN_ULONG def_xG[P256_LIMBS] = { | 
| 791 |  |     TOBN(0x79e730d4, 0x18a9143c), TOBN(0x75ba95fc, 0x5fedb601), | 
| 792 |  |     TOBN(0x79fb732b, 0x77622510), TOBN(0x18905f76, 0xa53755c6) | 
| 793 |  | }; | 
| 794 |  |  | 
| 795 |  | static const BN_ULONG def_yG[P256_LIMBS] = { | 
| 796 |  |     TOBN(0xddf25357, 0xce95560a), TOBN(0x8b4ab8e4, 0xba19e45c), | 
| 797 |  |     TOBN(0xd2e88688, 0xdd21f325), TOBN(0x8571ff18, 0x25885d85) | 
| 798 |  | }; | 
| 799 |  |  | 
| 800 |  | /* | 
| 801 |  |  * ecp_nistz256_is_affine_G returns one if |generator| is the standard, P-256 | 
| 802 |  |  * generator. | 
| 803 |  |  */ | 
| 804 |  | static int ecp_nistz256_is_affine_G(const EC_POINT *generator) | 
| 805 | 3.66k | { | 
| 806 | 3.66k |     return (bn_get_top(generator->X) == P256_LIMBS) && | 
| 807 | 3.66k |         (bn_get_top(generator->Y) == P256_LIMBS) && | 
| 808 | 3.66k |         is_equal(bn_get_words(generator->X), def_xG) && | 
| 809 | 3.66k |         is_equal(bn_get_words(generator->Y), def_yG) && | 
| 810 | 3.66k |         is_one(generator->Z); | 
| 811 | 3.66k | } | 
| 812 |  |  | 
| 813 |  | __owur static int ecp_nistz256_mult_precompute(EC_GROUP *group, BN_CTX *ctx) | 
| 814 | 0 | { | 
| 815 |  |     /* | 
| 816 |  |      * We precompute a table for a Booth encoded exponent (wNAF) based | 
| 817 |  |      * computation. Each table holds 64 values for safe access, with an | 
| 818 |  |      * implicit value of infinity at index zero. We use window of size 7, and | 
| 819 |  |      * therefore require ceil(256/7) = 37 tables. | 
| 820 |  |      */ | 
| 821 | 0 |     const BIGNUM *order; | 
| 822 | 0 |     EC_POINT *P = NULL, *T = NULL; | 
| 823 | 0 |     const EC_POINT *generator; | 
| 824 | 0 |     NISTZ256_PRE_COMP *pre_comp; | 
| 825 | 0 |     BN_CTX *new_ctx = NULL; | 
| 826 | 0 |     int i, j, k, ret = 0; | 
| 827 | 0 |     size_t w; | 
| 828 |  | 
 | 
| 829 | 0 |     PRECOMP256_ROW *preComputedTable = NULL; | 
| 830 | 0 |     unsigned char *precomp_storage = NULL; | 
| 831 |  |  | 
| 832 |  |     /* if there is an old NISTZ256_PRE_COMP object, throw it away */ | 
| 833 | 0 |     EC_pre_comp_free(group); | 
| 834 | 0 |     generator = EC_GROUP_get0_generator(group); | 
| 835 | 0 |     if (generator == NULL) { | 
| 836 | 0 |         ERR_raise(ERR_LIB_EC, EC_R_UNDEFINED_GENERATOR); | 
| 837 | 0 |         return 0; | 
| 838 | 0 |     } | 
| 839 |  |  | 
| 840 | 0 |     if (ecp_nistz256_is_affine_G(generator)) { | 
| 841 |  |         /* | 
| 842 |  |          * No need to calculate tables for the standard generator because we | 
| 843 |  |          * have them statically. | 
| 844 |  |          */ | 
| 845 | 0 |         return 1; | 
| 846 | 0 |     } | 
| 847 |  |  | 
| 848 | 0 |     if ((pre_comp = ecp_nistz256_pre_comp_new(group)) == NULL) | 
| 849 | 0 |         return 0; | 
| 850 |  |  | 
| 851 | 0 |     if (ctx == NULL) { | 
| 852 | 0 |         ctx = new_ctx = BN_CTX_new_ex(group->libctx); | 
| 853 | 0 |         if (ctx == NULL) | 
| 854 | 0 |             goto err; | 
| 855 | 0 |     } | 
| 856 |  |  | 
| 857 | 0 |     BN_CTX_start(ctx); | 
| 858 |  | 
 | 
| 859 | 0 |     order = EC_GROUP_get0_order(group); | 
| 860 | 0 |     if (order == NULL) | 
| 861 | 0 |         goto err; | 
| 862 |  |  | 
| 863 | 0 |     if (BN_is_zero(order)) { | 
| 864 | 0 |         ERR_raise(ERR_LIB_EC, EC_R_UNKNOWN_ORDER); | 
| 865 | 0 |         goto err; | 
| 866 | 0 |     } | 
| 867 |  |  | 
| 868 | 0 |     w = 7; | 
| 869 |  | 
 | 
| 870 | 0 |     if ((precomp_storage = | 
| 871 | 0 |          OPENSSL_malloc(37 * 64 * sizeof(P256_POINT_AFFINE) + 64)) == NULL) { | 
| 872 | 0 |         ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE); | 
| 873 | 0 |         goto err; | 
| 874 | 0 |     } | 
| 875 |  |  | 
| 876 | 0 |     preComputedTable = (void *)ALIGNPTR(precomp_storage, 64); | 
| 877 |  | 
 | 
| 878 | 0 |     P = EC_POINT_new(group); | 
| 879 | 0 |     T = EC_POINT_new(group); | 
| 880 | 0 |     if (P == NULL || T == NULL) | 
| 881 | 0 |         goto err; | 
| 882 |  |  | 
| 883 |  |     /* | 
| 884 |  |      * The zero entry is implicitly infinity, and we skip it, storing other | 
| 885 |  |      * values with -1 offset. | 
| 886 |  |      */ | 
| 887 | 0 |     if (!EC_POINT_copy(T, generator)) | 
| 888 | 0 |         goto err; | 
| 889 |  |  | 
| 890 | 0 |     for (k = 0; k < 64; k++) { | 
| 891 | 0 |         if (!EC_POINT_copy(P, T)) | 
| 892 | 0 |             goto err; | 
| 893 | 0 |         for (j = 0; j < 37; j++) { | 
| 894 | 0 |             P256_POINT_AFFINE temp; | 
| 895 |  |             /* | 
| 896 |  |              * It would be faster to use EC_POINTs_make_affine and | 
| 897 |  |              * make multiple points affine at the same time. | 
| 898 |  |              */ | 
| 899 | 0 |             if (group->meth->make_affine == NULL | 
| 900 | 0 |                 || !group->meth->make_affine(group, P, ctx)) | 
| 901 | 0 |                 goto err; | 
| 902 | 0 |             if (!ecp_nistz256_bignum_to_field_elem(temp.X, P->X) || | 
| 903 | 0 |                 !ecp_nistz256_bignum_to_field_elem(temp.Y, P->Y)) { | 
| 904 | 0 |                 ERR_raise(ERR_LIB_EC, EC_R_COORDINATES_OUT_OF_RANGE); | 
| 905 | 0 |                 goto err; | 
| 906 | 0 |             } | 
| 907 | 0 |             ecp_nistz256_scatter_w7(preComputedTable[j], &temp, k); | 
| 908 | 0 |             for (i = 0; i < 7; i++) { | 
| 909 | 0 |                 if (!EC_POINT_dbl(group, P, P, ctx)) | 
| 910 | 0 |                     goto err; | 
| 911 | 0 |             } | 
| 912 | 0 |         } | 
| 913 | 0 |         if (!EC_POINT_add(group, T, T, generator, ctx)) | 
| 914 | 0 |             goto err; | 
| 915 | 0 |     } | 
| 916 |  |  | 
| 917 | 0 |     pre_comp->group = group; | 
| 918 | 0 |     pre_comp->w = w; | 
| 919 | 0 |     pre_comp->precomp = preComputedTable; | 
| 920 | 0 |     pre_comp->precomp_storage = precomp_storage; | 
| 921 | 0 |     precomp_storage = NULL; | 
| 922 | 0 |     SETPRECOMP(group, nistz256, pre_comp); | 
| 923 | 0 |     pre_comp = NULL; | 
| 924 | 0 |     ret = 1; | 
| 925 |  | 
 | 
| 926 | 0 |  err: | 
| 927 | 0 |     BN_CTX_end(ctx); | 
| 928 | 0 |     BN_CTX_free(new_ctx); | 
| 929 |  | 
 | 
| 930 | 0 |     EC_nistz256_pre_comp_free(pre_comp); | 
| 931 | 0 |     OPENSSL_free(precomp_storage); | 
| 932 | 0 |     EC_POINT_free(P); | 
| 933 | 0 |     EC_POINT_free(T); | 
| 934 | 0 |     return ret; | 
| 935 | 0 | } | 
| 936 |  |  | 
| 937 |  | __owur static int ecp_nistz256_set_from_affine(EC_POINT *out, const EC_GROUP *group, | 
| 938 |  |                                                const P256_POINT_AFFINE *in, | 
| 939 |  |                                                BN_CTX *ctx) | 
| 940 | 0 | { | 
| 941 | 0 |     int ret = 0; | 
| 942 |  | 
 | 
| 943 | 0 |     if ((ret = bn_set_words(out->X, in->X, P256_LIMBS)) | 
| 944 | 0 |         && (ret = bn_set_words(out->Y, in->Y, P256_LIMBS)) | 
| 945 | 0 |         && (ret = bn_set_words(out->Z, ONE, P256_LIMBS))) | 
| 946 | 0 |         out->Z_is_one = 1; | 
| 947 |  | 
 | 
| 948 | 0 |     return ret; | 
| 949 | 0 | } | 
| 950 |  |  | 
| 951 |  | /* r = scalar*G + sum(scalars[i]*points[i]) */ | 
| 952 |  | __owur static int ecp_nistz256_points_mul(const EC_GROUP *group, | 
| 953 |  |                                           EC_POINT *r, | 
| 954 |  |                                           const BIGNUM *scalar, | 
| 955 |  |                                           size_t num, | 
| 956 |  |                                           const EC_POINT *points[], | 
| 957 |  |                                           const BIGNUM *scalars[], BN_CTX *ctx) | 
| 958 | 4.76k | { | 
| 959 | 4.76k |     int i = 0, ret = 0, no_precomp_for_generator = 0, p_is_infinity = 0; | 
| 960 | 4.76k |     unsigned char p_str[33] = { 0 }; | 
| 961 | 4.76k |     const PRECOMP256_ROW *preComputedTable = NULL; | 
| 962 | 4.76k |     const NISTZ256_PRE_COMP *pre_comp = NULL; | 
| 963 | 4.76k |     const EC_POINT *generator = NULL; | 
| 964 | 4.76k |     const BIGNUM **new_scalars = NULL; | 
| 965 | 4.76k |     const EC_POINT **new_points = NULL; | 
| 966 | 4.76k |     unsigned int idx = 0; | 
| 967 | 4.76k |     const unsigned int window_size = 7; | 
| 968 | 4.76k |     const unsigned int mask = (1 << (window_size + 1)) - 1; | 
| 969 | 4.76k |     unsigned int wvalue; | 
| 970 | 4.76k |     ALIGN32 union { | 
| 971 | 4.76k |         P256_POINT p; | 
| 972 | 4.76k |         P256_POINT_AFFINE a; | 
| 973 | 4.76k |     } t, p; | 
| 974 | 4.76k |     BIGNUM *tmp_scalar; | 
| 975 |  |  | 
| 976 | 4.76k |     if ((num + 1) == 0 || (num + 1) > OPENSSL_MALLOC_MAX_NELEMS(void *)) { | 
| 977 | 0 |         ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE); | 
| 978 | 0 |         return 0; | 
| 979 | 0 |     } | 
| 980 |  |  | 
| 981 | 4.76k |     memset(&p, 0, sizeof(p)); | 
| 982 | 4.76k |     BN_CTX_start(ctx); | 
| 983 |  |  | 
| 984 | 4.76k |     if (scalar) { | 
| 985 | 3.66k |         generator = EC_GROUP_get0_generator(group); | 
| 986 | 3.66k |         if (generator == NULL) { | 
| 987 | 0 |             ERR_raise(ERR_LIB_EC, EC_R_UNDEFINED_GENERATOR); | 
| 988 | 0 |             goto err; | 
| 989 | 0 |         } | 
| 990 |  |  | 
| 991 |  |         /* look if we can use precomputed multiples of generator */ | 
| 992 | 3.66k |         pre_comp = group->pre_comp.nistz256; | 
| 993 |  |  | 
| 994 | 3.66k |         if (pre_comp) { | 
| 995 |  |             /* | 
| 996 |  |              * If there is a precomputed table for the generator, check that | 
| 997 |  |              * it was generated with the same generator. | 
| 998 |  |              */ | 
| 999 | 0 |             EC_POINT *pre_comp_generator = EC_POINT_new(group); | 
| 1000 | 0 |             if (pre_comp_generator == NULL) | 
| 1001 | 0 |                 goto err; | 
| 1002 |  |  | 
| 1003 | 0 |             ecp_nistz256_gather_w7(&p.a, pre_comp->precomp[0], 1); | 
| 1004 | 0 |             if (!ecp_nistz256_set_from_affine(pre_comp_generator, | 
| 1005 | 0 |                                               group, &p.a, ctx)) { | 
| 1006 | 0 |                 EC_POINT_free(pre_comp_generator); | 
| 1007 | 0 |                 goto err; | 
| 1008 | 0 |             } | 
| 1009 |  |  | 
| 1010 | 0 |             if (0 == EC_POINT_cmp(group, generator, pre_comp_generator, ctx)) | 
| 1011 | 0 |                 preComputedTable = (const PRECOMP256_ROW *)pre_comp->precomp; | 
| 1012 |  | 
 | 
| 1013 | 0 |             EC_POINT_free(pre_comp_generator); | 
| 1014 | 0 |         } | 
| 1015 |  |  | 
| 1016 | 3.66k |         if (preComputedTable == NULL && ecp_nistz256_is_affine_G(generator)) { | 
| 1017 |  |             /* | 
| 1018 |  |              * If there is no precomputed data, but the generator is the | 
| 1019 |  |              * default, a hardcoded table of precomputed data is used. This | 
| 1020 |  |              * is because applications, such as Apache, do not use | 
| 1021 |  |              * EC_KEY_precompute_mult. | 
| 1022 |  |              */ | 
| 1023 | 3.66k |             preComputedTable = ecp_nistz256_precomputed; | 
| 1024 | 3.66k |         } | 
| 1025 |  |  | 
| 1026 | 3.66k |         if (preComputedTable) { | 
| 1027 | 3.66k |             BN_ULONG infty; | 
| 1028 |  |  | 
| 1029 | 3.66k |             if ((BN_num_bits(scalar) > 256) | 
| 1030 | 3.66k |                 || BN_is_negative(scalar)) { | 
| 1031 | 9 |                 if ((tmp_scalar = BN_CTX_get(ctx)) == NULL) | 
| 1032 | 0 |                     goto err; | 
| 1033 |  |  | 
| 1034 | 9 |                 if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) { | 
| 1035 | 0 |                     ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB); | 
| 1036 | 0 |                     goto err; | 
| 1037 | 0 |                 } | 
| 1038 | 9 |                 scalar = tmp_scalar; | 
| 1039 | 9 |             } | 
| 1040 |  |  | 
| 1041 | 18.2k |             for (i = 0; i < bn_get_top(scalar) * BN_BYTES; i += BN_BYTES) { | 
| 1042 | 14.5k |                 BN_ULONG d = bn_get_words(scalar)[i / BN_BYTES]; | 
| 1043 |  |  | 
| 1044 | 14.5k |                 p_str[i + 0] = (unsigned char)d; | 
| 1045 | 14.5k |                 p_str[i + 1] = (unsigned char)(d >> 8); | 
| 1046 | 14.5k |                 p_str[i + 2] = (unsigned char)(d >> 16); | 
| 1047 | 14.5k |                 p_str[i + 3] = (unsigned char)(d >>= 24); | 
| 1048 | 14.5k |                 if (BN_BYTES == 8) { | 
| 1049 | 14.5k |                     d >>= 8; | 
| 1050 | 14.5k |                     p_str[i + 4] = (unsigned char)d; | 
| 1051 | 14.5k |                     p_str[i + 5] = (unsigned char)(d >> 8); | 
| 1052 | 14.5k |                     p_str[i + 6] = (unsigned char)(d >> 16); | 
| 1053 | 14.5k |                     p_str[i + 7] = (unsigned char)(d >> 24); | 
| 1054 | 14.5k |                 } | 
| 1055 | 14.5k |             } | 
| 1056 |  |  | 
| 1057 | 8.14k |             for (; i < 33; i++) | 
| 1058 | 4.48k |                 p_str[i] = 0; | 
| 1059 |  |  | 
| 1060 |  |             /* First window */ | 
| 1061 | 3.66k |             wvalue = (p_str[0] << 1) & mask; | 
| 1062 | 3.66k |             idx += window_size; | 
| 1063 |  |  | 
| 1064 | 3.66k |             wvalue = _booth_recode_w7(wvalue); | 
| 1065 |  |  | 
| 1066 | 3.66k |             ecp_nistz256_gather_w7(&p.a, preComputedTable[0], | 
| 1067 | 3.66k |                                    wvalue >> 1); | 
| 1068 |  |  | 
| 1069 | 3.66k |             ecp_nistz256_neg(p.p.Z, p.p.Y); | 
| 1070 | 3.66k |             copy_conditional(p.p.Y, p.p.Z, wvalue & 1); | 
| 1071 |  |  | 
| 1072 |  |             /* | 
| 1073 |  |              * Since affine infinity is encoded as (0,0) and | 
| 1074 |  |              * Jacobian is (,,0), we need to harmonize them | 
| 1075 |  |              * by assigning "one" or zero to Z. | 
| 1076 |  |              */ | 
| 1077 | 3.66k |             infty = (p.p.X[0] | p.p.X[1] | p.p.X[2] | p.p.X[3] | | 
| 1078 | 3.66k |                      p.p.Y[0] | p.p.Y[1] | p.p.Y[2] | p.p.Y[3]); | 
| 1079 | 3.66k |             if (P256_LIMBS == 8) | 
| 1080 | 0 |                 infty |= (p.p.X[4] | p.p.X[5] | p.p.X[6] | p.p.X[7] | | 
| 1081 | 0 |                           p.p.Y[4] | p.p.Y[5] | p.p.Y[6] | p.p.Y[7]); | 
| 1082 |  |  | 
| 1083 | 3.66k |             infty = 0 - is_zero(infty); | 
| 1084 | 3.66k |             infty = ~infty; | 
| 1085 |  |  | 
| 1086 | 3.66k |             p.p.Z[0] = ONE[0] & infty; | 
| 1087 | 3.66k |             p.p.Z[1] = ONE[1] & infty; | 
| 1088 | 3.66k |             p.p.Z[2] = ONE[2] & infty; | 
| 1089 | 3.66k |             p.p.Z[3] = ONE[3] & infty; | 
| 1090 | 3.66k |             if (P256_LIMBS == 8) { | 
| 1091 | 0 |                 p.p.Z[4] = ONE[4] & infty; | 
| 1092 | 0 |                 p.p.Z[5] = ONE[5] & infty; | 
| 1093 | 0 |                 p.p.Z[6] = ONE[6] & infty; | 
| 1094 | 0 |                 p.p.Z[7] = ONE[7] & infty; | 
| 1095 | 0 |             } | 
| 1096 |  |  | 
| 1097 | 135k |             for (i = 1; i < 37; i++) { | 
| 1098 | 131k |                 unsigned int off = (idx - 1) / 8; | 
| 1099 | 131k |                 wvalue = p_str[off] | p_str[off + 1] << 8; | 
| 1100 | 131k |                 wvalue = (wvalue >> ((idx - 1) % 8)) & mask; | 
| 1101 | 131k |                 idx += window_size; | 
| 1102 |  |  | 
| 1103 | 131k |                 wvalue = _booth_recode_w7(wvalue); | 
| 1104 |  |  | 
| 1105 | 131k |                 ecp_nistz256_gather_w7(&t.a, | 
| 1106 | 131k |                                        preComputedTable[i], wvalue >> 1); | 
| 1107 |  |  | 
| 1108 | 131k |                 ecp_nistz256_neg(t.p.Z, t.a.Y); | 
| 1109 | 131k |                 copy_conditional(t.a.Y, t.p.Z, wvalue & 1); | 
| 1110 |  |  | 
| 1111 | 131k |                 ecp_nistz256_point_add_affine(&p.p, &p.p, &t.a); | 
| 1112 | 131k |             } | 
| 1113 | 3.66k |         } else { | 
| 1114 | 0 |             p_is_infinity = 1; | 
| 1115 | 0 |             no_precomp_for_generator = 1; | 
| 1116 | 0 |         } | 
| 1117 | 3.66k |     } else | 
| 1118 | 1.10k |         p_is_infinity = 1; | 
| 1119 |  |  | 
| 1120 | 4.76k |     if (no_precomp_for_generator) { | 
| 1121 |  |         /* | 
| 1122 |  |          * Without a precomputed table for the generator, it has to be | 
| 1123 |  |          * handled like a normal point. | 
| 1124 |  |          */ | 
| 1125 | 0 |         new_scalars = OPENSSL_malloc((num + 1) * sizeof(BIGNUM *)); | 
| 1126 | 0 |         if (new_scalars == NULL) { | 
| 1127 | 0 |             ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE); | 
| 1128 | 0 |             goto err; | 
| 1129 | 0 |         } | 
| 1130 |  |  | 
| 1131 | 0 |         new_points = OPENSSL_malloc((num + 1) * sizeof(EC_POINT *)); | 
| 1132 | 0 |         if (new_points == NULL) { | 
| 1133 | 0 |             ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE); | 
| 1134 | 0 |             goto err; | 
| 1135 | 0 |         } | 
| 1136 |  |  | 
| 1137 | 0 |         memcpy(new_scalars, scalars, num * sizeof(BIGNUM *)); | 
| 1138 | 0 |         new_scalars[num] = scalar; | 
| 1139 | 0 |         memcpy(new_points, points, num * sizeof(EC_POINT *)); | 
| 1140 | 0 |         new_points[num] = generator; | 
| 1141 |  | 
 | 
| 1142 | 0 |         scalars = new_scalars; | 
| 1143 | 0 |         points = new_points; | 
| 1144 | 0 |         num++; | 
| 1145 | 0 |     } | 
| 1146 |  |  | 
| 1147 | 4.76k |     if (num) { | 
| 1148 | 1.18k |         P256_POINT *out = &t.p; | 
| 1149 | 1.18k |         if (p_is_infinity) | 
| 1150 | 1.10k |             out = &p.p; | 
| 1151 |  |  | 
| 1152 | 1.18k |         if (!ecp_nistz256_windowed_mul(group, out, scalars, points, num, ctx)) | 
| 1153 | 0 |             goto err; | 
| 1154 |  |  | 
| 1155 | 1.18k |         if (!p_is_infinity) | 
| 1156 | 78 |             ecp_nistz256_point_add(&p.p, &p.p, out); | 
| 1157 | 1.18k |     } | 
| 1158 |  |  | 
| 1159 |  |     /* Not constant-time, but we're only operating on the public output. */ | 
| 1160 | 4.76k |     if (!bn_set_words(r->X, p.p.X, P256_LIMBS) || | 
| 1161 | 4.76k |         !bn_set_words(r->Y, p.p.Y, P256_LIMBS) || | 
| 1162 | 4.76k |         !bn_set_words(r->Z, p.p.Z, P256_LIMBS)) { | 
| 1163 | 0 |         goto err; | 
| 1164 | 0 |     } | 
| 1165 | 4.76k |     r->Z_is_one = is_one(r->Z) & 1; | 
| 1166 |  |  | 
| 1167 | 4.76k |     ret = 1; | 
| 1168 |  |  | 
| 1169 | 4.76k | err: | 
| 1170 | 4.76k |     BN_CTX_end(ctx); | 
| 1171 | 4.76k |     OPENSSL_free(new_points); | 
| 1172 | 4.76k |     OPENSSL_free(new_scalars); | 
| 1173 | 4.76k |     return ret; | 
| 1174 | 4.76k | } | 
| 1175 |  |  | 
| 1176 |  | __owur static int ecp_nistz256_get_affine(const EC_GROUP *group, | 
| 1177 |  |                                           const EC_POINT *point, | 
| 1178 |  |                                           BIGNUM *x, BIGNUM *y, BN_CTX *ctx) | 
| 1179 | 25.1k | { | 
| 1180 | 25.1k |     BN_ULONG z_inv2[P256_LIMBS]; | 
| 1181 | 25.1k |     BN_ULONG z_inv3[P256_LIMBS]; | 
| 1182 | 25.1k |     BN_ULONG x_aff[P256_LIMBS]; | 
| 1183 | 25.1k |     BN_ULONG y_aff[P256_LIMBS]; | 
| 1184 | 25.1k |     BN_ULONG point_x[P256_LIMBS], point_y[P256_LIMBS], point_z[P256_LIMBS]; | 
| 1185 | 25.1k |     BN_ULONG x_ret[P256_LIMBS], y_ret[P256_LIMBS]; | 
| 1186 |  |  | 
| 1187 | 25.1k |     if (EC_POINT_is_at_infinity(group, point)) { | 
| 1188 | 0 |         ERR_raise(ERR_LIB_EC, EC_R_POINT_AT_INFINITY); | 
| 1189 | 0 |         return 0; | 
| 1190 | 0 |     } | 
| 1191 |  |  | 
| 1192 | 25.1k |     if (!ecp_nistz256_bignum_to_field_elem(point_x, point->X) || | 
| 1193 | 25.1k |         !ecp_nistz256_bignum_to_field_elem(point_y, point->Y) || | 
| 1194 | 25.1k |         !ecp_nistz256_bignum_to_field_elem(point_z, point->Z)) { | 
| 1195 | 0 |         ERR_raise(ERR_LIB_EC, EC_R_COORDINATES_OUT_OF_RANGE); | 
| 1196 | 0 |         return 0; | 
| 1197 | 0 |     } | 
| 1198 |  |  | 
| 1199 | 25.1k |     ecp_nistz256_mod_inverse(z_inv3, point_z); | 
| 1200 | 25.1k |     ecp_nistz256_sqr_mont(z_inv2, z_inv3); | 
| 1201 | 25.1k |     ecp_nistz256_mul_mont(x_aff, z_inv2, point_x); | 
| 1202 |  |  | 
| 1203 | 25.1k |     if (x != NULL) { | 
| 1204 | 25.1k |         ecp_nistz256_from_mont(x_ret, x_aff); | 
| 1205 | 25.1k |         if (!bn_set_words(x, x_ret, P256_LIMBS)) | 
| 1206 | 0 |             return 0; | 
| 1207 | 25.1k |     } | 
| 1208 |  |  | 
| 1209 | 25.1k |     if (y != NULL) { | 
| 1210 | 22.3k |         ecp_nistz256_mul_mont(z_inv3, z_inv3, z_inv2); | 
| 1211 | 22.3k |         ecp_nistz256_mul_mont(y_aff, z_inv3, point_y); | 
| 1212 | 22.3k |         ecp_nistz256_from_mont(y_ret, y_aff); | 
| 1213 | 22.3k |         if (!bn_set_words(y, y_ret, P256_LIMBS)) | 
| 1214 | 0 |             return 0; | 
| 1215 | 22.3k |     } | 
| 1216 |  |  | 
| 1217 | 25.1k |     return 1; | 
| 1218 | 25.1k | } | 
| 1219 |  |  | 
| 1220 |  | static NISTZ256_PRE_COMP *ecp_nistz256_pre_comp_new(const EC_GROUP *group) | 
| 1221 | 0 | { | 
| 1222 | 0 |     NISTZ256_PRE_COMP *ret = NULL; | 
| 1223 |  | 
 | 
| 1224 | 0 |     if (!group) | 
| 1225 | 0 |         return NULL; | 
| 1226 |  |  | 
| 1227 | 0 |     ret = OPENSSL_zalloc(sizeof(*ret)); | 
| 1228 |  | 
 | 
| 1229 | 0 |     if (ret == NULL) { | 
| 1230 | 0 |         ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE); | 
| 1231 | 0 |         return ret; | 
| 1232 | 0 |     } | 
| 1233 |  |  | 
| 1234 | 0 |     ret->group = group; | 
| 1235 | 0 |     ret->w = 6;                 /* default */ | 
| 1236 | 0 |     ret->references = 1; | 
| 1237 |  | 
 | 
| 1238 | 0 |     ret->lock = CRYPTO_THREAD_lock_new(); | 
| 1239 | 0 |     if (ret->lock == NULL) { | 
| 1240 | 0 |         ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE); | 
| 1241 | 0 |         OPENSSL_free(ret); | 
| 1242 | 0 |         return NULL; | 
| 1243 | 0 |     } | 
| 1244 | 0 |     return ret; | 
| 1245 | 0 | } | 
| 1246 |  |  | 
| 1247 |  | NISTZ256_PRE_COMP *EC_nistz256_pre_comp_dup(NISTZ256_PRE_COMP *p) | 
| 1248 | 0 | { | 
| 1249 | 0 |     int i; | 
| 1250 | 0 |     if (p != NULL) | 
| 1251 | 0 |         CRYPTO_UP_REF(&p->references, &i, p->lock); | 
| 1252 | 0 |     return p; | 
| 1253 | 0 | } | 
| 1254 |  |  | 
| 1255 |  | void EC_nistz256_pre_comp_free(NISTZ256_PRE_COMP *pre) | 
| 1256 | 0 | { | 
| 1257 | 0 |     int i; | 
| 1258 |  | 
 | 
| 1259 | 0 |     if (pre == NULL) | 
| 1260 | 0 |         return; | 
| 1261 |  |  | 
| 1262 | 0 |     CRYPTO_DOWN_REF(&pre->references, &i, pre->lock); | 
| 1263 | 0 |     REF_PRINT_COUNT("EC_nistz256", pre); | 
| 1264 | 0 |     if (i > 0) | 
| 1265 | 0 |         return; | 
| 1266 | 0 |     REF_ASSERT_ISNT(i < 0); | 
| 1267 |  | 
 | 
| 1268 | 0 |     OPENSSL_free(pre->precomp_storage); | 
| 1269 | 0 |     CRYPTO_THREAD_lock_free(pre->lock); | 
| 1270 | 0 |     OPENSSL_free(pre); | 
| 1271 | 0 | } | 
| 1272 |  |  | 
| 1273 |  |  | 
| 1274 |  | static int ecp_nistz256_window_have_precompute_mult(const EC_GROUP *group) | 
| 1275 | 0 | { | 
| 1276 |  |     /* There is a hard-coded table for the default generator. */ | 
| 1277 | 0 |     const EC_POINT *generator = EC_GROUP_get0_generator(group); | 
| 1278 |  | 
 | 
| 1279 | 0 |     if (generator != NULL && ecp_nistz256_is_affine_G(generator)) { | 
| 1280 |  |         /* There is a hard-coded table for the default generator. */ | 
| 1281 | 0 |         return 1; | 
| 1282 | 0 |     } | 
| 1283 |  |  | 
| 1284 | 0 |     return HAVEPRECOMP(group, nistz256); | 
| 1285 | 0 | } | 
| 1286 |  |  | 
| 1287 |  | #if defined(__x86_64) || defined(__x86_64__) || \ | 
| 1288 |  |     defined(_M_AMD64) || defined(_M_X64) || \ | 
| 1289 |  |     defined(__powerpc64__) || defined(_ARCH_PP64) || \ | 
| 1290 |  |     defined(__aarch64__) | 
| 1291 |  | /* | 
| 1292 |  |  * Montgomery mul modulo Order(P): res = a*b*2^-256 mod Order(P) | 
| 1293 |  |  */ | 
| 1294 |  | void ecp_nistz256_ord_mul_mont(BN_ULONG res[P256_LIMBS], | 
| 1295 |  |                                const BN_ULONG a[P256_LIMBS], | 
| 1296 |  |                                const BN_ULONG b[P256_LIMBS]); | 
| 1297 |  | void ecp_nistz256_ord_sqr_mont(BN_ULONG res[P256_LIMBS], | 
| 1298 |  |                                const BN_ULONG a[P256_LIMBS], | 
| 1299 |  |                                BN_ULONG rep); | 
| 1300 |  |  | 
| 1301 |  | static int ecp_nistz256_inv_mod_ord(const EC_GROUP *group, BIGNUM *r, | 
| 1302 |  |                                     const BIGNUM *x, BN_CTX *ctx) | 
| 1303 | 2.18k | { | 
| 1304 |  |     /* RR = 2^512 mod ord(p256) */ | 
| 1305 | 2.18k |     static const BN_ULONG RR[P256_LIMBS]  = { | 
| 1306 | 2.18k |         TOBN(0x83244c95,0xbe79eea2), TOBN(0x4699799c,0x49bd6fa6), | 
| 1307 | 2.18k |         TOBN(0x2845b239,0x2b6bec59), TOBN(0x66e12d94,0xf3d95620) | 
| 1308 | 2.18k |     }; | 
| 1309 |  |     /* The constant 1 (unlike ONE that is one in Montgomery representation) */ | 
| 1310 | 2.18k |     static const BN_ULONG one[P256_LIMBS] = { | 
| 1311 | 2.18k |         TOBN(0,1), TOBN(0,0), TOBN(0,0), TOBN(0,0) | 
| 1312 | 2.18k |     }; | 
| 1313 |  |     /* | 
| 1314 |  |      * We don't use entry 0 in the table, so we omit it and address | 
| 1315 |  |      * with -1 offset. | 
| 1316 |  |      */ | 
| 1317 | 2.18k |     BN_ULONG table[15][P256_LIMBS]; | 
| 1318 | 2.18k |     BN_ULONG out[P256_LIMBS], t[P256_LIMBS]; | 
| 1319 | 2.18k |     int i, ret = 0; | 
| 1320 | 2.18k |     enum { | 
| 1321 | 2.18k |         i_1 = 0, i_10,     i_11,     i_101, i_111, i_1010, i_1111, | 
| 1322 | 2.18k |         i_10101, i_101010, i_101111, i_x6,  i_x8,  i_x16,  i_x32 | 
| 1323 | 2.18k |     }; | 
| 1324 |  |  | 
| 1325 |  |     /* | 
| 1326 |  |      * Catch allocation failure early. | 
| 1327 |  |      */ | 
| 1328 | 2.18k |     if (bn_wexpand(r, P256_LIMBS) == NULL) { | 
| 1329 | 0 |         ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB); | 
| 1330 | 0 |         goto err; | 
| 1331 | 0 |     } | 
| 1332 |  |  | 
| 1333 | 2.18k |     if ((BN_num_bits(x) > 256) || BN_is_negative(x)) { | 
| 1334 | 0 |         BIGNUM *tmp; | 
| 1335 |  | 
 | 
| 1336 | 0 |         if ((tmp = BN_CTX_get(ctx)) == NULL | 
| 1337 | 0 |             || !BN_nnmod(tmp, x, group->order, ctx)) { | 
| 1338 | 0 |             ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB); | 
| 1339 | 0 |             goto err; | 
| 1340 | 0 |         } | 
| 1341 | 0 |         x = tmp; | 
| 1342 | 0 |     } | 
| 1343 |  |  | 
| 1344 | 2.18k |     if (!ecp_nistz256_bignum_to_field_elem(t, x)) { | 
| 1345 | 0 |         ERR_raise(ERR_LIB_EC, EC_R_COORDINATES_OUT_OF_RANGE); | 
| 1346 | 0 |         goto err; | 
| 1347 | 0 |     } | 
| 1348 |  |  | 
| 1349 | 2.18k |     ecp_nistz256_ord_mul_mont(table[0], t, RR); | 
| 1350 |  | #if 0 | 
| 1351 |  |     /* | 
| 1352 |  |      * Original sparse-then-fixed-window algorithm, retained for reference. | 
| 1353 |  |      */ | 
| 1354 |  |     for (i = 2; i < 16; i += 2) { | 
| 1355 |  |         ecp_nistz256_ord_sqr_mont(table[i-1], table[i/2-1], 1); | 
| 1356 |  |         ecp_nistz256_ord_mul_mont(table[i], table[i-1], table[0]); | 
| 1357 |  |     } | 
| 1358 |  |  | 
| 1359 |  |     /* | 
| 1360 |  |      * The top 128bit of the exponent are highly redudndant, so we | 
| 1361 |  |      * perform an optimized flow | 
| 1362 |  |      */ | 
| 1363 |  |     ecp_nistz256_ord_sqr_mont(t, table[15-1], 4);   /* f0 */ | 
| 1364 |  |     ecp_nistz256_ord_mul_mont(t, t, table[15-1]);   /* ff */ | 
| 1365 |  |  | 
| 1366 |  |     ecp_nistz256_ord_sqr_mont(out, t, 8);           /* ff00 */ | 
| 1367 |  |     ecp_nistz256_ord_mul_mont(out, out, t);         /* ffff */ | 
| 1368 |  |  | 
| 1369 |  |     ecp_nistz256_ord_sqr_mont(t, out, 16);          /* ffff0000 */ | 
| 1370 |  |     ecp_nistz256_ord_mul_mont(t, t, out);           /* ffffffff */ | 
| 1371 |  |  | 
| 1372 |  |     ecp_nistz256_ord_sqr_mont(out, t, 64);          /* ffffffff0000000000000000 */ | 
| 1373 |  |     ecp_nistz256_ord_mul_mont(out, out, t);         /* ffffffff00000000ffffffff */ | 
| 1374 |  |  | 
| 1375 |  |     ecp_nistz256_ord_sqr_mont(out, out, 32);        /* ffffffff00000000ffffffff00000000 */ | 
| 1376 |  |     ecp_nistz256_ord_mul_mont(out, out, t);         /* ffffffff00000000ffffffffffffffff */ | 
| 1377 |  |  | 
| 1378 |  |     /* | 
| 1379 |  |      * The bottom 128 bit of the exponent are processed with fixed 4-bit window | 
| 1380 |  |      */ | 
| 1381 |  |     for(i = 0; i < 32; i++) { | 
| 1382 |  |         /* expLo - the low 128 bits of the exponent we use (ord(p256) - 2), | 
| 1383 |  |          * split into nibbles */ | 
| 1384 |  |         static const unsigned char expLo[32]  = { | 
| 1385 |  |             0xb,0xc,0xe,0x6,0xf,0xa,0xa,0xd,0xa,0x7,0x1,0x7,0x9,0xe,0x8,0x4, | 
| 1386 |  |             0xf,0x3,0xb,0x9,0xc,0xa,0xc,0x2,0xf,0xc,0x6,0x3,0x2,0x5,0x4,0xf | 
| 1387 |  |         }; | 
| 1388 |  |  | 
| 1389 |  |         ecp_nistz256_ord_sqr_mont(out, out, 4); | 
| 1390 |  |         /* The exponent is public, no need in constant-time access */ | 
| 1391 |  |         ecp_nistz256_ord_mul_mont(out, out, table[expLo[i]-1]); | 
| 1392 |  |     } | 
| 1393 |  | #else | 
| 1394 |  |     /* | 
| 1395 |  |      * https://briansmith.org/ecc-inversion-addition-chains-01#p256_scalar_inversion | 
| 1396 |  |      * | 
| 1397 |  |      * Even though this code path spares 12 squarings, 4.5%, and 13 | 
| 1398 |  |      * multiplications, 25%, on grand scale sign operation is not that | 
| 1399 |  |      * much faster, not more that 2%... | 
| 1400 |  |      */ | 
| 1401 |  |  | 
| 1402 |  |     /* pre-calculate powers */ | 
| 1403 | 2.18k |     ecp_nistz256_ord_sqr_mont(table[i_10], table[i_1], 1); | 
| 1404 |  |  | 
| 1405 | 2.18k |     ecp_nistz256_ord_mul_mont(table[i_11], table[i_1], table[i_10]); | 
| 1406 |  |  | 
| 1407 | 2.18k |     ecp_nistz256_ord_mul_mont(table[i_101], table[i_11], table[i_10]); | 
| 1408 |  |  | 
| 1409 | 2.18k |     ecp_nistz256_ord_mul_mont(table[i_111], table[i_101], table[i_10]); | 
| 1410 |  |  | 
| 1411 | 2.18k |     ecp_nistz256_ord_sqr_mont(table[i_1010], table[i_101], 1); | 
| 1412 |  |  | 
| 1413 | 2.18k |     ecp_nistz256_ord_mul_mont(table[i_1111], table[i_1010], table[i_101]); | 
| 1414 |  |  | 
| 1415 | 2.18k |     ecp_nistz256_ord_sqr_mont(table[i_10101], table[i_1010], 1); | 
| 1416 | 2.18k |     ecp_nistz256_ord_mul_mont(table[i_10101], table[i_10101], table[i_1]); | 
| 1417 |  |  | 
| 1418 | 2.18k |     ecp_nistz256_ord_sqr_mont(table[i_101010], table[i_10101], 1); | 
| 1419 |  |  | 
| 1420 | 2.18k |     ecp_nistz256_ord_mul_mont(table[i_101111], table[i_101010], table[i_101]); | 
| 1421 |  |  | 
| 1422 | 2.18k |     ecp_nistz256_ord_mul_mont(table[i_x6], table[i_101010], table[i_10101]); | 
| 1423 |  |  | 
| 1424 | 2.18k |     ecp_nistz256_ord_sqr_mont(table[i_x8], table[i_x6], 2); | 
| 1425 | 2.18k |     ecp_nistz256_ord_mul_mont(table[i_x8], table[i_x8], table[i_11]); | 
| 1426 |  |  | 
| 1427 | 2.18k |     ecp_nistz256_ord_sqr_mont(table[i_x16], table[i_x8], 8); | 
| 1428 | 2.18k |     ecp_nistz256_ord_mul_mont(table[i_x16], table[i_x16], table[i_x8]); | 
| 1429 |  |  | 
| 1430 | 2.18k |     ecp_nistz256_ord_sqr_mont(table[i_x32], table[i_x16], 16); | 
| 1431 | 2.18k |     ecp_nistz256_ord_mul_mont(table[i_x32], table[i_x32], table[i_x16]); | 
| 1432 |  |  | 
| 1433 |  |     /* calculations */ | 
| 1434 | 2.18k |     ecp_nistz256_ord_sqr_mont(out, table[i_x32], 64); | 
| 1435 | 2.18k |     ecp_nistz256_ord_mul_mont(out, out, table[i_x32]); | 
| 1436 |  |  | 
| 1437 | 61.2k |     for (i = 0; i < 27; i++) { | 
| 1438 | 59.1k |         static const struct { unsigned char p, i; } chain[27] = { | 
| 1439 | 59.1k |             { 32, i_x32 }, { 6,  i_101111 }, { 5,  i_111    }, | 
| 1440 | 59.1k |             { 4,  i_11  }, { 5,  i_1111   }, { 5,  i_10101  }, | 
| 1441 | 59.1k |             { 4,  i_101 }, { 3,  i_101    }, { 3,  i_101    }, | 
| 1442 | 59.1k |             { 5,  i_111 }, { 9,  i_101111 }, { 6,  i_1111   }, | 
| 1443 | 59.1k |             { 2,  i_1   }, { 5,  i_1      }, { 6,  i_1111   }, | 
| 1444 | 59.1k |             { 5,  i_111 }, { 4,  i_111    }, { 5,  i_111    }, | 
| 1445 | 59.1k |             { 5,  i_101 }, { 3,  i_11     }, { 10, i_101111 }, | 
| 1446 | 59.1k |             { 2,  i_11  }, { 5,  i_11     }, { 5,  i_11     }, | 
| 1447 | 59.1k |             { 3,  i_1   }, { 7,  i_10101  }, { 6,  i_1111   } | 
| 1448 | 59.1k |         }; | 
| 1449 |  |  | 
| 1450 | 59.1k |         ecp_nistz256_ord_sqr_mont(out, out, chain[i].p); | 
| 1451 | 59.1k |         ecp_nistz256_ord_mul_mont(out, out, table[chain[i].i]); | 
| 1452 | 59.1k |     } | 
| 1453 | 2.18k | #endif | 
| 1454 | 2.18k |     ecp_nistz256_ord_mul_mont(out, out, one); | 
| 1455 |  |  | 
| 1456 |  |     /* | 
| 1457 |  |      * Can't fail, but check return code to be consistent anyway. | 
| 1458 |  |      */ | 
| 1459 | 2.18k |     if (!bn_set_words(r, out, P256_LIMBS)) | 
| 1460 | 0 |         goto err; | 
| 1461 |  |  | 
| 1462 | 2.18k |     ret = 1; | 
| 1463 | 2.18k | err: | 
| 1464 | 2.18k |     return ret; | 
| 1465 | 2.18k | } | 
| 1466 |  | #else | 
| 1467 |  | # define ecp_nistz256_inv_mod_ord NULL | 
| 1468 |  | #endif | 
| 1469 |  |  | 
| 1470 |  | const EC_METHOD *EC_GFp_nistz256_method(void) | 
| 1471 | 57.6k | { | 
| 1472 | 57.6k |     static const EC_METHOD ret = { | 
| 1473 | 57.6k |         EC_FLAGS_DEFAULT_OCT, | 
| 1474 | 57.6k |         NID_X9_62_prime_field, | 
| 1475 | 57.6k |         ossl_ec_GFp_mont_group_init, | 
| 1476 | 57.6k |         ossl_ec_GFp_mont_group_finish, | 
| 1477 | 57.6k |         ossl_ec_GFp_mont_group_clear_finish, | 
| 1478 | 57.6k |         ossl_ec_GFp_mont_group_copy, | 
| 1479 | 57.6k |         ossl_ec_GFp_mont_group_set_curve, | 
| 1480 | 57.6k |         ossl_ec_GFp_simple_group_get_curve, | 
| 1481 | 57.6k |         ossl_ec_GFp_simple_group_get_degree, | 
| 1482 | 57.6k |         ossl_ec_group_simple_order_bits, | 
| 1483 | 57.6k |         ossl_ec_GFp_simple_group_check_discriminant, | 
| 1484 | 57.6k |         ossl_ec_GFp_simple_point_init, | 
| 1485 | 57.6k |         ossl_ec_GFp_simple_point_finish, | 
| 1486 | 57.6k |         ossl_ec_GFp_simple_point_clear_finish, | 
| 1487 | 57.6k |         ossl_ec_GFp_simple_point_copy, | 
| 1488 | 57.6k |         ossl_ec_GFp_simple_point_set_to_infinity, | 
| 1489 | 57.6k |         ossl_ec_GFp_simple_point_set_affine_coordinates, | 
| 1490 | 57.6k |         ecp_nistz256_get_affine, | 
| 1491 | 57.6k |         0, 0, 0, | 
| 1492 | 57.6k |         ossl_ec_GFp_simple_add, | 
| 1493 | 57.6k |         ossl_ec_GFp_simple_dbl, | 
| 1494 | 57.6k |         ossl_ec_GFp_simple_invert, | 
| 1495 | 57.6k |         ossl_ec_GFp_simple_is_at_infinity, | 
| 1496 | 57.6k |         ossl_ec_GFp_simple_is_on_curve, | 
| 1497 | 57.6k |         ossl_ec_GFp_simple_cmp, | 
| 1498 | 57.6k |         ossl_ec_GFp_simple_make_affine, | 
| 1499 | 57.6k |         ossl_ec_GFp_simple_points_make_affine, | 
| 1500 | 57.6k |         ecp_nistz256_points_mul,                    /* mul */ | 
| 1501 | 57.6k |         ecp_nistz256_mult_precompute,               /* precompute_mult */ | 
| 1502 | 57.6k |         ecp_nistz256_window_have_precompute_mult,   /* have_precompute_mult */ | 
| 1503 | 57.6k |         ossl_ec_GFp_mont_field_mul, | 
| 1504 | 57.6k |         ossl_ec_GFp_mont_field_sqr, | 
| 1505 | 57.6k |         0,                                          /* field_div */ | 
| 1506 | 57.6k |         ossl_ec_GFp_mont_field_inv, | 
| 1507 | 57.6k |         ossl_ec_GFp_mont_field_encode, | 
| 1508 | 57.6k |         ossl_ec_GFp_mont_field_decode, | 
| 1509 | 57.6k |         ossl_ec_GFp_mont_field_set_to_one, | 
| 1510 | 57.6k |         ossl_ec_key_simple_priv2oct, | 
| 1511 | 57.6k |         ossl_ec_key_simple_oct2priv, | 
| 1512 | 57.6k |         0, /* set private */ | 
| 1513 | 57.6k |         ossl_ec_key_simple_generate_key, | 
| 1514 | 57.6k |         ossl_ec_key_simple_check_key, | 
| 1515 | 57.6k |         ossl_ec_key_simple_generate_public_key, | 
| 1516 | 57.6k |         0, /* keycopy */ | 
| 1517 | 57.6k |         0, /* keyfinish */ | 
| 1518 | 57.6k |         ossl_ecdh_simple_compute_key, | 
| 1519 | 57.6k |         ossl_ecdsa_simple_sign_setup, | 
| 1520 | 57.6k |         ossl_ecdsa_simple_sign_sig, | 
| 1521 | 57.6k |         ossl_ecdsa_simple_verify_sig, | 
| 1522 | 57.6k |         ecp_nistz256_inv_mod_ord,                   /* can be #define-d NULL */ | 
| 1523 | 57.6k |         0,                                          /* blind_coordinates */ | 
| 1524 | 57.6k |         0,                                          /* ladder_pre */ | 
| 1525 | 57.6k |         0,                                          /* ladder_step */ | 
| 1526 | 57.6k |         0                                           /* ladder_post */ | 
| 1527 | 57.6k |     }; | 
| 1528 |  |  | 
| 1529 | 57.6k |     return &ret; | 
| 1530 | 57.6k | } |