/src/openssl30/crypto/rsa/rsa_pk1.c
| Line | Count | Source (jump to first uncovered line) | 
| 1 |  | /* | 
| 2 |  |  * Copyright 1995-2021 The OpenSSL Project Authors. All Rights Reserved. | 
| 3 |  |  * | 
| 4 |  |  * Licensed under the Apache License 2.0 (the "License").  You may not use | 
| 5 |  |  * this file except in compliance with the License.  You can obtain a copy | 
| 6 |  |  * in the file LICENSE in the source distribution or at | 
| 7 |  |  * https://www.openssl.org/source/license.html | 
| 8 |  |  */ | 
| 9 |  |  | 
| 10 |  | /* | 
| 11 |  |  * RSA low level APIs are deprecated for public use, but still ok for | 
| 12 |  |  * internal use. | 
| 13 |  |  */ | 
| 14 |  | #include "internal/deprecated.h" | 
| 15 |  |  | 
| 16 |  | #include "internal/constant_time.h" | 
| 17 |  |  | 
| 18 |  | #include <stdio.h> | 
| 19 |  | #include <openssl/bn.h> | 
| 20 |  | #include <openssl/rsa.h> | 
| 21 |  | #include <openssl/rand.h> | 
| 22 |  | /* Just for the SSL_MAX_MASTER_KEY_LENGTH value */ | 
| 23 |  | #include <openssl/prov_ssl.h> | 
| 24 |  | #include "internal/cryptlib.h" | 
| 25 |  | #include "crypto/rsa.h" | 
| 26 |  | #include "rsa_local.h" | 
| 27 |  |  | 
| 28 |  | int RSA_padding_add_PKCS1_type_1(unsigned char *to, int tlen, | 
| 29 |  |                                  const unsigned char *from, int flen) | 
| 30 | 1.05k | { | 
| 31 | 1.05k |     int j; | 
| 32 | 1.05k |     unsigned char *p; | 
| 33 |  |  | 
| 34 | 1.05k |     if (flen > (tlen - RSA_PKCS1_PADDING_SIZE)) { | 
| 35 | 0 |         ERR_raise(ERR_LIB_RSA, RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE); | 
| 36 | 0 |         return 0; | 
| 37 | 0 |     } | 
| 38 |  |  | 
| 39 | 1.05k |     p = (unsigned char *)to; | 
| 40 |  |  | 
| 41 | 1.05k |     *(p++) = 0; | 
| 42 | 1.05k |     *(p++) = 1;                 /* Private Key BT (Block Type) */ | 
| 43 |  |  | 
| 44 |  |     /* pad out with 0xff data */ | 
| 45 | 1.05k |     j = tlen - 3 - flen; | 
| 46 | 1.05k |     memset(p, 0xff, j); | 
| 47 | 1.05k |     p += j; | 
| 48 | 1.05k |     *(p++) = '\0'; | 
| 49 | 1.05k |     memcpy(p, from, (unsigned int)flen); | 
| 50 | 1.05k |     return 1; | 
| 51 | 1.05k | } | 
| 52 |  |  | 
| 53 |  | int RSA_padding_check_PKCS1_type_1(unsigned char *to, int tlen, | 
| 54 |  |                                    const unsigned char *from, int flen, | 
| 55 |  |                                    int num) | 
| 56 | 912 | { | 
| 57 | 912 |     int i, j; | 
| 58 | 912 |     const unsigned char *p; | 
| 59 |  |  | 
| 60 | 912 |     p = from; | 
| 61 |  |  | 
| 62 |  |     /* | 
| 63 |  |      * The format is | 
| 64 |  |      * 00 || 01 || PS || 00 || D | 
| 65 |  |      * PS - padding string, at least 8 bytes of FF | 
| 66 |  |      * D  - data. | 
| 67 |  |      */ | 
| 68 |  |  | 
| 69 | 912 |     if (num < RSA_PKCS1_PADDING_SIZE) | 
| 70 | 0 |         return -1; | 
| 71 |  |  | 
| 72 |  |     /* Accept inputs with and without the leading 0-byte. */ | 
| 73 | 912 |     if (num == flen) { | 
| 74 | 912 |         if ((*p++) != 0x00) { | 
| 75 | 469 |             ERR_raise(ERR_LIB_RSA, RSA_R_INVALID_PADDING); | 
| 76 | 469 |             return -1; | 
| 77 | 469 |         } | 
| 78 | 443 |         flen--; | 
| 79 | 443 |     } | 
| 80 |  |  | 
| 81 | 443 |     if ((num != (flen + 1)) || (*(p++) != 0x01)) { | 
| 82 | 114 |         ERR_raise(ERR_LIB_RSA, RSA_R_BLOCK_TYPE_IS_NOT_01); | 
| 83 | 114 |         return -1; | 
| 84 | 114 |     } | 
| 85 |  |  | 
| 86 |  |     /* scan over padding data */ | 
| 87 | 329 |     j = flen - 1;               /* one for type. */ | 
| 88 | 43.2k |     for (i = 0; i < j; i++) { | 
| 89 | 43.2k |         if (*p != 0xff) {       /* should decrypt to 0xff */ | 
| 90 | 324 |             if (*p == 0) { | 
| 91 | 277 |                 p++; | 
| 92 | 277 |                 break; | 
| 93 | 277 |             } else { | 
| 94 | 47 |                 ERR_raise(ERR_LIB_RSA, RSA_R_BAD_FIXED_HEADER_DECRYPT); | 
| 95 | 47 |                 return -1; | 
| 96 | 47 |             } | 
| 97 | 324 |         } | 
| 98 | 42.8k |         p++; | 
| 99 | 42.8k |     } | 
| 100 |  |  | 
| 101 | 282 |     if (i == j) { | 
| 102 | 5 |         ERR_raise(ERR_LIB_RSA, RSA_R_NULL_BEFORE_BLOCK_MISSING); | 
| 103 | 5 |         return -1; | 
| 104 | 5 |     } | 
| 105 |  |  | 
| 106 | 277 |     if (i < 8) { | 
| 107 | 15 |         ERR_raise(ERR_LIB_RSA, RSA_R_BAD_PAD_BYTE_COUNT); | 
| 108 | 15 |         return -1; | 
| 109 | 15 |     } | 
| 110 | 262 |     i++;                        /* Skip over the '\0' */ | 
| 111 | 262 |     j -= i; | 
| 112 | 262 |     if (j > tlen) { | 
| 113 | 0 |         ERR_raise(ERR_LIB_RSA, RSA_R_DATA_TOO_LARGE); | 
| 114 | 0 |         return -1; | 
| 115 | 0 |     } | 
| 116 | 262 |     memcpy(to, p, (unsigned int)j); | 
| 117 |  |  | 
| 118 | 262 |     return j; | 
| 119 | 262 | } | 
| 120 |  |  | 
| 121 |  | int ossl_rsa_padding_add_PKCS1_type_2_ex(OSSL_LIB_CTX *libctx, unsigned char *to, | 
| 122 |  |                                          int tlen, const unsigned char *from, | 
| 123 |  |                                          int flen) | 
| 124 | 1.21k | { | 
| 125 | 1.21k |     int i, j; | 
| 126 | 1.21k |     unsigned char *p; | 
| 127 |  |  | 
| 128 | 1.21k |     if (flen > (tlen - RSA_PKCS1_PADDING_SIZE)) { | 
| 129 | 6 |         ERR_raise(ERR_LIB_RSA, RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE); | 
| 130 | 6 |         return 0; | 
| 131 | 1.20k |     } else if (flen < 0) { | 
| 132 | 0 |         ERR_raise(ERR_LIB_RSA, RSA_R_INVALID_LENGTH); | 
| 133 | 0 |         return 0; | 
| 134 | 0 |     } | 
| 135 |  |  | 
| 136 | 1.20k |     p = (unsigned char *)to; | 
| 137 |  |  | 
| 138 | 1.20k |     *(p++) = 0; | 
| 139 | 1.20k |     *(p++) = 2;                 /* Public Key BT (Block Type) */ | 
| 140 |  |  | 
| 141 |  |     /* pad out with non-zero random data */ | 
| 142 | 1.20k |     j = tlen - 3 - flen; | 
| 143 |  |  | 
| 144 | 1.20k |     if (RAND_bytes_ex(libctx, p, j, 0) <= 0) | 
| 145 | 0 |         return 0; | 
| 146 | 91.0k |     for (i = 0; i < j; i++) { | 
| 147 | 89.8k |         if (*p == '\0') | 
| 148 | 0 |             do { | 
| 149 | 0 |                 if (RAND_bytes_ex(libctx, p, 1, 0) <= 0) | 
| 150 | 0 |                     return 0; | 
| 151 | 0 |             } while (*p == '\0'); | 
| 152 | 89.8k |         p++; | 
| 153 | 89.8k |     } | 
| 154 |  |  | 
| 155 | 1.20k |     *(p++) = '\0'; | 
| 156 |  |  | 
| 157 | 1.20k |     memcpy(p, from, (unsigned int)flen); | 
| 158 | 1.20k |     return 1; | 
| 159 | 1.20k | } | 
| 160 |  |  | 
| 161 |  | int RSA_padding_add_PKCS1_type_2(unsigned char *to, int tlen, | 
| 162 |  |                                  const unsigned char *from, int flen) | 
| 163 |  | { | 
| 164 |  |     return ossl_rsa_padding_add_PKCS1_type_2_ex(NULL, to, tlen, from, flen); | 
| 165 |  | } | 
| 166 |  |  | 
| 167 |  | int RSA_padding_check_PKCS1_type_2(unsigned char *to, int tlen, | 
| 168 |  |                                    const unsigned char *from, int flen, | 
| 169 |  |                                    int num) | 
| 170 | 0 | { | 
| 171 | 0 |     int i; | 
| 172 |  |     /* |em| is the encoded message, zero-padded to exactly |num| bytes */ | 
| 173 | 0 |     unsigned char *em = NULL; | 
| 174 | 0 |     unsigned int good, found_zero_byte, mask; | 
| 175 | 0 |     int zero_index = 0, msg_index, mlen = -1; | 
| 176 |  | 
 | 
| 177 | 0 |     if (tlen <= 0 || flen <= 0) | 
| 178 | 0 |         return -1; | 
| 179 |  |  | 
| 180 |  |     /* | 
| 181 |  |      * PKCS#1 v1.5 decryption. See "PKCS #1 v2.2: RSA Cryptography Standard", | 
| 182 |  |      * section 7.2.2. | 
| 183 |  |      */ | 
| 184 |  |  | 
| 185 | 0 |     if (flen > num || num < RSA_PKCS1_PADDING_SIZE) { | 
| 186 | 0 |         ERR_raise(ERR_LIB_RSA, RSA_R_PKCS_DECODING_ERROR); | 
| 187 | 0 |         return -1; | 
| 188 | 0 |     } | 
| 189 |  |  | 
| 190 | 0 |     em = OPENSSL_malloc(num); | 
| 191 | 0 |     if (em == NULL) { | 
| 192 | 0 |         ERR_raise(ERR_LIB_RSA, ERR_R_MALLOC_FAILURE); | 
| 193 | 0 |         return -1; | 
| 194 | 0 |     } | 
| 195 |  |     /* | 
| 196 |  |      * Caller is encouraged to pass zero-padded message created with | 
| 197 |  |      * BN_bn2binpad. Trouble is that since we can't read out of |from|'s | 
| 198 |  |      * bounds, it's impossible to have an invariant memory access pattern | 
| 199 |  |      * in case |from| was not zero-padded in advance. | 
| 200 |  |      */ | 
| 201 | 0 |     for (from += flen, em += num, i = 0; i < num; i++) { | 
| 202 | 0 |         mask = ~constant_time_is_zero(flen); | 
| 203 | 0 |         flen -= 1 & mask; | 
| 204 | 0 |         from -= 1 & mask; | 
| 205 | 0 |         *--em = *from & mask; | 
| 206 | 0 |     } | 
| 207 |  | 
 | 
| 208 | 0 |     good = constant_time_is_zero(em[0]); | 
| 209 | 0 |     good &= constant_time_eq(em[1], 2); | 
| 210 |  |  | 
| 211 |  |     /* scan over padding data */ | 
| 212 | 0 |     found_zero_byte = 0; | 
| 213 | 0 |     for (i = 2; i < num; i++) { | 
| 214 | 0 |         unsigned int equals0 = constant_time_is_zero(em[i]); | 
| 215 |  | 
 | 
| 216 | 0 |         zero_index = constant_time_select_int(~found_zero_byte & equals0, | 
| 217 | 0 |                                               i, zero_index); | 
| 218 | 0 |         found_zero_byte |= equals0; | 
| 219 | 0 |     } | 
| 220 |  |  | 
| 221 |  |     /* | 
| 222 |  |      * PS must be at least 8 bytes long, and it starts two bytes into |em|. | 
| 223 |  |      * If we never found a 0-byte, then |zero_index| is 0 and the check | 
| 224 |  |      * also fails. | 
| 225 |  |      */ | 
| 226 | 0 |     good &= constant_time_ge(zero_index, 2 + 8); | 
| 227 |  |  | 
| 228 |  |     /* | 
| 229 |  |      * Skip the zero byte. This is incorrect if we never found a zero-byte | 
| 230 |  |      * but in this case we also do not copy the message out. | 
| 231 |  |      */ | 
| 232 | 0 |     msg_index = zero_index + 1; | 
| 233 | 0 |     mlen = num - msg_index; | 
| 234 |  |  | 
| 235 |  |     /* | 
| 236 |  |      * For good measure, do this check in constant time as well. | 
| 237 |  |      */ | 
| 238 | 0 |     good &= constant_time_ge(tlen, mlen); | 
| 239 |  |  | 
| 240 |  |     /* | 
| 241 |  |      * Move the result in-place by |num|-RSA_PKCS1_PADDING_SIZE-|mlen| bytes to the left. | 
| 242 |  |      * Then if |good| move |mlen| bytes from |em|+RSA_PKCS1_PADDING_SIZE to |to|. | 
| 243 |  |      * Otherwise leave |to| unchanged. | 
| 244 |  |      * Copy the memory back in a way that does not reveal the size of | 
| 245 |  |      * the data being copied via a timing side channel. This requires copying | 
| 246 |  |      * parts of the buffer multiple times based on the bits set in the real | 
| 247 |  |      * length. Clear bits do a non-copy with identical access pattern. | 
| 248 |  |      * The loop below has overall complexity of O(N*log(N)). | 
| 249 |  |      */ | 
| 250 | 0 |     tlen = constant_time_select_int(constant_time_lt(num - RSA_PKCS1_PADDING_SIZE, tlen), | 
| 251 | 0 |                                     num - RSA_PKCS1_PADDING_SIZE, tlen); | 
| 252 | 0 |     for (msg_index = 1; msg_index < num - RSA_PKCS1_PADDING_SIZE; msg_index <<= 1) { | 
| 253 | 0 |         mask = ~constant_time_eq(msg_index & (num - RSA_PKCS1_PADDING_SIZE - mlen), 0); | 
| 254 | 0 |         for (i = RSA_PKCS1_PADDING_SIZE; i < num - msg_index; i++) | 
| 255 | 0 |             em[i] = constant_time_select_8(mask, em[i + msg_index], em[i]); | 
| 256 | 0 |     } | 
| 257 | 0 |     for (i = 0; i < tlen; i++) { | 
| 258 | 0 |         mask = good & constant_time_lt(i, mlen); | 
| 259 | 0 |         to[i] = constant_time_select_8(mask, em[i + RSA_PKCS1_PADDING_SIZE], to[i]); | 
| 260 | 0 |     } | 
| 261 |  | 
 | 
| 262 | 0 |     OPENSSL_clear_free(em, num); | 
| 263 | 0 | #ifndef FIPS_MODULE | 
| 264 |  |     /* | 
| 265 |  |      * This trick doesn't work in the FIPS provider because libcrypto manages | 
| 266 |  |      * the error stack. Instead we opt not to put an error on the stack at all | 
| 267 |  |      * in case of padding failure in the FIPS provider. | 
| 268 |  |      */ | 
| 269 | 0 |     ERR_raise(ERR_LIB_RSA, RSA_R_PKCS_DECODING_ERROR); | 
| 270 | 0 |     err_clear_last_constant_time(1 & good); | 
| 271 | 0 | #endif | 
| 272 |  | 
 | 
| 273 | 0 |     return constant_time_select_int(good, mlen, -1); | 
| 274 | 0 | } | 
| 275 |  |  | 
| 276 |  | /* | 
| 277 |  |  * ossl_rsa_padding_check_PKCS1_type_2_TLS() checks and removes the PKCS1 type 2 | 
| 278 |  |  * padding from a decrypted RSA message in a TLS signature. The result is stored | 
| 279 |  |  * in the buffer pointed to by |to| which should be |tlen| bytes long. |tlen| | 
| 280 |  |  * must be at least SSL_MAX_MASTER_KEY_LENGTH. The original decrypted message | 
| 281 |  |  * should be stored in |from| which must be |flen| bytes in length and padded | 
| 282 |  |  * such that |flen == RSA_size()|. The TLS protocol version that the client | 
| 283 |  |  * originally requested should be passed in |client_version|. Some buggy clients | 
| 284 |  |  * can exist which use the negotiated version instead of the originally | 
| 285 |  |  * requested protocol version. If it is necessary to work around this bug then | 
| 286 |  |  * the negotiated protocol version can be passed in |alt_version|, otherwise 0 | 
| 287 |  |  * should be passed. | 
| 288 |  |  * | 
| 289 |  |  * If the passed message is publicly invalid or some other error that can be | 
| 290 |  |  * treated in non-constant time occurs then -1 is returned. On success the | 
| 291 |  |  * length of the decrypted data is returned. This will always be | 
| 292 |  |  * SSL_MAX_MASTER_KEY_LENGTH. If an error occurs that should be treated in | 
| 293 |  |  * constant time then this function will appear to return successfully, but the | 
| 294 |  |  * decrypted data will be randomly generated (as per | 
| 295 |  |  * https://tools.ietf.org/html/rfc5246#section-7.4.7.1). | 
| 296 |  |  */ | 
| 297 |  | int ossl_rsa_padding_check_PKCS1_type_2_TLS(OSSL_LIB_CTX *libctx, | 
| 298 |  |                                             unsigned char *to, size_t tlen, | 
| 299 |  |                                             const unsigned char *from, | 
| 300 |  |                                             size_t flen, int client_version, | 
| 301 |  |                                             int alt_version) | 
| 302 | 2.01k | { | 
| 303 | 2.01k |     unsigned int i, good, version_good; | 
| 304 | 2.01k |     unsigned char rand_premaster_secret[SSL_MAX_MASTER_KEY_LENGTH]; | 
| 305 |  |  | 
| 306 |  |     /* | 
| 307 |  |      * If these checks fail then either the message in publicly invalid, or | 
| 308 |  |      * we've been called incorrectly. We can fail immediately. | 
| 309 |  |      */ | 
| 310 | 2.01k |     if (flen < RSA_PKCS1_PADDING_SIZE + SSL_MAX_MASTER_KEY_LENGTH | 
| 311 | 2.01k |             || tlen < SSL_MAX_MASTER_KEY_LENGTH) { | 
| 312 | 0 |         ERR_raise(ERR_LIB_RSA, RSA_R_PKCS_DECODING_ERROR); | 
| 313 | 0 |         return -1; | 
| 314 | 0 |     } | 
| 315 |  |  | 
| 316 |  |     /* | 
| 317 |  |      * Generate a random premaster secret to use in the event that we fail | 
| 318 |  |      * to decrypt. | 
| 319 |  |      */ | 
| 320 | 2.01k |     if (RAND_priv_bytes_ex(libctx, rand_premaster_secret, | 
| 321 | 2.01k |                            sizeof(rand_premaster_secret), 0) <= 0) { | 
| 322 | 0 |         ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR); | 
| 323 | 0 |         return -1; | 
| 324 | 0 |     } | 
| 325 |  |  | 
| 326 | 2.01k |     good = constant_time_is_zero(from[0]); | 
| 327 | 2.01k |     good &= constant_time_eq(from[1], 2); | 
| 328 |  |  | 
| 329 |  |     /* Check we have the expected padding data */ | 
| 330 | 414k |     for (i = 2; i < flen - SSL_MAX_MASTER_KEY_LENGTH - 1; i++) | 
| 331 | 412k |         good &= ~constant_time_is_zero_8(from[i]); | 
| 332 | 2.01k |     good &= constant_time_is_zero_8(from[flen - SSL_MAX_MASTER_KEY_LENGTH - 1]); | 
| 333 |  |  | 
| 334 |  |  | 
| 335 |  |     /* | 
| 336 |  |      * If the version in the decrypted pre-master secret is correct then | 
| 337 |  |      * version_good will be 0xff, otherwise it'll be zero. The | 
| 338 |  |      * Klima-Pokorny-Rosa extension of Bleichenbacher's attack | 
| 339 |  |      * (http://eprint.iacr.org/2003/052/) exploits the version number | 
| 340 |  |      * check as a "bad version oracle". Thus version checks are done in | 
| 341 |  |      * constant time and are treated like any other decryption error. | 
| 342 |  |      */ | 
| 343 | 2.01k |     version_good = | 
| 344 | 2.01k |         constant_time_eq(from[flen - SSL_MAX_MASTER_KEY_LENGTH], | 
| 345 | 2.01k |                          (client_version >> 8) & 0xff); | 
| 346 | 2.01k |     version_good &= | 
| 347 | 2.01k |         constant_time_eq(from[flen - SSL_MAX_MASTER_KEY_LENGTH + 1], | 
| 348 | 2.01k |                          client_version & 0xff); | 
| 349 |  |  | 
| 350 |  |     /* | 
| 351 |  |      * The premaster secret must contain the same version number as the | 
| 352 |  |      * ClientHello to detect version rollback attacks (strangely, the | 
| 353 |  |      * protocol does not offer such protection for DH ciphersuites). | 
| 354 |  |      * However, buggy clients exist that send the negotiated protocol | 
| 355 |  |      * version instead if the server does not support the requested | 
| 356 |  |      * protocol version. If SSL_OP_TLS_ROLLBACK_BUG is set then we tolerate | 
| 357 |  |      * such clients. In that case alt_version will be non-zero and set to | 
| 358 |  |      * the negotiated version. | 
| 359 |  |      */ | 
| 360 | 2.01k |     if (alt_version > 0) { | 
| 361 | 0 |         unsigned int workaround_good; | 
| 362 |  | 
 | 
| 363 | 0 |         workaround_good = | 
| 364 | 0 |             constant_time_eq(from[flen - SSL_MAX_MASTER_KEY_LENGTH], | 
| 365 | 0 |                              (alt_version >> 8) & 0xff); | 
| 366 | 0 |         workaround_good &= | 
| 367 | 0 |             constant_time_eq(from[flen - SSL_MAX_MASTER_KEY_LENGTH + 1], | 
| 368 | 0 |                              alt_version & 0xff); | 
| 369 | 0 |         version_good |= workaround_good; | 
| 370 | 0 |     } | 
| 371 |  |  | 
| 372 | 2.01k |     good &= version_good; | 
| 373 |  |  | 
| 374 |  |  | 
| 375 |  |     /* | 
| 376 |  |      * Now copy the result over to the to buffer if good, or random data if | 
| 377 |  |      * not good. | 
| 378 |  |      */ | 
| 379 | 98.5k |     for (i = 0; i < SSL_MAX_MASTER_KEY_LENGTH; i++) { | 
| 380 | 96.5k |         to[i] = | 
| 381 | 96.5k |             constant_time_select_8(good, | 
| 382 | 96.5k |                                    from[flen - SSL_MAX_MASTER_KEY_LENGTH + i], | 
| 383 | 96.5k |                                    rand_premaster_secret[i]); | 
| 384 | 96.5k |     } | 
| 385 |  |  | 
| 386 |  |     /* | 
| 387 |  |      * We must not leak whether a decryption failure occurs because of | 
| 388 |  |      * Bleichenbacher's attack on PKCS #1 v1.5 RSA padding (see RFC 2246, | 
| 389 |  |      * section 7.4.7.1). The code follows that advice of the TLS RFC and | 
| 390 |  |      * generates a random premaster secret for the case that the decrypt | 
| 391 |  |      * fails. See https://tools.ietf.org/html/rfc5246#section-7.4.7.1 | 
| 392 |  |      * So, whether we actually succeeded or not, return success. | 
| 393 |  |      */ | 
| 394 |  |  | 
| 395 | 2.01k |     return SSL_MAX_MASTER_KEY_LENGTH; | 
| 396 | 2.01k | } |