Coverage Report

Created: 2023-09-25 06:45

/src/openssl30/crypto/evp/encode.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
#include <stdio.h>
11
#include <limits.h>
12
#include "internal/cryptlib.h"
13
#include <openssl/evp.h>
14
#include "crypto/evp.h"
15
#include "evp_local.h"
16
17
static unsigned char conv_ascii2bin(unsigned char a,
18
                                    const unsigned char *table);
19
static int evp_encodeblock_int(EVP_ENCODE_CTX *ctx, unsigned char *t,
20
                               const unsigned char *f, int dlen);
21
static int evp_decodeblock_int(EVP_ENCODE_CTX *ctx, unsigned char *t,
22
                               const unsigned char *f, int n);
23
24
#ifndef CHARSET_EBCDIC
25
4.06k
# define conv_bin2ascii(a, table)       ((table)[(a)&0x3f])
26
#else
27
/*
28
 * We assume that PEM encoded files are EBCDIC files (i.e., printable text
29
 * files). Convert them here while decoding. When encoding, output is EBCDIC
30
 * (text) format again. (No need for conversion in the conv_bin2ascii macro,
31
 * as the underlying textstring data_bin2ascii[] is already EBCDIC)
32
 */
33
# define conv_bin2ascii(a, table)       ((table)[(a)&0x3f])
34
#endif
35
36
/*-
37
 * 64 char lines
38
 * pad input with 0
39
 * left over chars are set to =
40
 * 1 byte  => xx==
41
 * 2 bytes => xxx=
42
 * 3 bytes => xxxx
43
 */
44
#define BIN_PER_LINE    (64/4*3)
45
#define CHUNKS_PER_LINE (64/4)
46
#define CHAR_PER_LINE   (64+1)
47
48
static const unsigned char data_bin2ascii[65] =
49
    "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
50
51
/* SRP uses a different base64 alphabet */
52
static const unsigned char srpdata_bin2ascii[65] =
53
    "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz./";
54
55
56
/*-
57
 * 0xF0 is a EOLN
58
 * 0xF1 is ignore but next needs to be 0xF0 (for \r\n processing).
59
 * 0xF2 is EOF
60
 * 0xE0 is ignore at start of line.
61
 * 0xFF is error
62
 */
63
64
#define B64_EOLN                0xF0
65
#define B64_CR                  0xF1
66
82.8M
#define B64_EOF                 0xF2
67
1.27M
#define B64_WS                  0xE0
68
82.8M
#define B64_ERROR               0xFF
69
86.3M
#define B64_NOT_BASE64(a)       (((a)|0x13) == 0xF3)
70
85.0M
#define B64_BASE64(a)           (!B64_NOT_BASE64(a))
71
72
static const unsigned char data_ascii2bin[128] = {
73
    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
74
    0xFF, 0xE0, 0xF0, 0xFF, 0xFF, 0xF1, 0xFF, 0xFF,
75
    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
76
    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
77
    0xE0, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
78
    0xFF, 0xFF, 0xFF, 0x3E, 0xFF, 0xF2, 0xFF, 0x3F,
79
    0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B,
80
    0x3C, 0x3D, 0xFF, 0xFF, 0xFF, 0x00, 0xFF, 0xFF,
81
    0xFF, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06,
82
    0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E,
83
    0x0F, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16,
84
    0x17, 0x18, 0x19, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
85
    0xFF, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20,
86
    0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28,
87
    0x29, 0x2A, 0x2B, 0x2C, 0x2D, 0x2E, 0x2F, 0x30,
88
    0x31, 0x32, 0x33, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
89
};
90
91
static const unsigned char srpdata_ascii2bin[128] = {
92
    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
93
    0xFF, 0xE0, 0xF0, 0xFF, 0xFF, 0xF1, 0xFF, 0xFF,
94
    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
95
    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
96
    0xE0, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
97
    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xF2, 0x3E, 0x3F,
98
    0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
99
    0x08, 0x09, 0xFF, 0xFF, 0xFF, 0x00, 0xFF, 0xFF,
100
    0xFF, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x10,
101
    0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18,
102
    0x19, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20,
103
    0x21, 0x22, 0x23, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
104
    0xFF, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2A,
105
    0x2B, 0x2C, 0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32,
106
    0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A,
107
    0x3B, 0x3C, 0x3D, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
108
};
109
110
#ifndef CHARSET_EBCDIC
111
static unsigned char conv_ascii2bin(unsigned char a, const unsigned char *table)
112
164M
{
113
164M
    if (a & 0x80)
114
553
        return B64_ERROR;
115
164M
    return table[a];
116
164M
}
117
#else
118
static unsigned char conv_ascii2bin(unsigned char a, const unsigned char *table)
119
{
120
    a = os_toascii[a];
121
    if (a & 0x80)
122
        return B64_ERROR;
123
    return table[a];
124
}
125
#endif
126
127
EVP_ENCODE_CTX *EVP_ENCODE_CTX_new(void)
128
68.4k
{
129
68.4k
    return OPENSSL_zalloc(sizeof(EVP_ENCODE_CTX));
130
68.4k
}
131
132
void EVP_ENCODE_CTX_free(EVP_ENCODE_CTX *ctx)
133
77.1k
{
134
77.1k
    OPENSSL_free(ctx);
135
77.1k
}
136
137
int EVP_ENCODE_CTX_copy(EVP_ENCODE_CTX *dctx, const EVP_ENCODE_CTX *sctx)
138
0
{
139
0
    memcpy(dctx, sctx, sizeof(EVP_ENCODE_CTX));
140
141
0
    return 1;
142
0
}
143
144
int EVP_ENCODE_CTX_num(EVP_ENCODE_CTX *ctx)
145
3.20k
{
146
3.20k
    return ctx->num;
147
3.20k
}
148
149
void evp_encode_ctx_set_flags(EVP_ENCODE_CTX *ctx, unsigned int flags)
150
0
{
151
0
    ctx->flags = flags;
152
0
}
153
154
void EVP_EncodeInit(EVP_ENCODE_CTX *ctx)
155
1.65k
{
156
1.65k
    ctx->length = 48;
157
1.65k
    ctx->num = 0;
158
1.65k
    ctx->line_num = 0;
159
1.65k
    ctx->flags = 0;
160
1.65k
}
161
162
int EVP_EncodeUpdate(EVP_ENCODE_CTX *ctx, unsigned char *out, int *outl,
163
                      const unsigned char *in, int inl)
164
0
{
165
0
    int i, j;
166
0
    size_t total = 0;
167
168
0
    *outl = 0;
169
0
    if (inl <= 0)
170
0
        return 0;
171
0
    OPENSSL_assert(ctx->length <= (int)sizeof(ctx->enc_data));
172
0
    if (ctx->length - ctx->num > inl) {
173
0
        memcpy(&(ctx->enc_data[ctx->num]), in, inl);
174
0
        ctx->num += inl;
175
0
        return 1;
176
0
    }
177
0
    if (ctx->num != 0) {
178
0
        i = ctx->length - ctx->num;
179
0
        memcpy(&(ctx->enc_data[ctx->num]), in, i);
180
0
        in += i;
181
0
        inl -= i;
182
0
        j = evp_encodeblock_int(ctx, out, ctx->enc_data, ctx->length);
183
0
        ctx->num = 0;
184
0
        out += j;
185
0
        total = j;
186
0
        if ((ctx->flags & EVP_ENCODE_CTX_NO_NEWLINES) == 0) {
187
0
            *(out++) = '\n';
188
0
            total++;
189
0
        }
190
0
        *out = '\0';
191
0
    }
192
0
    while (inl >= ctx->length && total <= INT_MAX) {
193
0
        j = evp_encodeblock_int(ctx, out, in, ctx->length);
194
0
        in += ctx->length;
195
0
        inl -= ctx->length;
196
0
        out += j;
197
0
        total += j;
198
0
        if ((ctx->flags & EVP_ENCODE_CTX_NO_NEWLINES) == 0) {
199
0
            *(out++) = '\n';
200
0
            total++;
201
0
        }
202
0
        *out = '\0';
203
0
    }
204
0
    if (total > INT_MAX) {
205
        /* Too much output data! */
206
0
        *outl = 0;
207
0
        return 0;
208
0
    }
209
0
    if (inl != 0)
210
0
        memcpy(&(ctx->enc_data[0]), in, inl);
211
0
    ctx->num = inl;
212
0
    *outl = total;
213
214
0
    return 1;
215
0
}
216
217
void EVP_EncodeFinal(EVP_ENCODE_CTX *ctx, unsigned char *out, int *outl)
218
224
{
219
224
    unsigned int ret = 0;
220
221
224
    if (ctx->num != 0) {
222
224
        ret = evp_encodeblock_int(ctx, out, ctx->enc_data, ctx->num);
223
224
        if ((ctx->flags & EVP_ENCODE_CTX_NO_NEWLINES) == 0)
224
224
            out[ret++] = '\n';
225
224
        out[ret] = '\0';
226
224
        ctx->num = 0;
227
224
    }
228
224
    *outl = ret;
229
224
}
230
231
static int evp_encodeblock_int(EVP_ENCODE_CTX *ctx, unsigned char *t,
232
                               const unsigned char *f, int dlen)
233
224
{
234
224
    int i, ret = 0;
235
224
    unsigned long l;
236
224
    const unsigned char *table;
237
238
224
    if (ctx != NULL && (ctx->flags & EVP_ENCODE_CTX_USE_SRP_ALPHABET) != 0)
239
0
        table = srpdata_bin2ascii;
240
224
    else
241
224
        table = data_bin2ascii;
242
243
1.26k
    for (i = dlen; i > 0; i -= 3) {
244
1.04k
        if (i >= 3) {
245
858
            l = (((unsigned long)f[0]) << 16L) |
246
858
                (((unsigned long)f[1]) << 8L) | f[2];
247
858
            *(t++) = conv_bin2ascii(l >> 18L, table);
248
858
            *(t++) = conv_bin2ascii(l >> 12L, table);
249
858
            *(t++) = conv_bin2ascii(l >> 6L, table);
250
858
            *(t++) = conv_bin2ascii(l, table);
251
858
        } else {
252
185
            l = ((unsigned long)f[0]) << 16L;
253
185
            if (i == 2)
254
74
                l |= ((unsigned long)f[1] << 8L);
255
256
185
            *(t++) = conv_bin2ascii(l >> 18L, table);
257
185
            *(t++) = conv_bin2ascii(l >> 12L, table);
258
185
            *(t++) = (i == 1) ? '=' : conv_bin2ascii(l >> 6L, table);
259
185
            *(t++) = '=';
260
185
        }
261
1.04k
        ret += 4;
262
1.04k
        f += 3;
263
1.04k
    }
264
265
224
    *t = '\0';
266
224
    return ret;
267
224
}
268
269
int EVP_EncodeBlock(unsigned char *t, const unsigned char *f, int dlen)
270
0
{
271
0
    return evp_encodeblock_int(NULL, t, f, dlen);
272
0
}
273
274
void EVP_DecodeInit(EVP_ENCODE_CTX *ctx)
275
80.8k
{
276
    /* Only ctx->num and ctx->flags are used during decoding. */
277
80.8k
    ctx->num = 0;
278
80.8k
    ctx->length = 0;
279
80.8k
    ctx->line_num = 0;
280
80.8k
    ctx->flags = 0;
281
80.8k
}
282
283
/*-
284
 * -1 for error
285
 *  0 for last line
286
 *  1 for full line
287
 *
288
 * Note: even though EVP_DecodeUpdate attempts to detect and report end of
289
 * content, the context doesn't currently remember it and will accept more data
290
 * in the next call. Therefore, the caller is responsible for checking and
291
 * rejecting a 0 return value in the middle of content.
292
 *
293
 * Note: even though EVP_DecodeUpdate has historically tried to detect end of
294
 * content based on line length, this has never worked properly. Therefore,
295
 * we now return 0 when one of the following is true:
296
 *   - Padding or B64_EOF was detected and the last block is complete.
297
 *   - Input has zero-length.
298
 * -1 is returned if:
299
 *   - Invalid characters are detected.
300
 *   - There is extra trailing padding, or data after padding.
301
 *   - B64_EOF is detected after an incomplete base64 block.
302
 */
303
int EVP_DecodeUpdate(EVP_ENCODE_CTX *ctx, unsigned char *out, int *outl,
304
                     const unsigned char *in, int inl)
305
123k
{
306
123k
    int seof = 0, eof = 0, rv = -1, ret = 0, i, v, tmp, n, decoded_len;
307
123k
    unsigned char *d;
308
123k
    const unsigned char *table;
309
310
123k
    n = ctx->num;
311
123k
    d = ctx->enc_data;
312
313
123k
    if (n > 0 && d[n - 1] == '=') {
314
2.09k
        eof++;
315
2.09k
        if (n > 1 && d[n - 2] == '=')
316
641
            eof++;
317
2.09k
    }
318
319
     /* Legacy behaviour: an empty input chunk signals end of input. */
320
123k
    if (inl == 0) {
321
0
        rv = 0;
322
0
        goto end;
323
0
    }
324
325
123k
    if ((ctx->flags & EVP_ENCODE_CTX_USE_SRP_ALPHABET) != 0)
326
0
        table = srpdata_ascii2bin;
327
123k
    else
328
123k
        table = data_ascii2bin;
329
330
82.9M
    for (i = 0; i < inl; i++) {
331
82.8M
        tmp = *(in++);
332
82.8M
        v = conv_ascii2bin(tmp, table);
333
82.8M
        if (v == B64_ERROR) {
334
8.54k
            rv = -1;
335
8.54k
            goto end;
336
8.54k
        }
337
338
82.8M
        if (tmp == '=') {
339
99.0k
            eof++;
340
82.7M
        } else if (eof > 0 && B64_BASE64(v)) {
341
            /* More data after padding. */
342
249
            rv = -1;
343
249
            goto end;
344
249
        }
345
346
82.8M
        if (eof > 2) {
347
274
            rv = -1;
348
274
            goto end;
349
274
        }
350
351
82.8M
        if (v == B64_EOF) {
352
756
            seof = 1;
353
756
            goto tail;
354
756
        }
355
356
        /* Only save valid base64 characters. */
357
82.8M
        if (B64_BASE64(v)) {
358
78.8M
            if (n >= 64) {
359
                /*
360
                 * We increment n once per loop, and empty the buffer as soon as
361
                 * we reach 64 characters, so this can only happen if someone's
362
                 * manually messed with the ctx. Refuse to write any more data.
363
                 */
364
0
                rv = -1;
365
0
                goto end;
366
0
            }
367
78.8M
            OPENSSL_assert(n < (int)sizeof(ctx->enc_data));
368
78.8M
            d[n++] = tmp;
369
78.8M
        }
370
371
82.8M
        if (n == 64) {
372
1.20M
            decoded_len = evp_decodeblock_int(ctx, out, d, n);
373
1.20M
            n = 0;
374
1.20M
            if (decoded_len < 0 || eof > decoded_len) {
375
0
                rv = -1;
376
0
                goto end;
377
0
            }
378
1.20M
            ret += decoded_len - eof;
379
1.20M
            out += decoded_len - eof;
380
1.20M
        }
381
82.8M
    }
382
383
    /*
384
     * Legacy behaviour: if the current line is a full base64-block (i.e., has
385
     * 0 mod 4 base64 characters), it is processed immediately. We keep this
386
     * behaviour as applications may not be calling EVP_DecodeFinal properly.
387
     */
388
114k
tail:
389
114k
    if (n > 0) {
390
104k
        if ((n & 3) == 0) {
391
69.4k
            decoded_len = evp_decodeblock_int(ctx, out, d, n);
392
69.4k
            n = 0;
393
69.4k
            if (decoded_len < 0 || eof > decoded_len) {
394
0
                rv = -1;
395
0
                goto end;
396
0
            }
397
69.4k
            ret += (decoded_len - eof);
398
69.4k
        } else if (seof) {
399
            /* EOF in the middle of a base64 block. */
400
395
            rv = -1;
401
395
            goto end;
402
395
        }
403
104k
    }
404
405
113k
    rv = seof || (n == 0 && eof) ? 0 : 1;
406
123k
end:
407
    /* Legacy behaviour. This should probably rather be zeroed on error. */
408
123k
    *outl = ret;
409
123k
    ctx->num = n;
410
123k
    return rv;
411
113k
}
412
413
static int evp_decodeblock_int(EVP_ENCODE_CTX *ctx, unsigned char *t,
414
                               const unsigned char *f, int n)
415
1.27M
{
416
1.27M
    int i, ret = 0, a, b, c, d;
417
1.27M
    unsigned long l;
418
1.27M
    const unsigned char *table;
419
420
1.27M
    if (ctx != NULL && (ctx->flags & EVP_ENCODE_CTX_USE_SRP_ALPHABET) != 0)
421
0
        table = srpdata_ascii2bin;
422
1.27M
    else
423
1.27M
        table = data_ascii2bin;
424
425
    /* trim whitespace from the start of the line. */
426
1.27M
    while ((n > 0) && (conv_ascii2bin(*f, table) == B64_WS)) {
427
0
        f++;
428
0
        n--;
429
0
    }
430
431
    /*
432
     * strip off stuff at the end of the line ascii2bin values B64_WS,
433
     * B64_EOLN, B64_EOLN and B64_EOF
434
     */
435
1.27M
    while ((n > 3) && (B64_NOT_BASE64(conv_ascii2bin(f[n - 1], table))))
436
0
        n--;
437
438
1.27M
    if (n % 4 != 0)
439
73
        return -1;
440
441
20.9M
    for (i = 0; i < n; i += 4) {
442
19.7M
        a = conv_ascii2bin(*(f++), table);
443
19.7M
        b = conv_ascii2bin(*(f++), table);
444
19.7M
        c = conv_ascii2bin(*(f++), table);
445
19.7M
        d = conv_ascii2bin(*(f++), table);
446
19.7M
        if ((a & 0x80) || (b & 0x80) || (c & 0x80) || (d & 0x80))
447
0
            return -1;
448
19.7M
        l = ((((unsigned long)a) << 18L) |
449
19.7M
             (((unsigned long)b) << 12L) |
450
19.7M
             (((unsigned long)c) << 6L) | (((unsigned long)d)));
451
19.7M
        *(t++) = (unsigned char)(l >> 16L) & 0xff;
452
19.7M
        *(t++) = (unsigned char)(l >> 8L) & 0xff;
453
19.7M
        *(t++) = (unsigned char)(l) & 0xff;
454
19.7M
        ret += 3;
455
19.7M
    }
456
1.27M
    return ret;
457
1.27M
}
458
459
int EVP_DecodeBlock(unsigned char *t, const unsigned char *f, int n)
460
0
{
461
0
    return evp_decodeblock_int(NULL, t, f, n);
462
0
}
463
464
int EVP_DecodeFinal(EVP_ENCODE_CTX *ctx, unsigned char *out, int *outl)
465
65.4k
{
466
65.4k
    int i;
467
468
65.4k
    *outl = 0;
469
65.4k
    if (ctx->num != 0) {
470
73
        i = evp_decodeblock_int(ctx, out, ctx->enc_data, ctx->num);
471
73
        if (i < 0)
472
73
            return -1;
473
0
        ctx->num = 0;
474
0
        *outl = i;
475
0
        return 1;
476
73
    } else
477
65.3k
        return 1;
478
65.4k
}