/src/openssl30/crypto/evp/e_aes.c
| Line | Count | Source (jump to first uncovered line) | 
| 1 |  | /* | 
| 2 |  |  * Copyright 2001-2021 The OpenSSL Project Authors. All Rights Reserved. | 
| 3 |  |  * | 
| 4 |  |  * Licensed under the Apache License 2.0 (the "License").  You may not use | 
| 5 |  |  * this file except in compliance with the License.  You can obtain a copy | 
| 6 |  |  * in the file LICENSE in the source distribution or at | 
| 7 |  |  * https://www.openssl.org/source/license.html | 
| 8 |  |  */ | 
| 9 |  |  | 
| 10 |  | /* | 
| 11 |  |  * This file uses the low level AES functions (which are deprecated for | 
| 12 |  |  * non-internal use) in order to implement the EVP AES ciphers. | 
| 13 |  |  */ | 
| 14 |  | #include "internal/deprecated.h" | 
| 15 |  |  | 
| 16 |  | #include <string.h> | 
| 17 |  | #include <assert.h> | 
| 18 |  | #include <openssl/opensslconf.h> | 
| 19 |  | #include <openssl/crypto.h> | 
| 20 |  | #include <openssl/evp.h> | 
| 21 |  | #include <openssl/err.h> | 
| 22 |  | #include <openssl/aes.h> | 
| 23 |  | #include <openssl/rand.h> | 
| 24 |  | #include <openssl/cmac.h> | 
| 25 |  | #include "crypto/evp.h" | 
| 26 |  | #include "internal/cryptlib.h" | 
| 27 |  | #include "crypto/modes.h" | 
| 28 |  | #include "crypto/siv.h" | 
| 29 |  | #include "crypto/aes_platform.h" | 
| 30 |  | #include "evp_local.h" | 
| 31 |  |  | 
| 32 |  | typedef struct { | 
| 33 |  |     union { | 
| 34 |  |         OSSL_UNION_ALIGN; | 
| 35 |  |         AES_KEY ks; | 
| 36 |  |     } ks; | 
| 37 |  |     block128_f block; | 
| 38 |  |     union { | 
| 39 |  |         cbc128_f cbc; | 
| 40 |  |         ctr128_f ctr; | 
| 41 |  |     } stream; | 
| 42 |  | } EVP_AES_KEY; | 
| 43 |  |  | 
| 44 |  | typedef struct { | 
| 45 |  |     union { | 
| 46 |  |         OSSL_UNION_ALIGN; | 
| 47 |  |         AES_KEY ks; | 
| 48 |  |     } ks;                       /* AES key schedule to use */ | 
| 49 |  |     int key_set;                /* Set if key initialised */ | 
| 50 |  |     int iv_set;                 /* Set if an iv is set */ | 
| 51 |  |     GCM128_CONTEXT gcm; | 
| 52 |  |     unsigned char *iv;          /* Temporary IV store */ | 
| 53 |  |     int ivlen;                  /* IV length */ | 
| 54 |  |     int taglen; | 
| 55 |  |     int iv_gen;                 /* It is OK to generate IVs */ | 
| 56 |  |     int iv_gen_rand;            /* No IV was specified, so generate a rand IV */ | 
| 57 |  |     int tls_aad_len;            /* TLS AAD length */ | 
| 58 |  |     uint64_t tls_enc_records;   /* Number of TLS records encrypted */ | 
| 59 |  |     ctr128_f ctr; | 
| 60 |  | } EVP_AES_GCM_CTX; | 
| 61 |  |  | 
| 62 |  | typedef struct { | 
| 63 |  |     union { | 
| 64 |  |         OSSL_UNION_ALIGN; | 
| 65 |  |         AES_KEY ks; | 
| 66 |  |     } ks1, ks2;                 /* AES key schedules to use */ | 
| 67 |  |     XTS128_CONTEXT xts; | 
| 68 |  |     void (*stream) (const unsigned char *in, | 
| 69 |  |                     unsigned char *out, size_t length, | 
| 70 |  |                     const AES_KEY *key1, const AES_KEY *key2, | 
| 71 |  |                     const unsigned char iv[16]); | 
| 72 |  | } EVP_AES_XTS_CTX; | 
| 73 |  |  | 
| 74 |  | #ifdef FIPS_MODULE | 
| 75 |  | static const int allow_insecure_decrypt = 0; | 
| 76 |  | #else | 
| 77 |  | static const int allow_insecure_decrypt = 1; | 
| 78 |  | #endif | 
| 79 |  |  | 
| 80 |  | typedef struct { | 
| 81 |  |     union { | 
| 82 |  |         OSSL_UNION_ALIGN; | 
| 83 |  |         AES_KEY ks; | 
| 84 |  |     } ks;                       /* AES key schedule to use */ | 
| 85 |  |     int key_set;                /* Set if key initialised */ | 
| 86 |  |     int iv_set;                 /* Set if an iv is set */ | 
| 87 |  |     int tag_set;                /* Set if tag is valid */ | 
| 88 |  |     int len_set;                /* Set if message length set */ | 
| 89 |  |     int L, M;                   /* L and M parameters from RFC3610 */ | 
| 90 |  |     int tls_aad_len;            /* TLS AAD length */ | 
| 91 |  |     CCM128_CONTEXT ccm; | 
| 92 |  |     ccm128_f str; | 
| 93 |  | } EVP_AES_CCM_CTX; | 
| 94 |  |  | 
| 95 |  | #ifndef OPENSSL_NO_OCB | 
| 96 |  | typedef struct { | 
| 97 |  |     union { | 
| 98 |  |         OSSL_UNION_ALIGN; | 
| 99 |  |         AES_KEY ks; | 
| 100 |  |     } ksenc;                    /* AES key schedule to use for encryption */ | 
| 101 |  |     union { | 
| 102 |  |         OSSL_UNION_ALIGN; | 
| 103 |  |         AES_KEY ks; | 
| 104 |  |     } ksdec;                    /* AES key schedule to use for decryption */ | 
| 105 |  |     int key_set;                /* Set if key initialised */ | 
| 106 |  |     int iv_set;                 /* Set if an iv is set */ | 
| 107 |  |     OCB128_CONTEXT ocb; | 
| 108 |  |     unsigned char *iv;          /* Temporary IV store */ | 
| 109 |  |     unsigned char tag[16]; | 
| 110 |  |     unsigned char data_buf[16]; /* Store partial data blocks */ | 
| 111 |  |     unsigned char aad_buf[16];  /* Store partial AAD blocks */ | 
| 112 |  |     int data_buf_len; | 
| 113 |  |     int aad_buf_len; | 
| 114 |  |     int ivlen;                  /* IV length */ | 
| 115 |  |     int taglen; | 
| 116 |  | } EVP_AES_OCB_CTX; | 
| 117 |  | #endif | 
| 118 |  |  | 
| 119 | 0 | #define MAXBITCHUNK     ((size_t)1<<(sizeof(size_t)*8-4)) | 
| 120 |  |  | 
| 121 |  | /* increment counter (64-bit int) by 1 */ | 
| 122 |  | static void ctr64_inc(unsigned char *counter) | 
| 123 | 49 | { | 
| 124 | 49 |     int n = 8; | 
| 125 | 49 |     unsigned char c; | 
| 126 |  |  | 
| 127 | 49 |     do { | 
| 128 | 49 |         --n; | 
| 129 | 49 |         c = counter[n]; | 
| 130 | 49 |         ++c; | 
| 131 | 49 |         counter[n] = c; | 
| 132 | 49 |         if (c) | 
| 133 | 49 |             return; | 
| 134 | 49 |     } while (n); | 
| 135 | 49 | } | 
| 136 |  |  | 
| 137 |  | #if defined(AESNI_CAPABLE) | 
| 138 |  | # if defined(__x86_64) || defined(__x86_64__) || defined(_M_AMD64) || defined(_M_X64) | 
| 139 |  | #  define AES_GCM_ASM2(gctx)      (gctx->gcm.block==(block128_f)aesni_encrypt && \ | 
| 140 |  |                                  gctx->gcm.ghash==gcm_ghash_avx) | 
| 141 |  | #  undef AES_GCM_ASM2          /* minor size optimization */ | 
| 142 |  | # endif | 
| 143 |  |  | 
| 144 |  | static int aesni_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, | 
| 145 |  |                           const unsigned char *iv, int enc) | 
| 146 | 81.2k | { | 
| 147 | 81.2k |     int ret, mode; | 
| 148 | 81.2k |     EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx); | 
| 149 |  |  | 
| 150 | 81.2k |     mode = EVP_CIPHER_CTX_get_mode(ctx); | 
| 151 | 81.2k |     if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE) | 
| 152 | 81.2k |         && !enc) { | 
| 153 | 321 |         ret = aesni_set_decrypt_key(key, | 
| 154 | 321 |                                     EVP_CIPHER_CTX_get_key_length(ctx) * 8, | 
| 155 | 321 |                                     &dat->ks.ks); | 
| 156 | 321 |         dat->block = (block128_f) aesni_decrypt; | 
| 157 | 321 |         dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? | 
| 158 | 321 |             (cbc128_f) aesni_cbc_encrypt : NULL; | 
| 159 | 80.9k |     } else { | 
| 160 | 80.9k |         ret = aesni_set_encrypt_key(key, | 
| 161 | 80.9k |                                     EVP_CIPHER_CTX_get_key_length(ctx) * 8, | 
| 162 | 80.9k |                                     &dat->ks.ks); | 
| 163 | 80.9k |         dat->block = (block128_f) aesni_encrypt; | 
| 164 | 80.9k |         if (mode == EVP_CIPH_CBC_MODE) | 
| 165 | 187 |             dat->stream.cbc = (cbc128_f) aesni_cbc_encrypt; | 
| 166 | 80.7k |         else if (mode == EVP_CIPH_CTR_MODE) | 
| 167 | 32.3k |             dat->stream.ctr = (ctr128_f) aesni_ctr32_encrypt_blocks; | 
| 168 | 48.4k |         else | 
| 169 | 48.4k |             dat->stream.cbc = NULL; | 
| 170 | 80.9k |     } | 
| 171 |  |  | 
| 172 | 81.2k |     if (ret < 0) { | 
| 173 | 0 |         ERR_raise(ERR_LIB_EVP, EVP_R_AES_KEY_SETUP_FAILED); | 
| 174 | 0 |         return 0; | 
| 175 | 0 |     } | 
| 176 |  |  | 
| 177 | 81.2k |     return 1; | 
| 178 | 81.2k | } | 
| 179 |  |  | 
| 180 |  | static int aesni_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, | 
| 181 |  |                             const unsigned char *in, size_t len) | 
| 182 | 425 | { | 
| 183 | 425 |     aesni_cbc_encrypt(in, out, len, &EVP_C_DATA(EVP_AES_KEY,ctx)->ks.ks, | 
| 184 | 425 |                       ctx->iv, EVP_CIPHER_CTX_is_encrypting(ctx)); | 
| 185 |  |  | 
| 186 | 425 |     return 1; | 
| 187 | 425 | } | 
| 188 |  |  | 
| 189 |  | static int aesni_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, | 
| 190 |  |                             const unsigned char *in, size_t len) | 
| 191 | 145k | { | 
| 192 | 145k |     size_t bl = EVP_CIPHER_CTX_get_block_size(ctx); | 
| 193 |  |  | 
| 194 | 145k |     if (len < bl) | 
| 195 | 0 |         return 1; | 
| 196 |  |  | 
| 197 | 145k |     aesni_ecb_encrypt(in, out, len, &EVP_C_DATA(EVP_AES_KEY,ctx)->ks.ks, | 
| 198 | 145k |                       EVP_CIPHER_CTX_is_encrypting(ctx)); | 
| 199 |  |  | 
| 200 | 145k |     return 1; | 
| 201 | 145k | } | 
| 202 |  |  | 
| 203 |  | # define aesni_ofb_cipher aes_ofb_cipher | 
| 204 |  | static int aesni_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, | 
| 205 |  |                             const unsigned char *in, size_t len); | 
| 206 |  |  | 
| 207 |  | # define aesni_cfb_cipher aes_cfb_cipher | 
| 208 |  | static int aesni_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, | 
| 209 |  |                             const unsigned char *in, size_t len); | 
| 210 |  |  | 
| 211 |  | # define aesni_cfb8_cipher aes_cfb8_cipher | 
| 212 |  | static int aesni_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, | 
| 213 |  |                              const unsigned char *in, size_t len); | 
| 214 |  |  | 
| 215 |  | # define aesni_cfb1_cipher aes_cfb1_cipher | 
| 216 |  | static int aesni_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, | 
| 217 |  |                              const unsigned char *in, size_t len); | 
| 218 |  |  | 
| 219 |  | # define aesni_ctr_cipher aes_ctr_cipher | 
| 220 |  | static int aesni_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, | 
| 221 |  |                             const unsigned char *in, size_t len); | 
| 222 |  |  | 
| 223 |  | static int aesni_gcm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, | 
| 224 |  |                               const unsigned char *iv, int enc) | 
| 225 | 6.42k | { | 
| 226 | 6.42k |     EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,ctx); | 
| 227 | 6.42k |     if (!iv && !key) | 
| 228 | 839 |         return 1; | 
| 229 | 5.58k |     if (key) { | 
| 230 | 919 |         aesni_set_encrypt_key(key, EVP_CIPHER_CTX_get_key_length(ctx) * 8, | 
| 231 | 919 |                               &gctx->ks.ks); | 
| 232 | 919 |         CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks, (block128_f) aesni_encrypt); | 
| 233 | 919 |         gctx->ctr = (ctr128_f) aesni_ctr32_encrypt_blocks; | 
| 234 |  |         /* | 
| 235 |  |          * If we have an iv can set it directly, otherwise use saved IV. | 
| 236 |  |          */ | 
| 237 | 919 |         if (iv == NULL && gctx->iv_set) | 
| 238 | 0 |             iv = gctx->iv; | 
| 239 | 919 |         if (iv) { | 
| 240 | 0 |             CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen); | 
| 241 | 0 |             gctx->iv_set = 1; | 
| 242 | 0 |         } | 
| 243 | 919 |         gctx->key_set = 1; | 
| 244 | 4.66k |     } else { | 
| 245 |  |         /* If key set use IV, otherwise copy */ | 
| 246 | 4.66k |         if (gctx->key_set) | 
| 247 | 4.66k |             CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen); | 
| 248 | 0 |         else | 
| 249 | 0 |             memcpy(gctx->iv, iv, gctx->ivlen); | 
| 250 | 4.66k |         gctx->iv_set = 1; | 
| 251 | 4.66k |         gctx->iv_gen = 0; | 
| 252 | 4.66k |     } | 
| 253 | 5.58k |     return 1; | 
| 254 | 6.42k | } | 
| 255 |  |  | 
| 256 |  | # define aesni_gcm_cipher aes_gcm_cipher | 
| 257 |  | static int aesni_gcm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, | 
| 258 |  |                             const unsigned char *in, size_t len); | 
| 259 |  |  | 
| 260 |  | static int aesni_xts_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, | 
| 261 |  |                               const unsigned char *iv, int enc) | 
| 262 | 0 | { | 
| 263 | 0 |     EVP_AES_XTS_CTX *xctx = EVP_C_DATA(EVP_AES_XTS_CTX,ctx); | 
| 264 |  | 
 | 
| 265 | 0 |     if (!iv && !key) | 
| 266 | 0 |         return 1; | 
| 267 |  |  | 
| 268 | 0 |     if (key) { | 
| 269 |  |         /* The key is two half length keys in reality */ | 
| 270 | 0 |         const int bytes = EVP_CIPHER_CTX_get_key_length(ctx) / 2; | 
| 271 | 0 |         const int bits = bytes * 8; | 
| 272 |  |  | 
| 273 |  |         /* | 
| 274 |  |          * Verify that the two keys are different. | 
| 275 |  |          * | 
| 276 |  |          * This addresses Rogaway's vulnerability. | 
| 277 |  |          * See comment in aes_xts_init_key() below. | 
| 278 |  |          */ | 
| 279 | 0 |         if ((!allow_insecure_decrypt || enc) | 
| 280 | 0 |                 && CRYPTO_memcmp(key, key + bytes, bytes) == 0) { | 
| 281 | 0 |             ERR_raise(ERR_LIB_EVP, EVP_R_XTS_DUPLICATED_KEYS); | 
| 282 | 0 |             return 0; | 
| 283 | 0 |         } | 
| 284 |  |  | 
| 285 |  |         /* key_len is two AES keys */ | 
| 286 | 0 |         if (enc) { | 
| 287 | 0 |             aesni_set_encrypt_key(key, bits, &xctx->ks1.ks); | 
| 288 | 0 |             xctx->xts.block1 = (block128_f) aesni_encrypt; | 
| 289 | 0 |             xctx->stream = aesni_xts_encrypt; | 
| 290 | 0 |         } else { | 
| 291 | 0 |             aesni_set_decrypt_key(key, bits, &xctx->ks1.ks); | 
| 292 | 0 |             xctx->xts.block1 = (block128_f) aesni_decrypt; | 
| 293 | 0 |             xctx->stream = aesni_xts_decrypt; | 
| 294 | 0 |         } | 
| 295 |  | 
 | 
| 296 | 0 |         aesni_set_encrypt_key(key + bytes, bits, &xctx->ks2.ks); | 
| 297 | 0 |         xctx->xts.block2 = (block128_f) aesni_encrypt; | 
| 298 |  | 
 | 
| 299 | 0 |         xctx->xts.key1 = &xctx->ks1; | 
| 300 | 0 |     } | 
| 301 |  |  | 
| 302 | 0 |     if (iv) { | 
| 303 | 0 |         xctx->xts.key2 = &xctx->ks2; | 
| 304 | 0 |         memcpy(ctx->iv, iv, 16); | 
| 305 | 0 |     } | 
| 306 |  | 
 | 
| 307 | 0 |     return 1; | 
| 308 | 0 | } | 
| 309 |  |  | 
| 310 |  | # define aesni_xts_cipher aes_xts_cipher | 
| 311 |  | static int aesni_xts_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, | 
| 312 |  |                             const unsigned char *in, size_t len); | 
| 313 |  |  | 
| 314 |  | static int aesni_ccm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, | 
| 315 |  |                               const unsigned char *iv, int enc) | 
| 316 | 142 | { | 
| 317 | 142 |     EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,ctx); | 
| 318 | 142 |     if (!iv && !key) | 
| 319 | 71 |         return 1; | 
| 320 | 71 |     if (key) { | 
| 321 | 71 |         aesni_set_encrypt_key(key, EVP_CIPHER_CTX_get_key_length(ctx) * 8, | 
| 322 | 71 |                               &cctx->ks.ks); | 
| 323 | 71 |         CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L, | 
| 324 | 71 |                            &cctx->ks, (block128_f) aesni_encrypt); | 
| 325 | 71 |         cctx->str = enc ? (ccm128_f) aesni_ccm64_encrypt_blocks : | 
| 326 | 71 |             (ccm128_f) aesni_ccm64_decrypt_blocks; | 
| 327 | 71 |         cctx->key_set = 1; | 
| 328 | 71 |     } | 
| 329 | 71 |     if (iv) { | 
| 330 | 0 |         memcpy(ctx->iv, iv, 15 - cctx->L); | 
| 331 | 0 |         cctx->iv_set = 1; | 
| 332 | 0 |     } | 
| 333 | 71 |     return 1; | 
| 334 | 142 | } | 
| 335 |  |  | 
| 336 |  | # define aesni_ccm_cipher aes_ccm_cipher | 
| 337 |  | static int aesni_ccm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, | 
| 338 |  |                             const unsigned char *in, size_t len); | 
| 339 |  |  | 
| 340 |  | # ifndef OPENSSL_NO_OCB | 
| 341 |  | static int aesni_ocb_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, | 
| 342 |  |                               const unsigned char *iv, int enc) | 
| 343 | 0 | { | 
| 344 | 0 |     EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,ctx); | 
| 345 | 0 |     if (!iv && !key) | 
| 346 | 0 |         return 1; | 
| 347 | 0 |     if (key) { | 
| 348 | 0 |         do { | 
| 349 |  |             /* | 
| 350 |  |              * We set both the encrypt and decrypt key here because decrypt | 
| 351 |  |              * needs both. We could possibly optimise to remove setting the | 
| 352 |  |              * decrypt for an encryption operation. | 
| 353 |  |              */ | 
| 354 | 0 |             aesni_set_encrypt_key(key, EVP_CIPHER_CTX_get_key_length(ctx) * 8, | 
| 355 | 0 |                                   &octx->ksenc.ks); | 
| 356 | 0 |             aesni_set_decrypt_key(key, EVP_CIPHER_CTX_get_key_length(ctx) * 8, | 
| 357 | 0 |                                   &octx->ksdec.ks); | 
| 358 | 0 |             if (!CRYPTO_ocb128_init(&octx->ocb, | 
| 359 | 0 |                                     &octx->ksenc.ks, &octx->ksdec.ks, | 
| 360 | 0 |                                     (block128_f) aesni_encrypt, | 
| 361 | 0 |                                     (block128_f) aesni_decrypt, | 
| 362 | 0 |                                     enc ? aesni_ocb_encrypt | 
| 363 | 0 |                                         : aesni_ocb_decrypt)) | 
| 364 | 0 |                 return 0; | 
| 365 | 0 |         } | 
| 366 | 0 |         while (0); | 
| 367 |  |  | 
| 368 |  |         /* | 
| 369 |  |          * If we have an iv we can set it directly, otherwise use saved IV. | 
| 370 |  |          */ | 
| 371 | 0 |         if (iv == NULL && octx->iv_set) | 
| 372 | 0 |             iv = octx->iv; | 
| 373 | 0 |         if (iv) { | 
| 374 | 0 |             if (CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen) | 
| 375 | 0 |                 != 1) | 
| 376 | 0 |                 return 0; | 
| 377 | 0 |             octx->iv_set = 1; | 
| 378 | 0 |         } | 
| 379 | 0 |         octx->key_set = 1; | 
| 380 | 0 |     } else { | 
| 381 |  |         /* If key set use IV, otherwise copy */ | 
| 382 | 0 |         if (octx->key_set) | 
| 383 | 0 |             CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen); | 
| 384 | 0 |         else | 
| 385 | 0 |             memcpy(octx->iv, iv, octx->ivlen); | 
| 386 | 0 |         octx->iv_set = 1; | 
| 387 | 0 |     } | 
| 388 | 0 |     return 1; | 
| 389 | 0 | } | 
| 390 |  |  | 
| 391 |  | #  define aesni_ocb_cipher aes_ocb_cipher | 
| 392 |  | static int aesni_ocb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, | 
| 393 |  |                             const unsigned char *in, size_t len); | 
| 394 |  | # endif                        /* OPENSSL_NO_OCB */ | 
| 395 |  |  | 
| 396 |  | # define BLOCK_CIPHER_generic(nid,keylen,blocksize,ivlen,nmode,mode,MODE,flags) \ | 
| 397 |  | static const EVP_CIPHER aesni_##keylen##_##mode = { \ | 
| 398 |  |         nid##_##keylen##_##nmode,blocksize,keylen/8,ivlen, \ | 
| 399 |  |         flags|EVP_CIPH_##MODE##_MODE,   \ | 
| 400 |  |         EVP_ORIG_GLOBAL,                \ | 
| 401 |  |         aesni_init_key,                 \ | 
| 402 |  |         aesni_##mode##_cipher,          \ | 
| 403 |  |         NULL,                           \ | 
| 404 |  |         sizeof(EVP_AES_KEY),            \ | 
| 405 |  |         NULL,NULL,NULL,NULL }; \ | 
| 406 |  | static const EVP_CIPHER aes_##keylen##_##mode = { \ | 
| 407 |  |         nid##_##keylen##_##nmode,blocksize,     \ | 
| 408 |  |         keylen/8,ivlen,                 \ | 
| 409 |  |         flags|EVP_CIPH_##MODE##_MODE,   \ | 
| 410 |  |         EVP_ORIG_GLOBAL,                 \ | 
| 411 |  |         aes_init_key,                   \ | 
| 412 |  |         aes_##mode##_cipher,            \ | 
| 413 |  |         NULL,                           \ | 
| 414 |  |         sizeof(EVP_AES_KEY),            \ | 
| 415 |  |         NULL,NULL,NULL,NULL }; \ | 
| 416 | 903 | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ | 
| 417 | 903 | { return AESNI_CAPABLE?&aesni_##keylen##_##mode:&aes_##keylen##_##mode; }| Line | Count | Source |  | 416 | 37 | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ |  | 417 | 37 | { return AESNI_CAPABLE?&aesni_##keylen##_##mode:&aes_##keylen##_##mode; } | 
| Line | Count | Source |  | 416 | 31 | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ |  | 417 | 31 | { return AESNI_CAPABLE?&aesni_##keylen##_##mode:&aes_##keylen##_##mode; } | 
| Line | Count | Source |  | 416 | 31 | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ |  | 417 | 31 | { return AESNI_CAPABLE?&aesni_##keylen##_##mode:&aes_##keylen##_##mode; } | 
| Line | Count | Source |  | 416 | 31 | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ |  | 417 | 31 | { return AESNI_CAPABLE?&aesni_##keylen##_##mode:&aes_##keylen##_##mode; } | 
| Line | Count | Source |  | 416 | 31 | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ |  | 417 | 31 | { return AESNI_CAPABLE?&aesni_##keylen##_##mode:&aes_##keylen##_##mode; } | 
| Line | Count | Source |  | 416 | 31 | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ |  | 417 | 31 | { return AESNI_CAPABLE?&aesni_##keylen##_##mode:&aes_##keylen##_##mode; } | 
| Line | Count | Source |  | 416 | 31 | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ |  | 417 | 31 | { return AESNI_CAPABLE?&aesni_##keylen##_##mode:&aes_##keylen##_##mode; } | 
| Line | Count | Source |  | 416 | 37 | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ |  | 417 | 37 | { return AESNI_CAPABLE?&aesni_##keylen##_##mode:&aes_##keylen##_##mode; } | 
| Line | Count | Source |  | 416 | 31 | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ |  | 417 | 31 | { return AESNI_CAPABLE?&aesni_##keylen##_##mode:&aes_##keylen##_##mode; } | 
| Line | Count | Source |  | 416 | 31 | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ |  | 417 | 31 | { return AESNI_CAPABLE?&aesni_##keylen##_##mode:&aes_##keylen##_##mode; } | 
| Line | Count | Source |  | 416 | 31 | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ |  | 417 | 31 | { return AESNI_CAPABLE?&aesni_##keylen##_##mode:&aes_##keylen##_##mode; } | 
| Line | Count | Source |  | 416 | 31 | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ |  | 417 | 31 | { return AESNI_CAPABLE?&aesni_##keylen##_##mode:&aes_##keylen##_##mode; } | 
| Line | Count | Source |  | 416 | 31 | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ |  | 417 | 31 | { return AESNI_CAPABLE?&aesni_##keylen##_##mode:&aes_##keylen##_##mode; } | 
| Line | Count | Source |  | 416 | 31 | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ |  | 417 | 31 | { return AESNI_CAPABLE?&aesni_##keylen##_##mode:&aes_##keylen##_##mode; } | 
| Line | Count | Source |  | 416 | 267 | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ |  | 417 | 267 | { return AESNI_CAPABLE?&aesni_##keylen##_##mode:&aes_##keylen##_##mode; } | 
| Line | Count | Source |  | 416 | 33 | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ |  | 417 | 33 | { return AESNI_CAPABLE?&aesni_##keylen##_##mode:&aes_##keylen##_##mode; } | 
| Line | Count | Source |  | 416 | 31 | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ |  | 417 | 31 | { return AESNI_CAPABLE?&aesni_##keylen##_##mode:&aes_##keylen##_##mode; } | 
| Line | Count | Source |  | 416 | 31 | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ |  | 417 | 31 | { return AESNI_CAPABLE?&aesni_##keylen##_##mode:&aes_##keylen##_##mode; } | 
| Line | Count | Source |  | 416 | 31 | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ |  | 417 | 31 | { return AESNI_CAPABLE?&aesni_##keylen##_##mode:&aes_##keylen##_##mode; } | 
| Line | Count | Source |  | 416 | 31 | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ |  | 417 | 31 | { return AESNI_CAPABLE?&aesni_##keylen##_##mode:&aes_##keylen##_##mode; } | 
| Line | Count | Source |  | 416 | 33 | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ |  | 417 | 33 | { return AESNI_CAPABLE?&aesni_##keylen##_##mode:&aes_##keylen##_##mode; } | 
 | 
| 418 |  |  | 
| 419 |  | # define BLOCK_CIPHER_custom(nid,keylen,blocksize,ivlen,mode,MODE,flags) \ | 
| 420 |  | static const EVP_CIPHER aesni_##keylen##_##mode = { \ | 
| 421 |  |         nid##_##keylen##_##mode,blocksize, \ | 
| 422 |  |         (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE||EVP_CIPH_##MODE##_MODE==EVP_CIPH_SIV_MODE?2:1)*keylen/8, \ | 
| 423 |  |         ivlen,                          \ | 
| 424 |  |         flags|EVP_CIPH_##MODE##_MODE,   \ | 
| 425 |  |         EVP_ORIG_GLOBAL,                \ | 
| 426 |  |         aesni_##mode##_init_key,        \ | 
| 427 |  |         aesni_##mode##_cipher,          \ | 
| 428 |  |         aes_##mode##_cleanup,           \ | 
| 429 |  |         sizeof(EVP_AES_##MODE##_CTX),   \ | 
| 430 |  |         NULL,NULL,aes_##mode##_ctrl,NULL }; \ | 
| 431 |  | static const EVP_CIPHER aes_##keylen##_##mode = { \ | 
| 432 |  |         nid##_##keylen##_##mode,blocksize, \ | 
| 433 |  |         (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE||EVP_CIPH_##MODE##_MODE==EVP_CIPH_SIV_MODE?2:1)*keylen/8, \ | 
| 434 |  |         ivlen,                          \ | 
| 435 |  |         flags|EVP_CIPH_##MODE##_MODE,   \ | 
| 436 |  |         EVP_ORIG_GLOBAL,                \ | 
| 437 |  |         aes_##mode##_init_key,          \ | 
| 438 |  |         aes_##mode##_cipher,            \ | 
| 439 |  |         aes_##mode##_cleanup,           \ | 
| 440 |  |         sizeof(EVP_AES_##MODE##_CTX),   \ | 
| 441 |  |         NULL,NULL,aes_##mode##_ctrl,NULL }; \ | 
| 442 | 365 | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ | 
| 443 | 365 | { return AESNI_CAPABLE?&aesni_##keylen##_##mode:&aes_##keylen##_##mode; }| Line | Count | Source |  | 442 | 37 | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ |  | 443 | 37 | { return AESNI_CAPABLE?&aesni_##keylen##_##mode:&aes_##keylen##_##mode; } | 
| Line | Count | Source |  | 442 | 31 | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ |  | 443 | 31 | { return AESNI_CAPABLE?&aesni_##keylen##_##mode:&aes_##keylen##_##mode; } | 
| Line | Count | Source |  | 442 | 37 | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ |  | 443 | 37 | { return AESNI_CAPABLE?&aesni_##keylen##_##mode:&aes_##keylen##_##mode; } | 
| Line | Count | Source |  | 442 | 31 | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ |  | 443 | 31 | { return AESNI_CAPABLE?&aesni_##keylen##_##mode:&aes_##keylen##_##mode; } | 
| Line | Count | Source |  | 442 | 31 | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ |  | 443 | 31 | { return AESNI_CAPABLE?&aesni_##keylen##_##mode:&aes_##keylen##_##mode; } | 
| Line | Count | Source |  | 442 | 37 | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ |  | 443 | 37 | { return AESNI_CAPABLE?&aesni_##keylen##_##mode:&aes_##keylen##_##mode; } | 
| Line | Count | Source |  | 442 | 31 | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ |  | 443 | 31 | { return AESNI_CAPABLE?&aesni_##keylen##_##mode:&aes_##keylen##_##mode; } | 
| Line | Count | Source |  | 442 | 37 | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ |  | 443 | 37 | { return AESNI_CAPABLE?&aesni_##keylen##_##mode:&aes_##keylen##_##mode; } | 
| Line | Count | Source |  | 442 | 31 | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ |  | 443 | 31 | { return AESNI_CAPABLE?&aesni_##keylen##_##mode:&aes_##keylen##_##mode; } | 
| Line | Count | Source |  | 442 | 31 | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ |  | 443 | 31 | { return AESNI_CAPABLE?&aesni_##keylen##_##mode:&aes_##keylen##_##mode; } | 
| Line | Count | Source |  | 442 | 31 | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ |  | 443 | 31 | { return AESNI_CAPABLE?&aesni_##keylen##_##mode:&aes_##keylen##_##mode; } | 
 | 
| 444 |  |  | 
| 445 |  | #elif defined(SPARC_AES_CAPABLE) | 
| 446 |  |  | 
| 447 |  | static int aes_t4_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, | 
| 448 |  |                            const unsigned char *iv, int enc) | 
| 449 |  | { | 
| 450 |  |     int ret, mode, bits; | 
| 451 |  |     EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx); | 
| 452 |  |  | 
| 453 |  |     mode = EVP_CIPHER_CTX_get_mode(ctx); | 
| 454 |  |     bits = EVP_CIPHER_CTX_get_key_length(ctx) * 8; | 
| 455 |  |     if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE) | 
| 456 |  |         && !enc) { | 
| 457 |  |         ret = 0; | 
| 458 |  |         aes_t4_set_decrypt_key(key, bits, &dat->ks.ks); | 
| 459 |  |         dat->block = (block128_f) aes_t4_decrypt; | 
| 460 |  |         switch (bits) { | 
| 461 |  |         case 128: | 
| 462 |  |             dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? | 
| 463 |  |                 (cbc128_f) aes128_t4_cbc_decrypt : NULL; | 
| 464 |  |             break; | 
| 465 |  |         case 192: | 
| 466 |  |             dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? | 
| 467 |  |                 (cbc128_f) aes192_t4_cbc_decrypt : NULL; | 
| 468 |  |             break; | 
| 469 |  |         case 256: | 
| 470 |  |             dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? | 
| 471 |  |                 (cbc128_f) aes256_t4_cbc_decrypt : NULL; | 
| 472 |  |             break; | 
| 473 |  |         default: | 
| 474 |  |             ret = -1; | 
| 475 |  |         } | 
| 476 |  |     } else { | 
| 477 |  |         ret = 0; | 
| 478 |  |         aes_t4_set_encrypt_key(key, bits, &dat->ks.ks); | 
| 479 |  |         dat->block = (block128_f) aes_t4_encrypt; | 
| 480 |  |         switch (bits) { | 
| 481 |  |         case 128: | 
| 482 |  |             if (mode == EVP_CIPH_CBC_MODE) | 
| 483 |  |                 dat->stream.cbc = (cbc128_f) aes128_t4_cbc_encrypt; | 
| 484 |  |             else if (mode == EVP_CIPH_CTR_MODE) | 
| 485 |  |                 dat->stream.ctr = (ctr128_f) aes128_t4_ctr32_encrypt; | 
| 486 |  |             else | 
| 487 |  |                 dat->stream.cbc = NULL; | 
| 488 |  |             break; | 
| 489 |  |         case 192: | 
| 490 |  |             if (mode == EVP_CIPH_CBC_MODE) | 
| 491 |  |                 dat->stream.cbc = (cbc128_f) aes192_t4_cbc_encrypt; | 
| 492 |  |             else if (mode == EVP_CIPH_CTR_MODE) | 
| 493 |  |                 dat->stream.ctr = (ctr128_f) aes192_t4_ctr32_encrypt; | 
| 494 |  |             else | 
| 495 |  |                 dat->stream.cbc = NULL; | 
| 496 |  |             break; | 
| 497 |  |         case 256: | 
| 498 |  |             if (mode == EVP_CIPH_CBC_MODE) | 
| 499 |  |                 dat->stream.cbc = (cbc128_f) aes256_t4_cbc_encrypt; | 
| 500 |  |             else if (mode == EVP_CIPH_CTR_MODE) | 
| 501 |  |                 dat->stream.ctr = (ctr128_f) aes256_t4_ctr32_encrypt; | 
| 502 |  |             else | 
| 503 |  |                 dat->stream.cbc = NULL; | 
| 504 |  |             break; | 
| 505 |  |         default: | 
| 506 |  |             ret = -1; | 
| 507 |  |         } | 
| 508 |  |     } | 
| 509 |  |  | 
| 510 |  |     if (ret < 0) { | 
| 511 |  |         ERR_raise(ERR_LIB_EVP, EVP_R_AES_KEY_SETUP_FAILED); | 
| 512 |  |         return 0; | 
| 513 |  |     } | 
| 514 |  |  | 
| 515 |  |     return 1; | 
| 516 |  | } | 
| 517 |  |  | 
| 518 |  | # define aes_t4_cbc_cipher aes_cbc_cipher | 
| 519 |  | static int aes_t4_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, | 
| 520 |  |                              const unsigned char *in, size_t len); | 
| 521 |  |  | 
| 522 |  | # define aes_t4_ecb_cipher aes_ecb_cipher | 
| 523 |  | static int aes_t4_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, | 
| 524 |  |                              const unsigned char *in, size_t len); | 
| 525 |  |  | 
| 526 |  | # define aes_t4_ofb_cipher aes_ofb_cipher | 
| 527 |  | static int aes_t4_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, | 
| 528 |  |                              const unsigned char *in, size_t len); | 
| 529 |  |  | 
| 530 |  | # define aes_t4_cfb_cipher aes_cfb_cipher | 
| 531 |  | static int aes_t4_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, | 
| 532 |  |                              const unsigned char *in, size_t len); | 
| 533 |  |  | 
| 534 |  | # define aes_t4_cfb8_cipher aes_cfb8_cipher | 
| 535 |  | static int aes_t4_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, | 
| 536 |  |                               const unsigned char *in, size_t len); | 
| 537 |  |  | 
| 538 |  | # define aes_t4_cfb1_cipher aes_cfb1_cipher | 
| 539 |  | static int aes_t4_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, | 
| 540 |  |                               const unsigned char *in, size_t len); | 
| 541 |  |  | 
| 542 |  | # define aes_t4_ctr_cipher aes_ctr_cipher | 
| 543 |  | static int aes_t4_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, | 
| 544 |  |                              const unsigned char *in, size_t len); | 
| 545 |  |  | 
| 546 |  | static int aes_t4_gcm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, | 
| 547 |  |                                const unsigned char *iv, int enc) | 
| 548 |  | { | 
| 549 |  |     EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,ctx); | 
| 550 |  |     if (!iv && !key) | 
| 551 |  |         return 1; | 
| 552 |  |     if (key) { | 
| 553 |  |         int bits = EVP_CIPHER_CTX_get_key_length(ctx) * 8; | 
| 554 |  |         aes_t4_set_encrypt_key(key, bits, &gctx->ks.ks); | 
| 555 |  |         CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks, | 
| 556 |  |                            (block128_f) aes_t4_encrypt); | 
| 557 |  |         switch (bits) { | 
| 558 |  |         case 128: | 
| 559 |  |             gctx->ctr = (ctr128_f) aes128_t4_ctr32_encrypt; | 
| 560 |  |             break; | 
| 561 |  |         case 192: | 
| 562 |  |             gctx->ctr = (ctr128_f) aes192_t4_ctr32_encrypt; | 
| 563 |  |             break; | 
| 564 |  |         case 256: | 
| 565 |  |             gctx->ctr = (ctr128_f) aes256_t4_ctr32_encrypt; | 
| 566 |  |             break; | 
| 567 |  |         default: | 
| 568 |  |             return 0; | 
| 569 |  |         } | 
| 570 |  |         /* | 
| 571 |  |          * If we have an iv can set it directly, otherwise use saved IV. | 
| 572 |  |          */ | 
| 573 |  |         if (iv == NULL && gctx->iv_set) | 
| 574 |  |             iv = gctx->iv; | 
| 575 |  |         if (iv) { | 
| 576 |  |             CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen); | 
| 577 |  |             gctx->iv_set = 1; | 
| 578 |  |         } | 
| 579 |  |         gctx->key_set = 1; | 
| 580 |  |     } else { | 
| 581 |  |         /* If key set use IV, otherwise copy */ | 
| 582 |  |         if (gctx->key_set) | 
| 583 |  |             CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen); | 
| 584 |  |         else | 
| 585 |  |             memcpy(gctx->iv, iv, gctx->ivlen); | 
| 586 |  |         gctx->iv_set = 1; | 
| 587 |  |         gctx->iv_gen = 0; | 
| 588 |  |     } | 
| 589 |  |     return 1; | 
| 590 |  | } | 
| 591 |  |  | 
| 592 |  | # define aes_t4_gcm_cipher aes_gcm_cipher | 
| 593 |  | static int aes_t4_gcm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, | 
| 594 |  |                              const unsigned char *in, size_t len); | 
| 595 |  |  | 
| 596 |  | static int aes_t4_xts_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, | 
| 597 |  |                                const unsigned char *iv, int enc) | 
| 598 |  | { | 
| 599 |  |     EVP_AES_XTS_CTX *xctx = EVP_C_DATA(EVP_AES_XTS_CTX,ctx); | 
| 600 |  |  | 
| 601 |  |     if (!iv && !key) | 
| 602 |  |         return 1; | 
| 603 |  |  | 
| 604 |  |     if (key) { | 
| 605 |  |         /* The key is two half length keys in reality */ | 
| 606 |  |         const int bytes = EVP_CIPHER_CTX_get_key_length(ctx) / 2; | 
| 607 |  |         const int bits = bytes * 8; | 
| 608 |  |  | 
| 609 |  |         /* | 
| 610 |  |          * Verify that the two keys are different. | 
| 611 |  |          * | 
| 612 |  |          * This addresses Rogaway's vulnerability. | 
| 613 |  |          * See comment in aes_xts_init_key() below. | 
| 614 |  |          */ | 
| 615 |  |         if ((!allow_insecure_decrypt || enc) | 
| 616 |  |                 && CRYPTO_memcmp(key, key + bytes, bytes) == 0) { | 
| 617 |  |             ERR_raise(ERR_LIB_EVP, EVP_R_XTS_DUPLICATED_KEYS); | 
| 618 |  |             return 0; | 
| 619 |  |         } | 
| 620 |  |  | 
| 621 |  |         xctx->stream = NULL; | 
| 622 |  |         /* key_len is two AES keys */ | 
| 623 |  |         if (enc) { | 
| 624 |  |             aes_t4_set_encrypt_key(key, bits, &xctx->ks1.ks); | 
| 625 |  |             xctx->xts.block1 = (block128_f) aes_t4_encrypt; | 
| 626 |  |             switch (bits) { | 
| 627 |  |             case 128: | 
| 628 |  |                 xctx->stream = aes128_t4_xts_encrypt; | 
| 629 |  |                 break; | 
| 630 |  |             case 256: | 
| 631 |  |                 xctx->stream = aes256_t4_xts_encrypt; | 
| 632 |  |                 break; | 
| 633 |  |             default: | 
| 634 |  |                 return 0; | 
| 635 |  |             } | 
| 636 |  |         } else { | 
| 637 |  |             aes_t4_set_decrypt_key(key, bits, &xctx->ks1.ks); | 
| 638 |  |             xctx->xts.block1 = (block128_f) aes_t4_decrypt; | 
| 639 |  |             switch (bits) { | 
| 640 |  |             case 128: | 
| 641 |  |                 xctx->stream = aes128_t4_xts_decrypt; | 
| 642 |  |                 break; | 
| 643 |  |             case 256: | 
| 644 |  |                 xctx->stream = aes256_t4_xts_decrypt; | 
| 645 |  |                 break; | 
| 646 |  |             default: | 
| 647 |  |                 return 0; | 
| 648 |  |             } | 
| 649 |  |         } | 
| 650 |  |  | 
| 651 |  |         aes_t4_set_encrypt_key(key + bytes, bits, &xctx->ks2.ks); | 
| 652 |  |         xctx->xts.block2 = (block128_f) aes_t4_encrypt; | 
| 653 |  |  | 
| 654 |  |         xctx->xts.key1 = &xctx->ks1; | 
| 655 |  |     } | 
| 656 |  |  | 
| 657 |  |     if (iv) { | 
| 658 |  |         xctx->xts.key2 = &xctx->ks2; | 
| 659 |  |         memcpy(ctx->iv, iv, 16); | 
| 660 |  |     } | 
| 661 |  |  | 
| 662 |  |     return 1; | 
| 663 |  | } | 
| 664 |  |  | 
| 665 |  | # define aes_t4_xts_cipher aes_xts_cipher | 
| 666 |  | static int aes_t4_xts_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, | 
| 667 |  |                              const unsigned char *in, size_t len); | 
| 668 |  |  | 
| 669 |  | static int aes_t4_ccm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, | 
| 670 |  |                                const unsigned char *iv, int enc) | 
| 671 |  | { | 
| 672 |  |     EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,ctx); | 
| 673 |  |     if (!iv && !key) | 
| 674 |  |         return 1; | 
| 675 |  |     if (key) { | 
| 676 |  |         int bits = EVP_CIPHER_CTX_get_key_length(ctx) * 8; | 
| 677 |  |         aes_t4_set_encrypt_key(key, bits, &cctx->ks.ks); | 
| 678 |  |         CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L, | 
| 679 |  |                            &cctx->ks, (block128_f) aes_t4_encrypt); | 
| 680 |  |         cctx->str = NULL; | 
| 681 |  |         cctx->key_set = 1; | 
| 682 |  |     } | 
| 683 |  |     if (iv) { | 
| 684 |  |         memcpy(ctx->iv, iv, 15 - cctx->L); | 
| 685 |  |         cctx->iv_set = 1; | 
| 686 |  |     } | 
| 687 |  |     return 1; | 
| 688 |  | } | 
| 689 |  |  | 
| 690 |  | # define aes_t4_ccm_cipher aes_ccm_cipher | 
| 691 |  | static int aes_t4_ccm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, | 
| 692 |  |                              const unsigned char *in, size_t len); | 
| 693 |  |  | 
| 694 |  | # ifndef OPENSSL_NO_OCB | 
| 695 |  | static int aes_t4_ocb_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, | 
| 696 |  |                                const unsigned char *iv, int enc) | 
| 697 |  | { | 
| 698 |  |     EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,ctx); | 
| 699 |  |     if (!iv && !key) | 
| 700 |  |         return 1; | 
| 701 |  |     if (key) { | 
| 702 |  |         do { | 
| 703 |  |             /* | 
| 704 |  |              * We set both the encrypt and decrypt key here because decrypt | 
| 705 |  |              * needs both. We could possibly optimise to remove setting the | 
| 706 |  |              * decrypt for an encryption operation. | 
| 707 |  |              */ | 
| 708 |  |             aes_t4_set_encrypt_key(key, EVP_CIPHER_CTX_get_key_length(ctx) * 8, | 
| 709 |  |                                    &octx->ksenc.ks); | 
| 710 |  |             aes_t4_set_decrypt_key(key, EVP_CIPHER_CTX_get_key_length(ctx) * 8, | 
| 711 |  |                                    &octx->ksdec.ks); | 
| 712 |  |             if (!CRYPTO_ocb128_init(&octx->ocb, | 
| 713 |  |                                     &octx->ksenc.ks, &octx->ksdec.ks, | 
| 714 |  |                                     (block128_f) aes_t4_encrypt, | 
| 715 |  |                                     (block128_f) aes_t4_decrypt, | 
| 716 |  |                                     NULL)) | 
| 717 |  |                 return 0; | 
| 718 |  |         } | 
| 719 |  |         while (0); | 
| 720 |  |  | 
| 721 |  |         /* | 
| 722 |  |          * If we have an iv we can set it directly, otherwise use saved IV. | 
| 723 |  |          */ | 
| 724 |  |         if (iv == NULL && octx->iv_set) | 
| 725 |  |             iv = octx->iv; | 
| 726 |  |         if (iv) { | 
| 727 |  |             if (CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen) | 
| 728 |  |                 != 1) | 
| 729 |  |                 return 0; | 
| 730 |  |             octx->iv_set = 1; | 
| 731 |  |         } | 
| 732 |  |         octx->key_set = 1; | 
| 733 |  |     } else { | 
| 734 |  |         /* If key set use IV, otherwise copy */ | 
| 735 |  |         if (octx->key_set) | 
| 736 |  |             CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen); | 
| 737 |  |         else | 
| 738 |  |             memcpy(octx->iv, iv, octx->ivlen); | 
| 739 |  |         octx->iv_set = 1; | 
| 740 |  |     } | 
| 741 |  |     return 1; | 
| 742 |  | } | 
| 743 |  |  | 
| 744 |  | #  define aes_t4_ocb_cipher aes_ocb_cipher | 
| 745 |  | static int aes_t4_ocb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, | 
| 746 |  |                              const unsigned char *in, size_t len); | 
| 747 |  | # endif                        /* OPENSSL_NO_OCB */ | 
| 748 |  |  | 
| 749 |  | # ifndef OPENSSL_NO_SIV | 
| 750 |  | #  define aes_t4_siv_init_key aes_siv_init_key | 
| 751 |  | #  define aes_t4_siv_cipher aes_siv_cipher | 
| 752 |  | # endif /* OPENSSL_NO_SIV */ | 
| 753 |  |  | 
| 754 |  | # define BLOCK_CIPHER_generic(nid,keylen,blocksize,ivlen,nmode,mode,MODE,flags) \ | 
| 755 |  | static const EVP_CIPHER aes_t4_##keylen##_##mode = { \ | 
| 756 |  |         nid##_##keylen##_##nmode,blocksize,keylen/8,ivlen, \ | 
| 757 |  |         flags|EVP_CIPH_##MODE##_MODE,   \ | 
| 758 |  |         EVP_ORIG_GLOBAL,                \ | 
| 759 |  |         aes_t4_init_key,                \ | 
| 760 |  |         aes_t4_##mode##_cipher,         \ | 
| 761 |  |         NULL,                           \ | 
| 762 |  |         sizeof(EVP_AES_KEY),            \ | 
| 763 |  |         NULL,NULL,NULL,NULL }; \ | 
| 764 |  | static const EVP_CIPHER aes_##keylen##_##mode = { \ | 
| 765 |  |         nid##_##keylen##_##nmode,blocksize,     \ | 
| 766 |  |         keylen/8,ivlen, \ | 
| 767 |  |         flags|EVP_CIPH_##MODE##_MODE,   \ | 
| 768 |  |         EVP_ORIG_GLOBAL,                \ | 
| 769 |  |         aes_init_key,                   \ | 
| 770 |  |         aes_##mode##_cipher,            \ | 
| 771 |  |         NULL,                           \ | 
| 772 |  |         sizeof(EVP_AES_KEY),            \ | 
| 773 |  |         NULL,NULL,NULL,NULL }; \ | 
| 774 |  | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ | 
| 775 |  | { return SPARC_AES_CAPABLE?&aes_t4_##keylen##_##mode:&aes_##keylen##_##mode; } | 
| 776 |  |  | 
| 777 |  | # define BLOCK_CIPHER_custom(nid,keylen,blocksize,ivlen,mode,MODE,flags) \ | 
| 778 |  | static const EVP_CIPHER aes_t4_##keylen##_##mode = { \ | 
| 779 |  |         nid##_##keylen##_##mode,blocksize, \ | 
| 780 |  |         (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE||EVP_CIPH_##MODE##_MODE==EVP_CIPH_SIV_MODE?2:1)*keylen/8, \ | 
| 781 |  |         ivlen,                          \ | 
| 782 |  |         flags|EVP_CIPH_##MODE##_MODE,   \ | 
| 783 |  |         EVP_ORIG_GLOBAL,                \ | 
| 784 |  |         aes_t4_##mode##_init_key,       \ | 
| 785 |  |         aes_t4_##mode##_cipher,         \ | 
| 786 |  |         aes_##mode##_cleanup,           \ | 
| 787 |  |         sizeof(EVP_AES_##MODE##_CTX),   \ | 
| 788 |  |         NULL,NULL,aes_##mode##_ctrl,NULL }; \ | 
| 789 |  | static const EVP_CIPHER aes_##keylen##_##mode = { \ | 
| 790 |  |         nid##_##keylen##_##mode,blocksize, \ | 
| 791 |  |         (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE||EVP_CIPH_##MODE##_MODE==EVP_CIPH_SIV_MODE?2:1)*keylen/8, \ | 
| 792 |  |         ivlen,                          \ | 
| 793 |  |         flags|EVP_CIPH_##MODE##_MODE,   \ | 
| 794 |  |         EVP_ORIG_GLOBAL,                \ | 
| 795 |  |         aes_##mode##_init_key,          \ | 
| 796 |  |         aes_##mode##_cipher,            \ | 
| 797 |  |         aes_##mode##_cleanup,           \ | 
| 798 |  |         sizeof(EVP_AES_##MODE##_CTX),   \ | 
| 799 |  |         NULL,NULL,aes_##mode##_ctrl,NULL }; \ | 
| 800 |  | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ | 
| 801 |  | { return SPARC_AES_CAPABLE?&aes_t4_##keylen##_##mode:&aes_##keylen##_##mode; } | 
| 802 |  |  | 
| 803 |  | #elif defined(S390X_aes_128_CAPABLE) | 
| 804 |  | /* IBM S390X support */ | 
| 805 |  | typedef struct { | 
| 806 |  |     union { | 
| 807 |  |         OSSL_UNION_ALIGN; | 
| 808 |  |         /*- | 
| 809 |  |          * KM-AES parameter block - begin | 
| 810 |  |          * (see z/Architecture Principles of Operation >= SA22-7832-06) | 
| 811 |  |          */ | 
| 812 |  |         struct { | 
| 813 |  |             unsigned char k[32]; | 
| 814 |  |         } param; | 
| 815 |  |         /* KM-AES parameter block - end */ | 
| 816 |  |     } km; | 
| 817 |  |     unsigned int fc; | 
| 818 |  | } S390X_AES_ECB_CTX; | 
| 819 |  |  | 
| 820 |  | typedef struct { | 
| 821 |  |     union { | 
| 822 |  |         OSSL_UNION_ALIGN; | 
| 823 |  |         /*- | 
| 824 |  |          * KMO-AES parameter block - begin | 
| 825 |  |          * (see z/Architecture Principles of Operation >= SA22-7832-08) | 
| 826 |  |          */ | 
| 827 |  |         struct { | 
| 828 |  |             unsigned char cv[16]; | 
| 829 |  |             unsigned char k[32]; | 
| 830 |  |         } param; | 
| 831 |  |         /* KMO-AES parameter block - end */ | 
| 832 |  |     } kmo; | 
| 833 |  |     unsigned int fc; | 
| 834 |  |  | 
| 835 |  |     int res; | 
| 836 |  | } S390X_AES_OFB_CTX; | 
| 837 |  |  | 
| 838 |  | typedef struct { | 
| 839 |  |     union { | 
| 840 |  |         OSSL_UNION_ALIGN; | 
| 841 |  |         /*- | 
| 842 |  |          * KMF-AES parameter block - begin | 
| 843 |  |          * (see z/Architecture Principles of Operation >= SA22-7832-08) | 
| 844 |  |          */ | 
| 845 |  |         struct { | 
| 846 |  |             unsigned char cv[16]; | 
| 847 |  |             unsigned char k[32]; | 
| 848 |  |         } param; | 
| 849 |  |         /* KMF-AES parameter block - end */ | 
| 850 |  |     } kmf; | 
| 851 |  |     unsigned int fc; | 
| 852 |  |  | 
| 853 |  |     int res; | 
| 854 |  | } S390X_AES_CFB_CTX; | 
| 855 |  |  | 
| 856 |  | typedef struct { | 
| 857 |  |     union { | 
| 858 |  |         OSSL_UNION_ALIGN; | 
| 859 |  |         /*- | 
| 860 |  |          * KMA-GCM-AES parameter block - begin | 
| 861 |  |          * (see z/Architecture Principles of Operation >= SA22-7832-11) | 
| 862 |  |          */ | 
| 863 |  |         struct { | 
| 864 |  |             unsigned char reserved[12]; | 
| 865 |  |             union { | 
| 866 |  |                 unsigned int w; | 
| 867 |  |                 unsigned char b[4]; | 
| 868 |  |             } cv; | 
| 869 |  |             union { | 
| 870 |  |                 unsigned long long g[2]; | 
| 871 |  |                 unsigned char b[16]; | 
| 872 |  |             } t; | 
| 873 |  |             unsigned char h[16]; | 
| 874 |  |             unsigned long long taadl; | 
| 875 |  |             unsigned long long tpcl; | 
| 876 |  |             union { | 
| 877 |  |                 unsigned long long g[2]; | 
| 878 |  |                 unsigned int w[4]; | 
| 879 |  |             } j0; | 
| 880 |  |             unsigned char k[32]; | 
| 881 |  |         } param; | 
| 882 |  |         /* KMA-GCM-AES parameter block - end */ | 
| 883 |  |     } kma; | 
| 884 |  |     unsigned int fc; | 
| 885 |  |     int key_set; | 
| 886 |  |  | 
| 887 |  |     unsigned char *iv; | 
| 888 |  |     int ivlen; | 
| 889 |  |     int iv_set; | 
| 890 |  |     int iv_gen; | 
| 891 |  |  | 
| 892 |  |     int taglen; | 
| 893 |  |  | 
| 894 |  |     unsigned char ares[16]; | 
| 895 |  |     unsigned char mres[16]; | 
| 896 |  |     unsigned char kres[16]; | 
| 897 |  |     int areslen; | 
| 898 |  |     int mreslen; | 
| 899 |  |     int kreslen; | 
| 900 |  |  | 
| 901 |  |     int tls_aad_len; | 
| 902 |  |     uint64_t tls_enc_records;   /* Number of TLS records encrypted */ | 
| 903 |  | } S390X_AES_GCM_CTX; | 
| 904 |  |  | 
| 905 |  | typedef struct { | 
| 906 |  |     union { | 
| 907 |  |         OSSL_UNION_ALIGN; | 
| 908 |  |         /*- | 
| 909 |  |          * Padding is chosen so that ccm.kmac_param.k overlaps with key.k and | 
| 910 |  |          * ccm.fc with key.k.rounds. Remember that on s390x, an AES_KEY's | 
| 911 |  |          * rounds field is used to store the function code and that the key | 
| 912 |  |          * schedule is not stored (if aes hardware support is detected). | 
| 913 |  |          */ | 
| 914 |  |         struct { | 
| 915 |  |             unsigned char pad[16]; | 
| 916 |  |             AES_KEY k; | 
| 917 |  |         } key; | 
| 918 |  |  | 
| 919 |  |         struct { | 
| 920 |  |             /*- | 
| 921 |  |              * KMAC-AES parameter block - begin | 
| 922 |  |              * (see z/Architecture Principles of Operation >= SA22-7832-08) | 
| 923 |  |              */ | 
| 924 |  |             struct { | 
| 925 |  |                 union { | 
| 926 |  |                     unsigned long long g[2]; | 
| 927 |  |                     unsigned char b[16]; | 
| 928 |  |                 } icv; | 
| 929 |  |                 unsigned char k[32]; | 
| 930 |  |             } kmac_param; | 
| 931 |  |             /* KMAC-AES parameter block - end */ | 
| 932 |  |  | 
| 933 |  |             union { | 
| 934 |  |                 unsigned long long g[2]; | 
| 935 |  |                 unsigned char b[16]; | 
| 936 |  |             } nonce; | 
| 937 |  |             union { | 
| 938 |  |                 unsigned long long g[2]; | 
| 939 |  |                 unsigned char b[16]; | 
| 940 |  |             } buf; | 
| 941 |  |  | 
| 942 |  |             unsigned long long blocks; | 
| 943 |  |             int l; | 
| 944 |  |             int m; | 
| 945 |  |             int tls_aad_len; | 
| 946 |  |             int iv_set; | 
| 947 |  |             int tag_set; | 
| 948 |  |             int len_set; | 
| 949 |  |             int key_set; | 
| 950 |  |  | 
| 951 |  |             unsigned char pad[140]; | 
| 952 |  |             unsigned int fc; | 
| 953 |  |         } ccm; | 
| 954 |  |     } aes; | 
| 955 |  | } S390X_AES_CCM_CTX; | 
| 956 |  |  | 
| 957 |  | # define s390x_aes_init_key aes_init_key | 
| 958 |  | static int s390x_aes_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, | 
| 959 |  |                               const unsigned char *iv, int enc); | 
| 960 |  |  | 
| 961 |  | # define S390X_AES_CBC_CTX              EVP_AES_KEY | 
| 962 |  |  | 
| 963 |  | # define s390x_aes_cbc_init_key aes_init_key | 
| 964 |  |  | 
| 965 |  | # define s390x_aes_cbc_cipher aes_cbc_cipher | 
| 966 |  | static int s390x_aes_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, | 
| 967 |  |                                 const unsigned char *in, size_t len); | 
| 968 |  |  | 
| 969 |  | static int s390x_aes_ecb_init_key(EVP_CIPHER_CTX *ctx, | 
| 970 |  |                                   const unsigned char *key, | 
| 971 |  |                                   const unsigned char *iv, int enc) | 
| 972 |  | { | 
| 973 |  |     S390X_AES_ECB_CTX *cctx = EVP_C_DATA(S390X_AES_ECB_CTX, ctx); | 
| 974 |  |     const int keylen = EVP_CIPHER_CTX_get_key_length(ctx); | 
| 975 |  |  | 
| 976 |  |     cctx->fc = S390X_AES_FC(keylen); | 
| 977 |  |     if (!enc) | 
| 978 |  |         cctx->fc |= S390X_DECRYPT; | 
| 979 |  |  | 
| 980 |  |     memcpy(cctx->km.param.k, key, keylen); | 
| 981 |  |     return 1; | 
| 982 |  | } | 
| 983 |  |  | 
| 984 |  | static int s390x_aes_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, | 
| 985 |  |                                 const unsigned char *in, size_t len) | 
| 986 |  | { | 
| 987 |  |     S390X_AES_ECB_CTX *cctx = EVP_C_DATA(S390X_AES_ECB_CTX, ctx); | 
| 988 |  |  | 
| 989 |  |     s390x_km(in, len, out, cctx->fc, &cctx->km.param); | 
| 990 |  |     return 1; | 
| 991 |  | } | 
| 992 |  |  | 
| 993 |  | static int s390x_aes_ofb_init_key(EVP_CIPHER_CTX *ctx, | 
| 994 |  |                                   const unsigned char *key, | 
| 995 |  |                                   const unsigned char *ivec, int enc) | 
| 996 |  | { | 
| 997 |  |     S390X_AES_OFB_CTX *cctx = EVP_C_DATA(S390X_AES_OFB_CTX, ctx); | 
| 998 |  |     const unsigned char *iv = ctx->oiv; | 
| 999 |  |     const int keylen = EVP_CIPHER_CTX_get_key_length(ctx); | 
| 1000 |  |     const int ivlen = EVP_CIPHER_CTX_get_iv_length(ctx); | 
| 1001 |  |  | 
| 1002 |  |     memcpy(cctx->kmo.param.cv, iv, ivlen); | 
| 1003 |  |     memcpy(cctx->kmo.param.k, key, keylen); | 
| 1004 |  |     cctx->fc = S390X_AES_FC(keylen); | 
| 1005 |  |     cctx->res = 0; | 
| 1006 |  |     return 1; | 
| 1007 |  | } | 
| 1008 |  |  | 
| 1009 |  | static int s390x_aes_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, | 
| 1010 |  |                                 const unsigned char *in, size_t len) | 
| 1011 |  | { | 
| 1012 |  |     S390X_AES_OFB_CTX *cctx = EVP_C_DATA(S390X_AES_OFB_CTX, ctx); | 
| 1013 |  |     const int ivlen = EVP_CIPHER_CTX_get_iv_length(ctx); | 
| 1014 |  |     unsigned char *iv = EVP_CIPHER_CTX_iv_noconst(ctx); | 
| 1015 |  |     int n = cctx->res; | 
| 1016 |  |     int rem; | 
| 1017 |  |  | 
| 1018 |  |     memcpy(cctx->kmo.param.cv, iv, ivlen); | 
| 1019 |  |     while (n && len) { | 
| 1020 |  |         *out = *in ^ cctx->kmo.param.cv[n]; | 
| 1021 |  |         n = (n + 1) & 0xf; | 
| 1022 |  |         --len; | 
| 1023 |  |         ++in; | 
| 1024 |  |         ++out; | 
| 1025 |  |     } | 
| 1026 |  |  | 
| 1027 |  |     rem = len & 0xf; | 
| 1028 |  |  | 
| 1029 |  |     len &= ~(size_t)0xf; | 
| 1030 |  |     if (len) { | 
| 1031 |  |         s390x_kmo(in, len, out, cctx->fc, &cctx->kmo.param); | 
| 1032 |  |  | 
| 1033 |  |         out += len; | 
| 1034 |  |         in += len; | 
| 1035 |  |     } | 
| 1036 |  |  | 
| 1037 |  |     if (rem) { | 
| 1038 |  |         s390x_km(cctx->kmo.param.cv, 16, cctx->kmo.param.cv, cctx->fc, | 
| 1039 |  |                  cctx->kmo.param.k); | 
| 1040 |  |  | 
| 1041 |  |         while (rem--) { | 
| 1042 |  |             out[n] = in[n] ^ cctx->kmo.param.cv[n]; | 
| 1043 |  |             ++n; | 
| 1044 |  |         } | 
| 1045 |  |     } | 
| 1046 |  |  | 
| 1047 |  |     memcpy(iv, cctx->kmo.param.cv, ivlen); | 
| 1048 |  |     cctx->res = n; | 
| 1049 |  |     return 1; | 
| 1050 |  | } | 
| 1051 |  |  | 
| 1052 |  | static int s390x_aes_cfb_init_key(EVP_CIPHER_CTX *ctx, | 
| 1053 |  |                                   const unsigned char *key, | 
| 1054 |  |                                   const unsigned char *ivec, int enc) | 
| 1055 |  | { | 
| 1056 |  |     S390X_AES_CFB_CTX *cctx = EVP_C_DATA(S390X_AES_CFB_CTX, ctx); | 
| 1057 |  |     const unsigned char *iv = ctx->oiv; | 
| 1058 |  |     const int keylen = EVP_CIPHER_CTX_get_key_length(ctx); | 
| 1059 |  |     const int ivlen = EVP_CIPHER_CTX_get_iv_length(ctx); | 
| 1060 |  |  | 
| 1061 |  |     cctx->fc = S390X_AES_FC(keylen); | 
| 1062 |  |     cctx->fc |= 16 << 24;   /* 16 bytes cipher feedback */ | 
| 1063 |  |     if (!enc) | 
| 1064 |  |         cctx->fc |= S390X_DECRYPT; | 
| 1065 |  |  | 
| 1066 |  |     cctx->res = 0; | 
| 1067 |  |     memcpy(cctx->kmf.param.cv, iv, ivlen); | 
| 1068 |  |     memcpy(cctx->kmf.param.k, key, keylen); | 
| 1069 |  |     return 1; | 
| 1070 |  | } | 
| 1071 |  |  | 
| 1072 |  | static int s390x_aes_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, | 
| 1073 |  |                                 const unsigned char *in, size_t len) | 
| 1074 |  | { | 
| 1075 |  |     S390X_AES_CFB_CTX *cctx = EVP_C_DATA(S390X_AES_CFB_CTX, ctx); | 
| 1076 |  |     const int keylen = EVP_CIPHER_CTX_get_key_length(ctx); | 
| 1077 |  |     const int enc = EVP_CIPHER_CTX_is_encrypting(ctx); | 
| 1078 |  |     const int ivlen = EVP_CIPHER_CTX_get_iv_length(ctx); | 
| 1079 |  |     unsigned char *iv = EVP_CIPHER_CTX_iv_noconst(ctx); | 
| 1080 |  |     int n = cctx->res; | 
| 1081 |  |     int rem; | 
| 1082 |  |     unsigned char tmp; | 
| 1083 |  |  | 
| 1084 |  |     memcpy(cctx->kmf.param.cv, iv, ivlen); | 
| 1085 |  |     while (n && len) { | 
| 1086 |  |         tmp = *in; | 
| 1087 |  |         *out = cctx->kmf.param.cv[n] ^ tmp; | 
| 1088 |  |         cctx->kmf.param.cv[n] = enc ? *out : tmp; | 
| 1089 |  |         n = (n + 1) & 0xf; | 
| 1090 |  |         --len; | 
| 1091 |  |         ++in; | 
| 1092 |  |         ++out; | 
| 1093 |  |     } | 
| 1094 |  |  | 
| 1095 |  |     rem = len & 0xf; | 
| 1096 |  |  | 
| 1097 |  |     len &= ~(size_t)0xf; | 
| 1098 |  |     if (len) { | 
| 1099 |  |         s390x_kmf(in, len, out, cctx->fc, &cctx->kmf.param); | 
| 1100 |  |  | 
| 1101 |  |         out += len; | 
| 1102 |  |         in += len; | 
| 1103 |  |     } | 
| 1104 |  |  | 
| 1105 |  |     if (rem) { | 
| 1106 |  |         s390x_km(cctx->kmf.param.cv, 16, cctx->kmf.param.cv, | 
| 1107 |  |                  S390X_AES_FC(keylen), cctx->kmf.param.k); | 
| 1108 |  |  | 
| 1109 |  |         while (rem--) { | 
| 1110 |  |             tmp = in[n]; | 
| 1111 |  |             out[n] = cctx->kmf.param.cv[n] ^ tmp; | 
| 1112 |  |             cctx->kmf.param.cv[n] = enc ? out[n] : tmp; | 
| 1113 |  |             ++n; | 
| 1114 |  |         } | 
| 1115 |  |     } | 
| 1116 |  |  | 
| 1117 |  |     memcpy(iv, cctx->kmf.param.cv, ivlen); | 
| 1118 |  |     cctx->res = n; | 
| 1119 |  |     return 1; | 
| 1120 |  | } | 
| 1121 |  |  | 
| 1122 |  | static int s390x_aes_cfb8_init_key(EVP_CIPHER_CTX *ctx, | 
| 1123 |  |                                    const unsigned char *key, | 
| 1124 |  |                                    const unsigned char *ivec, int enc) | 
| 1125 |  | { | 
| 1126 |  |     S390X_AES_CFB_CTX *cctx = EVP_C_DATA(S390X_AES_CFB_CTX, ctx); | 
| 1127 |  |     const unsigned char *iv = ctx->oiv; | 
| 1128 |  |     const int keylen = EVP_CIPHER_CTX_get_key_length(ctx); | 
| 1129 |  |     const int ivlen = EVP_CIPHER_CTX_get_iv_length(ctx); | 
| 1130 |  |  | 
| 1131 |  |     cctx->fc = S390X_AES_FC(keylen); | 
| 1132 |  |     cctx->fc |= 1 << 24;   /* 1 byte cipher feedback */ | 
| 1133 |  |     if (!enc) | 
| 1134 |  |         cctx->fc |= S390X_DECRYPT; | 
| 1135 |  |  | 
| 1136 |  |     memcpy(cctx->kmf.param.cv, iv, ivlen); | 
| 1137 |  |     memcpy(cctx->kmf.param.k, key, keylen); | 
| 1138 |  |     return 1; | 
| 1139 |  | } | 
| 1140 |  |  | 
| 1141 |  | static int s390x_aes_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, | 
| 1142 |  |                                  const unsigned char *in, size_t len) | 
| 1143 |  | { | 
| 1144 |  |     S390X_AES_CFB_CTX *cctx = EVP_C_DATA(S390X_AES_CFB_CTX, ctx); | 
| 1145 |  |     const int ivlen = EVP_CIPHER_CTX_get_iv_length(ctx); | 
| 1146 |  |     unsigned char *iv = EVP_CIPHER_CTX_iv_noconst(ctx); | 
| 1147 |  |  | 
| 1148 |  |     memcpy(cctx->kmf.param.cv, iv, ivlen); | 
| 1149 |  |     s390x_kmf(in, len, out, cctx->fc, &cctx->kmf.param); | 
| 1150 |  |     memcpy(iv, cctx->kmf.param.cv, ivlen); | 
| 1151 |  |     return 1; | 
| 1152 |  | } | 
| 1153 |  |  | 
| 1154 |  | # define s390x_aes_cfb1_init_key aes_init_key | 
| 1155 |  |  | 
| 1156 |  | # define s390x_aes_cfb1_cipher aes_cfb1_cipher | 
| 1157 |  | static int s390x_aes_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, | 
| 1158 |  |                                  const unsigned char *in, size_t len); | 
| 1159 |  |  | 
| 1160 |  | # define S390X_AES_CTR_CTX              EVP_AES_KEY | 
| 1161 |  |  | 
| 1162 |  | # define s390x_aes_ctr_init_key aes_init_key | 
| 1163 |  |  | 
| 1164 |  | # define s390x_aes_ctr_cipher aes_ctr_cipher | 
| 1165 |  | static int s390x_aes_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, | 
| 1166 |  |                                 const unsigned char *in, size_t len); | 
| 1167 |  |  | 
| 1168 |  | /* iv + padding length for iv lengths != 12 */ | 
| 1169 |  | # define S390X_gcm_ivpadlen(i)  ((((i) + 15) >> 4 << 4) + 16) | 
| 1170 |  |  | 
| 1171 |  | /*- | 
| 1172 |  |  * Process additional authenticated data. Returns 0 on success. Code is | 
| 1173 |  |  * big-endian. | 
| 1174 |  |  */ | 
| 1175 |  | static int s390x_aes_gcm_aad(S390X_AES_GCM_CTX *ctx, const unsigned char *aad, | 
| 1176 |  |                              size_t len) | 
| 1177 |  | { | 
| 1178 |  |     unsigned long long alen; | 
| 1179 |  |     int n, rem; | 
| 1180 |  |  | 
| 1181 |  |     if (ctx->kma.param.tpcl) | 
| 1182 |  |         return -2; | 
| 1183 |  |  | 
| 1184 |  |     alen = ctx->kma.param.taadl + len; | 
| 1185 |  |     if (alen > (U64(1) << 61) || (sizeof(len) == 8 && alen < len)) | 
| 1186 |  |         return -1; | 
| 1187 |  |     ctx->kma.param.taadl = alen; | 
| 1188 |  |  | 
| 1189 |  |     n = ctx->areslen; | 
| 1190 |  |     if (n) { | 
| 1191 |  |         while (n && len) { | 
| 1192 |  |             ctx->ares[n] = *aad; | 
| 1193 |  |             n = (n + 1) & 0xf; | 
| 1194 |  |             ++aad; | 
| 1195 |  |             --len; | 
| 1196 |  |         } | 
| 1197 |  |         /* ctx->ares contains a complete block if offset has wrapped around */ | 
| 1198 |  |         if (!n) { | 
| 1199 |  |             s390x_kma(ctx->ares, 16, NULL, 0, NULL, ctx->fc, &ctx->kma.param); | 
| 1200 |  |             ctx->fc |= S390X_KMA_HS; | 
| 1201 |  |         } | 
| 1202 |  |         ctx->areslen = n; | 
| 1203 |  |     } | 
| 1204 |  |  | 
| 1205 |  |     rem = len & 0xf; | 
| 1206 |  |  | 
| 1207 |  |     len &= ~(size_t)0xf; | 
| 1208 |  |     if (len) { | 
| 1209 |  |         s390x_kma(aad, len, NULL, 0, NULL, ctx->fc, &ctx->kma.param); | 
| 1210 |  |         aad += len; | 
| 1211 |  |         ctx->fc |= S390X_KMA_HS; | 
| 1212 |  |     } | 
| 1213 |  |  | 
| 1214 |  |     if (rem) { | 
| 1215 |  |         ctx->areslen = rem; | 
| 1216 |  |  | 
| 1217 |  |         do { | 
| 1218 |  |             --rem; | 
| 1219 |  |             ctx->ares[rem] = aad[rem]; | 
| 1220 |  |         } while (rem); | 
| 1221 |  |     } | 
| 1222 |  |     return 0; | 
| 1223 |  | } | 
| 1224 |  |  | 
| 1225 |  | /*- | 
| 1226 |  |  * En/de-crypt plain/cipher-text and authenticate ciphertext. Returns 0 for | 
| 1227 |  |  * success. Code is big-endian. | 
| 1228 |  |  */ | 
| 1229 |  | static int s390x_aes_gcm(S390X_AES_GCM_CTX *ctx, const unsigned char *in, | 
| 1230 |  |                          unsigned char *out, size_t len) | 
| 1231 |  | { | 
| 1232 |  |     const unsigned char *inptr; | 
| 1233 |  |     unsigned long long mlen; | 
| 1234 |  |     union { | 
| 1235 |  |         unsigned int w[4]; | 
| 1236 |  |         unsigned char b[16]; | 
| 1237 |  |     } buf; | 
| 1238 |  |     size_t inlen; | 
| 1239 |  |     int n, rem, i; | 
| 1240 |  |  | 
| 1241 |  |     mlen = ctx->kma.param.tpcl + len; | 
| 1242 |  |     if (mlen > ((U64(1) << 36) - 32) || (sizeof(len) == 8 && mlen < len)) | 
| 1243 |  |         return -1; | 
| 1244 |  |     ctx->kma.param.tpcl = mlen; | 
| 1245 |  |  | 
| 1246 |  |     n = ctx->mreslen; | 
| 1247 |  |     if (n) { | 
| 1248 |  |         inptr = in; | 
| 1249 |  |         inlen = len; | 
| 1250 |  |         while (n && inlen) { | 
| 1251 |  |             ctx->mres[n] = *inptr; | 
| 1252 |  |             n = (n + 1) & 0xf; | 
| 1253 |  |             ++inptr; | 
| 1254 |  |             --inlen; | 
| 1255 |  |         } | 
| 1256 |  |         /* ctx->mres contains a complete block if offset has wrapped around */ | 
| 1257 |  |         if (!n) { | 
| 1258 |  |             s390x_kma(ctx->ares, ctx->areslen, ctx->mres, 16, buf.b, | 
| 1259 |  |                       ctx->fc | S390X_KMA_LAAD, &ctx->kma.param); | 
| 1260 |  |             ctx->fc |= S390X_KMA_HS; | 
| 1261 |  |             ctx->areslen = 0; | 
| 1262 |  |  | 
| 1263 |  |             /* previous call already encrypted/decrypted its remainder, | 
| 1264 |  |              * see comment below */ | 
| 1265 |  |             n = ctx->mreslen; | 
| 1266 |  |             while (n) { | 
| 1267 |  |                 *out = buf.b[n]; | 
| 1268 |  |                 n = (n + 1) & 0xf; | 
| 1269 |  |                 ++out; | 
| 1270 |  |                 ++in; | 
| 1271 |  |                 --len; | 
| 1272 |  |             } | 
| 1273 |  |             ctx->mreslen = 0; | 
| 1274 |  |         } | 
| 1275 |  |     } | 
| 1276 |  |  | 
| 1277 |  |     rem = len & 0xf; | 
| 1278 |  |  | 
| 1279 |  |     len &= ~(size_t)0xf; | 
| 1280 |  |     if (len) { | 
| 1281 |  |         s390x_kma(ctx->ares, ctx->areslen, in, len, out, | 
| 1282 |  |                   ctx->fc | S390X_KMA_LAAD, &ctx->kma.param); | 
| 1283 |  |         in += len; | 
| 1284 |  |         out += len; | 
| 1285 |  |         ctx->fc |= S390X_KMA_HS; | 
| 1286 |  |         ctx->areslen = 0; | 
| 1287 |  |     } | 
| 1288 |  |  | 
| 1289 |  |     /*- | 
| 1290 |  |      * If there is a remainder, it has to be saved such that it can be | 
| 1291 |  |      * processed by kma later. However, we also have to do the for-now | 
| 1292 |  |      * unauthenticated encryption/decryption part here and now... | 
| 1293 |  |      */ | 
| 1294 |  |     if (rem) { | 
| 1295 |  |         if (!ctx->mreslen) { | 
| 1296 |  |             buf.w[0] = ctx->kma.param.j0.w[0]; | 
| 1297 |  |             buf.w[1] = ctx->kma.param.j0.w[1]; | 
| 1298 |  |             buf.w[2] = ctx->kma.param.j0.w[2]; | 
| 1299 |  |             buf.w[3] = ctx->kma.param.cv.w + 1; | 
| 1300 |  |             s390x_km(buf.b, 16, ctx->kres, ctx->fc & 0x1f, &ctx->kma.param.k); | 
| 1301 |  |         } | 
| 1302 |  |  | 
| 1303 |  |         n = ctx->mreslen; | 
| 1304 |  |         for (i = 0; i < rem; i++) { | 
| 1305 |  |             ctx->mres[n + i] = in[i]; | 
| 1306 |  |             out[i] = in[i] ^ ctx->kres[n + i]; | 
| 1307 |  |         } | 
| 1308 |  |  | 
| 1309 |  |         ctx->mreslen += rem; | 
| 1310 |  |     } | 
| 1311 |  |     return 0; | 
| 1312 |  | } | 
| 1313 |  |  | 
| 1314 |  | /*- | 
| 1315 |  |  * Initialize context structure. Code is big-endian. | 
| 1316 |  |  */ | 
| 1317 |  | static void s390x_aes_gcm_setiv(S390X_AES_GCM_CTX *ctx, | 
| 1318 |  |                                 const unsigned char *iv) | 
| 1319 |  | { | 
| 1320 |  |     ctx->kma.param.t.g[0] = 0; | 
| 1321 |  |     ctx->kma.param.t.g[1] = 0; | 
| 1322 |  |     ctx->kma.param.tpcl = 0; | 
| 1323 |  |     ctx->kma.param.taadl = 0; | 
| 1324 |  |     ctx->mreslen = 0; | 
| 1325 |  |     ctx->areslen = 0; | 
| 1326 |  |     ctx->kreslen = 0; | 
| 1327 |  |  | 
| 1328 |  |     if (ctx->ivlen == 12) { | 
| 1329 |  |         memcpy(&ctx->kma.param.j0, iv, ctx->ivlen); | 
| 1330 |  |         ctx->kma.param.j0.w[3] = 1; | 
| 1331 |  |         ctx->kma.param.cv.w = 1; | 
| 1332 |  |     } else { | 
| 1333 |  |         /* ctx->iv has the right size and is already padded. */ | 
| 1334 |  |         memcpy(ctx->iv, iv, ctx->ivlen); | 
| 1335 |  |         s390x_kma(ctx->iv, S390X_gcm_ivpadlen(ctx->ivlen), NULL, 0, NULL, | 
| 1336 |  |                   ctx->fc, &ctx->kma.param); | 
| 1337 |  |         ctx->fc |= S390X_KMA_HS; | 
| 1338 |  |  | 
| 1339 |  |         ctx->kma.param.j0.g[0] = ctx->kma.param.t.g[0]; | 
| 1340 |  |         ctx->kma.param.j0.g[1] = ctx->kma.param.t.g[1]; | 
| 1341 |  |         ctx->kma.param.cv.w = ctx->kma.param.j0.w[3]; | 
| 1342 |  |         ctx->kma.param.t.g[0] = 0; | 
| 1343 |  |         ctx->kma.param.t.g[1] = 0; | 
| 1344 |  |     } | 
| 1345 |  | } | 
| 1346 |  |  | 
| 1347 |  | /*- | 
| 1348 |  |  * Performs various operations on the context structure depending on control | 
| 1349 |  |  * type. Returns 1 for success, 0 for failure and -1 for unknown control type. | 
| 1350 |  |  * Code is big-endian. | 
| 1351 |  |  */ | 
| 1352 |  | static int s390x_aes_gcm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr) | 
| 1353 |  | { | 
| 1354 |  |     S390X_AES_GCM_CTX *gctx = EVP_C_DATA(S390X_AES_GCM_CTX, c); | 
| 1355 |  |     S390X_AES_GCM_CTX *gctx_out; | 
| 1356 |  |     EVP_CIPHER_CTX *out; | 
| 1357 |  |     unsigned char *buf; | 
| 1358 |  |     int ivlen, enc, len; | 
| 1359 |  |  | 
| 1360 |  |     switch (type) { | 
| 1361 |  |     case EVP_CTRL_INIT: | 
| 1362 |  |         ivlen = EVP_CIPHER_get_iv_length(c->cipher); | 
| 1363 |  |         gctx->key_set = 0; | 
| 1364 |  |         gctx->iv_set = 0; | 
| 1365 |  |         gctx->ivlen = ivlen; | 
| 1366 |  |         gctx->iv = c->iv; | 
| 1367 |  |         gctx->taglen = -1; | 
| 1368 |  |         gctx->iv_gen = 0; | 
| 1369 |  |         gctx->tls_aad_len = -1; | 
| 1370 |  |         return 1; | 
| 1371 |  |  | 
| 1372 |  |     case EVP_CTRL_GET_IVLEN: | 
| 1373 |  |         *(int *)ptr = gctx->ivlen; | 
| 1374 |  |         return 1; | 
| 1375 |  |  | 
| 1376 |  |     case EVP_CTRL_AEAD_SET_IVLEN: | 
| 1377 |  |         if (arg <= 0) | 
| 1378 |  |             return 0; | 
| 1379 |  |  | 
| 1380 |  |         if (arg != 12) { | 
| 1381 |  |             len = S390X_gcm_ivpadlen(arg); | 
| 1382 |  |  | 
| 1383 |  |             /* Allocate memory for iv if needed. */ | 
| 1384 |  |             if (gctx->ivlen == 12 || len > S390X_gcm_ivpadlen(gctx->ivlen)) { | 
| 1385 |  |                 if (gctx->iv != c->iv) | 
| 1386 |  |                     OPENSSL_free(gctx->iv); | 
| 1387 |  |  | 
| 1388 |  |                 if ((gctx->iv = OPENSSL_malloc(len)) == NULL) { | 
| 1389 |  |                     ERR_raise(ERR_LIB_EVP, ERR_R_MALLOC_FAILURE); | 
| 1390 |  |                     return 0; | 
| 1391 |  |                 } | 
| 1392 |  |             } | 
| 1393 |  |             /* Add padding. */ | 
| 1394 |  |             memset(gctx->iv + arg, 0, len - arg - 8); | 
| 1395 |  |             *((unsigned long long *)(gctx->iv + len - 8)) = arg << 3; | 
| 1396 |  |         } | 
| 1397 |  |         gctx->ivlen = arg; | 
| 1398 |  |         return 1; | 
| 1399 |  |  | 
| 1400 |  |     case EVP_CTRL_AEAD_SET_TAG: | 
| 1401 |  |         buf = EVP_CIPHER_CTX_buf_noconst(c); | 
| 1402 |  |         enc = EVP_CIPHER_CTX_is_encrypting(c); | 
| 1403 |  |         if (arg <= 0 || arg > 16 || enc) | 
| 1404 |  |             return 0; | 
| 1405 |  |  | 
| 1406 |  |         memcpy(buf, ptr, arg); | 
| 1407 |  |         gctx->taglen = arg; | 
| 1408 |  |         return 1; | 
| 1409 |  |  | 
| 1410 |  |     case EVP_CTRL_AEAD_GET_TAG: | 
| 1411 |  |         enc = EVP_CIPHER_CTX_is_encrypting(c); | 
| 1412 |  |         if (arg <= 0 || arg > 16 || !enc || gctx->taglen < 0) | 
| 1413 |  |             return 0; | 
| 1414 |  |  | 
| 1415 |  |         memcpy(ptr, gctx->kma.param.t.b, arg); | 
| 1416 |  |         return 1; | 
| 1417 |  |  | 
| 1418 |  |     case EVP_CTRL_GCM_SET_IV_FIXED: | 
| 1419 |  |         /* Special case: -1 length restores whole iv */ | 
| 1420 |  |         if (arg == -1) { | 
| 1421 |  |             memcpy(gctx->iv, ptr, gctx->ivlen); | 
| 1422 |  |             gctx->iv_gen = 1; | 
| 1423 |  |             return 1; | 
| 1424 |  |         } | 
| 1425 |  |         /* | 
| 1426 |  |          * Fixed field must be at least 4 bytes and invocation field at least | 
| 1427 |  |          * 8. | 
| 1428 |  |          */ | 
| 1429 |  |         if ((arg < 4) || (gctx->ivlen - arg) < 8) | 
| 1430 |  |             return 0; | 
| 1431 |  |  | 
| 1432 |  |         if (arg) | 
| 1433 |  |             memcpy(gctx->iv, ptr, arg); | 
| 1434 |  |  | 
| 1435 |  |         enc = EVP_CIPHER_CTX_is_encrypting(c); | 
| 1436 |  |         if (enc && RAND_bytes(gctx->iv + arg, gctx->ivlen - arg) <= 0) | 
| 1437 |  |             return 0; | 
| 1438 |  |  | 
| 1439 |  |         gctx->iv_gen = 1; | 
| 1440 |  |         return 1; | 
| 1441 |  |  | 
| 1442 |  |     case EVP_CTRL_GCM_IV_GEN: | 
| 1443 |  |         if (gctx->iv_gen == 0 || gctx->key_set == 0) | 
| 1444 |  |             return 0; | 
| 1445 |  |  | 
| 1446 |  |         s390x_aes_gcm_setiv(gctx, gctx->iv); | 
| 1447 |  |  | 
| 1448 |  |         if (arg <= 0 || arg > gctx->ivlen) | 
| 1449 |  |             arg = gctx->ivlen; | 
| 1450 |  |  | 
| 1451 |  |         memcpy(ptr, gctx->iv + gctx->ivlen - arg, arg); | 
| 1452 |  |         /* | 
| 1453 |  |          * Invocation field will be at least 8 bytes in size and so no need | 
| 1454 |  |          * to check wrap around or increment more than last 8 bytes. | 
| 1455 |  |          */ | 
| 1456 |  |         ctr64_inc(gctx->iv + gctx->ivlen - 8); | 
| 1457 |  |         gctx->iv_set = 1; | 
| 1458 |  |         return 1; | 
| 1459 |  |  | 
| 1460 |  |     case EVP_CTRL_GCM_SET_IV_INV: | 
| 1461 |  |         enc = EVP_CIPHER_CTX_is_encrypting(c); | 
| 1462 |  |         if (gctx->iv_gen == 0 || gctx->key_set == 0 || enc) | 
| 1463 |  |             return 0; | 
| 1464 |  |  | 
| 1465 |  |         memcpy(gctx->iv + gctx->ivlen - arg, ptr, arg); | 
| 1466 |  |         s390x_aes_gcm_setiv(gctx, gctx->iv); | 
| 1467 |  |         gctx->iv_set = 1; | 
| 1468 |  |         return 1; | 
| 1469 |  |  | 
| 1470 |  |     case EVP_CTRL_AEAD_TLS1_AAD: | 
| 1471 |  |         /* Save the aad for later use. */ | 
| 1472 |  |         if (arg != EVP_AEAD_TLS1_AAD_LEN) | 
| 1473 |  |             return 0; | 
| 1474 |  |  | 
| 1475 |  |         buf = EVP_CIPHER_CTX_buf_noconst(c); | 
| 1476 |  |         memcpy(buf, ptr, arg); | 
| 1477 |  |         gctx->tls_aad_len = arg; | 
| 1478 |  |         gctx->tls_enc_records = 0; | 
| 1479 |  |  | 
| 1480 |  |         len = buf[arg - 2] << 8 | buf[arg - 1]; | 
| 1481 |  |         /* Correct length for explicit iv. */ | 
| 1482 |  |         if (len < EVP_GCM_TLS_EXPLICIT_IV_LEN) | 
| 1483 |  |             return 0; | 
| 1484 |  |         len -= EVP_GCM_TLS_EXPLICIT_IV_LEN; | 
| 1485 |  |  | 
| 1486 |  |         /* If decrypting correct for tag too. */ | 
| 1487 |  |         enc = EVP_CIPHER_CTX_is_encrypting(c); | 
| 1488 |  |         if (!enc) { | 
| 1489 |  |             if (len < EVP_GCM_TLS_TAG_LEN) | 
| 1490 |  |                 return 0; | 
| 1491 |  |             len -= EVP_GCM_TLS_TAG_LEN; | 
| 1492 |  |         } | 
| 1493 |  |         buf[arg - 2] = len >> 8; | 
| 1494 |  |         buf[arg - 1] = len & 0xff; | 
| 1495 |  |         /* Extra padding: tag appended to record. */ | 
| 1496 |  |         return EVP_GCM_TLS_TAG_LEN; | 
| 1497 |  |  | 
| 1498 |  |     case EVP_CTRL_COPY: | 
| 1499 |  |         out = ptr; | 
| 1500 |  |         gctx_out = EVP_C_DATA(S390X_AES_GCM_CTX, out); | 
| 1501 |  |  | 
| 1502 |  |         if (gctx->iv == c->iv) { | 
| 1503 |  |             gctx_out->iv = out->iv; | 
| 1504 |  |         } else { | 
| 1505 |  |             len = S390X_gcm_ivpadlen(gctx->ivlen); | 
| 1506 |  |  | 
| 1507 |  |             if ((gctx_out->iv = OPENSSL_malloc(len)) == NULL) { | 
| 1508 |  |                 ERR_raise(ERR_LIB_EVP, ERR_R_MALLOC_FAILURE); | 
| 1509 |  |                 return 0; | 
| 1510 |  |             } | 
| 1511 |  |  | 
| 1512 |  |             memcpy(gctx_out->iv, gctx->iv, len); | 
| 1513 |  |         } | 
| 1514 |  |         return 1; | 
| 1515 |  |  | 
| 1516 |  |     default: | 
| 1517 |  |         return -1; | 
| 1518 |  |     } | 
| 1519 |  | } | 
| 1520 |  |  | 
| 1521 |  | /*- | 
| 1522 |  |  * Set key and/or iv. Returns 1 on success. Otherwise 0 is returned. | 
| 1523 |  |  */ | 
| 1524 |  | static int s390x_aes_gcm_init_key(EVP_CIPHER_CTX *ctx, | 
| 1525 |  |                                   const unsigned char *key, | 
| 1526 |  |                                   const unsigned char *iv, int enc) | 
| 1527 |  | { | 
| 1528 |  |     S390X_AES_GCM_CTX *gctx = EVP_C_DATA(S390X_AES_GCM_CTX, ctx); | 
| 1529 |  |     int keylen; | 
| 1530 |  |  | 
| 1531 |  |     if (iv == NULL && key == NULL) | 
| 1532 |  |         return 1; | 
| 1533 |  |  | 
| 1534 |  |     if (key != NULL) { | 
| 1535 |  |         keylen = EVP_CIPHER_CTX_get_key_length(ctx); | 
| 1536 |  |         memcpy(&gctx->kma.param.k, key, keylen); | 
| 1537 |  |  | 
| 1538 |  |         gctx->fc = S390X_AES_FC(keylen); | 
| 1539 |  |         if (!enc) | 
| 1540 |  |             gctx->fc |= S390X_DECRYPT; | 
| 1541 |  |  | 
| 1542 |  |         if (iv == NULL && gctx->iv_set) | 
| 1543 |  |             iv = gctx->iv; | 
| 1544 |  |  | 
| 1545 |  |         if (iv != NULL) { | 
| 1546 |  |             s390x_aes_gcm_setiv(gctx, iv); | 
| 1547 |  |             gctx->iv_set = 1; | 
| 1548 |  |         } | 
| 1549 |  |         gctx->key_set = 1; | 
| 1550 |  |     } else { | 
| 1551 |  |         if (gctx->key_set) | 
| 1552 |  |             s390x_aes_gcm_setiv(gctx, iv); | 
| 1553 |  |         else | 
| 1554 |  |             memcpy(gctx->iv, iv, gctx->ivlen); | 
| 1555 |  |  | 
| 1556 |  |         gctx->iv_set = 1; | 
| 1557 |  |         gctx->iv_gen = 0; | 
| 1558 |  |     } | 
| 1559 |  |     return 1; | 
| 1560 |  | } | 
| 1561 |  |  | 
| 1562 |  | /*- | 
| 1563 |  |  * En/de-crypt and authenticate TLS packet. Returns the number of bytes written | 
| 1564 |  |  * if successful. Otherwise -1 is returned. Code is big-endian. | 
| 1565 |  |  */ | 
| 1566 |  | static int s390x_aes_gcm_tls_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, | 
| 1567 |  |                                     const unsigned char *in, size_t len) | 
| 1568 |  | { | 
| 1569 |  |     S390X_AES_GCM_CTX *gctx = EVP_C_DATA(S390X_AES_GCM_CTX, ctx); | 
| 1570 |  |     const unsigned char *buf = EVP_CIPHER_CTX_buf_noconst(ctx); | 
| 1571 |  |     const int enc = EVP_CIPHER_CTX_is_encrypting(ctx); | 
| 1572 |  |     int rv = -1; | 
| 1573 |  |  | 
| 1574 |  |     if (out != in || len < (EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN)) | 
| 1575 |  |         return -1; | 
| 1576 |  |  | 
| 1577 |  |     /* | 
| 1578 |  |      * Check for too many keys as per FIPS 140-2 IG A.5 "Key/IV Pair Uniqueness | 
| 1579 |  |      * Requirements from SP 800-38D".  The requirements is for one party to the | 
| 1580 |  |      * communication to fail after 2^64 - 1 keys.  We do this on the encrypting | 
| 1581 |  |      * side only. | 
| 1582 |  |      */ | 
| 1583 |  |     if (ctx->encrypt && ++gctx->tls_enc_records == 0) { | 
| 1584 |  |         ERR_raise(ERR_LIB_EVP, EVP_R_TOO_MANY_RECORDS); | 
| 1585 |  |         goto err; | 
| 1586 |  |     } | 
| 1587 |  |  | 
| 1588 |  |     if (EVP_CIPHER_CTX_ctrl(ctx, enc ? EVP_CTRL_GCM_IV_GEN | 
| 1589 |  |                                      : EVP_CTRL_GCM_SET_IV_INV, | 
| 1590 |  |                             EVP_GCM_TLS_EXPLICIT_IV_LEN, out) <= 0) | 
| 1591 |  |         goto err; | 
| 1592 |  |  | 
| 1593 |  |     in += EVP_GCM_TLS_EXPLICIT_IV_LEN; | 
| 1594 |  |     out += EVP_GCM_TLS_EXPLICIT_IV_LEN; | 
| 1595 |  |     len -= EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN; | 
| 1596 |  |  | 
| 1597 |  |     gctx->kma.param.taadl = gctx->tls_aad_len << 3; | 
| 1598 |  |     gctx->kma.param.tpcl = len << 3; | 
| 1599 |  |     s390x_kma(buf, gctx->tls_aad_len, in, len, out, | 
| 1600 |  |               gctx->fc | S390X_KMA_LAAD | S390X_KMA_LPC, &gctx->kma.param); | 
| 1601 |  |  | 
| 1602 |  |     if (enc) { | 
| 1603 |  |         memcpy(out + len, gctx->kma.param.t.b, EVP_GCM_TLS_TAG_LEN); | 
| 1604 |  |         rv = len + EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN; | 
| 1605 |  |     } else { | 
| 1606 |  |         if (CRYPTO_memcmp(gctx->kma.param.t.b, in + len, | 
| 1607 |  |                           EVP_GCM_TLS_TAG_LEN)) { | 
| 1608 |  |             OPENSSL_cleanse(out, len); | 
| 1609 |  |             goto err; | 
| 1610 |  |         } | 
| 1611 |  |         rv = len; | 
| 1612 |  |     } | 
| 1613 |  | err: | 
| 1614 |  |     gctx->iv_set = 0; | 
| 1615 |  |     gctx->tls_aad_len = -1; | 
| 1616 |  |     return rv; | 
| 1617 |  | } | 
| 1618 |  |  | 
| 1619 |  | /*- | 
| 1620 |  |  * Called from EVP layer to initialize context, process additional | 
| 1621 |  |  * authenticated data, en/de-crypt plain/cipher-text and authenticate | 
| 1622 |  |  * ciphertext or process a TLS packet, depending on context. Returns bytes | 
| 1623 |  |  * written on success. Otherwise -1 is returned. Code is big-endian. | 
| 1624 |  |  */ | 
| 1625 |  | static int s390x_aes_gcm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, | 
| 1626 |  |                                 const unsigned char *in, size_t len) | 
| 1627 |  | { | 
| 1628 |  |     S390X_AES_GCM_CTX *gctx = EVP_C_DATA(S390X_AES_GCM_CTX, ctx); | 
| 1629 |  |     unsigned char *buf, tmp[16]; | 
| 1630 |  |     int enc; | 
| 1631 |  |  | 
| 1632 |  |     if (!gctx->key_set) | 
| 1633 |  |         return -1; | 
| 1634 |  |  | 
| 1635 |  |     if (gctx->tls_aad_len >= 0) | 
| 1636 |  |         return s390x_aes_gcm_tls_cipher(ctx, out, in, len); | 
| 1637 |  |  | 
| 1638 |  |     if (!gctx->iv_set) | 
| 1639 |  |         return -1; | 
| 1640 |  |  | 
| 1641 |  |     if (in != NULL) { | 
| 1642 |  |         if (out == NULL) { | 
| 1643 |  |             if (s390x_aes_gcm_aad(gctx, in, len)) | 
| 1644 |  |                 return -1; | 
| 1645 |  |         } else { | 
| 1646 |  |             if (s390x_aes_gcm(gctx, in, out, len)) | 
| 1647 |  |                 return -1; | 
| 1648 |  |         } | 
| 1649 |  |         return len; | 
| 1650 |  |     } else { | 
| 1651 |  |         gctx->kma.param.taadl <<= 3; | 
| 1652 |  |         gctx->kma.param.tpcl <<= 3; | 
| 1653 |  |         s390x_kma(gctx->ares, gctx->areslen, gctx->mres, gctx->mreslen, tmp, | 
| 1654 |  |                   gctx->fc | S390X_KMA_LAAD | S390X_KMA_LPC, &gctx->kma.param); | 
| 1655 |  |         /* recall that we already did en-/decrypt gctx->mres | 
| 1656 |  |          * and returned it to caller... */ | 
| 1657 |  |         OPENSSL_cleanse(tmp, gctx->mreslen); | 
| 1658 |  |         gctx->iv_set = 0; | 
| 1659 |  |  | 
| 1660 |  |         enc = EVP_CIPHER_CTX_is_encrypting(ctx); | 
| 1661 |  |         if (enc) { | 
| 1662 |  |             gctx->taglen = 16; | 
| 1663 |  |         } else { | 
| 1664 |  |             if (gctx->taglen < 0) | 
| 1665 |  |                 return -1; | 
| 1666 |  |  | 
| 1667 |  |             buf = EVP_CIPHER_CTX_buf_noconst(ctx); | 
| 1668 |  |             if (CRYPTO_memcmp(buf, gctx->kma.param.t.b, gctx->taglen)) | 
| 1669 |  |                 return -1; | 
| 1670 |  |         } | 
| 1671 |  |         return 0; | 
| 1672 |  |     } | 
| 1673 |  | } | 
| 1674 |  |  | 
| 1675 |  | static int s390x_aes_gcm_cleanup(EVP_CIPHER_CTX *c) | 
| 1676 |  | { | 
| 1677 |  |     S390X_AES_GCM_CTX *gctx = EVP_C_DATA(S390X_AES_GCM_CTX, c); | 
| 1678 |  |  | 
| 1679 |  |     if (gctx == NULL) | 
| 1680 |  |         return 0; | 
| 1681 |  |  | 
| 1682 |  |     if (gctx->iv != c->iv) | 
| 1683 |  |         OPENSSL_free(gctx->iv); | 
| 1684 |  |  | 
| 1685 |  |     OPENSSL_cleanse(gctx, sizeof(*gctx)); | 
| 1686 |  |     return 1; | 
| 1687 |  | } | 
| 1688 |  |  | 
| 1689 |  | # define S390X_AES_XTS_CTX              EVP_AES_XTS_CTX | 
| 1690 |  |  | 
| 1691 |  | # define s390x_aes_xts_init_key aes_xts_init_key | 
| 1692 |  | static int s390x_aes_xts_init_key(EVP_CIPHER_CTX *ctx, | 
| 1693 |  |                                   const unsigned char *key, | 
| 1694 |  |                                   const unsigned char *iv, int enc); | 
| 1695 |  | # define s390x_aes_xts_cipher aes_xts_cipher | 
| 1696 |  | static int s390x_aes_xts_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, | 
| 1697 |  |                                 const unsigned char *in, size_t len); | 
| 1698 |  | # define s390x_aes_xts_ctrl aes_xts_ctrl | 
| 1699 |  | static int s390x_aes_xts_ctrl(EVP_CIPHER_CTX *, int type, int arg, void *ptr); | 
| 1700 |  | # define s390x_aes_xts_cleanup aes_xts_cleanup | 
| 1701 |  |  | 
| 1702 |  | /*- | 
| 1703 |  |  * Set nonce and length fields. Code is big-endian. | 
| 1704 |  |  */ | 
| 1705 |  | static inline void s390x_aes_ccm_setiv(S390X_AES_CCM_CTX *ctx, | 
| 1706 |  |                                           const unsigned char *nonce, | 
| 1707 |  |                                           size_t mlen) | 
| 1708 |  | { | 
| 1709 |  |     ctx->aes.ccm.nonce.b[0] &= ~S390X_CCM_AAD_FLAG; | 
| 1710 |  |     ctx->aes.ccm.nonce.g[1] = mlen; | 
| 1711 |  |     memcpy(ctx->aes.ccm.nonce.b + 1, nonce, 15 - ctx->aes.ccm.l); | 
| 1712 |  | } | 
| 1713 |  |  | 
| 1714 |  | /*- | 
| 1715 |  |  * Process additional authenticated data. Code is big-endian. | 
| 1716 |  |  */ | 
| 1717 |  | static void s390x_aes_ccm_aad(S390X_AES_CCM_CTX *ctx, const unsigned char *aad, | 
| 1718 |  |                               size_t alen) | 
| 1719 |  | { | 
| 1720 |  |     unsigned char *ptr; | 
| 1721 |  |     int i, rem; | 
| 1722 |  |  | 
| 1723 |  |     if (!alen) | 
| 1724 |  |         return; | 
| 1725 |  |  | 
| 1726 |  |     ctx->aes.ccm.nonce.b[0] |= S390X_CCM_AAD_FLAG; | 
| 1727 |  |  | 
| 1728 |  |     /* Suppress 'type-punned pointer dereference' warning. */ | 
| 1729 |  |     ptr = ctx->aes.ccm.buf.b; | 
| 1730 |  |  | 
| 1731 |  |     if (alen < ((1 << 16) - (1 << 8))) { | 
| 1732 |  |         *(uint16_t *)ptr = alen; | 
| 1733 |  |         i = 2; | 
| 1734 |  |     } else if (sizeof(alen) == 8 | 
| 1735 |  |                && alen >= (size_t)1 << (32 % (sizeof(alen) * 8))) { | 
| 1736 |  |         *(uint16_t *)ptr = 0xffff; | 
| 1737 |  |         *(uint64_t *)(ptr + 2) = alen; | 
| 1738 |  |         i = 10; | 
| 1739 |  |     } else { | 
| 1740 |  |         *(uint16_t *)ptr = 0xfffe; | 
| 1741 |  |         *(uint32_t *)(ptr + 2) = alen; | 
| 1742 |  |         i = 6; | 
| 1743 |  |     } | 
| 1744 |  |  | 
| 1745 |  |     while (i < 16 && alen) { | 
| 1746 |  |         ctx->aes.ccm.buf.b[i] = *aad; | 
| 1747 |  |         ++aad; | 
| 1748 |  |         --alen; | 
| 1749 |  |         ++i; | 
| 1750 |  |     } | 
| 1751 |  |     while (i < 16) { | 
| 1752 |  |         ctx->aes.ccm.buf.b[i] = 0; | 
| 1753 |  |         ++i; | 
| 1754 |  |     } | 
| 1755 |  |  | 
| 1756 |  |     ctx->aes.ccm.kmac_param.icv.g[0] = 0; | 
| 1757 |  |     ctx->aes.ccm.kmac_param.icv.g[1] = 0; | 
| 1758 |  |     s390x_kmac(ctx->aes.ccm.nonce.b, 32, ctx->aes.ccm.fc, | 
| 1759 |  |                &ctx->aes.ccm.kmac_param); | 
| 1760 |  |     ctx->aes.ccm.blocks += 2; | 
| 1761 |  |  | 
| 1762 |  |     rem = alen & 0xf; | 
| 1763 |  |     alen &= ~(size_t)0xf; | 
| 1764 |  |     if (alen) { | 
| 1765 |  |         s390x_kmac(aad, alen, ctx->aes.ccm.fc, &ctx->aes.ccm.kmac_param); | 
| 1766 |  |         ctx->aes.ccm.blocks += alen >> 4; | 
| 1767 |  |         aad += alen; | 
| 1768 |  |     } | 
| 1769 |  |     if (rem) { | 
| 1770 |  |         for (i = 0; i < rem; i++) | 
| 1771 |  |             ctx->aes.ccm.kmac_param.icv.b[i] ^= aad[i]; | 
| 1772 |  |  | 
| 1773 |  |         s390x_km(ctx->aes.ccm.kmac_param.icv.b, 16, | 
| 1774 |  |                  ctx->aes.ccm.kmac_param.icv.b, ctx->aes.ccm.fc, | 
| 1775 |  |                  ctx->aes.ccm.kmac_param.k); | 
| 1776 |  |         ctx->aes.ccm.blocks++; | 
| 1777 |  |     } | 
| 1778 |  | } | 
| 1779 |  |  | 
| 1780 |  | /*- | 
| 1781 |  |  * En/de-crypt plain/cipher-text. Compute tag from plaintext. Returns 0 for | 
| 1782 |  |  * success. | 
| 1783 |  |  */ | 
| 1784 |  | static int s390x_aes_ccm(S390X_AES_CCM_CTX *ctx, const unsigned char *in, | 
| 1785 |  |                          unsigned char *out, size_t len, int enc) | 
| 1786 |  | { | 
| 1787 |  |     size_t n, rem; | 
| 1788 |  |     unsigned int i, l, num; | 
| 1789 |  |     unsigned char flags; | 
| 1790 |  |  | 
| 1791 |  |     flags = ctx->aes.ccm.nonce.b[0]; | 
| 1792 |  |     if (!(flags & S390X_CCM_AAD_FLAG)) { | 
| 1793 |  |         s390x_km(ctx->aes.ccm.nonce.b, 16, ctx->aes.ccm.kmac_param.icv.b, | 
| 1794 |  |                  ctx->aes.ccm.fc, ctx->aes.ccm.kmac_param.k); | 
| 1795 |  |         ctx->aes.ccm.blocks++; | 
| 1796 |  |     } | 
| 1797 |  |     l = flags & 0x7; | 
| 1798 |  |     ctx->aes.ccm.nonce.b[0] = l; | 
| 1799 |  |  | 
| 1800 |  |     /*- | 
| 1801 |  |      * Reconstruct length from encoded length field | 
| 1802 |  |      * and initialize it with counter value. | 
| 1803 |  |      */ | 
| 1804 |  |     n = 0; | 
| 1805 |  |     for (i = 15 - l; i < 15; i++) { | 
| 1806 |  |         n |= ctx->aes.ccm.nonce.b[i]; | 
| 1807 |  |         ctx->aes.ccm.nonce.b[i] = 0; | 
| 1808 |  |         n <<= 8; | 
| 1809 |  |     } | 
| 1810 |  |     n |= ctx->aes.ccm.nonce.b[15]; | 
| 1811 |  |     ctx->aes.ccm.nonce.b[15] = 1; | 
| 1812 |  |  | 
| 1813 |  |     if (n != len) | 
| 1814 |  |         return -1;              /* length mismatch */ | 
| 1815 |  |  | 
| 1816 |  |     if (enc) { | 
| 1817 |  |         /* Two operations per block plus one for tag encryption */ | 
| 1818 |  |         ctx->aes.ccm.blocks += (((len + 15) >> 4) << 1) + 1; | 
| 1819 |  |         if (ctx->aes.ccm.blocks > (1ULL << 61)) | 
| 1820 |  |             return -2;          /* too much data */ | 
| 1821 |  |     } | 
| 1822 |  |  | 
| 1823 |  |     num = 0; | 
| 1824 |  |     rem = len & 0xf; | 
| 1825 |  |     len &= ~(size_t)0xf; | 
| 1826 |  |  | 
| 1827 |  |     if (enc) { | 
| 1828 |  |         /* mac-then-encrypt */ | 
| 1829 |  |         if (len) | 
| 1830 |  |             s390x_kmac(in, len, ctx->aes.ccm.fc, &ctx->aes.ccm.kmac_param); | 
| 1831 |  |         if (rem) { | 
| 1832 |  |             for (i = 0; i < rem; i++) | 
| 1833 |  |                 ctx->aes.ccm.kmac_param.icv.b[i] ^= in[len + i]; | 
| 1834 |  |  | 
| 1835 |  |             s390x_km(ctx->aes.ccm.kmac_param.icv.b, 16, | 
| 1836 |  |                      ctx->aes.ccm.kmac_param.icv.b, ctx->aes.ccm.fc, | 
| 1837 |  |                      ctx->aes.ccm.kmac_param.k); | 
| 1838 |  |         } | 
| 1839 |  |  | 
| 1840 |  |         CRYPTO_ctr128_encrypt_ctr32(in, out, len + rem, &ctx->aes.key.k, | 
| 1841 |  |                                     ctx->aes.ccm.nonce.b, ctx->aes.ccm.buf.b, | 
| 1842 |  |                                     &num, (ctr128_f)AES_ctr32_encrypt); | 
| 1843 |  |     } else { | 
| 1844 |  |         /* decrypt-then-mac */ | 
| 1845 |  |         CRYPTO_ctr128_encrypt_ctr32(in, out, len + rem, &ctx->aes.key.k, | 
| 1846 |  |                                     ctx->aes.ccm.nonce.b, ctx->aes.ccm.buf.b, | 
| 1847 |  |                                     &num, (ctr128_f)AES_ctr32_encrypt); | 
| 1848 |  |  | 
| 1849 |  |         if (len) | 
| 1850 |  |             s390x_kmac(out, len, ctx->aes.ccm.fc, &ctx->aes.ccm.kmac_param); | 
| 1851 |  |         if (rem) { | 
| 1852 |  |             for (i = 0; i < rem; i++) | 
| 1853 |  |                 ctx->aes.ccm.kmac_param.icv.b[i] ^= out[len + i]; | 
| 1854 |  |  | 
| 1855 |  |             s390x_km(ctx->aes.ccm.kmac_param.icv.b, 16, | 
| 1856 |  |                      ctx->aes.ccm.kmac_param.icv.b, ctx->aes.ccm.fc, | 
| 1857 |  |                      ctx->aes.ccm.kmac_param.k); | 
| 1858 |  |         } | 
| 1859 |  |     } | 
| 1860 |  |     /* encrypt tag */ | 
| 1861 |  |     for (i = 15 - l; i < 16; i++) | 
| 1862 |  |         ctx->aes.ccm.nonce.b[i] = 0; | 
| 1863 |  |  | 
| 1864 |  |     s390x_km(ctx->aes.ccm.nonce.b, 16, ctx->aes.ccm.buf.b, ctx->aes.ccm.fc, | 
| 1865 |  |              ctx->aes.ccm.kmac_param.k); | 
| 1866 |  |     ctx->aes.ccm.kmac_param.icv.g[0] ^= ctx->aes.ccm.buf.g[0]; | 
| 1867 |  |     ctx->aes.ccm.kmac_param.icv.g[1] ^= ctx->aes.ccm.buf.g[1]; | 
| 1868 |  |  | 
| 1869 |  |     ctx->aes.ccm.nonce.b[0] = flags;    /* restore flags field */ | 
| 1870 |  |     return 0; | 
| 1871 |  | } | 
| 1872 |  |  | 
| 1873 |  | /*- | 
| 1874 |  |  * En/de-crypt and authenticate TLS packet. Returns the number of bytes written | 
| 1875 |  |  * if successful. Otherwise -1 is returned. | 
| 1876 |  |  */ | 
| 1877 |  | static int s390x_aes_ccm_tls_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, | 
| 1878 |  |                                     const unsigned char *in, size_t len) | 
| 1879 |  | { | 
| 1880 |  |     S390X_AES_CCM_CTX *cctx = EVP_C_DATA(S390X_AES_CCM_CTX, ctx); | 
| 1881 |  |     unsigned char *ivec = ctx->iv; | 
| 1882 |  |     unsigned char *buf = EVP_CIPHER_CTX_buf_noconst(ctx); | 
| 1883 |  |     const int enc = EVP_CIPHER_CTX_is_encrypting(ctx); | 
| 1884 |  |  | 
| 1885 |  |     if (out != in | 
| 1886 |  |             || len < (EVP_CCM_TLS_EXPLICIT_IV_LEN + (size_t)cctx->aes.ccm.m)) | 
| 1887 |  |         return -1; | 
| 1888 |  |  | 
| 1889 |  |     if (enc) { | 
| 1890 |  |         /* Set explicit iv (sequence number). */ | 
| 1891 |  |         memcpy(out, buf, EVP_CCM_TLS_EXPLICIT_IV_LEN); | 
| 1892 |  |     } | 
| 1893 |  |  | 
| 1894 |  |     len -= EVP_CCM_TLS_EXPLICIT_IV_LEN + cctx->aes.ccm.m; | 
| 1895 |  |     /*- | 
| 1896 |  |      * Get explicit iv (sequence number). We already have fixed iv | 
| 1897 |  |      * (server/client_write_iv) here. | 
| 1898 |  |      */ | 
| 1899 |  |     memcpy(ivec + EVP_CCM_TLS_FIXED_IV_LEN, in, EVP_CCM_TLS_EXPLICIT_IV_LEN); | 
| 1900 |  |     s390x_aes_ccm_setiv(cctx, ivec, len); | 
| 1901 |  |  | 
| 1902 |  |     /* Process aad (sequence number|type|version|length) */ | 
| 1903 |  |     s390x_aes_ccm_aad(cctx, buf, cctx->aes.ccm.tls_aad_len); | 
| 1904 |  |  | 
| 1905 |  |     in += EVP_CCM_TLS_EXPLICIT_IV_LEN; | 
| 1906 |  |     out += EVP_CCM_TLS_EXPLICIT_IV_LEN; | 
| 1907 |  |  | 
| 1908 |  |     if (enc) { | 
| 1909 |  |         if (s390x_aes_ccm(cctx, in, out, len, enc)) | 
| 1910 |  |             return -1; | 
| 1911 |  |  | 
| 1912 |  |         memcpy(out + len, cctx->aes.ccm.kmac_param.icv.b, cctx->aes.ccm.m); | 
| 1913 |  |         return len + EVP_CCM_TLS_EXPLICIT_IV_LEN + cctx->aes.ccm.m; | 
| 1914 |  |     } else { | 
| 1915 |  |         if (!s390x_aes_ccm(cctx, in, out, len, enc)) { | 
| 1916 |  |             if (!CRYPTO_memcmp(cctx->aes.ccm.kmac_param.icv.b, in + len, | 
| 1917 |  |                                cctx->aes.ccm.m)) | 
| 1918 |  |                 return len; | 
| 1919 |  |         } | 
| 1920 |  |  | 
| 1921 |  |         OPENSSL_cleanse(out, len); | 
| 1922 |  |         return -1; | 
| 1923 |  |     } | 
| 1924 |  | } | 
| 1925 |  |  | 
| 1926 |  | /*- | 
| 1927 |  |  * Set key and flag field and/or iv. Returns 1 if successful. Otherwise 0 is | 
| 1928 |  |  * returned. | 
| 1929 |  |  */ | 
| 1930 |  | static int s390x_aes_ccm_init_key(EVP_CIPHER_CTX *ctx, | 
| 1931 |  |                                   const unsigned char *key, | 
| 1932 |  |                                   const unsigned char *iv, int enc) | 
| 1933 |  | { | 
| 1934 |  |     S390X_AES_CCM_CTX *cctx = EVP_C_DATA(S390X_AES_CCM_CTX, ctx); | 
| 1935 |  |     int keylen; | 
| 1936 |  |  | 
| 1937 |  |     if (iv == NULL && key == NULL) | 
| 1938 |  |         return 1; | 
| 1939 |  |  | 
| 1940 |  |     if (key != NULL) { | 
| 1941 |  |         keylen = EVP_CIPHER_CTX_get_key_length(ctx); | 
| 1942 |  |         cctx->aes.ccm.fc = S390X_AES_FC(keylen); | 
| 1943 |  |         memcpy(cctx->aes.ccm.kmac_param.k, key, keylen); | 
| 1944 |  |  | 
| 1945 |  |         /* Store encoded m and l. */ | 
| 1946 |  |         cctx->aes.ccm.nonce.b[0] = ((cctx->aes.ccm.l - 1) & 0x7) | 
| 1947 |  |                                  | (((cctx->aes.ccm.m - 2) >> 1) & 0x7) << 3; | 
| 1948 |  |         memset(cctx->aes.ccm.nonce.b + 1, 0, | 
| 1949 |  |                sizeof(cctx->aes.ccm.nonce.b)); | 
| 1950 |  |         cctx->aes.ccm.blocks = 0; | 
| 1951 |  |  | 
| 1952 |  |         cctx->aes.ccm.key_set = 1; | 
| 1953 |  |     } | 
| 1954 |  |  | 
| 1955 |  |     if (iv != NULL) { | 
| 1956 |  |         memcpy(ctx->iv, iv, 15 - cctx->aes.ccm.l); | 
| 1957 |  |  | 
| 1958 |  |         cctx->aes.ccm.iv_set = 1; | 
| 1959 |  |     } | 
| 1960 |  |  | 
| 1961 |  |     return 1; | 
| 1962 |  | } | 
| 1963 |  |  | 
| 1964 |  | /*- | 
| 1965 |  |  * Called from EVP layer to initialize context, process additional | 
| 1966 |  |  * authenticated data, en/de-crypt plain/cipher-text and authenticate | 
| 1967 |  |  * plaintext or process a TLS packet, depending on context. Returns bytes | 
| 1968 |  |  * written on success. Otherwise -1 is returned. | 
| 1969 |  |  */ | 
| 1970 |  | static int s390x_aes_ccm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, | 
| 1971 |  |                                 const unsigned char *in, size_t len) | 
| 1972 |  | { | 
| 1973 |  |     S390X_AES_CCM_CTX *cctx = EVP_C_DATA(S390X_AES_CCM_CTX, ctx); | 
| 1974 |  |     const int enc = EVP_CIPHER_CTX_is_encrypting(ctx); | 
| 1975 |  |     int rv; | 
| 1976 |  |     unsigned char *buf; | 
| 1977 |  |  | 
| 1978 |  |     if (!cctx->aes.ccm.key_set) | 
| 1979 |  |         return -1; | 
| 1980 |  |  | 
| 1981 |  |     if (cctx->aes.ccm.tls_aad_len >= 0) | 
| 1982 |  |         return s390x_aes_ccm_tls_cipher(ctx, out, in, len); | 
| 1983 |  |  | 
| 1984 |  |     /*- | 
| 1985 |  |      * Final(): Does not return any data. Recall that ccm is mac-then-encrypt | 
| 1986 |  |      * so integrity must be checked already at Update() i.e., before | 
| 1987 |  |      * potentially corrupted data is output. | 
| 1988 |  |      */ | 
| 1989 |  |     if (in == NULL && out != NULL) | 
| 1990 |  |         return 0; | 
| 1991 |  |  | 
| 1992 |  |     if (!cctx->aes.ccm.iv_set) | 
| 1993 |  |         return -1; | 
| 1994 |  |  | 
| 1995 |  |     if (out == NULL) { | 
| 1996 |  |         /* Update(): Pass message length. */ | 
| 1997 |  |         if (in == NULL) { | 
| 1998 |  |             s390x_aes_ccm_setiv(cctx, ctx->iv, len); | 
| 1999 |  |  | 
| 2000 |  |             cctx->aes.ccm.len_set = 1; | 
| 2001 |  |             return len; | 
| 2002 |  |         } | 
| 2003 |  |  | 
| 2004 |  |         /* Update(): Process aad. */ | 
| 2005 |  |         if (!cctx->aes.ccm.len_set && len) | 
| 2006 |  |             return -1; | 
| 2007 |  |  | 
| 2008 |  |         s390x_aes_ccm_aad(cctx, in, len); | 
| 2009 |  |         return len; | 
| 2010 |  |     } | 
| 2011 |  |  | 
| 2012 |  |     /* The tag must be set before actually decrypting data */ | 
| 2013 |  |     if (!enc && !cctx->aes.ccm.tag_set) | 
| 2014 |  |         return -1; | 
| 2015 |  |  | 
| 2016 |  |     /* Update(): Process message. */ | 
| 2017 |  |  | 
| 2018 |  |     if (!cctx->aes.ccm.len_set) { | 
| 2019 |  |         /*- | 
| 2020 |  |          * In case message length was not previously set explicitly via | 
| 2021 |  |          * Update(), set it now. | 
| 2022 |  |          */ | 
| 2023 |  |         s390x_aes_ccm_setiv(cctx, ctx->iv, len); | 
| 2024 |  |  | 
| 2025 |  |         cctx->aes.ccm.len_set = 1; | 
| 2026 |  |     } | 
| 2027 |  |  | 
| 2028 |  |     if (enc) { | 
| 2029 |  |         if (s390x_aes_ccm(cctx, in, out, len, enc)) | 
| 2030 |  |             return -1; | 
| 2031 |  |  | 
| 2032 |  |         cctx->aes.ccm.tag_set = 1; | 
| 2033 |  |         return len; | 
| 2034 |  |     } else { | 
| 2035 |  |         rv = -1; | 
| 2036 |  |  | 
| 2037 |  |         if (!s390x_aes_ccm(cctx, in, out, len, enc)) { | 
| 2038 |  |             buf = EVP_CIPHER_CTX_buf_noconst(ctx); | 
| 2039 |  |             if (!CRYPTO_memcmp(cctx->aes.ccm.kmac_param.icv.b, buf, | 
| 2040 |  |                                cctx->aes.ccm.m)) | 
| 2041 |  |                 rv = len; | 
| 2042 |  |         } | 
| 2043 |  |  | 
| 2044 |  |         if (rv == -1) | 
| 2045 |  |             OPENSSL_cleanse(out, len); | 
| 2046 |  |  | 
| 2047 |  |         cctx->aes.ccm.iv_set = 0; | 
| 2048 |  |         cctx->aes.ccm.tag_set = 0; | 
| 2049 |  |         cctx->aes.ccm.len_set = 0; | 
| 2050 |  |         return rv; | 
| 2051 |  |     } | 
| 2052 |  | } | 
| 2053 |  |  | 
| 2054 |  | /*- | 
| 2055 |  |  * Performs various operations on the context structure depending on control | 
| 2056 |  |  * type. Returns 1 for success, 0 for failure and -1 for unknown control type. | 
| 2057 |  |  * Code is big-endian. | 
| 2058 |  |  */ | 
| 2059 |  | static int s390x_aes_ccm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr) | 
| 2060 |  | { | 
| 2061 |  |     S390X_AES_CCM_CTX *cctx = EVP_C_DATA(S390X_AES_CCM_CTX, c); | 
| 2062 |  |     unsigned char *buf; | 
| 2063 |  |     int enc, len; | 
| 2064 |  |  | 
| 2065 |  |     switch (type) { | 
| 2066 |  |     case EVP_CTRL_INIT: | 
| 2067 |  |         cctx->aes.ccm.key_set = 0; | 
| 2068 |  |         cctx->aes.ccm.iv_set = 0; | 
| 2069 |  |         cctx->aes.ccm.l = 8; | 
| 2070 |  |         cctx->aes.ccm.m = 12; | 
| 2071 |  |         cctx->aes.ccm.tag_set = 0; | 
| 2072 |  |         cctx->aes.ccm.len_set = 0; | 
| 2073 |  |         cctx->aes.ccm.tls_aad_len = -1; | 
| 2074 |  |         return 1; | 
| 2075 |  |  | 
| 2076 |  |     case EVP_CTRL_GET_IVLEN: | 
| 2077 |  |         *(int *)ptr = 15 - cctx->aes.ccm.l; | 
| 2078 |  |         return 1; | 
| 2079 |  |  | 
| 2080 |  |     case EVP_CTRL_AEAD_TLS1_AAD: | 
| 2081 |  |         if (arg != EVP_AEAD_TLS1_AAD_LEN) | 
| 2082 |  |             return 0; | 
| 2083 |  |  | 
| 2084 |  |         /* Save the aad for later use. */ | 
| 2085 |  |         buf = EVP_CIPHER_CTX_buf_noconst(c); | 
| 2086 |  |         memcpy(buf, ptr, arg); | 
| 2087 |  |         cctx->aes.ccm.tls_aad_len = arg; | 
| 2088 |  |  | 
| 2089 |  |         len = buf[arg - 2] << 8 | buf[arg - 1]; | 
| 2090 |  |         if (len < EVP_CCM_TLS_EXPLICIT_IV_LEN) | 
| 2091 |  |             return 0; | 
| 2092 |  |  | 
| 2093 |  |         /* Correct length for explicit iv. */ | 
| 2094 |  |         len -= EVP_CCM_TLS_EXPLICIT_IV_LEN; | 
| 2095 |  |  | 
| 2096 |  |         enc = EVP_CIPHER_CTX_is_encrypting(c); | 
| 2097 |  |         if (!enc) { | 
| 2098 |  |             if (len < cctx->aes.ccm.m) | 
| 2099 |  |                 return 0; | 
| 2100 |  |  | 
| 2101 |  |             /* Correct length for tag. */ | 
| 2102 |  |             len -= cctx->aes.ccm.m; | 
| 2103 |  |         } | 
| 2104 |  |  | 
| 2105 |  |         buf[arg - 2] = len >> 8; | 
| 2106 |  |         buf[arg - 1] = len & 0xff; | 
| 2107 |  |  | 
| 2108 |  |         /* Extra padding: tag appended to record. */ | 
| 2109 |  |         return cctx->aes.ccm.m; | 
| 2110 |  |  | 
| 2111 |  |     case EVP_CTRL_CCM_SET_IV_FIXED: | 
| 2112 |  |         if (arg != EVP_CCM_TLS_FIXED_IV_LEN) | 
| 2113 |  |             return 0; | 
| 2114 |  |  | 
| 2115 |  |         /* Copy to first part of the iv. */ | 
| 2116 |  |         memcpy(c->iv, ptr, arg); | 
| 2117 |  |         return 1; | 
| 2118 |  |  | 
| 2119 |  |     case EVP_CTRL_AEAD_SET_IVLEN: | 
| 2120 |  |         arg = 15 - arg; | 
| 2121 |  |         /* fall-through */ | 
| 2122 |  |  | 
| 2123 |  |     case EVP_CTRL_CCM_SET_L: | 
| 2124 |  |         if (arg < 2 || arg > 8) | 
| 2125 |  |             return 0; | 
| 2126 |  |  | 
| 2127 |  |         cctx->aes.ccm.l = arg; | 
| 2128 |  |         return 1; | 
| 2129 |  |  | 
| 2130 |  |     case EVP_CTRL_AEAD_SET_TAG: | 
| 2131 |  |         if ((arg & 1) || arg < 4 || arg > 16) | 
| 2132 |  |             return 0; | 
| 2133 |  |  | 
| 2134 |  |         enc = EVP_CIPHER_CTX_is_encrypting(c); | 
| 2135 |  |         if (enc && ptr) | 
| 2136 |  |             return 0; | 
| 2137 |  |  | 
| 2138 |  |         if (ptr) { | 
| 2139 |  |             cctx->aes.ccm.tag_set = 1; | 
| 2140 |  |             buf = EVP_CIPHER_CTX_buf_noconst(c); | 
| 2141 |  |             memcpy(buf, ptr, arg); | 
| 2142 |  |         } | 
| 2143 |  |  | 
| 2144 |  |         cctx->aes.ccm.m = arg; | 
| 2145 |  |         return 1; | 
| 2146 |  |  | 
| 2147 |  |     case EVP_CTRL_AEAD_GET_TAG: | 
| 2148 |  |         enc = EVP_CIPHER_CTX_is_encrypting(c); | 
| 2149 |  |         if (!enc || !cctx->aes.ccm.tag_set) | 
| 2150 |  |             return 0; | 
| 2151 |  |  | 
| 2152 |  |         if(arg < cctx->aes.ccm.m) | 
| 2153 |  |             return 0; | 
| 2154 |  |  | 
| 2155 |  |         memcpy(ptr, cctx->aes.ccm.kmac_param.icv.b, cctx->aes.ccm.m); | 
| 2156 |  |         cctx->aes.ccm.tag_set = 0; | 
| 2157 |  |         cctx->aes.ccm.iv_set = 0; | 
| 2158 |  |         cctx->aes.ccm.len_set = 0; | 
| 2159 |  |         return 1; | 
| 2160 |  |  | 
| 2161 |  |     case EVP_CTRL_COPY: | 
| 2162 |  |         return 1; | 
| 2163 |  |  | 
| 2164 |  |     default: | 
| 2165 |  |         return -1; | 
| 2166 |  |     } | 
| 2167 |  | } | 
| 2168 |  |  | 
| 2169 |  | # define s390x_aes_ccm_cleanup aes_ccm_cleanup | 
| 2170 |  |  | 
| 2171 |  | # ifndef OPENSSL_NO_OCB | 
| 2172 |  | #  define S390X_AES_OCB_CTX             EVP_AES_OCB_CTX | 
| 2173 |  |  | 
| 2174 |  | #  define s390x_aes_ocb_init_key aes_ocb_init_key | 
| 2175 |  | static int s390x_aes_ocb_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, | 
| 2176 |  |                                   const unsigned char *iv, int enc); | 
| 2177 |  | #  define s390x_aes_ocb_cipher aes_ocb_cipher | 
| 2178 |  | static int s390x_aes_ocb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, | 
| 2179 |  |                                 const unsigned char *in, size_t len); | 
| 2180 |  | #  define s390x_aes_ocb_cleanup aes_ocb_cleanup | 
| 2181 |  | static int s390x_aes_ocb_cleanup(EVP_CIPHER_CTX *); | 
| 2182 |  | #  define s390x_aes_ocb_ctrl aes_ocb_ctrl | 
| 2183 |  | static int s390x_aes_ocb_ctrl(EVP_CIPHER_CTX *, int type, int arg, void *ptr); | 
| 2184 |  | # endif | 
| 2185 |  |  | 
| 2186 |  | # ifndef OPENSSL_NO_SIV | 
| 2187 |  | #  define S390X_AES_SIV_CTX             EVP_AES_SIV_CTX | 
| 2188 |  |  | 
| 2189 |  | #  define s390x_aes_siv_init_key aes_siv_init_key | 
| 2190 |  | #  define s390x_aes_siv_cipher aes_siv_cipher | 
| 2191 |  | #  define s390x_aes_siv_cleanup aes_siv_cleanup | 
| 2192 |  | #  define s390x_aes_siv_ctrl aes_siv_ctrl | 
| 2193 |  | # endif | 
| 2194 |  |  | 
| 2195 |  | # define BLOCK_CIPHER_generic(nid,keylen,blocksize,ivlen,nmode,mode,    \ | 
| 2196 |  |                               MODE,flags)                               \ | 
| 2197 |  | static const EVP_CIPHER s390x_aes_##keylen##_##mode = {                 \ | 
| 2198 |  |     nid##_##keylen##_##nmode,blocksize,                                 \ | 
| 2199 |  |     keylen / 8,                                                         \ | 
| 2200 |  |     ivlen,                                                              \ | 
| 2201 |  |     flags | EVP_CIPH_##MODE##_MODE,                                     \ | 
| 2202 |  |     EVP_ORIG_GLOBAL,                                                    \ | 
| 2203 |  |     s390x_aes_##mode##_init_key,                                        \ | 
| 2204 |  |     s390x_aes_##mode##_cipher,                                          \ | 
| 2205 |  |     NULL,                                                               \ | 
| 2206 |  |     sizeof(S390X_AES_##MODE##_CTX),                                     \ | 
| 2207 |  |     NULL,                                                               \ | 
| 2208 |  |     NULL,                                                               \ | 
| 2209 |  |     NULL,                                                               \ | 
| 2210 |  |     NULL                                                                \ | 
| 2211 |  | };                                                                      \ | 
| 2212 |  | static const EVP_CIPHER aes_##keylen##_##mode = {                       \ | 
| 2213 |  |     nid##_##keylen##_##nmode,                                           \ | 
| 2214 |  |     blocksize,                                                          \ | 
| 2215 |  |     keylen / 8,                                                         \ | 
| 2216 |  |     ivlen,                                                              \ | 
| 2217 |  |     flags | EVP_CIPH_##MODE##_MODE,                                     \ | 
| 2218 |  |     EVP_ORIG_GLOBAL,                                                    \ | 
| 2219 |  |     aes_init_key,                                                       \ | 
| 2220 |  |     aes_##mode##_cipher,                                                \ | 
| 2221 |  |     NULL,                                                               \ | 
| 2222 |  |     sizeof(EVP_AES_KEY),                                                \ | 
| 2223 |  |     NULL,                                                               \ | 
| 2224 |  |     NULL,                                                               \ | 
| 2225 |  |     NULL,                                                               \ | 
| 2226 |  |     NULL                                                                \ | 
| 2227 |  | };                                                                      \ | 
| 2228 |  | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void)                       \ | 
| 2229 |  | {                                                                       \ | 
| 2230 |  |     return S390X_aes_##keylen##_##mode##_CAPABLE ?                      \ | 
| 2231 |  |            &s390x_aes_##keylen##_##mode : &aes_##keylen##_##mode;       \ | 
| 2232 |  | } | 
| 2233 |  |  | 
| 2234 |  | # define BLOCK_CIPHER_custom(nid,keylen,blocksize,ivlen,mode,MODE,flags)\ | 
| 2235 |  | static const EVP_CIPHER s390x_aes_##keylen##_##mode = {                 \ | 
| 2236 |  |     nid##_##keylen##_##mode,                                            \ | 
| 2237 |  |     blocksize,                                                          \ | 
| 2238 |  |     (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE||EVP_CIPH_##MODE##_MODE==EVP_CIPH_SIV_MODE ? 2 : 1) * keylen / 8,        \ | 
| 2239 |  |     ivlen,                                                              \ | 
| 2240 |  |     flags | EVP_CIPH_##MODE##_MODE,                                     \ | 
| 2241 |  |     EVP_ORIG_GLOBAL,                                                    \ | 
| 2242 |  |     s390x_aes_##mode##_init_key,                                        \ | 
| 2243 |  |     s390x_aes_##mode##_cipher,                                          \ | 
| 2244 |  |     s390x_aes_##mode##_cleanup,                                         \ | 
| 2245 |  |     sizeof(S390X_AES_##MODE##_CTX),                                     \ | 
| 2246 |  |     NULL,                                                               \ | 
| 2247 |  |     NULL,                                                               \ | 
| 2248 |  |     s390x_aes_##mode##_ctrl,                                            \ | 
| 2249 |  |     NULL                                                                \ | 
| 2250 |  | };                                                                      \ | 
| 2251 |  | static const EVP_CIPHER aes_##keylen##_##mode = {                       \ | 
| 2252 |  |     nid##_##keylen##_##mode,blocksize,                                  \ | 
| 2253 |  |     (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE||EVP_CIPH_##MODE##_MODE==EVP_CIPH_SIV_MODE ? 2 : 1) * keylen / 8,        \ | 
| 2254 |  |     ivlen,                                                              \ | 
| 2255 |  |     flags | EVP_CIPH_##MODE##_MODE,                                     \ | 
| 2256 |  |     EVP_ORIG_GLOBAL,                                                    \ | 
| 2257 |  |     aes_##mode##_init_key,                                              \ | 
| 2258 |  |     aes_##mode##_cipher,                                                \ | 
| 2259 |  |     aes_##mode##_cleanup,                                               \ | 
| 2260 |  |     sizeof(EVP_AES_##MODE##_CTX),                                       \ | 
| 2261 |  |     NULL,                                                               \ | 
| 2262 |  |     NULL,                                                               \ | 
| 2263 |  |     aes_##mode##_ctrl,                                                  \ | 
| 2264 |  |     NULL                                                                \ | 
| 2265 |  | };                                                                      \ | 
| 2266 |  | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void)                       \ | 
| 2267 |  | {                                                                       \ | 
| 2268 |  |     return S390X_aes_##keylen##_##mode##_CAPABLE ?                      \ | 
| 2269 |  |            &s390x_aes_##keylen##_##mode : &aes_##keylen##_##mode;       \ | 
| 2270 |  | } | 
| 2271 |  |  | 
| 2272 |  | #else | 
| 2273 |  |  | 
| 2274 |  | # define BLOCK_CIPHER_generic(nid,keylen,blocksize,ivlen,nmode,mode,MODE,flags) \ | 
| 2275 |  | static const EVP_CIPHER aes_##keylen##_##mode = { \ | 
| 2276 |  |         nid##_##keylen##_##nmode,blocksize,keylen/8,ivlen, \ | 
| 2277 |  |         flags|EVP_CIPH_##MODE##_MODE,   \ | 
| 2278 |  |         EVP_ORIG_GLOBAL,                \ | 
| 2279 |  |         aes_init_key,                   \ | 
| 2280 |  |         aes_##mode##_cipher,            \ | 
| 2281 |  |         NULL,                           \ | 
| 2282 |  |         sizeof(EVP_AES_KEY),            \ | 
| 2283 |  |         NULL,NULL,NULL,NULL }; \ | 
| 2284 |  | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ | 
| 2285 |  | { return &aes_##keylen##_##mode; } | 
| 2286 |  |  | 
| 2287 |  | # define BLOCK_CIPHER_custom(nid,keylen,blocksize,ivlen,mode,MODE,flags) \ | 
| 2288 |  | static const EVP_CIPHER aes_##keylen##_##mode = { \ | 
| 2289 |  |         nid##_##keylen##_##mode,blocksize, \ | 
| 2290 |  |         (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE||EVP_CIPH_##MODE##_MODE==EVP_CIPH_SIV_MODE?2:1)*keylen/8, \ | 
| 2291 |  |         ivlen,                          \ | 
| 2292 |  |         flags|EVP_CIPH_##MODE##_MODE,   \ | 
| 2293 |  |         EVP_ORIG_GLOBAL,                \ | 
| 2294 |  |         aes_##mode##_init_key,          \ | 
| 2295 |  |         aes_##mode##_cipher,            \ | 
| 2296 |  |         aes_##mode##_cleanup,           \ | 
| 2297 |  |         sizeof(EVP_AES_##MODE##_CTX),   \ | 
| 2298 |  |         NULL,NULL,aes_##mode##_ctrl,NULL }; \ | 
| 2299 |  | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ | 
| 2300 |  | { return &aes_##keylen##_##mode; } | 
| 2301 |  |  | 
| 2302 |  | #endif | 
| 2303 |  |  | 
| 2304 |  | #define BLOCK_CIPHER_generic_pack(nid,keylen,flags)             \ | 
| 2305 |  |         BLOCK_CIPHER_generic(nid,keylen,16,16,cbc,cbc,CBC,flags|EVP_CIPH_FLAG_DEFAULT_ASN1)     \ | 
| 2306 |  |         BLOCK_CIPHER_generic(nid,keylen,16,0,ecb,ecb,ECB,flags|EVP_CIPH_FLAG_DEFAULT_ASN1)      \ | 
| 2307 |  |         BLOCK_CIPHER_generic(nid,keylen,1,16,ofb128,ofb,OFB,flags|EVP_CIPH_FLAG_DEFAULT_ASN1)   \ | 
| 2308 |  |         BLOCK_CIPHER_generic(nid,keylen,1,16,cfb128,cfb,CFB,flags|EVP_CIPH_FLAG_DEFAULT_ASN1)   \ | 
| 2309 |  |         BLOCK_CIPHER_generic(nid,keylen,1,16,cfb1,cfb1,CFB,flags)       \ | 
| 2310 |  |         BLOCK_CIPHER_generic(nid,keylen,1,16,cfb8,cfb8,CFB,flags)       \ | 
| 2311 |  |         BLOCK_CIPHER_generic(nid,keylen,1,16,ctr,ctr,CTR,flags) | 
| 2312 |  |  | 
| 2313 |  | static int aes_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, | 
| 2314 |  |                         const unsigned char *iv, int enc) | 
| 2315 | 0 | { | 
| 2316 | 0 |     int ret, mode; | 
| 2317 | 0 |     EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx); | 
| 2318 |  | 
 | 
| 2319 | 0 |     mode = EVP_CIPHER_CTX_get_mode(ctx); | 
| 2320 | 0 |     if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE) | 
| 2321 | 0 |         && !enc) { | 
| 2322 |  | #ifdef HWAES_CAPABLE | 
| 2323 |  |         if (HWAES_CAPABLE) { | 
| 2324 |  |             ret = HWAES_set_decrypt_key(key, | 
| 2325 |  |                                         EVP_CIPHER_CTX_get_key_length(ctx) * 8, | 
| 2326 |  |                                         &dat->ks.ks); | 
| 2327 |  |             dat->block = (block128_f) HWAES_decrypt; | 
| 2328 |  |             dat->stream.cbc = NULL; | 
| 2329 |  | # ifdef HWAES_cbc_encrypt | 
| 2330 |  |             if (mode == EVP_CIPH_CBC_MODE) | 
| 2331 |  |                 dat->stream.cbc = (cbc128_f) HWAES_cbc_encrypt; | 
| 2332 |  | # endif | 
| 2333 |  |         } else | 
| 2334 |  | #endif | 
| 2335 | 0 | #ifdef BSAES_CAPABLE | 
| 2336 | 0 |         if (BSAES_CAPABLE && mode == EVP_CIPH_CBC_MODE) { | 
| 2337 | 0 |             ret = AES_set_decrypt_key(key, | 
| 2338 | 0 |                                       EVP_CIPHER_CTX_get_key_length(ctx) * 8, | 
| 2339 | 0 |                                       &dat->ks.ks); | 
| 2340 | 0 |             dat->block = (block128_f) AES_decrypt; | 
| 2341 | 0 |             dat->stream.cbc = (cbc128_f) ossl_bsaes_cbc_encrypt; | 
| 2342 | 0 |         } else | 
| 2343 | 0 | #endif | 
| 2344 | 0 | #ifdef VPAES_CAPABLE | 
| 2345 | 0 |         if (VPAES_CAPABLE) { | 
| 2346 | 0 |             ret = vpaes_set_decrypt_key(key, | 
| 2347 | 0 |                                         EVP_CIPHER_CTX_get_key_length(ctx) * 8, | 
| 2348 | 0 |                                         &dat->ks.ks); | 
| 2349 | 0 |             dat->block = (block128_f) vpaes_decrypt; | 
| 2350 | 0 |             dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? | 
| 2351 | 0 |                 (cbc128_f) vpaes_cbc_encrypt : NULL; | 
| 2352 | 0 |         } else | 
| 2353 | 0 | #endif | 
| 2354 | 0 |         { | 
| 2355 | 0 |             ret = AES_set_decrypt_key(key, | 
| 2356 | 0 |                                       EVP_CIPHER_CTX_get_key_length(ctx) * 8, | 
| 2357 | 0 |                                       &dat->ks.ks); | 
| 2358 | 0 |             dat->block = (block128_f) AES_decrypt; | 
| 2359 | 0 |             dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? | 
| 2360 | 0 |                 (cbc128_f) AES_cbc_encrypt : NULL; | 
| 2361 | 0 |         } | 
| 2362 | 0 |     } else | 
| 2363 |  | #ifdef HWAES_CAPABLE | 
| 2364 |  |     if (HWAES_CAPABLE) { | 
| 2365 |  |         ret = HWAES_set_encrypt_key(key, | 
| 2366 |  |                                     EVP_CIPHER_CTX_get_key_length(ctx) * 8, | 
| 2367 |  |                                     &dat->ks.ks); | 
| 2368 |  |         dat->block = (block128_f) HWAES_encrypt; | 
| 2369 |  |         dat->stream.cbc = NULL; | 
| 2370 |  | # ifdef HWAES_cbc_encrypt | 
| 2371 |  |         if (mode == EVP_CIPH_CBC_MODE) | 
| 2372 |  |             dat->stream.cbc = (cbc128_f) HWAES_cbc_encrypt; | 
| 2373 |  |         else | 
| 2374 |  | # endif | 
| 2375 |  | # ifdef HWAES_ctr32_encrypt_blocks | 
| 2376 |  |         if (mode == EVP_CIPH_CTR_MODE) | 
| 2377 |  |             dat->stream.ctr = (ctr128_f) HWAES_ctr32_encrypt_blocks; | 
| 2378 |  |         else | 
| 2379 |  | # endif | 
| 2380 |  |             (void)0;            /* terminate potentially open 'else' */ | 
| 2381 |  |     } else | 
| 2382 |  | #endif | 
| 2383 | 0 | #ifdef BSAES_CAPABLE | 
| 2384 | 0 |     if (BSAES_CAPABLE && mode == EVP_CIPH_CTR_MODE) { | 
| 2385 | 0 |         ret = AES_set_encrypt_key(key, EVP_CIPHER_CTX_get_key_length(ctx) * 8, | 
| 2386 | 0 |                                   &dat->ks.ks); | 
| 2387 | 0 |         dat->block = (block128_f) AES_encrypt; | 
| 2388 | 0 |         dat->stream.ctr = (ctr128_f) ossl_bsaes_ctr32_encrypt_blocks; | 
| 2389 | 0 |     } else | 
| 2390 | 0 | #endif | 
| 2391 | 0 | #ifdef VPAES_CAPABLE | 
| 2392 | 0 |     if (VPAES_CAPABLE) { | 
| 2393 | 0 |         ret = vpaes_set_encrypt_key(key, | 
| 2394 | 0 |                                     EVP_CIPHER_CTX_get_key_length(ctx) * 8, | 
| 2395 | 0 |                                     &dat->ks.ks); | 
| 2396 | 0 |         dat->block = (block128_f) vpaes_encrypt; | 
| 2397 | 0 |         dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? | 
| 2398 | 0 |             (cbc128_f) vpaes_cbc_encrypt : NULL; | 
| 2399 | 0 |     } else | 
| 2400 | 0 | #endif | 
| 2401 | 0 |     { | 
| 2402 | 0 |         ret = AES_set_encrypt_key(key, EVP_CIPHER_CTX_get_key_length(ctx) * 8, | 
| 2403 | 0 |                                   &dat->ks.ks); | 
| 2404 | 0 |         dat->block = (block128_f) AES_encrypt; | 
| 2405 | 0 |         dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? | 
| 2406 | 0 |             (cbc128_f) AES_cbc_encrypt : NULL; | 
| 2407 |  | #ifdef AES_CTR_ASM | 
| 2408 |  |         if (mode == EVP_CIPH_CTR_MODE) | 
| 2409 |  |             dat->stream.ctr = (ctr128_f) AES_ctr32_encrypt; | 
| 2410 |  | #endif | 
| 2411 | 0 |     } | 
| 2412 |  | 
 | 
| 2413 | 0 |     if (ret < 0) { | 
| 2414 | 0 |         ERR_raise(ERR_LIB_EVP, EVP_R_AES_KEY_SETUP_FAILED); | 
| 2415 | 0 |         return 0; | 
| 2416 | 0 |     } | 
| 2417 |  |  | 
| 2418 | 0 |     return 1; | 
| 2419 | 0 | } | 
| 2420 |  |  | 
| 2421 |  | static int aes_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, | 
| 2422 |  |                           const unsigned char *in, size_t len) | 
| 2423 | 0 | { | 
| 2424 | 0 |     EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx); | 
| 2425 |  | 
 | 
| 2426 | 0 |     if (dat->stream.cbc) | 
| 2427 | 0 |         (*dat->stream.cbc) (in, out, len, &dat->ks, ctx->iv, | 
| 2428 | 0 |                             EVP_CIPHER_CTX_is_encrypting(ctx)); | 
| 2429 | 0 |     else if (EVP_CIPHER_CTX_is_encrypting(ctx)) | 
| 2430 | 0 |         CRYPTO_cbc128_encrypt(in, out, len, &dat->ks, ctx->iv, | 
| 2431 | 0 |                               dat->block); | 
| 2432 | 0 |     else | 
| 2433 | 0 |         CRYPTO_cbc128_decrypt(in, out, len, &dat->ks, | 
| 2434 | 0 |                               ctx->iv, dat->block); | 
| 2435 |  | 
 | 
| 2436 | 0 |     return 1; | 
| 2437 | 0 | } | 
| 2438 |  |  | 
| 2439 |  | static int aes_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, | 
| 2440 |  |                           const unsigned char *in, size_t len) | 
| 2441 | 0 | { | 
| 2442 | 0 |     size_t bl = EVP_CIPHER_CTX_get_block_size(ctx); | 
| 2443 | 0 |     size_t i; | 
| 2444 | 0 |     EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx); | 
| 2445 |  | 
 | 
| 2446 | 0 |     if (len < bl) | 
| 2447 | 0 |         return 1; | 
| 2448 |  |  | 
| 2449 | 0 |     for (i = 0, len -= bl; i <= len; i += bl) | 
| 2450 | 0 |         (*dat->block) (in + i, out + i, &dat->ks); | 
| 2451 |  | 
 | 
| 2452 | 0 |     return 1; | 
| 2453 | 0 | } | 
| 2454 |  |  | 
| 2455 |  | static int aes_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, | 
| 2456 |  |                           const unsigned char *in, size_t len) | 
| 2457 | 0 | { | 
| 2458 | 0 |     EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx); | 
| 2459 |  | 
 | 
| 2460 | 0 |     int num = EVP_CIPHER_CTX_get_num(ctx); | 
| 2461 | 0 |     CRYPTO_ofb128_encrypt(in, out, len, &dat->ks, | 
| 2462 | 0 |                           ctx->iv, &num, dat->block); | 
| 2463 | 0 |     EVP_CIPHER_CTX_set_num(ctx, num); | 
| 2464 | 0 |     return 1; | 
| 2465 | 0 | } | 
| 2466 |  |  | 
| 2467 |  | static int aes_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, | 
| 2468 |  |                           const unsigned char *in, size_t len) | 
| 2469 | 0 | { | 
| 2470 | 0 |     EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx); | 
| 2471 |  | 
 | 
| 2472 | 0 |     int num = EVP_CIPHER_CTX_get_num(ctx); | 
| 2473 | 0 |     CRYPTO_cfb128_encrypt(in, out, len, &dat->ks, | 
| 2474 | 0 |                           ctx->iv, &num, | 
| 2475 | 0 |                           EVP_CIPHER_CTX_is_encrypting(ctx), dat->block); | 
| 2476 | 0 |     EVP_CIPHER_CTX_set_num(ctx, num); | 
| 2477 | 0 |     return 1; | 
| 2478 | 0 | } | 
| 2479 |  |  | 
| 2480 |  | static int aes_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, | 
| 2481 |  |                            const unsigned char *in, size_t len) | 
| 2482 | 0 | { | 
| 2483 | 0 |     EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx); | 
| 2484 |  | 
 | 
| 2485 | 0 |     int num = EVP_CIPHER_CTX_get_num(ctx); | 
| 2486 | 0 |     CRYPTO_cfb128_8_encrypt(in, out, len, &dat->ks, | 
| 2487 | 0 |                             ctx->iv, &num, | 
| 2488 | 0 |                             EVP_CIPHER_CTX_is_encrypting(ctx), dat->block); | 
| 2489 | 0 |     EVP_CIPHER_CTX_set_num(ctx, num); | 
| 2490 | 0 |     return 1; | 
| 2491 | 0 | } | 
| 2492 |  |  | 
| 2493 |  | static int aes_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, | 
| 2494 |  |                            const unsigned char *in, size_t len) | 
| 2495 | 0 | { | 
| 2496 | 0 |     EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx); | 
| 2497 |  | 
 | 
| 2498 | 0 |     if (EVP_CIPHER_CTX_test_flags(ctx, EVP_CIPH_FLAG_LENGTH_BITS)) { | 
| 2499 | 0 |         int num = EVP_CIPHER_CTX_get_num(ctx); | 
| 2500 | 0 |         CRYPTO_cfb128_1_encrypt(in, out, len, &dat->ks, | 
| 2501 | 0 |                                 ctx->iv, &num, | 
| 2502 | 0 |                                 EVP_CIPHER_CTX_is_encrypting(ctx), dat->block); | 
| 2503 | 0 |         EVP_CIPHER_CTX_set_num(ctx, num); | 
| 2504 | 0 |         return 1; | 
| 2505 | 0 |     } | 
| 2506 |  |  | 
| 2507 | 0 |     while (len >= MAXBITCHUNK) { | 
| 2508 | 0 |         int num = EVP_CIPHER_CTX_get_num(ctx); | 
| 2509 | 0 |         CRYPTO_cfb128_1_encrypt(in, out, MAXBITCHUNK * 8, &dat->ks, | 
| 2510 | 0 |                                 ctx->iv, &num, | 
| 2511 | 0 |                                 EVP_CIPHER_CTX_is_encrypting(ctx), dat->block); | 
| 2512 | 0 |         EVP_CIPHER_CTX_set_num(ctx, num); | 
| 2513 | 0 |         len -= MAXBITCHUNK; | 
| 2514 | 0 |         out += MAXBITCHUNK; | 
| 2515 | 0 |         in  += MAXBITCHUNK; | 
| 2516 | 0 |     } | 
| 2517 | 0 |     if (len) { | 
| 2518 | 0 |         int num = EVP_CIPHER_CTX_get_num(ctx); | 
| 2519 | 0 |         CRYPTO_cfb128_1_encrypt(in, out, len * 8, &dat->ks, | 
| 2520 | 0 |                                 ctx->iv, &num, | 
| 2521 | 0 |                                 EVP_CIPHER_CTX_is_encrypting(ctx), dat->block); | 
| 2522 | 0 |         EVP_CIPHER_CTX_set_num(ctx, num); | 
| 2523 | 0 |     } | 
| 2524 |  | 
 | 
| 2525 | 0 |     return 1; | 
| 2526 | 0 | } | 
| 2527 |  |  | 
| 2528 |  | static int aes_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, | 
| 2529 |  |                           const unsigned char *in, size_t len) | 
| 2530 |  | { | 
| 2531 |  |     int n = EVP_CIPHER_CTX_get_num(ctx); | 
| 2532 |  |     unsigned int num; | 
| 2533 |  |     EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx); | 
| 2534 |  |  | 
| 2535 |  |     if (n < 0) | 
| 2536 |  |         return 0; | 
| 2537 |  |     num = (unsigned int)n; | 
| 2538 |  |  | 
| 2539 |  |     if (dat->stream.ctr) | 
| 2540 |  |         CRYPTO_ctr128_encrypt_ctr32(in, out, len, &dat->ks, | 
| 2541 |  |                                     ctx->iv, | 
| 2542 |  |                                     EVP_CIPHER_CTX_buf_noconst(ctx), | 
| 2543 |  |                                     &num, dat->stream.ctr); | 
| 2544 |  |     else | 
| 2545 |  |         CRYPTO_ctr128_encrypt(in, out, len, &dat->ks, | 
| 2546 |  |                               ctx->iv, | 
| 2547 |  |                               EVP_CIPHER_CTX_buf_noconst(ctx), &num, | 
| 2548 |  |                               dat->block); | 
| 2549 |  |     EVP_CIPHER_CTX_set_num(ctx, num); | 
| 2550 |  |     return 1; | 
| 2551 |  | } | 
| 2552 |  |  | 
| 2553 |  | BLOCK_CIPHER_generic_pack(NID_aes, 128, 0) | 
| 2554 |  |     BLOCK_CIPHER_generic_pack(NID_aes, 192, 0) | 
| 2555 |  |     BLOCK_CIPHER_generic_pack(NID_aes, 256, 0) | 
| 2556 |  |  | 
| 2557 |  | static int aes_gcm_cleanup(EVP_CIPHER_CTX *c) | 
| 2558 | 919 | { | 
| 2559 | 919 |     EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,c); | 
| 2560 | 919 |     if (gctx == NULL) | 
| 2561 | 0 |         return 0; | 
| 2562 | 919 |     OPENSSL_cleanse(&gctx->gcm, sizeof(gctx->gcm)); | 
| 2563 | 919 |     if (gctx->iv != c->iv) | 
| 2564 | 0 |         OPENSSL_free(gctx->iv); | 
| 2565 | 919 |     return 1; | 
| 2566 | 919 | } | 
| 2567 |  |  | 
| 2568 |  | static int aes_gcm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr) | 
| 2569 | 11.4k | { | 
| 2570 | 11.4k |     EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,c); | 
| 2571 | 11.4k |     switch (type) { | 
| 2572 | 919 |     case EVP_CTRL_INIT: | 
| 2573 | 919 |         gctx->key_set = 0; | 
| 2574 | 919 |         gctx->iv_set = 0; | 
| 2575 | 919 |         gctx->ivlen = EVP_CIPHER_get_iv_length(c->cipher); | 
| 2576 | 919 |         gctx->iv = c->iv; | 
| 2577 | 919 |         gctx->taglen = -1; | 
| 2578 | 919 |         gctx->iv_gen = 0; | 
| 2579 | 919 |         gctx->tls_aad_len = -1; | 
| 2580 | 919 |         return 1; | 
| 2581 |  |  | 
| 2582 | 4.74k |     case EVP_CTRL_GET_IVLEN: | 
| 2583 | 4.74k |         *(int *)ptr = gctx->ivlen; | 
| 2584 | 4.74k |         return 1; | 
| 2585 |  |  | 
| 2586 | 839 |     case EVP_CTRL_AEAD_SET_IVLEN: | 
| 2587 | 839 |         if (arg <= 0) | 
| 2588 | 0 |             return 0; | 
| 2589 |  |         /* Allocate memory for IV if needed */ | 
| 2590 | 839 |         if ((arg > EVP_MAX_IV_LENGTH) && (arg > gctx->ivlen)) { | 
| 2591 | 0 |             if (gctx->iv != c->iv) | 
| 2592 | 0 |                 OPENSSL_free(gctx->iv); | 
| 2593 | 0 |             if ((gctx->iv = OPENSSL_malloc(arg)) == NULL) { | 
| 2594 | 0 |                 ERR_raise(ERR_LIB_EVP, ERR_R_MALLOC_FAILURE); | 
| 2595 | 0 |                 return 0; | 
| 2596 | 0 |             } | 
| 2597 | 0 |         } | 
| 2598 | 839 |         gctx->ivlen = arg; | 
| 2599 | 839 |         return 1; | 
| 2600 |  |  | 
| 2601 | 3.55k |     case EVP_CTRL_AEAD_SET_TAG: | 
| 2602 | 3.55k |         if (arg <= 0 || arg > 16 || c->encrypt) | 
| 2603 | 0 |             return 0; | 
| 2604 | 3.55k |         memcpy(c->buf, ptr, arg); | 
| 2605 | 3.55k |         gctx->taglen = arg; | 
| 2606 | 3.55k |         return 1; | 
| 2607 |  |  | 
| 2608 | 1.10k |     case EVP_CTRL_AEAD_GET_TAG: | 
| 2609 | 1.10k |         if (arg <= 0 || arg > 16 || !c->encrypt | 
| 2610 | 1.10k |             || gctx->taglen < 0) | 
| 2611 | 0 |             return 0; | 
| 2612 | 1.10k |         memcpy(ptr, c->buf, arg); | 
| 2613 | 1.10k |         return 1; | 
| 2614 |  |  | 
| 2615 | 80 |     case EVP_CTRL_GCM_SET_IV_FIXED: | 
| 2616 |  |         /* Special case: -1 length restores whole IV */ | 
| 2617 | 80 |         if (arg == -1) { | 
| 2618 | 0 |             memcpy(gctx->iv, ptr, gctx->ivlen); | 
| 2619 | 0 |             gctx->iv_gen = 1; | 
| 2620 | 0 |             return 1; | 
| 2621 | 0 |         } | 
| 2622 |  |         /* | 
| 2623 |  |          * Fixed field must be at least 4 bytes and invocation field at least | 
| 2624 |  |          * 8. | 
| 2625 |  |          */ | 
| 2626 | 80 |         if ((arg < 4) || (gctx->ivlen - arg) < 8) | 
| 2627 | 0 |             return 0; | 
| 2628 | 80 |         if (arg) | 
| 2629 | 80 |             memcpy(gctx->iv, ptr, arg); | 
| 2630 | 80 |         if (c->encrypt && RAND_bytes(gctx->iv + arg, gctx->ivlen - arg) <= 0) | 
| 2631 | 0 |             return 0; | 
| 2632 | 80 |         gctx->iv_gen = 1; | 
| 2633 | 80 |         return 1; | 
| 2634 |  |  | 
| 2635 | 49 |     case EVP_CTRL_GCM_IV_GEN: | 
| 2636 | 49 |         if (gctx->iv_gen == 0 || gctx->key_set == 0) | 
| 2637 | 0 |             return 0; | 
| 2638 | 49 |         CRYPTO_gcm128_setiv(&gctx->gcm, gctx->iv, gctx->ivlen); | 
| 2639 | 49 |         if (arg <= 0 || arg > gctx->ivlen) | 
| 2640 | 0 |             arg = gctx->ivlen; | 
| 2641 | 49 |         memcpy(ptr, gctx->iv + gctx->ivlen - arg, arg); | 
| 2642 |  |         /* | 
| 2643 |  |          * Invocation field will be at least 8 bytes in size and so no need | 
| 2644 |  |          * to check wrap around or increment more than last 8 bytes. | 
| 2645 |  |          */ | 
| 2646 | 49 |         ctr64_inc(gctx->iv + gctx->ivlen - 8); | 
| 2647 | 49 |         gctx->iv_set = 1; | 
| 2648 | 49 |         return 1; | 
| 2649 |  |  | 
| 2650 | 33 |     case EVP_CTRL_GCM_SET_IV_INV: | 
| 2651 | 33 |         if (gctx->iv_gen == 0 || gctx->key_set == 0 || c->encrypt) | 
| 2652 | 0 |             return 0; | 
| 2653 | 33 |         memcpy(gctx->iv + gctx->ivlen - arg, ptr, arg); | 
| 2654 | 33 |         CRYPTO_gcm128_setiv(&gctx->gcm, gctx->iv, gctx->ivlen); | 
| 2655 | 33 |         gctx->iv_set = 1; | 
| 2656 | 33 |         return 1; | 
| 2657 |  |  | 
| 2658 | 92 |     case EVP_CTRL_AEAD_TLS1_AAD: | 
| 2659 |  |         /* Save the AAD for later use */ | 
| 2660 | 92 |         if (arg != EVP_AEAD_TLS1_AAD_LEN) | 
| 2661 | 0 |             return 0; | 
| 2662 | 92 |         memcpy(c->buf, ptr, arg); | 
| 2663 | 92 |         gctx->tls_aad_len = arg; | 
| 2664 | 92 |         gctx->tls_enc_records = 0; | 
| 2665 | 92 |         { | 
| 2666 | 92 |             unsigned int len = c->buf[arg - 2] << 8 | c->buf[arg - 1]; | 
| 2667 |  |             /* Correct length for explicit IV */ | 
| 2668 | 92 |             if (len < EVP_GCM_TLS_EXPLICIT_IV_LEN) | 
| 2669 | 2 |                 return 0; | 
| 2670 | 90 |             len -= EVP_GCM_TLS_EXPLICIT_IV_LEN; | 
| 2671 |  |             /* If decrypting correct for tag too */ | 
| 2672 | 90 |             if (!c->encrypt) { | 
| 2673 | 41 |                 if (len < EVP_GCM_TLS_TAG_LEN) | 
| 2674 | 8 |                     return 0; | 
| 2675 | 33 |                 len -= EVP_GCM_TLS_TAG_LEN; | 
| 2676 | 33 |             } | 
| 2677 | 82 |             c->buf[arg - 2] = len >> 8; | 
| 2678 | 82 |             c->buf[arg - 1] = len & 0xff; | 
| 2679 | 82 |         } | 
| 2680 |  |         /* Extra padding: tag appended to record */ | 
| 2681 | 82 |         return EVP_GCM_TLS_TAG_LEN; | 
| 2682 |  |  | 
| 2683 | 0 |     case EVP_CTRL_COPY: | 
| 2684 | 0 |         { | 
| 2685 | 0 |             EVP_CIPHER_CTX *out = ptr; | 
| 2686 | 0 |             EVP_AES_GCM_CTX *gctx_out = EVP_C_DATA(EVP_AES_GCM_CTX,out); | 
| 2687 | 0 |             if (gctx->gcm.key) { | 
| 2688 | 0 |                 if (gctx->gcm.key != &gctx->ks) | 
| 2689 | 0 |                     return 0; | 
| 2690 | 0 |                 gctx_out->gcm.key = &gctx_out->ks; | 
| 2691 | 0 |             } | 
| 2692 | 0 |             if (gctx->iv == c->iv) | 
| 2693 | 0 |                 gctx_out->iv = out->iv; | 
| 2694 | 0 |             else { | 
| 2695 | 0 |                 if ((gctx_out->iv = OPENSSL_malloc(gctx->ivlen)) == NULL) { | 
| 2696 | 0 |                     ERR_raise(ERR_LIB_EVP, ERR_R_MALLOC_FAILURE); | 
| 2697 | 0 |                     return 0; | 
| 2698 | 0 |                 } | 
| 2699 | 0 |                 memcpy(gctx_out->iv, gctx->iv, gctx->ivlen); | 
| 2700 | 0 |             } | 
| 2701 | 0 |             return 1; | 
| 2702 | 0 |         } | 
| 2703 |  |  | 
| 2704 | 0 |     default: | 
| 2705 | 0 |         return -1; | 
| 2706 |  |  | 
| 2707 | 11.4k |     } | 
| 2708 | 11.4k | } | 
| 2709 |  |  | 
| 2710 |  | static int aes_gcm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, | 
| 2711 |  |                             const unsigned char *iv, int enc) | 
| 2712 | 0 | { | 
| 2713 | 0 |     EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,ctx); | 
| 2714 | 0 |     if (!iv && !key) | 
| 2715 | 0 |         return 1; | 
| 2716 | 0 |     if (key) { | 
| 2717 | 0 |         do { | 
| 2718 |  | #ifdef HWAES_CAPABLE | 
| 2719 |  |             if (HWAES_CAPABLE) { | 
| 2720 |  |                 HWAES_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks.ks); | 
| 2721 |  |                 CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks, | 
| 2722 |  |                                    (block128_f) HWAES_encrypt); | 
| 2723 |  | # ifdef HWAES_ctr32_encrypt_blocks | 
| 2724 |  |                 gctx->ctr = (ctr128_f) HWAES_ctr32_encrypt_blocks; | 
| 2725 |  | # else | 
| 2726 |  |                 gctx->ctr = NULL; | 
| 2727 |  | # endif | 
| 2728 |  |                 break; | 
| 2729 |  |             } else | 
| 2730 |  | #endif | 
| 2731 | 0 | #ifdef BSAES_CAPABLE | 
| 2732 | 0 |             if (BSAES_CAPABLE) { | 
| 2733 | 0 |                 AES_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks.ks); | 
| 2734 | 0 |                 CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks, | 
| 2735 | 0 |                                    (block128_f) AES_encrypt); | 
| 2736 | 0 |                 gctx->ctr = (ctr128_f) ossl_bsaes_ctr32_encrypt_blocks; | 
| 2737 | 0 |                 break; | 
| 2738 | 0 |             } else | 
| 2739 | 0 | #endif | 
| 2740 | 0 | #ifdef VPAES_CAPABLE | 
| 2741 | 0 |             if (VPAES_CAPABLE) { | 
| 2742 | 0 |                 vpaes_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks.ks); | 
| 2743 | 0 |                 CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks, | 
| 2744 | 0 |                                    (block128_f) vpaes_encrypt); | 
| 2745 | 0 |                 gctx->ctr = NULL; | 
| 2746 | 0 |                 break; | 
| 2747 | 0 |             } else | 
| 2748 | 0 | #endif | 
| 2749 | 0 |                 (void)0;        /* terminate potentially open 'else' */ | 
| 2750 |  |  | 
| 2751 | 0 |             AES_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks.ks); | 
| 2752 | 0 |             CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks, | 
| 2753 | 0 |                                (block128_f) AES_encrypt); | 
| 2754 |  | #ifdef AES_CTR_ASM | 
| 2755 |  |             gctx->ctr = (ctr128_f) AES_ctr32_encrypt; | 
| 2756 |  | #else | 
| 2757 | 0 |             gctx->ctr = NULL; | 
| 2758 | 0 | #endif | 
| 2759 | 0 |         } while (0); | 
| 2760 |  |  | 
| 2761 |  |         /* | 
| 2762 |  |          * If we have an iv can set it directly, otherwise use saved IV. | 
| 2763 |  |          */ | 
| 2764 | 0 |         if (iv == NULL && gctx->iv_set) | 
| 2765 | 0 |             iv = gctx->iv; | 
| 2766 | 0 |         if (iv) { | 
| 2767 | 0 |             CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen); | 
| 2768 | 0 |             gctx->iv_set = 1; | 
| 2769 | 0 |         } | 
| 2770 | 0 |         gctx->key_set = 1; | 
| 2771 | 0 |     } else { | 
| 2772 |  |         /* If key set use IV, otherwise copy */ | 
| 2773 | 0 |         if (gctx->key_set) | 
| 2774 | 0 |             CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen); | 
| 2775 | 0 |         else | 
| 2776 | 0 |             memcpy(gctx->iv, iv, gctx->ivlen); | 
| 2777 | 0 |         gctx->iv_set = 1; | 
| 2778 | 0 |         gctx->iv_gen = 0; | 
| 2779 | 0 |     } | 
| 2780 | 0 |     return 1; | 
| 2781 | 0 | } | 
| 2782 |  |  | 
| 2783 |  | /* | 
| 2784 |  |  * Handle TLS GCM packet format. This consists of the last portion of the IV | 
| 2785 |  |  * followed by the payload and finally the tag. On encrypt generate IV, | 
| 2786 |  |  * encrypt payload and write the tag. On verify retrieve IV, decrypt payload | 
| 2787 |  |  * and verify tag. | 
| 2788 |  |  */ | 
| 2789 |  |  | 
| 2790 |  | static int aes_gcm_tls_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, | 
| 2791 |  |                               const unsigned char *in, size_t len) | 
| 2792 |  | { | 
| 2793 |  |     EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,ctx); | 
| 2794 |  |     int rv = -1; | 
| 2795 |  |     /* Encrypt/decrypt must be performed in place */ | 
| 2796 |  |     if (out != in | 
| 2797 |  |         || len < (EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN)) | 
| 2798 |  |         return -1; | 
| 2799 |  |  | 
| 2800 |  |     /* | 
| 2801 |  |      * Check for too many keys as per FIPS 140-2 IG A.5 "Key/IV Pair Uniqueness | 
| 2802 |  |      * Requirements from SP 800-38D".  The requirements is for one party to the | 
| 2803 |  |      * communication to fail after 2^64 - 1 keys.  We do this on the encrypting | 
| 2804 |  |      * side only. | 
| 2805 |  |      */ | 
| 2806 |  |     if (ctx->encrypt && ++gctx->tls_enc_records == 0) { | 
| 2807 |  |         ERR_raise(ERR_LIB_EVP, EVP_R_TOO_MANY_RECORDS); | 
| 2808 |  |         goto err; | 
| 2809 |  |     } | 
| 2810 |  |  | 
| 2811 |  |     /* | 
| 2812 |  |      * Set IV from start of buffer or generate IV and write to start of | 
| 2813 |  |      * buffer. | 
| 2814 |  |      */ | 
| 2815 |  |     if (EVP_CIPHER_CTX_ctrl(ctx, ctx->encrypt ? EVP_CTRL_GCM_IV_GEN | 
| 2816 |  |                                               : EVP_CTRL_GCM_SET_IV_INV, | 
| 2817 |  |                             EVP_GCM_TLS_EXPLICIT_IV_LEN, out) <= 0) | 
| 2818 |  |         goto err; | 
| 2819 |  |     /* Use saved AAD */ | 
| 2820 |  |     if (CRYPTO_gcm128_aad(&gctx->gcm, ctx->buf, gctx->tls_aad_len)) | 
| 2821 |  |         goto err; | 
| 2822 |  |     /* Fix buffer and length to point to payload */ | 
| 2823 |  |     in += EVP_GCM_TLS_EXPLICIT_IV_LEN; | 
| 2824 |  |     out += EVP_GCM_TLS_EXPLICIT_IV_LEN; | 
| 2825 |  |     len -= EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN; | 
| 2826 |  |     if (ctx->encrypt) { | 
| 2827 |  |         /* Encrypt payload */ | 
| 2828 |  |         if (gctx->ctr) { | 
| 2829 |  |             size_t bulk = 0; | 
| 2830 |  | #if defined(AES_GCM_ASM) | 
| 2831 |  |             if (len >= 32 && AES_GCM_ASM(gctx)) { | 
| 2832 |  |                 if (CRYPTO_gcm128_encrypt(&gctx->gcm, NULL, NULL, 0)) | 
| 2833 |  |                     return -1; | 
| 2834 |  |  | 
| 2835 |  |                 bulk = AES_gcm_encrypt(in, out, len, | 
| 2836 |  |                                        gctx->gcm.key, | 
| 2837 |  |                                        gctx->gcm.Yi.c, gctx->gcm.Xi.u); | 
| 2838 |  |                 gctx->gcm.len.u[1] += bulk; | 
| 2839 |  |             } | 
| 2840 |  | #endif | 
| 2841 |  |             if (CRYPTO_gcm128_encrypt_ctr32(&gctx->gcm, | 
| 2842 |  |                                             in + bulk, | 
| 2843 |  |                                             out + bulk, | 
| 2844 |  |                                             len - bulk, gctx->ctr)) | 
| 2845 |  |                 goto err; | 
| 2846 |  |         } else { | 
| 2847 |  |             size_t bulk = 0; | 
| 2848 |  | #if defined(AES_GCM_ASM2) | 
| 2849 |  |             if (len >= 32 && AES_GCM_ASM2(gctx)) { | 
| 2850 |  |                 if (CRYPTO_gcm128_encrypt(&gctx->gcm, NULL, NULL, 0)) | 
| 2851 |  |                     return -1; | 
| 2852 |  |  | 
| 2853 |  |                 bulk = AES_gcm_encrypt(in, out, len, | 
| 2854 |  |                                        gctx->gcm.key, | 
| 2855 |  |                                        gctx->gcm.Yi.c, gctx->gcm.Xi.u); | 
| 2856 |  |                 gctx->gcm.len.u[1] += bulk; | 
| 2857 |  |             } | 
| 2858 |  | #endif | 
| 2859 |  |             if (CRYPTO_gcm128_encrypt(&gctx->gcm, | 
| 2860 |  |                                       in + bulk, out + bulk, len - bulk)) | 
| 2861 |  |                 goto err; | 
| 2862 |  |         } | 
| 2863 |  |         out += len; | 
| 2864 |  |         /* Finally write tag */ | 
| 2865 |  |         CRYPTO_gcm128_tag(&gctx->gcm, out, EVP_GCM_TLS_TAG_LEN); | 
| 2866 |  |         rv = len + EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN; | 
| 2867 |  |     } else { | 
| 2868 |  |         /* Decrypt */ | 
| 2869 |  |         if (gctx->ctr) { | 
| 2870 |  |             size_t bulk = 0; | 
| 2871 |  | #if defined(AES_GCM_ASM) | 
| 2872 |  |             if (len >= 16 && AES_GCM_ASM(gctx)) { | 
| 2873 |  |                 if (CRYPTO_gcm128_decrypt(&gctx->gcm, NULL, NULL, 0)) | 
| 2874 |  |                     return -1; | 
| 2875 |  |  | 
| 2876 |  |                 bulk = AES_gcm_decrypt(in, out, len, | 
| 2877 |  |                                        gctx->gcm.key, | 
| 2878 |  |                                        gctx->gcm.Yi.c, gctx->gcm.Xi.u); | 
| 2879 |  |                 gctx->gcm.len.u[1] += bulk; | 
| 2880 |  |             } | 
| 2881 |  | #endif | 
| 2882 |  |             if (CRYPTO_gcm128_decrypt_ctr32(&gctx->gcm, | 
| 2883 |  |                                             in + bulk, | 
| 2884 |  |                                             out + bulk, | 
| 2885 |  |                                             len - bulk, gctx->ctr)) | 
| 2886 |  |                 goto err; | 
| 2887 |  |         } else { | 
| 2888 |  |             size_t bulk = 0; | 
| 2889 |  | #if defined(AES_GCM_ASM2) | 
| 2890 |  |             if (len >= 16 && AES_GCM_ASM2(gctx)) { | 
| 2891 |  |                 if (CRYPTO_gcm128_decrypt(&gctx->gcm, NULL, NULL, 0)) | 
| 2892 |  |                     return -1; | 
| 2893 |  |  | 
| 2894 |  |                 bulk = AES_gcm_decrypt(in, out, len, | 
| 2895 |  |                                        gctx->gcm.key, | 
| 2896 |  |                                        gctx->gcm.Yi.c, gctx->gcm.Xi.u); | 
| 2897 |  |                 gctx->gcm.len.u[1] += bulk; | 
| 2898 |  |             } | 
| 2899 |  | #endif | 
| 2900 |  |             if (CRYPTO_gcm128_decrypt(&gctx->gcm, | 
| 2901 |  |                                       in + bulk, out + bulk, len - bulk)) | 
| 2902 |  |                 goto err; | 
| 2903 |  |         } | 
| 2904 |  |         /* Retrieve tag */ | 
| 2905 |  |         CRYPTO_gcm128_tag(&gctx->gcm, ctx->buf, EVP_GCM_TLS_TAG_LEN); | 
| 2906 |  |         /* If tag mismatch wipe buffer */ | 
| 2907 |  |         if (CRYPTO_memcmp(ctx->buf, in + len, EVP_GCM_TLS_TAG_LEN)) { | 
| 2908 |  |             OPENSSL_cleanse(out, len); | 
| 2909 |  |             goto err; | 
| 2910 |  |         } | 
| 2911 |  |         rv = len; | 
| 2912 |  |     } | 
| 2913 |  |  | 
| 2914 |  |  err: | 
| 2915 |  |     gctx->iv_set = 0; | 
| 2916 |  |     gctx->tls_aad_len = -1; | 
| 2917 |  |     return rv; | 
| 2918 |  | } | 
| 2919 |  |  | 
| 2920 |  | #ifdef FIPS_MODULE | 
| 2921 |  | /* | 
| 2922 |  |  * See SP800-38D (GCM) Section 8 "Uniqueness requirement on IVS and keys" | 
| 2923 |  |  * | 
| 2924 |  |  * See also 8.2.2 RBG-based construction. | 
| 2925 |  |  * Random construction consists of a free field (which can be NULL) and a | 
| 2926 |  |  * random field which will use a DRBG that can return at least 96 bits of | 
| 2927 |  |  * entropy strength. (The DRBG must be seeded by the FIPS module). | 
| 2928 |  |  */ | 
| 2929 |  | static int aes_gcm_iv_generate(EVP_AES_GCM_CTX *gctx, int offset) | 
| 2930 |  | { | 
| 2931 |  |     int sz = gctx->ivlen - offset; | 
| 2932 |  |  | 
| 2933 |  |     /* Must be at least 96 bits */ | 
| 2934 |  |     if (sz <= 0 || gctx->ivlen < 12) | 
| 2935 |  |         return 0; | 
| 2936 |  |  | 
| 2937 |  |     /* Use DRBG to generate random iv */ | 
| 2938 |  |     if (RAND_bytes(gctx->iv + offset, sz) <= 0) | 
| 2939 |  |         return 0; | 
| 2940 |  |     return 1; | 
| 2941 |  | } | 
| 2942 |  | #endif /* FIPS_MODULE */ | 
| 2943 |  |  | 
| 2944 |  | static int aes_gcm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, | 
| 2945 |  |                           const unsigned char *in, size_t len) | 
| 2946 | 14.0k | { | 
| 2947 | 14.0k |     EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,ctx); | 
| 2948 |  |  | 
| 2949 |  |     /* If not set up, return error */ | 
| 2950 | 14.0k |     if (!gctx->key_set) | 
| 2951 | 0 |         return -1; | 
| 2952 |  |  | 
| 2953 | 14.0k |     if (gctx->tls_aad_len >= 0) | 
| 2954 | 82 |         return aes_gcm_tls_cipher(ctx, out, in, len); | 
| 2955 |  |  | 
| 2956 |  | #ifdef FIPS_MODULE | 
| 2957 |  |     /* | 
| 2958 |  |      * FIPS requires generation of AES-GCM IV's inside the FIPS module. | 
| 2959 |  |      * The IV can still be set externally (the security policy will state that | 
| 2960 |  |      * this is not FIPS compliant). There are some applications | 
| 2961 |  |      * where setting the IV externally is the only option available. | 
| 2962 |  |      */ | 
| 2963 |  |     if (!gctx->iv_set) { | 
| 2964 |  |         if (!ctx->encrypt || !aes_gcm_iv_generate(gctx, 0)) | 
| 2965 |  |             return -1; | 
| 2966 |  |         CRYPTO_gcm128_setiv(&gctx->gcm, gctx->iv, gctx->ivlen); | 
| 2967 |  |         gctx->iv_set = 1; | 
| 2968 |  |         gctx->iv_gen_rand = 1; | 
| 2969 |  |     } | 
| 2970 |  | #else | 
| 2971 | 13.9k |     if (!gctx->iv_set) | 
| 2972 | 0 |         return -1; | 
| 2973 | 13.9k | #endif /* FIPS_MODULE */ | 
| 2974 |  |  | 
| 2975 | 13.9k |     if (in) { | 
| 2976 | 9.32k |         if (out == NULL) { | 
| 2977 | 4.66k |             if (CRYPTO_gcm128_aad(&gctx->gcm, in, len)) | 
| 2978 | 0 |                 return -1; | 
| 2979 | 4.66k |         } else if (ctx->encrypt) { | 
| 2980 | 1.10k |             if (gctx->ctr) { | 
| 2981 | 1.10k |                 size_t bulk = 0; | 
| 2982 | 1.10k | #if defined(AES_GCM_ASM) | 
| 2983 | 1.10k |                 if (len >= 32 && AES_GCM_ASM(gctx)) { | 
| 2984 | 779 |                     size_t res = (16 - gctx->gcm.mres) % 16; | 
| 2985 |  |  | 
| 2986 | 779 |                     if (CRYPTO_gcm128_encrypt(&gctx->gcm, in, out, res)) | 
| 2987 | 0 |                         return -1; | 
| 2988 |  |  | 
| 2989 | 779 |                     bulk = AES_gcm_encrypt(in + res, | 
| 2990 | 779 |                                            out + res, len - res, | 
| 2991 | 779 |                                            gctx->gcm.key, gctx->gcm.Yi.c, | 
| 2992 | 779 |                                            gctx->gcm.Xi.u); | 
| 2993 | 779 |                     gctx->gcm.len.u[1] += bulk; | 
| 2994 | 779 |                     bulk += res; | 
| 2995 | 779 |                 } | 
| 2996 | 1.10k | #endif | 
| 2997 | 1.10k |                 if (CRYPTO_gcm128_encrypt_ctr32(&gctx->gcm, | 
| 2998 | 1.10k |                                                 in + bulk, | 
| 2999 | 1.10k |                                                 out + bulk, | 
| 3000 | 1.10k |                                                 len - bulk, gctx->ctr)) | 
| 3001 | 0 |                     return -1; | 
| 3002 | 1.10k |             } else { | 
| 3003 | 0 |                 size_t bulk = 0; | 
| 3004 |  | #if defined(AES_GCM_ASM2) | 
| 3005 |  |                 if (len >= 32 && AES_GCM_ASM2(gctx)) { | 
| 3006 |  |                     size_t res = (16 - gctx->gcm.mres) % 16; | 
| 3007 |  |  | 
| 3008 |  |                     if (CRYPTO_gcm128_encrypt(&gctx->gcm, in, out, res)) | 
| 3009 |  |                         return -1; | 
| 3010 |  |  | 
| 3011 |  |                     bulk = AES_gcm_encrypt(in + res, | 
| 3012 |  |                                            out + res, len - res, | 
| 3013 |  |                                            gctx->gcm.key, gctx->gcm.Yi.c, | 
| 3014 |  |                                            gctx->gcm.Xi.u); | 
| 3015 |  |                     gctx->gcm.len.u[1] += bulk; | 
| 3016 |  |                     bulk += res; | 
| 3017 |  |                 } | 
| 3018 |  | #endif | 
| 3019 | 0 |                 if (CRYPTO_gcm128_encrypt(&gctx->gcm, | 
| 3020 | 0 |                                           in + bulk, out + bulk, len - bulk)) | 
| 3021 | 0 |                     return -1; | 
| 3022 | 0 |             } | 
| 3023 | 3.55k |         } else { | 
| 3024 | 3.55k |             if (gctx->ctr) { | 
| 3025 | 3.55k |                 size_t bulk = 0; | 
| 3026 | 3.55k | #if defined(AES_GCM_ASM) | 
| 3027 | 3.55k |                 if (len >= 16 && AES_GCM_ASM(gctx)) { | 
| 3028 | 455 |                     size_t res = (16 - gctx->gcm.mres) % 16; | 
| 3029 |  |  | 
| 3030 | 455 |                     if (CRYPTO_gcm128_decrypt(&gctx->gcm, in, out, res)) | 
| 3031 | 0 |                         return -1; | 
| 3032 |  |  | 
| 3033 | 455 |                     bulk = AES_gcm_decrypt(in + res, | 
| 3034 | 455 |                                            out + res, len - res, | 
| 3035 | 455 |                                            gctx->gcm.key, | 
| 3036 | 455 |                                            gctx->gcm.Yi.c, gctx->gcm.Xi.u); | 
| 3037 | 455 |                     gctx->gcm.len.u[1] += bulk; | 
| 3038 | 455 |                     bulk += res; | 
| 3039 | 455 |                 } | 
| 3040 | 3.55k | #endif | 
| 3041 | 3.55k |                 if (CRYPTO_gcm128_decrypt_ctr32(&gctx->gcm, | 
| 3042 | 3.55k |                                                 in + bulk, | 
| 3043 | 3.55k |                                                 out + bulk, | 
| 3044 | 3.55k |                                                 len - bulk, gctx->ctr)) | 
| 3045 | 0 |                     return -1; | 
| 3046 | 3.55k |             } else { | 
| 3047 | 0 |                 size_t bulk = 0; | 
| 3048 |  | #if defined(AES_GCM_ASM2) | 
| 3049 |  |                 if (len >= 16 && AES_GCM_ASM2(gctx)) { | 
| 3050 |  |                     size_t res = (16 - gctx->gcm.mres) % 16; | 
| 3051 |  |  | 
| 3052 |  |                     if (CRYPTO_gcm128_decrypt(&gctx->gcm, in, out, res)) | 
| 3053 |  |                         return -1; | 
| 3054 |  |  | 
| 3055 |  |                     bulk = AES_gcm_decrypt(in + res, | 
| 3056 |  |                                            out + res, len - res, | 
| 3057 |  |                                            gctx->gcm.key, | 
| 3058 |  |                                            gctx->gcm.Yi.c, gctx->gcm.Xi.u); | 
| 3059 |  |                     gctx->gcm.len.u[1] += bulk; | 
| 3060 |  |                     bulk += res; | 
| 3061 |  |                 } | 
| 3062 |  | #endif | 
| 3063 | 0 |                 if (CRYPTO_gcm128_decrypt(&gctx->gcm, | 
| 3064 | 0 |                                           in + bulk, out + bulk, len - bulk)) | 
| 3065 | 0 |                     return -1; | 
| 3066 | 0 |             } | 
| 3067 | 3.55k |         } | 
| 3068 | 9.32k |         return len; | 
| 3069 | 9.32k |     } else { | 
| 3070 | 4.66k |         if (!ctx->encrypt) { | 
| 3071 | 3.55k |             if (gctx->taglen < 0) | 
| 3072 | 0 |                 return -1; | 
| 3073 | 3.55k |             if (CRYPTO_gcm128_finish(&gctx->gcm, ctx->buf, gctx->taglen) != 0) | 
| 3074 | 3.55k |                 return -1; | 
| 3075 | 0 |             gctx->iv_set = 0; | 
| 3076 | 0 |             return 0; | 
| 3077 | 3.55k |         } | 
| 3078 | 1.10k |         CRYPTO_gcm128_tag(&gctx->gcm, ctx->buf, 16); | 
| 3079 | 1.10k |         gctx->taglen = 16; | 
| 3080 |  |         /* Don't reuse the IV */ | 
| 3081 | 1.10k |         gctx->iv_set = 0; | 
| 3082 | 1.10k |         return 0; | 
| 3083 | 4.66k |     } | 
| 3084 |  |  | 
| 3085 | 13.9k | } | 
| 3086 |  |  | 
| 3087 |  | #define CUSTOM_FLAGS    (EVP_CIPH_FLAG_DEFAULT_ASN1 \ | 
| 3088 |  |                 | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER \ | 
| 3089 |  |                 | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT \ | 
| 3090 |  |                 | EVP_CIPH_CUSTOM_COPY | EVP_CIPH_CUSTOM_IV_LENGTH) | 
| 3091 |  |  | 
| 3092 |  | BLOCK_CIPHER_custom(NID_aes, 128, 1, 12, gcm, GCM, | 
| 3093 |  |                     EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS) | 
| 3094 |  |     BLOCK_CIPHER_custom(NID_aes, 192, 1, 12, gcm, GCM, | 
| 3095 |  |                     EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS) | 
| 3096 |  |     BLOCK_CIPHER_custom(NID_aes, 256, 1, 12, gcm, GCM, | 
| 3097 |  |                     EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS) | 
| 3098 |  |  | 
| 3099 |  | static int aes_xts_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr) | 
| 3100 | 0 | { | 
| 3101 | 0 |     EVP_AES_XTS_CTX *xctx = EVP_C_DATA(EVP_AES_XTS_CTX, c); | 
| 3102 |  | 
 | 
| 3103 | 0 |     if (type == EVP_CTRL_COPY) { | 
| 3104 | 0 |         EVP_CIPHER_CTX *out = ptr; | 
| 3105 | 0 |         EVP_AES_XTS_CTX *xctx_out = EVP_C_DATA(EVP_AES_XTS_CTX,out); | 
| 3106 |  | 
 | 
| 3107 | 0 |         if (xctx->xts.key1) { | 
| 3108 | 0 |             if (xctx->xts.key1 != &xctx->ks1) | 
| 3109 | 0 |                 return 0; | 
| 3110 | 0 |             xctx_out->xts.key1 = &xctx_out->ks1; | 
| 3111 | 0 |         } | 
| 3112 | 0 |         if (xctx->xts.key2) { | 
| 3113 | 0 |             if (xctx->xts.key2 != &xctx->ks2) | 
| 3114 | 0 |                 return 0; | 
| 3115 | 0 |             xctx_out->xts.key2 = &xctx_out->ks2; | 
| 3116 | 0 |         } | 
| 3117 | 0 |         return 1; | 
| 3118 | 0 |     } else if (type != EVP_CTRL_INIT) | 
| 3119 | 0 |         return -1; | 
| 3120 |  |     /* key1 and key2 are used as an indicator both key and IV are set */ | 
| 3121 | 0 |     xctx->xts.key1 = NULL; | 
| 3122 | 0 |     xctx->xts.key2 = NULL; | 
| 3123 | 0 |     return 1; | 
| 3124 | 0 | } | 
| 3125 |  |  | 
| 3126 |  | static int aes_xts_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, | 
| 3127 |  |                             const unsigned char *iv, int enc) | 
| 3128 | 0 | { | 
| 3129 | 0 |     EVP_AES_XTS_CTX *xctx = EVP_C_DATA(EVP_AES_XTS_CTX,ctx); | 
| 3130 |  | 
 | 
| 3131 | 0 |     if (!iv && !key) | 
| 3132 | 0 |         return 1; | 
| 3133 |  |  | 
| 3134 | 0 |     if (key) { | 
| 3135 | 0 |         do { | 
| 3136 |  |             /* The key is two half length keys in reality */ | 
| 3137 | 0 |             const int bytes = EVP_CIPHER_CTX_get_key_length(ctx) / 2; | 
| 3138 | 0 |             const int bits = bytes * 8; | 
| 3139 |  |  | 
| 3140 |  |             /* | 
| 3141 |  |              * Verify that the two keys are different. | 
| 3142 |  |              * | 
| 3143 |  |              * This addresses the vulnerability described in Rogaway's | 
| 3144 |  |              * September 2004 paper: | 
| 3145 |  |              * | 
| 3146 |  |              *      "Efficient Instantiations of Tweakable Blockciphers and | 
| 3147 |  |              *       Refinements to Modes OCB and PMAC". | 
| 3148 |  |              *      (http://web.cs.ucdavis.edu/~rogaway/papers/offsets.pdf) | 
| 3149 |  |              * | 
| 3150 |  |              * FIPS 140-2 IG A.9 XTS-AES Key Generation Requirements states | 
| 3151 |  |              * that: | 
| 3152 |  |              *      "The check for Key_1 != Key_2 shall be done at any place | 
| 3153 |  |              *       BEFORE using the keys in the XTS-AES algorithm to process | 
| 3154 |  |              *       data with them." | 
| 3155 |  |              */ | 
| 3156 | 0 |             if ((!allow_insecure_decrypt || enc) | 
| 3157 | 0 |                     && CRYPTO_memcmp(key, key + bytes, bytes) == 0) { | 
| 3158 | 0 |                 ERR_raise(ERR_LIB_EVP, EVP_R_XTS_DUPLICATED_KEYS); | 
| 3159 | 0 |                 return 0; | 
| 3160 | 0 |             } | 
| 3161 |  |  | 
| 3162 |  | #ifdef AES_XTS_ASM | 
| 3163 |  |             xctx->stream = enc ? AES_xts_encrypt : AES_xts_decrypt; | 
| 3164 |  | #else | 
| 3165 | 0 |             xctx->stream = NULL; | 
| 3166 | 0 | #endif | 
| 3167 |  |             /* key_len is two AES keys */ | 
| 3168 |  | #ifdef HWAES_CAPABLE | 
| 3169 |  |             if (HWAES_CAPABLE) { | 
| 3170 |  |                 if (enc) { | 
| 3171 |  |                     HWAES_set_encrypt_key(key, bits, &xctx->ks1.ks); | 
| 3172 |  |                     xctx->xts.block1 = (block128_f) HWAES_encrypt; | 
| 3173 |  | # ifdef HWAES_xts_encrypt | 
| 3174 |  |                     xctx->stream = HWAES_xts_encrypt; | 
| 3175 |  | # endif | 
| 3176 |  |                 } else { | 
| 3177 |  |                     HWAES_set_decrypt_key(key, bits, &xctx->ks1.ks); | 
| 3178 |  |                     xctx->xts.block1 = (block128_f) HWAES_decrypt; | 
| 3179 |  | # ifdef HWAES_xts_decrypt | 
| 3180 |  |                     xctx->stream = HWAES_xts_decrypt; | 
| 3181 |  | #endif | 
| 3182 |  |                 } | 
| 3183 |  |  | 
| 3184 |  |                 HWAES_set_encrypt_key(key + bytes, bits, &xctx->ks2.ks); | 
| 3185 |  |                 xctx->xts.block2 = (block128_f) HWAES_encrypt; | 
| 3186 |  |  | 
| 3187 |  |                 xctx->xts.key1 = &xctx->ks1; | 
| 3188 |  |                 break; | 
| 3189 |  |             } else | 
| 3190 |  | #endif | 
| 3191 | 0 | #ifdef BSAES_CAPABLE | 
| 3192 | 0 |             if (BSAES_CAPABLE) | 
| 3193 | 0 |                 xctx->stream = enc ? ossl_bsaes_xts_encrypt : ossl_bsaes_xts_decrypt; | 
| 3194 | 0 |             else | 
| 3195 | 0 | #endif | 
| 3196 | 0 | #ifdef VPAES_CAPABLE | 
| 3197 | 0 |             if (VPAES_CAPABLE) { | 
| 3198 | 0 |                 if (enc) { | 
| 3199 | 0 |                     vpaes_set_encrypt_key(key, bits, &xctx->ks1.ks); | 
| 3200 | 0 |                     xctx->xts.block1 = (block128_f) vpaes_encrypt; | 
| 3201 | 0 |                 } else { | 
| 3202 | 0 |                     vpaes_set_decrypt_key(key, bits, &xctx->ks1.ks); | 
| 3203 | 0 |                     xctx->xts.block1 = (block128_f) vpaes_decrypt; | 
| 3204 | 0 |                 } | 
| 3205 |  | 
 | 
| 3206 | 0 |                 vpaes_set_encrypt_key(key + bytes, bits, &xctx->ks2.ks); | 
| 3207 | 0 |                 xctx->xts.block2 = (block128_f) vpaes_encrypt; | 
| 3208 |  | 
 | 
| 3209 | 0 |                 xctx->xts.key1 = &xctx->ks1; | 
| 3210 | 0 |                 break; | 
| 3211 | 0 |             } else | 
| 3212 | 0 | #endif | 
| 3213 | 0 |                 (void)0;        /* terminate potentially open 'else' */ | 
| 3214 |  |  | 
| 3215 | 0 |             if (enc) { | 
| 3216 | 0 |                 AES_set_encrypt_key(key, bits, &xctx->ks1.ks); | 
| 3217 | 0 |                 xctx->xts.block1 = (block128_f) AES_encrypt; | 
| 3218 | 0 |             } else { | 
| 3219 | 0 |                 AES_set_decrypt_key(key, bits, &xctx->ks1.ks); | 
| 3220 | 0 |                 xctx->xts.block1 = (block128_f) AES_decrypt; | 
| 3221 | 0 |             } | 
| 3222 |  | 
 | 
| 3223 | 0 |             AES_set_encrypt_key(key + bytes, bits, &xctx->ks2.ks); | 
| 3224 | 0 |             xctx->xts.block2 = (block128_f) AES_encrypt; | 
| 3225 |  | 
 | 
| 3226 | 0 |             xctx->xts.key1 = &xctx->ks1; | 
| 3227 | 0 |         } while (0); | 
| 3228 | 0 |     } | 
| 3229 |  |  | 
| 3230 | 0 |     if (iv) { | 
| 3231 | 0 |         xctx->xts.key2 = &xctx->ks2; | 
| 3232 | 0 |         memcpy(ctx->iv, iv, 16); | 
| 3233 | 0 |     } | 
| 3234 |  | 
 | 
| 3235 | 0 |     return 1; | 
| 3236 | 0 | } | 
| 3237 |  |  | 
| 3238 |  | static int aes_xts_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, | 
| 3239 |  |                           const unsigned char *in, size_t len) | 
| 3240 | 0 | { | 
| 3241 | 0 |     EVP_AES_XTS_CTX *xctx = EVP_C_DATA(EVP_AES_XTS_CTX,ctx); | 
| 3242 |  | 
 | 
| 3243 | 0 |     if (xctx->xts.key1 == NULL | 
| 3244 | 0 |             || xctx->xts.key2 == NULL | 
| 3245 | 0 |             || out == NULL | 
| 3246 | 0 |             || in == NULL | 
| 3247 | 0 |             || len < AES_BLOCK_SIZE) | 
| 3248 | 0 |         return 0; | 
| 3249 |  |  | 
| 3250 |  |     /* | 
| 3251 |  |      * Impose a limit of 2^20 blocks per data unit as specified by | 
| 3252 |  |      * IEEE Std 1619-2018.  The earlier and obsolete IEEE Std 1619-2007 | 
| 3253 |  |      * indicated that this was a SHOULD NOT rather than a MUST NOT. | 
| 3254 |  |      * NIST SP 800-38E mandates the same limit. | 
| 3255 |  |      */ | 
| 3256 | 0 |     if (len > XTS_MAX_BLOCKS_PER_DATA_UNIT * AES_BLOCK_SIZE) { | 
| 3257 | 0 |         ERR_raise(ERR_LIB_EVP, EVP_R_XTS_DATA_UNIT_IS_TOO_LARGE); | 
| 3258 | 0 |         return 0; | 
| 3259 | 0 |     } | 
| 3260 |  |  | 
| 3261 | 0 |     if (xctx->stream) | 
| 3262 | 0 |         (*xctx->stream) (in, out, len, | 
| 3263 | 0 |                          xctx->xts.key1, xctx->xts.key2, | 
| 3264 | 0 |                          ctx->iv); | 
| 3265 | 0 |     else if (CRYPTO_xts128_encrypt(&xctx->xts, ctx->iv, in, out, len, | 
| 3266 | 0 |                                    EVP_CIPHER_CTX_is_encrypting(ctx))) | 
| 3267 | 0 |         return 0; | 
| 3268 | 0 |     return 1; | 
| 3269 | 0 | } | 
| 3270 |  |  | 
| 3271 |  | #define aes_xts_cleanup NULL | 
| 3272 |  |  | 
| 3273 |  | #define XTS_FLAGS       (EVP_CIPH_FLAG_DEFAULT_ASN1 | EVP_CIPH_CUSTOM_IV \ | 
| 3274 |  |                          | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT \ | 
| 3275 |  |                          | EVP_CIPH_CUSTOM_COPY) | 
| 3276 |  |  | 
| 3277 |  | BLOCK_CIPHER_custom(NID_aes, 128, 1, 16, xts, XTS, XTS_FLAGS) | 
| 3278 |  |     BLOCK_CIPHER_custom(NID_aes, 256, 1, 16, xts, XTS, XTS_FLAGS) | 
| 3279 |  |  | 
| 3280 |  | static int aes_ccm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr) | 
| 3281 | 369 | { | 
| 3282 | 369 |     EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,c); | 
| 3283 | 369 |     switch (type) { | 
| 3284 | 71 |     case EVP_CTRL_INIT: | 
| 3285 | 71 |         cctx->key_set = 0; | 
| 3286 | 71 |         cctx->iv_set = 0; | 
| 3287 | 71 |         cctx->L = 8; | 
| 3288 | 71 |         cctx->M = 12; | 
| 3289 | 71 |         cctx->tag_set = 0; | 
| 3290 | 71 |         cctx->len_set = 0; | 
| 3291 | 71 |         cctx->tls_aad_len = -1; | 
| 3292 | 71 |         return 1; | 
| 3293 |  |  | 
| 3294 | 0 |     case EVP_CTRL_GET_IVLEN: | 
| 3295 | 0 |         *(int *)ptr = 15 - cctx->L; | 
| 3296 | 0 |         return 1; | 
| 3297 |  |  | 
| 3298 | 85 |     case EVP_CTRL_AEAD_TLS1_AAD: | 
| 3299 |  |         /* Save the AAD for later use */ | 
| 3300 | 85 |         if (arg != EVP_AEAD_TLS1_AAD_LEN) | 
| 3301 | 0 |             return 0; | 
| 3302 | 85 |         memcpy(EVP_CIPHER_CTX_buf_noconst(c), ptr, arg); | 
| 3303 | 85 |         cctx->tls_aad_len = arg; | 
| 3304 | 85 |         { | 
| 3305 | 85 |             uint16_t len = | 
| 3306 | 85 |                 EVP_CIPHER_CTX_buf_noconst(c)[arg - 2] << 8 | 
| 3307 | 85 |                 | EVP_CIPHER_CTX_buf_noconst(c)[arg - 1]; | 
| 3308 |  |             /* Correct length for explicit IV */ | 
| 3309 | 85 |             if (len < EVP_CCM_TLS_EXPLICIT_IV_LEN) | 
| 3310 | 5 |                 return 0; | 
| 3311 | 80 |             len -= EVP_CCM_TLS_EXPLICIT_IV_LEN; | 
| 3312 |  |             /* If decrypting correct for tag too */ | 
| 3313 | 80 |             if (!EVP_CIPHER_CTX_is_encrypting(c)) { | 
| 3314 | 41 |                 if (len < cctx->M) | 
| 3315 | 6 |                     return 0; | 
| 3316 | 35 |                 len -= cctx->M; | 
| 3317 | 35 |             } | 
| 3318 | 74 |             EVP_CIPHER_CTX_buf_noconst(c)[arg - 2] = len >> 8; | 
| 3319 | 74 |             EVP_CIPHER_CTX_buf_noconst(c)[arg - 1] = len & 0xff; | 
| 3320 | 74 |         } | 
| 3321 |  |         /* Extra padding: tag appended to record */ | 
| 3322 | 0 |         return cctx->M; | 
| 3323 |  |  | 
| 3324 | 71 |     case EVP_CTRL_CCM_SET_IV_FIXED: | 
| 3325 |  |         /* Sanity check length */ | 
| 3326 | 71 |         if (arg != EVP_CCM_TLS_FIXED_IV_LEN) | 
| 3327 | 0 |             return 0; | 
| 3328 |  |         /* Just copy to first part of IV */ | 
| 3329 | 71 |         memcpy(c->iv, ptr, arg); | 
| 3330 | 71 |         return 1; | 
| 3331 |  |  | 
| 3332 | 71 |     case EVP_CTRL_AEAD_SET_IVLEN: | 
| 3333 | 71 |         arg = 15 - arg; | 
| 3334 |  |         /* fall thru */ | 
| 3335 | 71 |     case EVP_CTRL_CCM_SET_L: | 
| 3336 | 71 |         if (arg < 2 || arg > 8) | 
| 3337 | 0 |             return 0; | 
| 3338 | 71 |         cctx->L = arg; | 
| 3339 | 71 |         return 1; | 
| 3340 |  |  | 
| 3341 | 71 |     case EVP_CTRL_AEAD_SET_TAG: | 
| 3342 | 71 |         if ((arg & 1) || arg < 4 || arg > 16) | 
| 3343 | 0 |             return 0; | 
| 3344 | 71 |         if (EVP_CIPHER_CTX_is_encrypting(c) && ptr) | 
| 3345 | 0 |             return 0; | 
| 3346 | 71 |         if (ptr) { | 
| 3347 | 0 |             cctx->tag_set = 1; | 
| 3348 | 0 |             memcpy(EVP_CIPHER_CTX_buf_noconst(c), ptr, arg); | 
| 3349 | 0 |         } | 
| 3350 | 71 |         cctx->M = arg; | 
| 3351 | 71 |         return 1; | 
| 3352 |  |  | 
| 3353 | 0 |     case EVP_CTRL_AEAD_GET_TAG: | 
| 3354 | 0 |         if (!EVP_CIPHER_CTX_is_encrypting(c) || !cctx->tag_set) | 
| 3355 | 0 |             return 0; | 
| 3356 | 0 |         if (!CRYPTO_ccm128_tag(&cctx->ccm, ptr, (size_t)arg)) | 
| 3357 | 0 |             return 0; | 
| 3358 | 0 |         cctx->tag_set = 0; | 
| 3359 | 0 |         cctx->iv_set = 0; | 
| 3360 | 0 |         cctx->len_set = 0; | 
| 3361 | 0 |         return 1; | 
| 3362 |  |  | 
| 3363 | 0 |     case EVP_CTRL_COPY: | 
| 3364 | 0 |         { | 
| 3365 | 0 |             EVP_CIPHER_CTX *out = ptr; | 
| 3366 | 0 |             EVP_AES_CCM_CTX *cctx_out = EVP_C_DATA(EVP_AES_CCM_CTX,out); | 
| 3367 | 0 |             if (cctx->ccm.key) { | 
| 3368 | 0 |                 if (cctx->ccm.key != &cctx->ks) | 
| 3369 | 0 |                     return 0; | 
| 3370 | 0 |                 cctx_out->ccm.key = &cctx_out->ks; | 
| 3371 | 0 |             } | 
| 3372 | 0 |             return 1; | 
| 3373 | 0 |         } | 
| 3374 |  |  | 
| 3375 | 0 |     default: | 
| 3376 | 0 |         return -1; | 
| 3377 |  |  | 
| 3378 | 369 |     } | 
| 3379 | 369 | } | 
| 3380 |  |  | 
| 3381 |  | static int aes_ccm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, | 
| 3382 |  |                             const unsigned char *iv, int enc) | 
| 3383 | 0 | { | 
| 3384 | 0 |     EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,ctx); | 
| 3385 | 0 |     if (!iv && !key) | 
| 3386 | 0 |         return 1; | 
| 3387 | 0 |     if (key) | 
| 3388 | 0 |         do { | 
| 3389 |  | #ifdef HWAES_CAPABLE | 
| 3390 |  |             if (HWAES_CAPABLE) { | 
| 3391 |  |                 HWAES_set_encrypt_key(key, | 
| 3392 |  |                                       EVP_CIPHER_CTX_get_key_length(ctx) * 8, | 
| 3393 |  |                                       &cctx->ks.ks); | 
| 3394 |  |  | 
| 3395 |  |                 CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L, | 
| 3396 |  |                                    &cctx->ks, (block128_f) HWAES_encrypt); | 
| 3397 |  |                 cctx->str = NULL; | 
| 3398 |  |                 cctx->key_set = 1; | 
| 3399 |  |                 break; | 
| 3400 |  |             } else | 
| 3401 |  | #endif | 
| 3402 | 0 | #ifdef VPAES_CAPABLE | 
| 3403 | 0 |             if (VPAES_CAPABLE) { | 
| 3404 | 0 |                 vpaes_set_encrypt_key(key, | 
| 3405 | 0 |                                       EVP_CIPHER_CTX_get_key_length(ctx) * 8, | 
| 3406 | 0 |                                       &cctx->ks.ks); | 
| 3407 | 0 |                 CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L, | 
| 3408 | 0 |                                    &cctx->ks, (block128_f) vpaes_encrypt); | 
| 3409 | 0 |                 cctx->str = NULL; | 
| 3410 | 0 |                 cctx->key_set = 1; | 
| 3411 | 0 |                 break; | 
| 3412 | 0 |             } | 
| 3413 | 0 | #endif | 
| 3414 | 0 |             AES_set_encrypt_key(key, EVP_CIPHER_CTX_get_key_length(ctx) * 8, | 
| 3415 | 0 |                                 &cctx->ks.ks); | 
| 3416 | 0 |             CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L, | 
| 3417 | 0 |                                &cctx->ks, (block128_f) AES_encrypt); | 
| 3418 | 0 |             cctx->str = NULL; | 
| 3419 | 0 |             cctx->key_set = 1; | 
| 3420 | 0 |         } while (0); | 
| 3421 | 0 |     if (iv) { | 
| 3422 | 0 |         memcpy(ctx->iv, iv, 15 - cctx->L); | 
| 3423 | 0 |         cctx->iv_set = 1; | 
| 3424 | 0 |     } | 
| 3425 | 0 |     return 1; | 
| 3426 | 0 | } | 
| 3427 |  |  | 
| 3428 |  | static int aes_ccm_tls_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, | 
| 3429 |  |                               const unsigned char *in, size_t len) | 
| 3430 | 74 | { | 
| 3431 | 74 |     EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,ctx); | 
| 3432 | 74 |     CCM128_CONTEXT *ccm = &cctx->ccm; | 
| 3433 |  |     /* Encrypt/decrypt must be performed in place */ | 
| 3434 | 74 |     if (out != in || len < (EVP_CCM_TLS_EXPLICIT_IV_LEN + (size_t)cctx->M)) | 
| 3435 | 0 |         return -1; | 
| 3436 |  |     /* If encrypting set explicit IV from sequence number (start of AAD) */ | 
| 3437 | 74 |     if (EVP_CIPHER_CTX_is_encrypting(ctx)) | 
| 3438 | 39 |         memcpy(out, EVP_CIPHER_CTX_buf_noconst(ctx), | 
| 3439 | 39 |                EVP_CCM_TLS_EXPLICIT_IV_LEN); | 
| 3440 |  |     /* Get rest of IV from explicit IV */ | 
| 3441 | 74 |     memcpy(ctx->iv + EVP_CCM_TLS_FIXED_IV_LEN, in, | 
| 3442 | 74 |            EVP_CCM_TLS_EXPLICIT_IV_LEN); | 
| 3443 |  |     /* Correct length value */ | 
| 3444 | 74 |     len -= EVP_CCM_TLS_EXPLICIT_IV_LEN + cctx->M; | 
| 3445 | 74 |     if (CRYPTO_ccm128_setiv(ccm, ctx->iv, 15 - cctx->L, | 
| 3446 | 74 |                             len)) | 
| 3447 | 0 |             return -1; | 
| 3448 |  |     /* Use saved AAD */ | 
| 3449 | 74 |     CRYPTO_ccm128_aad(ccm, EVP_CIPHER_CTX_buf_noconst(ctx), | 
| 3450 | 74 |                       cctx->tls_aad_len); | 
| 3451 |  |     /* Fix buffer to point to payload */ | 
| 3452 | 74 |     in += EVP_CCM_TLS_EXPLICIT_IV_LEN; | 
| 3453 | 74 |     out += EVP_CCM_TLS_EXPLICIT_IV_LEN; | 
| 3454 | 74 |     if (EVP_CIPHER_CTX_is_encrypting(ctx)) { | 
| 3455 | 39 |         if (cctx->str ? CRYPTO_ccm128_encrypt_ccm64(ccm, in, out, len, | 
| 3456 | 39 |                                                     cctx->str) : | 
| 3457 | 39 |             CRYPTO_ccm128_encrypt(ccm, in, out, len)) | 
| 3458 | 0 |             return -1; | 
| 3459 | 39 |         if (!CRYPTO_ccm128_tag(ccm, out + len, cctx->M)) | 
| 3460 | 0 |             return -1; | 
| 3461 | 39 |         return len + EVP_CCM_TLS_EXPLICIT_IV_LEN + cctx->M; | 
| 3462 | 39 |     } else { | 
| 3463 | 35 |         if (cctx->str ? !CRYPTO_ccm128_decrypt_ccm64(ccm, in, out, len, | 
| 3464 | 35 |                                                      cctx->str) : | 
| 3465 | 35 |             !CRYPTO_ccm128_decrypt(ccm, in, out, len)) { | 
| 3466 | 35 |             unsigned char tag[16]; | 
| 3467 | 35 |             if (CRYPTO_ccm128_tag(ccm, tag, cctx->M)) { | 
| 3468 | 35 |                 if (!CRYPTO_memcmp(tag, in + len, cctx->M)) | 
| 3469 | 0 |                     return len; | 
| 3470 | 35 |             } | 
| 3471 | 35 |         } | 
| 3472 | 35 |         OPENSSL_cleanse(out, len); | 
| 3473 | 35 |         return -1; | 
| 3474 | 35 |     } | 
| 3475 | 74 | } | 
| 3476 |  |  | 
| 3477 |  | static int aes_ccm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, | 
| 3478 |  |                           const unsigned char *in, size_t len) | 
| 3479 | 74 | { | 
| 3480 | 74 |     EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,ctx); | 
| 3481 | 74 |     CCM128_CONTEXT *ccm = &cctx->ccm; | 
| 3482 |  |     /* If not set up, return error */ | 
| 3483 | 74 |     if (!cctx->key_set) | 
| 3484 | 0 |         return -1; | 
| 3485 |  |  | 
| 3486 | 74 |     if (cctx->tls_aad_len >= 0) | 
| 3487 | 74 |         return aes_ccm_tls_cipher(ctx, out, in, len); | 
| 3488 |  |  | 
| 3489 |  |     /* EVP_*Final() doesn't return any data */ | 
| 3490 | 0 |     if (in == NULL && out != NULL) | 
| 3491 | 0 |         return 0; | 
| 3492 |  |  | 
| 3493 | 0 |     if (!cctx->iv_set) | 
| 3494 | 0 |         return -1; | 
| 3495 |  |  | 
| 3496 | 0 |     if (!out) { | 
| 3497 | 0 |         if (!in) { | 
| 3498 | 0 |             if (CRYPTO_ccm128_setiv(ccm, ctx->iv, | 
| 3499 | 0 |                                     15 - cctx->L, len)) | 
| 3500 | 0 |                 return -1; | 
| 3501 | 0 |             cctx->len_set = 1; | 
| 3502 | 0 |             return len; | 
| 3503 | 0 |         } | 
| 3504 |  |         /* If have AAD need message length */ | 
| 3505 | 0 |         if (!cctx->len_set && len) | 
| 3506 | 0 |             return -1; | 
| 3507 | 0 |         CRYPTO_ccm128_aad(ccm, in, len); | 
| 3508 | 0 |         return len; | 
| 3509 | 0 |     } | 
| 3510 |  |  | 
| 3511 |  |     /* The tag must be set before actually decrypting data */ | 
| 3512 | 0 |     if (!EVP_CIPHER_CTX_is_encrypting(ctx) && !cctx->tag_set) | 
| 3513 | 0 |         return -1; | 
| 3514 |  |  | 
| 3515 |  |     /* If not set length yet do it */ | 
| 3516 | 0 |     if (!cctx->len_set) { | 
| 3517 | 0 |         if (CRYPTO_ccm128_setiv(ccm, ctx->iv, 15 - cctx->L, len)) | 
| 3518 | 0 |             return -1; | 
| 3519 | 0 |         cctx->len_set = 1; | 
| 3520 | 0 |     } | 
| 3521 | 0 |     if (EVP_CIPHER_CTX_is_encrypting(ctx)) { | 
| 3522 | 0 |         if (cctx->str ? CRYPTO_ccm128_encrypt_ccm64(ccm, in, out, len, | 
| 3523 | 0 |                                                     cctx->str) : | 
| 3524 | 0 |             CRYPTO_ccm128_encrypt(ccm, in, out, len)) | 
| 3525 | 0 |             return -1; | 
| 3526 | 0 |         cctx->tag_set = 1; | 
| 3527 | 0 |         return len; | 
| 3528 | 0 |     } else { | 
| 3529 | 0 |         int rv = -1; | 
| 3530 | 0 |         if (cctx->str ? !CRYPTO_ccm128_decrypt_ccm64(ccm, in, out, len, | 
| 3531 | 0 |                                                      cctx->str) : | 
| 3532 | 0 |             !CRYPTO_ccm128_decrypt(ccm, in, out, len)) { | 
| 3533 | 0 |             unsigned char tag[16]; | 
| 3534 | 0 |             if (CRYPTO_ccm128_tag(ccm, tag, cctx->M)) { | 
| 3535 | 0 |                 if (!CRYPTO_memcmp(tag, EVP_CIPHER_CTX_buf_noconst(ctx), | 
| 3536 | 0 |                                    cctx->M)) | 
| 3537 | 0 |                     rv = len; | 
| 3538 | 0 |             } | 
| 3539 | 0 |         } | 
| 3540 | 0 |         if (rv == -1) | 
| 3541 | 0 |             OPENSSL_cleanse(out, len); | 
| 3542 | 0 |         cctx->iv_set = 0; | 
| 3543 | 0 |         cctx->tag_set = 0; | 
| 3544 | 0 |         cctx->len_set = 0; | 
| 3545 | 0 |         return rv; | 
| 3546 | 0 |     } | 
| 3547 | 0 | } | 
| 3548 |  |  | 
| 3549 |  | #define aes_ccm_cleanup NULL | 
| 3550 |  |  | 
| 3551 |  | BLOCK_CIPHER_custom(NID_aes, 128, 1, 12, ccm, CCM, | 
| 3552 |  |                     EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS) | 
| 3553 |  | BLOCK_CIPHER_custom(NID_aes, 192, 1, 12, ccm, CCM, | 
| 3554 |  |                     EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS) | 
| 3555 |  | BLOCK_CIPHER_custom(NID_aes, 256, 1, 12, ccm, CCM, | 
| 3556 |  |                     EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS) | 
| 3557 |  |  | 
| 3558 |  | typedef struct { | 
| 3559 |  |     union { | 
| 3560 |  |         OSSL_UNION_ALIGN; | 
| 3561 |  |         AES_KEY ks; | 
| 3562 |  |     } ks; | 
| 3563 |  |     /* Indicates if IV has been set */ | 
| 3564 |  |     unsigned char *iv; | 
| 3565 |  | } EVP_AES_WRAP_CTX; | 
| 3566 |  |  | 
| 3567 |  | static int aes_wrap_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, | 
| 3568 |  |                              const unsigned char *iv, int enc) | 
| 3569 | 0 | { | 
| 3570 | 0 |     int len; | 
| 3571 | 0 |     EVP_AES_WRAP_CTX *wctx = EVP_C_DATA(EVP_AES_WRAP_CTX,ctx); | 
| 3572 |  | 
 | 
| 3573 | 0 |     if (iv == NULL && key == NULL) | 
| 3574 | 0 |         return 1; | 
| 3575 | 0 |     if (key != NULL) { | 
| 3576 | 0 |         if (EVP_CIPHER_CTX_is_encrypting(ctx)) | 
| 3577 | 0 |             AES_set_encrypt_key(key, EVP_CIPHER_CTX_get_key_length(ctx) * 8, | 
| 3578 | 0 |                                 &wctx->ks.ks); | 
| 3579 | 0 |         else | 
| 3580 | 0 |             AES_set_decrypt_key(key, EVP_CIPHER_CTX_get_key_length(ctx) * 8, | 
| 3581 | 0 |                                 &wctx->ks.ks); | 
| 3582 | 0 |         if (iv == NULL) | 
| 3583 | 0 |             wctx->iv = NULL; | 
| 3584 | 0 |     } | 
| 3585 | 0 |     if (iv != NULL) { | 
| 3586 | 0 |         if ((len = EVP_CIPHER_CTX_get_iv_length(ctx)) < 0) | 
| 3587 | 0 |             return 0; | 
| 3588 | 0 |         memcpy(ctx->iv, iv, len); | 
| 3589 | 0 |         wctx->iv = ctx->iv; | 
| 3590 | 0 |     } | 
| 3591 | 0 |     return 1; | 
| 3592 | 0 | } | 
| 3593 |  |  | 
| 3594 |  | static int aes_wrap_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, | 
| 3595 |  |                            const unsigned char *in, size_t inlen) | 
| 3596 | 0 | { | 
| 3597 | 0 |     EVP_AES_WRAP_CTX *wctx = EVP_C_DATA(EVP_AES_WRAP_CTX,ctx); | 
| 3598 | 0 |     size_t rv; | 
| 3599 |  |     /* AES wrap with padding has IV length of 4, without padding 8 */ | 
| 3600 | 0 |     int pad = EVP_CIPHER_CTX_get_iv_length(ctx) == 4; | 
| 3601 |  |     /* No final operation so always return zero length */ | 
| 3602 | 0 |     if (!in) | 
| 3603 | 0 |         return 0; | 
| 3604 |  |     /* Input length must always be non-zero */ | 
| 3605 | 0 |     if (!inlen) | 
| 3606 | 0 |         return -1; | 
| 3607 |  |     /* If decrypting need at least 16 bytes and multiple of 8 */ | 
| 3608 | 0 |     if (!EVP_CIPHER_CTX_is_encrypting(ctx) && (inlen < 16 || inlen & 0x7)) | 
| 3609 | 0 |         return -1; | 
| 3610 |  |     /* If not padding input must be multiple of 8 */ | 
| 3611 | 0 |     if (!pad && inlen & 0x7) | 
| 3612 | 0 |         return -1; | 
| 3613 | 0 |     if (ossl_is_partially_overlapping(out, in, inlen)) { | 
| 3614 | 0 |         ERR_raise(ERR_LIB_EVP, EVP_R_PARTIALLY_OVERLAPPING); | 
| 3615 | 0 |         return 0; | 
| 3616 | 0 |     } | 
| 3617 | 0 |     if (!out) { | 
| 3618 | 0 |         if (EVP_CIPHER_CTX_is_encrypting(ctx)) { | 
| 3619 |  |             /* If padding round up to multiple of 8 */ | 
| 3620 | 0 |             if (pad) | 
| 3621 | 0 |                 inlen = (inlen + 7) / 8 * 8; | 
| 3622 |  |             /* 8 byte prefix */ | 
| 3623 | 0 |             return inlen + 8; | 
| 3624 | 0 |         } else { | 
| 3625 |  |             /* | 
| 3626 |  |              * If not padding output will be exactly 8 bytes smaller than | 
| 3627 |  |              * input. If padding it will be at least 8 bytes smaller but we | 
| 3628 |  |              * don't know how much. | 
| 3629 |  |              */ | 
| 3630 | 0 |             return inlen - 8; | 
| 3631 | 0 |         } | 
| 3632 | 0 |     } | 
| 3633 | 0 |     if (pad) { | 
| 3634 | 0 |         if (EVP_CIPHER_CTX_is_encrypting(ctx)) | 
| 3635 | 0 |             rv = CRYPTO_128_wrap_pad(&wctx->ks.ks, wctx->iv, | 
| 3636 | 0 |                                      out, in, inlen, | 
| 3637 | 0 |                                      (block128_f) AES_encrypt); | 
| 3638 | 0 |         else | 
| 3639 | 0 |             rv = CRYPTO_128_unwrap_pad(&wctx->ks.ks, wctx->iv, | 
| 3640 | 0 |                                        out, in, inlen, | 
| 3641 | 0 |                                        (block128_f) AES_decrypt); | 
| 3642 | 0 |     } else { | 
| 3643 | 0 |         if (EVP_CIPHER_CTX_is_encrypting(ctx)) | 
| 3644 | 0 |             rv = CRYPTO_128_wrap(&wctx->ks.ks, wctx->iv, | 
| 3645 | 0 |                                  out, in, inlen, (block128_f) AES_encrypt); | 
| 3646 | 0 |         else | 
| 3647 | 0 |             rv = CRYPTO_128_unwrap(&wctx->ks.ks, wctx->iv, | 
| 3648 | 0 |                                    out, in, inlen, (block128_f) AES_decrypt); | 
| 3649 | 0 |     } | 
| 3650 | 0 |     return rv ? (int)rv : -1; | 
| 3651 | 0 | } | 
| 3652 |  |  | 
| 3653 |  | #define WRAP_FLAGS      (EVP_CIPH_WRAP_MODE \ | 
| 3654 |  |                 | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER \ | 
| 3655 |  |                 | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_FLAG_DEFAULT_ASN1) | 
| 3656 |  |  | 
| 3657 |  | static const EVP_CIPHER aes_128_wrap = { | 
| 3658 |  |     NID_id_aes128_wrap, | 
| 3659 |  |     8, 16, 8, WRAP_FLAGS, EVP_ORIG_GLOBAL, | 
| 3660 |  |     aes_wrap_init_key, aes_wrap_cipher, | 
| 3661 |  |     NULL, | 
| 3662 |  |     sizeof(EVP_AES_WRAP_CTX), | 
| 3663 |  |     NULL, NULL, NULL, NULL | 
| 3664 |  | }; | 
| 3665 |  |  | 
| 3666 |  | const EVP_CIPHER *EVP_aes_128_wrap(void) | 
| 3667 | 31 | { | 
| 3668 | 31 |     return &aes_128_wrap; | 
| 3669 | 31 | } | 
| 3670 |  |  | 
| 3671 |  | static const EVP_CIPHER aes_192_wrap = { | 
| 3672 |  |     NID_id_aes192_wrap, | 
| 3673 |  |     8, 24, 8, WRAP_FLAGS, EVP_ORIG_GLOBAL, | 
| 3674 |  |     aes_wrap_init_key, aes_wrap_cipher, | 
| 3675 |  |     NULL, | 
| 3676 |  |     sizeof(EVP_AES_WRAP_CTX), | 
| 3677 |  |     NULL, NULL, NULL, NULL | 
| 3678 |  | }; | 
| 3679 |  |  | 
| 3680 |  | const EVP_CIPHER *EVP_aes_192_wrap(void) | 
| 3681 | 31 | { | 
| 3682 | 31 |     return &aes_192_wrap; | 
| 3683 | 31 | } | 
| 3684 |  |  | 
| 3685 |  | static const EVP_CIPHER aes_256_wrap = { | 
| 3686 |  |     NID_id_aes256_wrap, | 
| 3687 |  |     8, 32, 8, WRAP_FLAGS, EVP_ORIG_GLOBAL, | 
| 3688 |  |     aes_wrap_init_key, aes_wrap_cipher, | 
| 3689 |  |     NULL, | 
| 3690 |  |     sizeof(EVP_AES_WRAP_CTX), | 
| 3691 |  |     NULL, NULL, NULL, NULL | 
| 3692 |  | }; | 
| 3693 |  |  | 
| 3694 |  | const EVP_CIPHER *EVP_aes_256_wrap(void) | 
| 3695 | 31 | { | 
| 3696 | 31 |     return &aes_256_wrap; | 
| 3697 | 31 | } | 
| 3698 |  |  | 
| 3699 |  | static const EVP_CIPHER aes_128_wrap_pad = { | 
| 3700 |  |     NID_id_aes128_wrap_pad, | 
| 3701 |  |     8, 16, 4, WRAP_FLAGS, EVP_ORIG_GLOBAL, | 
| 3702 |  |     aes_wrap_init_key, aes_wrap_cipher, | 
| 3703 |  |     NULL, | 
| 3704 |  |     sizeof(EVP_AES_WRAP_CTX), | 
| 3705 |  |     NULL, NULL, NULL, NULL | 
| 3706 |  | }; | 
| 3707 |  |  | 
| 3708 |  | const EVP_CIPHER *EVP_aes_128_wrap_pad(void) | 
| 3709 | 31 | { | 
| 3710 | 31 |     return &aes_128_wrap_pad; | 
| 3711 | 31 | } | 
| 3712 |  |  | 
| 3713 |  | static const EVP_CIPHER aes_192_wrap_pad = { | 
| 3714 |  |     NID_id_aes192_wrap_pad, | 
| 3715 |  |     8, 24, 4, WRAP_FLAGS, EVP_ORIG_GLOBAL, | 
| 3716 |  |     aes_wrap_init_key, aes_wrap_cipher, | 
| 3717 |  |     NULL, | 
| 3718 |  |     sizeof(EVP_AES_WRAP_CTX), | 
| 3719 |  |     NULL, NULL, NULL, NULL | 
| 3720 |  | }; | 
| 3721 |  |  | 
| 3722 |  | const EVP_CIPHER *EVP_aes_192_wrap_pad(void) | 
| 3723 | 31 | { | 
| 3724 | 31 |     return &aes_192_wrap_pad; | 
| 3725 | 31 | } | 
| 3726 |  |  | 
| 3727 |  | static const EVP_CIPHER aes_256_wrap_pad = { | 
| 3728 |  |     NID_id_aes256_wrap_pad, | 
| 3729 |  |     8, 32, 4, WRAP_FLAGS, EVP_ORIG_GLOBAL, | 
| 3730 |  |     aes_wrap_init_key, aes_wrap_cipher, | 
| 3731 |  |     NULL, | 
| 3732 |  |     sizeof(EVP_AES_WRAP_CTX), | 
| 3733 |  |     NULL, NULL, NULL, NULL | 
| 3734 |  | }; | 
| 3735 |  |  | 
| 3736 |  | const EVP_CIPHER *EVP_aes_256_wrap_pad(void) | 
| 3737 | 31 | { | 
| 3738 | 31 |     return &aes_256_wrap_pad; | 
| 3739 | 31 | } | 
| 3740 |  |  | 
| 3741 |  | #ifndef OPENSSL_NO_OCB | 
| 3742 |  | static int aes_ocb_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr) | 
| 3743 | 0 | { | 
| 3744 | 0 |     EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,c); | 
| 3745 | 0 |     EVP_CIPHER_CTX *newc; | 
| 3746 | 0 |     EVP_AES_OCB_CTX *new_octx; | 
| 3747 |  | 
 | 
| 3748 | 0 |     switch (type) { | 
| 3749 | 0 |     case EVP_CTRL_INIT: | 
| 3750 | 0 |         octx->key_set = 0; | 
| 3751 | 0 |         octx->iv_set = 0; | 
| 3752 | 0 |         octx->ivlen = EVP_CIPHER_get_iv_length(c->cipher); | 
| 3753 | 0 |         octx->iv = c->iv; | 
| 3754 | 0 |         octx->taglen = 16; | 
| 3755 | 0 |         octx->data_buf_len = 0; | 
| 3756 | 0 |         octx->aad_buf_len = 0; | 
| 3757 | 0 |         return 1; | 
| 3758 |  |  | 
| 3759 | 0 |     case EVP_CTRL_GET_IVLEN: | 
| 3760 | 0 |         *(int *)ptr = octx->ivlen; | 
| 3761 | 0 |         return 1; | 
| 3762 |  |  | 
| 3763 | 0 |     case EVP_CTRL_AEAD_SET_IVLEN: | 
| 3764 |  |         /* IV len must be 1 to 15 */ | 
| 3765 | 0 |         if (arg <= 0 || arg > 15) | 
| 3766 | 0 |             return 0; | 
| 3767 |  |  | 
| 3768 | 0 |         octx->ivlen = arg; | 
| 3769 | 0 |         return 1; | 
| 3770 |  |  | 
| 3771 | 0 |     case EVP_CTRL_AEAD_SET_TAG: | 
| 3772 | 0 |         if (ptr == NULL) { | 
| 3773 |  |             /* Tag len must be 0 to 16 */ | 
| 3774 | 0 |             if (arg < 0 || arg > 16) | 
| 3775 | 0 |                 return 0; | 
| 3776 |  |  | 
| 3777 | 0 |             octx->taglen = arg; | 
| 3778 | 0 |             return 1; | 
| 3779 | 0 |         } | 
| 3780 | 0 |         if (arg != octx->taglen || EVP_CIPHER_CTX_is_encrypting(c)) | 
| 3781 | 0 |             return 0; | 
| 3782 | 0 |         memcpy(octx->tag, ptr, arg); | 
| 3783 | 0 |         return 1; | 
| 3784 |  |  | 
| 3785 | 0 |     case EVP_CTRL_AEAD_GET_TAG: | 
| 3786 | 0 |         if (arg != octx->taglen || !EVP_CIPHER_CTX_is_encrypting(c)) | 
| 3787 | 0 |             return 0; | 
| 3788 |  |  | 
| 3789 | 0 |         memcpy(ptr, octx->tag, arg); | 
| 3790 | 0 |         return 1; | 
| 3791 |  |  | 
| 3792 | 0 |     case EVP_CTRL_COPY: | 
| 3793 | 0 |         newc = (EVP_CIPHER_CTX *)ptr; | 
| 3794 | 0 |         new_octx = EVP_C_DATA(EVP_AES_OCB_CTX,newc); | 
| 3795 | 0 |         return CRYPTO_ocb128_copy_ctx(&new_octx->ocb, &octx->ocb, | 
| 3796 | 0 |                                       &new_octx->ksenc.ks, | 
| 3797 | 0 |                                       &new_octx->ksdec.ks); | 
| 3798 |  |  | 
| 3799 | 0 |     default: | 
| 3800 | 0 |         return -1; | 
| 3801 |  | 
 | 
| 3802 | 0 |     } | 
| 3803 | 0 | } | 
| 3804 |  |  | 
| 3805 |  | static int aes_ocb_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, | 
| 3806 |  |                             const unsigned char *iv, int enc) | 
| 3807 | 0 | { | 
| 3808 | 0 |     EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,ctx); | 
| 3809 | 0 |     if (!iv && !key) | 
| 3810 | 0 |         return 1; | 
| 3811 | 0 |     if (key) { | 
| 3812 | 0 |         do { | 
| 3813 |  |             /* | 
| 3814 |  |              * We set both the encrypt and decrypt key here because decrypt | 
| 3815 |  |              * needs both. We could possibly optimise to remove setting the | 
| 3816 |  |              * decrypt for an encryption operation. | 
| 3817 |  |              */ | 
| 3818 |  | # ifdef HWAES_CAPABLE | 
| 3819 |  |             if (HWAES_CAPABLE) { | 
| 3820 |  |                 HWAES_set_encrypt_key(key, EVP_CIPHER_CTX_get_key_length(ctx) * 8, | 
| 3821 |  |                                       &octx->ksenc.ks); | 
| 3822 |  |                 HWAES_set_decrypt_key(key, EVP_CIPHER_CTX_get_key_length(ctx) * 8, | 
| 3823 |  |                                       &octx->ksdec.ks); | 
| 3824 |  |                 if (!CRYPTO_ocb128_init(&octx->ocb, | 
| 3825 |  |                                         &octx->ksenc.ks, &octx->ksdec.ks, | 
| 3826 |  |                                         (block128_f) HWAES_encrypt, | 
| 3827 |  |                                         (block128_f) HWAES_decrypt, | 
| 3828 |  |                                         enc ? HWAES_ocb_encrypt | 
| 3829 |  |                                             : HWAES_ocb_decrypt)) | 
| 3830 |  |                     return 0; | 
| 3831 |  |                 break; | 
| 3832 |  |             } | 
| 3833 |  | # endif | 
| 3834 | 0 | # ifdef VPAES_CAPABLE | 
| 3835 | 0 |             if (VPAES_CAPABLE) { | 
| 3836 | 0 |                 vpaes_set_encrypt_key(key, | 
| 3837 | 0 |                                       EVP_CIPHER_CTX_get_key_length(ctx) * 8, | 
| 3838 | 0 |                                       &octx->ksenc.ks); | 
| 3839 | 0 |                 vpaes_set_decrypt_key(key, | 
| 3840 | 0 |                                       EVP_CIPHER_CTX_get_key_length(ctx) * 8, | 
| 3841 | 0 |                                       &octx->ksdec.ks); | 
| 3842 | 0 |                 if (!CRYPTO_ocb128_init(&octx->ocb, | 
| 3843 | 0 |                                         &octx->ksenc.ks, &octx->ksdec.ks, | 
| 3844 | 0 |                                         (block128_f) vpaes_encrypt, | 
| 3845 | 0 |                                         (block128_f) vpaes_decrypt, | 
| 3846 | 0 |                                         NULL)) | 
| 3847 | 0 |                     return 0; | 
| 3848 | 0 |                 break; | 
| 3849 | 0 |             } | 
| 3850 | 0 | # endif | 
| 3851 | 0 |             AES_set_encrypt_key(key, EVP_CIPHER_CTX_get_key_length(ctx) * 8, | 
| 3852 | 0 |                                 &octx->ksenc.ks); | 
| 3853 | 0 |             AES_set_decrypt_key(key, EVP_CIPHER_CTX_get_key_length(ctx) * 8, | 
| 3854 | 0 |                                 &octx->ksdec.ks); | 
| 3855 | 0 |             if (!CRYPTO_ocb128_init(&octx->ocb, | 
| 3856 | 0 |                                     &octx->ksenc.ks, &octx->ksdec.ks, | 
| 3857 | 0 |                                     (block128_f) AES_encrypt, | 
| 3858 | 0 |                                     (block128_f) AES_decrypt, | 
| 3859 | 0 |                                     NULL)) | 
| 3860 | 0 |                 return 0; | 
| 3861 | 0 |         } | 
| 3862 | 0 |         while (0); | 
| 3863 |  |  | 
| 3864 |  |         /* | 
| 3865 |  |          * If we have an iv we can set it directly, otherwise use saved IV. | 
| 3866 |  |          */ | 
| 3867 | 0 |         if (iv == NULL && octx->iv_set) | 
| 3868 | 0 |             iv = octx->iv; | 
| 3869 | 0 |         if (iv) { | 
| 3870 | 0 |             if (CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen) | 
| 3871 | 0 |                 != 1) | 
| 3872 | 0 |                 return 0; | 
| 3873 | 0 |             octx->iv_set = 1; | 
| 3874 | 0 |         } | 
| 3875 | 0 |         octx->key_set = 1; | 
| 3876 | 0 |     } else { | 
| 3877 |  |         /* If key set use IV, otherwise copy */ | 
| 3878 | 0 |         if (octx->key_set) | 
| 3879 | 0 |             CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen); | 
| 3880 | 0 |         else | 
| 3881 | 0 |             memcpy(octx->iv, iv, octx->ivlen); | 
| 3882 | 0 |         octx->iv_set = 1; | 
| 3883 | 0 |     } | 
| 3884 | 0 |     return 1; | 
| 3885 | 0 | } | 
| 3886 |  |  | 
| 3887 |  | static int aes_ocb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, | 
| 3888 |  |                           const unsigned char *in, size_t len) | 
| 3889 | 0 | { | 
| 3890 | 0 |     unsigned char *buf; | 
| 3891 | 0 |     int *buf_len; | 
| 3892 | 0 |     int written_len = 0; | 
| 3893 | 0 |     size_t trailing_len; | 
| 3894 | 0 |     EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,ctx); | 
| 3895 |  |  | 
| 3896 |  |     /* If IV or Key not set then return error */ | 
| 3897 | 0 |     if (!octx->iv_set) | 
| 3898 | 0 |         return -1; | 
| 3899 |  |  | 
| 3900 | 0 |     if (!octx->key_set) | 
| 3901 | 0 |         return -1; | 
| 3902 |  |  | 
| 3903 | 0 |     if (in != NULL) { | 
| 3904 |  |         /* | 
| 3905 |  |          * Need to ensure we are only passing full blocks to low level OCB | 
| 3906 |  |          * routines. We do it here rather than in EVP_EncryptUpdate/ | 
| 3907 |  |          * EVP_DecryptUpdate because we need to pass full blocks of AAD too | 
| 3908 |  |          * and those routines don't support that | 
| 3909 |  |          */ | 
| 3910 |  |  | 
| 3911 |  |         /* Are we dealing with AAD or normal data here? */ | 
| 3912 | 0 |         if (out == NULL) { | 
| 3913 | 0 |             buf = octx->aad_buf; | 
| 3914 | 0 |             buf_len = &(octx->aad_buf_len); | 
| 3915 | 0 |         } else { | 
| 3916 | 0 |             buf = octx->data_buf; | 
| 3917 | 0 |             buf_len = &(octx->data_buf_len); | 
| 3918 |  | 
 | 
| 3919 | 0 |             if (ossl_is_partially_overlapping(out + *buf_len, in, len)) { | 
| 3920 | 0 |                 ERR_raise(ERR_LIB_EVP, EVP_R_PARTIALLY_OVERLAPPING); | 
| 3921 | 0 |                 return 0; | 
| 3922 | 0 |             } | 
| 3923 | 0 |         } | 
| 3924 |  |  | 
| 3925 |  |         /* | 
| 3926 |  |          * If we've got a partially filled buffer from a previous call then | 
| 3927 |  |          * use that data first | 
| 3928 |  |          */ | 
| 3929 | 0 |         if (*buf_len > 0) { | 
| 3930 | 0 |             unsigned int remaining; | 
| 3931 |  | 
 | 
| 3932 | 0 |             remaining = AES_BLOCK_SIZE - (*buf_len); | 
| 3933 | 0 |             if (remaining > len) { | 
| 3934 | 0 |                 memcpy(buf + (*buf_len), in, len); | 
| 3935 | 0 |                 *(buf_len) += len; | 
| 3936 | 0 |                 return 0; | 
| 3937 | 0 |             } | 
| 3938 | 0 |             memcpy(buf + (*buf_len), in, remaining); | 
| 3939 |  |  | 
| 3940 |  |             /* | 
| 3941 |  |              * If we get here we've filled the buffer, so process it | 
| 3942 |  |              */ | 
| 3943 | 0 |             len -= remaining; | 
| 3944 | 0 |             in += remaining; | 
| 3945 | 0 |             if (out == NULL) { | 
| 3946 | 0 |                 if (!CRYPTO_ocb128_aad(&octx->ocb, buf, AES_BLOCK_SIZE)) | 
| 3947 | 0 |                     return -1; | 
| 3948 | 0 |             } else if (EVP_CIPHER_CTX_is_encrypting(ctx)) { | 
| 3949 | 0 |                 if (!CRYPTO_ocb128_encrypt(&octx->ocb, buf, out, | 
| 3950 | 0 |                                            AES_BLOCK_SIZE)) | 
| 3951 | 0 |                     return -1; | 
| 3952 | 0 |             } else { | 
| 3953 | 0 |                 if (!CRYPTO_ocb128_decrypt(&octx->ocb, buf, out, | 
| 3954 | 0 |                                            AES_BLOCK_SIZE)) | 
| 3955 | 0 |                     return -1; | 
| 3956 | 0 |             } | 
| 3957 | 0 |             written_len = AES_BLOCK_SIZE; | 
| 3958 | 0 |             *buf_len = 0; | 
| 3959 | 0 |             if (out != NULL) | 
| 3960 | 0 |                 out += AES_BLOCK_SIZE; | 
| 3961 | 0 |         } | 
| 3962 |  |  | 
| 3963 |  |         /* Do we have a partial block to handle at the end? */ | 
| 3964 | 0 |         trailing_len = len % AES_BLOCK_SIZE; | 
| 3965 |  |  | 
| 3966 |  |         /* | 
| 3967 |  |          * If we've got some full blocks to handle, then process these first | 
| 3968 |  |          */ | 
| 3969 | 0 |         if (len != trailing_len) { | 
| 3970 | 0 |             if (out == NULL) { | 
| 3971 | 0 |                 if (!CRYPTO_ocb128_aad(&octx->ocb, in, len - trailing_len)) | 
| 3972 | 0 |                     return -1; | 
| 3973 | 0 |             } else if (EVP_CIPHER_CTX_is_encrypting(ctx)) { | 
| 3974 | 0 |                 if (!CRYPTO_ocb128_encrypt | 
| 3975 | 0 |                     (&octx->ocb, in, out, len - trailing_len)) | 
| 3976 | 0 |                     return -1; | 
| 3977 | 0 |             } else { | 
| 3978 | 0 |                 if (!CRYPTO_ocb128_decrypt | 
| 3979 | 0 |                     (&octx->ocb, in, out, len - trailing_len)) | 
| 3980 | 0 |                     return -1; | 
| 3981 | 0 |             } | 
| 3982 | 0 |             written_len += len - trailing_len; | 
| 3983 | 0 |             in += len - trailing_len; | 
| 3984 | 0 |         } | 
| 3985 |  |  | 
| 3986 |  |         /* Handle any trailing partial block */ | 
| 3987 | 0 |         if (trailing_len > 0) { | 
| 3988 | 0 |             memcpy(buf, in, trailing_len); | 
| 3989 | 0 |             *buf_len = trailing_len; | 
| 3990 | 0 |         } | 
| 3991 |  | 
 | 
| 3992 | 0 |         return written_len; | 
| 3993 | 0 |     } else { | 
| 3994 |  |         /* | 
| 3995 |  |          * First of all empty the buffer of any partial block that we might | 
| 3996 |  |          * have been provided - both for data and AAD | 
| 3997 |  |          */ | 
| 3998 | 0 |         if (octx->data_buf_len > 0) { | 
| 3999 | 0 |             if (EVP_CIPHER_CTX_is_encrypting(ctx)) { | 
| 4000 | 0 |                 if (!CRYPTO_ocb128_encrypt(&octx->ocb, octx->data_buf, out, | 
| 4001 | 0 |                                            octx->data_buf_len)) | 
| 4002 | 0 |                     return -1; | 
| 4003 | 0 |             } else { | 
| 4004 | 0 |                 if (!CRYPTO_ocb128_decrypt(&octx->ocb, octx->data_buf, out, | 
| 4005 | 0 |                                            octx->data_buf_len)) | 
| 4006 | 0 |                     return -1; | 
| 4007 | 0 |             } | 
| 4008 | 0 |             written_len = octx->data_buf_len; | 
| 4009 | 0 |             octx->data_buf_len = 0; | 
| 4010 | 0 |         } | 
| 4011 | 0 |         if (octx->aad_buf_len > 0) { | 
| 4012 | 0 |             if (!CRYPTO_ocb128_aad | 
| 4013 | 0 |                 (&octx->ocb, octx->aad_buf, octx->aad_buf_len)) | 
| 4014 | 0 |                 return -1; | 
| 4015 | 0 |             octx->aad_buf_len = 0; | 
| 4016 | 0 |         } | 
| 4017 |  |         /* If decrypting then verify */ | 
| 4018 | 0 |         if (!EVP_CIPHER_CTX_is_encrypting(ctx)) { | 
| 4019 | 0 |             if (octx->taglen < 0) | 
| 4020 | 0 |                 return -1; | 
| 4021 | 0 |             if (CRYPTO_ocb128_finish(&octx->ocb, | 
| 4022 | 0 |                                      octx->tag, octx->taglen) != 0) | 
| 4023 | 0 |                 return -1; | 
| 4024 | 0 |             octx->iv_set = 0; | 
| 4025 | 0 |             return written_len; | 
| 4026 | 0 |         } | 
| 4027 |  |         /* If encrypting then just get the tag */ | 
| 4028 | 0 |         if (CRYPTO_ocb128_tag(&octx->ocb, octx->tag, 16) != 1) | 
| 4029 | 0 |             return -1; | 
| 4030 |  |         /* Don't reuse the IV */ | 
| 4031 | 0 |         octx->iv_set = 0; | 
| 4032 | 0 |         return written_len; | 
| 4033 | 0 |     } | 
| 4034 | 0 | } | 
| 4035 |  |  | 
| 4036 |  | static int aes_ocb_cleanup(EVP_CIPHER_CTX *c) | 
| 4037 | 0 | { | 
| 4038 | 0 |     EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,c); | 
| 4039 | 0 |     CRYPTO_ocb128_cleanup(&octx->ocb); | 
| 4040 | 0 |     return 1; | 
| 4041 | 0 | } | 
| 4042 |  |  | 
| 4043 |  | BLOCK_CIPHER_custom(NID_aes, 128, 16, 12, ocb, OCB, | 
| 4044 |  |                     EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS) | 
| 4045 |  | BLOCK_CIPHER_custom(NID_aes, 192, 16, 12, ocb, OCB, | 
| 4046 |  |                     EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS) | 
| 4047 |  | BLOCK_CIPHER_custom(NID_aes, 256, 16, 12, ocb, OCB, | 
| 4048 |  |                     EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS) | 
| 4049 |  | #endif                         /* OPENSSL_NO_OCB */ |