Coverage Report

Created: 2023-09-25 06:45

/src/openssl30/ssl/s3_cbc.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 2012-2021 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
/*
11
 * This file has no dependencies on the rest of libssl because it is shared
12
 * with the providers. It contains functions for low level MAC calculations.
13
 * Responsibility for this lies with the HMAC implementation in the
14
 * providers. However there are legacy code paths in libssl which also need to
15
 * do this. In time those legacy code paths can be removed and this file can be
16
 * moved out of libssl.
17
 */
18
19
20
/*
21
 * MD5 and SHA-1 low level APIs are deprecated for public use, but still ok for
22
 * internal use.
23
 */
24
#include "internal/deprecated.h"
25
26
#include "internal/constant_time.h"
27
#include "internal/cryptlib.h"
28
29
#include <openssl/evp.h>
30
#ifndef FIPS_MODULE
31
# include <openssl/md5.h>
32
#endif
33
#include <openssl/sha.h>
34
35
char ssl3_cbc_record_digest_supported(const EVP_MD_CTX *ctx);
36
int ssl3_cbc_digest_record(const EVP_MD *md,
37
                           unsigned char *md_out,
38
                           size_t *md_out_size,
39
                           const unsigned char *header,
40
                           const unsigned char *data,
41
                           size_t data_size,
42
                           size_t data_plus_mac_plus_padding_size,
43
                           const unsigned char *mac_secret,
44
                           size_t mac_secret_length, char is_sslv3);
45
46
21.7k
# define l2n(l,c)        (*((c)++)=(unsigned char)(((l)>>24)&0xff), \
47
21.7k
                         *((c)++)=(unsigned char)(((l)>>16)&0xff), \
48
21.7k
                         *((c)++)=(unsigned char)(((l)>> 8)&0xff), \
49
21.7k
                         *((c)++)=(unsigned char)(((l)    )&0xff))
50
51
# define l2n6(l,c)       (*((c)++)=(unsigned char)(((l)>>40)&0xff), \
52
                         *((c)++)=(unsigned char)(((l)>>32)&0xff), \
53
                         *((c)++)=(unsigned char)(((l)>>24)&0xff), \
54
                         *((c)++)=(unsigned char)(((l)>>16)&0xff), \
55
                         *((c)++)=(unsigned char)(((l)>> 8)&0xff), \
56
                         *((c)++)=(unsigned char)(((l)    )&0xff))
57
58
1.20k
# define l2n8(l,c)       (*((c)++)=(unsigned char)(((l)>>56)&0xff), \
59
1.20k
                         *((c)++)=(unsigned char)(((l)>>48)&0xff), \
60
1.20k
                         *((c)++)=(unsigned char)(((l)>>40)&0xff), \
61
1.20k
                         *((c)++)=(unsigned char)(((l)>>32)&0xff), \
62
1.20k
                         *((c)++)=(unsigned char)(((l)>>24)&0xff), \
63
1.20k
                         *((c)++)=(unsigned char)(((l)>>16)&0xff), \
64
1.20k
                         *((c)++)=(unsigned char)(((l)>> 8)&0xff), \
65
1.20k
                         *((c)++)=(unsigned char)(((l)    )&0xff))
66
67
/*
68
 * MAX_HASH_BIT_COUNT_BYTES is the maximum number of bytes in the hash's
69
 * length field. (SHA-384/512 have 128-bit length.)
70
 */
71
#define MAX_HASH_BIT_COUNT_BYTES 16
72
73
/*
74
 * MAX_HASH_BLOCK_SIZE is the maximum hash block size that we'll support.
75
 * Currently SHA-384/512 has a 128-byte block size and that's the largest
76
 * supported by TLS.)
77
 */
78
#define MAX_HASH_BLOCK_SIZE 128
79
80
#ifndef FIPS_MODULE
81
/*
82
 * u32toLE serializes an unsigned, 32-bit number (n) as four bytes at (p) in
83
 * little-endian order. The value of p is advanced by four.
84
 */
85
# define u32toLE(n, p) \
86
0
         (*((p)++)=(unsigned char)(n), \
87
0
          *((p)++)=(unsigned char)(n>>8), \
88
0
          *((p)++)=(unsigned char)(n>>16), \
89
0
          *((p)++)=(unsigned char)(n>>24))
90
91
/*
92
 * These functions serialize the state of a hash and thus perform the
93
 * standard "final" operation without adding the padding and length that such
94
 * a function typically does.
95
 */
96
static void tls1_md5_final_raw(void *ctx, unsigned char *md_out)
97
0
{
98
0
    MD5_CTX *md5 = ctx;
99
0
    u32toLE(md5->A, md_out);
100
0
    u32toLE(md5->B, md_out);
101
0
    u32toLE(md5->C, md_out);
102
0
    u32toLE(md5->D, md_out);
103
0
}
104
#endif /* FIPS_MODULE */
105
106
static void tls1_sha1_final_raw(void *ctx, unsigned char *md_out)
107
3.84k
{
108
3.84k
    SHA_CTX *sha1 = ctx;
109
3.84k
    l2n(sha1->h0, md_out);
110
3.84k
    l2n(sha1->h1, md_out);
111
3.84k
    l2n(sha1->h2, md_out);
112
3.84k
    l2n(sha1->h3, md_out);
113
3.84k
    l2n(sha1->h4, md_out);
114
3.84k
}
115
116
static void tls1_sha256_final_raw(void *ctx, unsigned char *md_out)
117
315
{
118
315
    SHA256_CTX *sha256 = ctx;
119
315
    unsigned i;
120
121
2.83k
    for (i = 0; i < 8; i++) {
122
2.52k
        l2n(sha256->h[i], md_out);
123
2.52k
    }
124
315
}
125
126
static void tls1_sha512_final_raw(void *ctx, unsigned char *md_out)
127
150
{
128
150
    SHA512_CTX *sha512 = ctx;
129
150
    unsigned i;
130
131
1.35k
    for (i = 0; i < 8; i++) {
132
1.20k
        l2n8(sha512->h[i], md_out);
133
1.20k
    }
134
150
}
135
136
#undef  LARGEST_DIGEST_CTX
137
#define LARGEST_DIGEST_CTX SHA512_CTX
138
139
/*-
140
 * ssl3_cbc_digest_record computes the MAC of a decrypted, padded SSLv3/TLS
141
 * record.
142
 *
143
 *   ctx: the EVP_MD_CTX from which we take the hash function.
144
 *     ssl3_cbc_record_digest_supported must return true for this EVP_MD_CTX.
145
 *   md_out: the digest output. At most EVP_MAX_MD_SIZE bytes will be written.
146
 *   md_out_size: if non-NULL, the number of output bytes is written here.
147
 *   header: the 13-byte, TLS record header.
148
 *   data: the record data itself, less any preceding explicit IV.
149
 *   data_size: the secret, reported length of the data once the MAC and padding
150
 *              has been removed.
151
 *   data_plus_mac_plus_padding_size: the public length of the whole
152
 *     record, including MAC and padding.
153
 *   is_sslv3: non-zero if we are to use SSLv3. Otherwise, TLS.
154
 *
155
 * On entry: we know that data is data_plus_mac_plus_padding_size in length
156
 * Returns 1 on success or 0 on error
157
 */
158
int ssl3_cbc_digest_record(const EVP_MD *md,
159
                           unsigned char *md_out,
160
                           size_t *md_out_size,
161
                           const unsigned char *header,
162
                           const unsigned char *data,
163
                           size_t data_size,
164
                           size_t data_plus_mac_plus_padding_size,
165
                           const unsigned char *mac_secret,
166
                           size_t mac_secret_length, char is_sslv3)
167
373
{
168
373
    union {
169
373
        OSSL_UNION_ALIGN;
170
373
        unsigned char c[sizeof(LARGEST_DIGEST_CTX)];
171
373
    } md_state;
172
373
    void (*md_final_raw) (void *ctx, unsigned char *md_out);
173
373
    void (*md_transform) (void *ctx, const unsigned char *block);
174
373
    size_t md_size, md_block_size = 64;
175
373
    size_t sslv3_pad_length = 40, header_length, variance_blocks,
176
373
        len, max_mac_bytes, num_blocks,
177
373
        num_starting_blocks, k, mac_end_offset, c, index_a, index_b;
178
373
    size_t bits;          /* at most 18 bits */
179
373
    unsigned char length_bytes[MAX_HASH_BIT_COUNT_BYTES];
180
    /* hmac_pad is the masked HMAC key. */
181
373
    unsigned char hmac_pad[MAX_HASH_BLOCK_SIZE];
182
373
    unsigned char first_block[MAX_HASH_BLOCK_SIZE];
183
373
    unsigned char mac_out[EVP_MAX_MD_SIZE];
184
373
    size_t i, j;
185
373
    unsigned md_out_size_u;
186
373
    EVP_MD_CTX *md_ctx = NULL;
187
    /*
188
     * mdLengthSize is the number of bytes in the length field that
189
     * terminates * the hash.
190
     */
191
373
    size_t md_length_size = 8;
192
373
    char length_is_big_endian = 1;
193
373
    int ret = 0;
194
195
    /*
196
     * This is a, hopefully redundant, check that allows us to forget about
197
     * many possible overflows later in this function.
198
     */
199
373
    if (!ossl_assert(data_plus_mac_plus_padding_size < 1024 * 1024))
200
0
        return 0;
201
202
373
    if (EVP_MD_is_a(md, "MD5")) {
203
#ifdef FIPS_MODULE
204
        return 0;
205
#else
206
0
        if (MD5_Init((MD5_CTX *)md_state.c) <= 0)
207
0
            return 0;
208
0
        md_final_raw = tls1_md5_final_raw;
209
0
        md_transform =
210
0
            (void (*)(void *ctx, const unsigned char *block))MD5_Transform;
211
0
        md_size = 16;
212
0
        sslv3_pad_length = 48;
213
0
        length_is_big_endian = 0;
214
0
#endif
215
373
    } else if (EVP_MD_is_a(md, "SHA1")) {
216
297
        if (SHA1_Init((SHA_CTX *)md_state.c) <= 0)
217
0
            return 0;
218
297
        md_final_raw = tls1_sha1_final_raw;
219
297
        md_transform =
220
297
            (void (*)(void *ctx, const unsigned char *block))SHA1_Transform;
221
297
        md_size = 20;
222
297
    } else if (EVP_MD_is_a(md, "SHA2-224")) {
223
0
        if (SHA224_Init((SHA256_CTX *)md_state.c) <= 0)
224
0
            return 0;
225
0
        md_final_raw = tls1_sha256_final_raw;
226
0
        md_transform =
227
0
            (void (*)(void *ctx, const unsigned char *block))SHA256_Transform;
228
0
        md_size = 224 / 8;
229
76
     } else if (EVP_MD_is_a(md, "SHA2-256")) {
230
47
        if (SHA256_Init((SHA256_CTX *)md_state.c) <= 0)
231
0
            return 0;
232
47
        md_final_raw = tls1_sha256_final_raw;
233
47
        md_transform =
234
47
            (void (*)(void *ctx, const unsigned char *block))SHA256_Transform;
235
47
        md_size = 32;
236
47
     } else if (EVP_MD_is_a(md, "SHA2-384")) {
237
29
        if (SHA384_Init((SHA512_CTX *)md_state.c) <= 0)
238
0
            return 0;
239
29
        md_final_raw = tls1_sha512_final_raw;
240
29
        md_transform =
241
29
            (void (*)(void *ctx, const unsigned char *block))SHA512_Transform;
242
29
        md_size = 384 / 8;
243
29
        md_block_size = 128;
244
29
        md_length_size = 16;
245
29
    } else if (EVP_MD_is_a(md, "SHA2-512")) {
246
0
        if (SHA512_Init((SHA512_CTX *)md_state.c) <= 0)
247
0
            return 0;
248
0
        md_final_raw = tls1_sha512_final_raw;
249
0
        md_transform =
250
0
            (void (*)(void *ctx, const unsigned char *block))SHA512_Transform;
251
0
        md_size = 64;
252
0
        md_block_size = 128;
253
0
        md_length_size = 16;
254
0
    } else {
255
        /*
256
         * ssl3_cbc_record_digest_supported should have been called first to
257
         * check that the hash function is supported.
258
         */
259
0
        if (md_out_size != NULL)
260
0
            *md_out_size = 0;
261
0
        return ossl_assert(0);
262
0
    }
263
264
373
    if (!ossl_assert(md_length_size <= MAX_HASH_BIT_COUNT_BYTES)
265
373
            || !ossl_assert(md_block_size <= MAX_HASH_BLOCK_SIZE)
266
373
            || !ossl_assert(md_size <= EVP_MAX_MD_SIZE))
267
0
        return 0;
268
269
373
    header_length = 13;
270
373
    if (is_sslv3) {
271
109
        header_length = mac_secret_length + sslv3_pad_length + 8 /* sequence
272
109
                                                                  * number */  +
273
109
            1 /* record type */  +
274
109
            2 /* record length */ ;
275
109
    }
276
277
    /*
278
     * variance_blocks is the number of blocks of the hash that we have to
279
     * calculate in constant time because they could be altered by the
280
     * padding value. In SSLv3, the padding must be minimal so the end of
281
     * the plaintext varies by, at most, 15+20 = 35 bytes. (We conservatively
282
     * assume that the MAC size varies from 0..20 bytes.) In case the 9 bytes
283
     * of hash termination (0x80 + 64-bit length) don't fit in the final
284
     * block, we say that the final two blocks can vary based on the padding.
285
     * TLSv1 has MACs up to 48 bytes long (SHA-384) and the padding is not
286
     * required to be minimal. Therefore we say that the final |variance_blocks|
287
     * blocks can
288
     * vary based on the padding. Later in the function, if the message is
289
     * short and there obviously cannot be this many blocks then
290
     * variance_blocks can be reduced.
291
     */
292
373
    variance_blocks = is_sslv3 ? 2 : ( ((255 + 1 + md_size + md_block_size - 1) / md_block_size) + 1);
293
    /*
294
     * From now on we're dealing with the MAC, which conceptually has 13
295
     * bytes of `header' before the start of the data (TLS) or 71/75 bytes
296
     * (SSLv3)
297
     */
298
373
    len = data_plus_mac_plus_padding_size + header_length;
299
    /*
300
     * max_mac_bytes contains the maximum bytes of bytes in the MAC,
301
     * including * |header|, assuming that there's no padding.
302
     */
303
373
    max_mac_bytes = len - md_size - 1;
304
    /* num_blocks is the maximum number of hash blocks. */
305
373
    num_blocks =
306
373
        (max_mac_bytes + 1 + md_length_size + md_block_size -
307
373
         1) / md_block_size;
308
    /*
309
     * In order to calculate the MAC in constant time we have to handle the
310
     * final blocks specially because the padding value could cause the end
311
     * to appear somewhere in the final |variance_blocks| blocks and we can't
312
     * leak where. However, |num_starting_blocks| worth of data can be hashed
313
     * right away because no padding value can affect whether they are
314
     * plaintext.
315
     */
316
373
    num_starting_blocks = 0;
317
    /*
318
     * k is the starting byte offset into the conceptual header||data where
319
     * we start processing.
320
     */
321
373
    k = 0;
322
    /*
323
     * mac_end_offset is the index just past the end of the data to be MACed.
324
     */
325
373
    mac_end_offset = data_size + header_length;
326
    /*
327
     * c is the index of the 0x80 byte in the final hash block that contains
328
     * application data.
329
     */
330
373
    c = mac_end_offset % md_block_size;
331
    /*
332
     * index_a is the hash block number that contains the 0x80 terminating
333
     * value.
334
     */
335
373
    index_a = mac_end_offset / md_block_size;
336
    /*
337
     * index_b is the hash block number that contains the 64-bit hash length,
338
     * in bits.
339
     */
340
373
    index_b = (mac_end_offset + md_length_size) / md_block_size;
341
    /*
342
     * bits is the hash-length in bits. It includes the additional hash block
343
     * for the masked HMAC key, or whole of |header| in the case of SSLv3.
344
     */
345
346
    /*
347
     * For SSLv3, if we're going to have any starting blocks then we need at
348
     * least two because the header is larger than a single block.
349
     */
350
373
    if (num_blocks > variance_blocks + (is_sslv3 ? 1 : 0)) {
351
222
        num_starting_blocks = num_blocks - variance_blocks;
352
222
        k = md_block_size * num_starting_blocks;
353
222
    }
354
355
373
    bits = 8 * mac_end_offset;
356
373
    if (!is_sslv3) {
357
        /*
358
         * Compute the initial HMAC block. For SSLv3, the padding and secret
359
         * bytes are included in |header| because they take more than a
360
         * single block.
361
         */
362
264
        bits += 8 * md_block_size;
363
264
        memset(hmac_pad, 0, md_block_size);
364
264
        if (!ossl_assert(mac_secret_length <= sizeof(hmac_pad)))
365
0
            return 0;
366
264
        memcpy(hmac_pad, mac_secret, mac_secret_length);
367
19.0k
        for (i = 0; i < md_block_size; i++)
368
18.7k
            hmac_pad[i] ^= 0x36;
369
370
264
        md_transform(md_state.c, hmac_pad);
371
264
    }
372
373
373
    if (length_is_big_endian) {
374
373
        memset(length_bytes, 0, md_length_size - 4);
375
373
        length_bytes[md_length_size - 4] = (unsigned char)(bits >> 24);
376
373
        length_bytes[md_length_size - 3] = (unsigned char)(bits >> 16);
377
373
        length_bytes[md_length_size - 2] = (unsigned char)(bits >> 8);
378
373
        length_bytes[md_length_size - 1] = (unsigned char)bits;
379
373
    } else {
380
0
        memset(length_bytes, 0, md_length_size);
381
0
        length_bytes[md_length_size - 5] = (unsigned char)(bits >> 24);
382
0
        length_bytes[md_length_size - 6] = (unsigned char)(bits >> 16);
383
0
        length_bytes[md_length_size - 7] = (unsigned char)(bits >> 8);
384
0
        length_bytes[md_length_size - 8] = (unsigned char)bits;
385
0
    }
386
387
373
    if (k > 0) {
388
222
        if (is_sslv3) {
389
71
            size_t overhang;
390
391
            /*
392
             * The SSLv3 header is larger than a single block. overhang is
393
             * the number of bytes beyond a single block that the header
394
             * consumes: either 7 bytes (SHA1) or 11 bytes (MD5). There are no
395
             * ciphersuites in SSLv3 that are not SHA1 or MD5 based and
396
             * therefore we can be confident that the header_length will be
397
             * greater than |md_block_size|. However we add a sanity check just
398
             * in case
399
             */
400
71
            if (header_length <= md_block_size) {
401
                /* Should never happen */
402
0
                return 0;
403
0
            }
404
71
            overhang = header_length - md_block_size;
405
71
            md_transform(md_state.c, header);
406
71
            memcpy(first_block, header + md_block_size, overhang);
407
71
            memcpy(first_block + overhang, data, md_block_size - overhang);
408
71
            md_transform(md_state.c, first_block);
409
1.68k
            for (i = 1; i < k / md_block_size - 1; i++)
410
1.61k
                md_transform(md_state.c, data + md_block_size * i - overhang);
411
151
        } else {
412
            /* k is a multiple of md_block_size. */
413
151
            memcpy(first_block, header, 13);
414
151
            memcpy(first_block + 13, data, md_block_size - 13);
415
151
            md_transform(md_state.c, first_block);
416
8.97k
            for (i = 1; i < k / md_block_size; i++)
417
8.82k
                md_transform(md_state.c, data + md_block_size * i - 13);
418
151
        }
419
222
    }
420
421
373
    memset(mac_out, 0, sizeof(mac_out));
422
423
    /*
424
     * We now process the final hash blocks. For each block, we construct it
425
     * in constant time. If the |i==index_a| then we'll include the 0x80
426
     * bytes and zero pad etc. For each block we selectively copy it, in
427
     * constant time, to |mac_out|.
428
     */
429
2.49k
    for (i = num_starting_blocks; i <= num_starting_blocks + variance_blocks;
430
2.11k
         i++) {
431
2.11k
        unsigned char block[MAX_HASH_BLOCK_SIZE];
432
2.11k
        unsigned char is_block_a = constant_time_eq_8_s(i, index_a);
433
2.11k
        unsigned char is_block_b = constant_time_eq_8_s(i, index_b);
434
146k
        for (j = 0; j < md_block_size; j++) {
435
144k
            unsigned char b = 0, is_past_c, is_past_cp1;
436
144k
            if (k < header_length)
437
4.16k
                b = header[k];
438
140k
            else if (k < data_plus_mac_plus_padding_size + header_length)
439
78.9k
                b = data[k - header_length];
440
144k
            k++;
441
442
144k
            is_past_c = is_block_a & constant_time_ge_8_s(j, c);
443
144k
            is_past_cp1 = is_block_a & constant_time_ge_8_s(j, c + 1);
444
            /*
445
             * If this is the block containing the end of the application
446
             * data, and we are at the offset for the 0x80 value, then
447
             * overwrite b with 0x80.
448
             */
449
144k
            b = constant_time_select_8(is_past_c, 0x80, b);
450
            /*
451
             * If this block contains the end of the application data
452
             * and we're past the 0x80 value then just write zero.
453
             */
454
144k
            b = b & ~is_past_cp1;
455
            /*
456
             * If this is index_b (the final block), but not index_a (the end
457
             * of the data), then the 64-bit length didn't fit into index_a
458
             * and we're having to add an extra block of zeros.
459
             */
460
144k
            b &= ~is_block_b | is_block_a;
461
462
            /*
463
             * The final bytes of one of the blocks contains the length.
464
             */
465
144k
            if (j >= md_block_size - md_length_size) {
466
                /* If this is index_b, write a length byte. */
467
18.0k
                b = constant_time_select_8(is_block_b,
468
18.0k
                                           length_bytes[j -
469
18.0k
                                                        (md_block_size -
470
18.0k
                                                         md_length_size)], b);
471
18.0k
            }
472
144k
            block[j] = b;
473
144k
        }
474
475
2.11k
        md_transform(md_state.c, block);
476
2.11k
        md_final_raw(md_state.c, block);
477
        /* If this is index_b, copy the hash value to |mac_out|. */
478
52.4k
        for (j = 0; j < md_size; j++)
479
50.3k
            mac_out[j] |= block[j] & is_block_b;
480
2.11k
    }
481
482
373
    md_ctx = EVP_MD_CTX_new();
483
373
    if (md_ctx == NULL)
484
0
        goto err;
485
486
373
    if (EVP_DigestInit_ex(md_ctx, md, NULL /* engine */ ) <= 0)
487
0
        goto err;
488
373
    if (is_sslv3) {
489
        /* We repurpose |hmac_pad| to contain the SSLv3 pad2 block. */
490
109
        memset(hmac_pad, 0x5c, sslv3_pad_length);
491
492
109
        if (EVP_DigestUpdate(md_ctx, mac_secret, mac_secret_length) <= 0
493
109
            || EVP_DigestUpdate(md_ctx, hmac_pad, sslv3_pad_length) <= 0
494
109
            || EVP_DigestUpdate(md_ctx, mac_out, md_size) <= 0)
495
0
            goto err;
496
264
    } else {
497
        /* Complete the HMAC in the standard manner. */
498
19.0k
        for (i = 0; i < md_block_size; i++)
499
18.7k
            hmac_pad[i] ^= 0x6a;
500
501
264
        if (EVP_DigestUpdate(md_ctx, hmac_pad, md_block_size) <= 0
502
264
            || EVP_DigestUpdate(md_ctx, mac_out, md_size) <= 0)
503
0
            goto err;
504
264
    }
505
373
    ret = EVP_DigestFinal(md_ctx, md_out, &md_out_size_u);
506
373
    if (ret && md_out_size)
507
373
        *md_out_size = md_out_size_u;
508
509
373
    ret = 1;
510
373
 err:
511
373
    EVP_MD_CTX_free(md_ctx);
512
373
    return ret;
513
373
}