Coverage Report

Created: 2024-07-27 06:39

/src/openssl30/crypto/ec/ecp_nistp521.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 2011-2021 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
/* Copyright 2011 Google Inc.
11
 *
12
 * Licensed under the Apache License, Version 2.0 (the "License");
13
 *
14
 * you may not use this file except in compliance with the License.
15
 * You may obtain a copy of the License at
16
 *
17
 *     http://www.apache.org/licenses/LICENSE-2.0
18
 *
19
 *  Unless required by applicable law or agreed to in writing, software
20
 *  distributed under the License is distributed on an "AS IS" BASIS,
21
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
22
 *  See the License for the specific language governing permissions and
23
 *  limitations under the License.
24
 */
25
26
/*
27
 * ECDSA low level APIs are deprecated for public use, but still ok for
28
 * internal use.
29
 */
30
#include "internal/deprecated.h"
31
32
/*
33
 * A 64-bit implementation of the NIST P-521 elliptic curve point multiplication
34
 *
35
 * OpenSSL integration was taken from Emilia Kasper's work in ecp_nistp224.c.
36
 * Otherwise based on Emilia's P224 work, which was inspired by my curve25519
37
 * work which got its smarts from Daniel J. Bernstein's work on the same.
38
 */
39
40
#include <openssl/e_os2.h>
41
42
#include <string.h>
43
#include <openssl/err.h>
44
#include "ec_local.h"
45
46
#include "internal/numbers.h"
47
48
#ifndef INT128_MAX
49
# error "Your compiler doesn't appear to support 128-bit integer types"
50
#endif
51
52
typedef uint8_t u8;
53
typedef uint64_t u64;
54
55
/*
56
 * The underlying field. P521 operates over GF(2^521-1). We can serialize an
57
 * element of this field into 66 bytes where the most significant byte
58
 * contains only a single bit. We call this an felem_bytearray.
59
 */
60
61
typedef u8 felem_bytearray[66];
62
63
/*
64
 * These are the parameters of P521, taken from FIPS 186-3, section D.1.2.5.
65
 * These values are big-endian.
66
 */
67
static const felem_bytearray nistp521_curve_params[5] = {
68
    {0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* p */
69
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
70
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
71
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
72
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
73
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
74
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
75
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
76
     0xff, 0xff},
77
    {0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* a = -3 */
78
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
79
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
80
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
81
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
82
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
83
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
84
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
85
     0xff, 0xfc},
86
    {0x00, 0x51, 0x95, 0x3e, 0xb9, 0x61, 0x8e, 0x1c, /* b */
87
     0x9a, 0x1f, 0x92, 0x9a, 0x21, 0xa0, 0xb6, 0x85,
88
     0x40, 0xee, 0xa2, 0xda, 0x72, 0x5b, 0x99, 0xb3,
89
     0x15, 0xf3, 0xb8, 0xb4, 0x89, 0x91, 0x8e, 0xf1,
90
     0x09, 0xe1, 0x56, 0x19, 0x39, 0x51, 0xec, 0x7e,
91
     0x93, 0x7b, 0x16, 0x52, 0xc0, 0xbd, 0x3b, 0xb1,
92
     0xbf, 0x07, 0x35, 0x73, 0xdf, 0x88, 0x3d, 0x2c,
93
     0x34, 0xf1, 0xef, 0x45, 0x1f, 0xd4, 0x6b, 0x50,
94
     0x3f, 0x00},
95
    {0x00, 0xc6, 0x85, 0x8e, 0x06, 0xb7, 0x04, 0x04, /* x */
96
     0xe9, 0xcd, 0x9e, 0x3e, 0xcb, 0x66, 0x23, 0x95,
97
     0xb4, 0x42, 0x9c, 0x64, 0x81, 0x39, 0x05, 0x3f,
98
     0xb5, 0x21, 0xf8, 0x28, 0xaf, 0x60, 0x6b, 0x4d,
99
     0x3d, 0xba, 0xa1, 0x4b, 0x5e, 0x77, 0xef, 0xe7,
100
     0x59, 0x28, 0xfe, 0x1d, 0xc1, 0x27, 0xa2, 0xff,
101
     0xa8, 0xde, 0x33, 0x48, 0xb3, 0xc1, 0x85, 0x6a,
102
     0x42, 0x9b, 0xf9, 0x7e, 0x7e, 0x31, 0xc2, 0xe5,
103
     0xbd, 0x66},
104
    {0x01, 0x18, 0x39, 0x29, 0x6a, 0x78, 0x9a, 0x3b, /* y */
105
     0xc0, 0x04, 0x5c, 0x8a, 0x5f, 0xb4, 0x2c, 0x7d,
106
     0x1b, 0xd9, 0x98, 0xf5, 0x44, 0x49, 0x57, 0x9b,
107
     0x44, 0x68, 0x17, 0xaf, 0xbd, 0x17, 0x27, 0x3e,
108
     0x66, 0x2c, 0x97, 0xee, 0x72, 0x99, 0x5e, 0xf4,
109
     0x26, 0x40, 0xc5, 0x50, 0xb9, 0x01, 0x3f, 0xad,
110
     0x07, 0x61, 0x35, 0x3c, 0x70, 0x86, 0xa2, 0x72,
111
     0xc2, 0x40, 0x88, 0xbe, 0x94, 0x76, 0x9f, 0xd1,
112
     0x66, 0x50}
113
};
114
115
/*-
116
 * The representation of field elements.
117
 * ------------------------------------
118
 *
119
 * We represent field elements with nine values. These values are either 64 or
120
 * 128 bits and the field element represented is:
121
 *   v[0]*2^0 + v[1]*2^58 + v[2]*2^116 + ... + v[8]*2^464  (mod p)
122
 * Each of the nine values is called a 'limb'. Since the limbs are spaced only
123
 * 58 bits apart, but are greater than 58 bits in length, the most significant
124
 * bits of each limb overlap with the least significant bits of the next.
125
 *
126
 * A field element with 64-bit limbs is an 'felem'. One with 128-bit limbs is a
127
 * 'largefelem' */
128
129
47.6M
#define NLIMBS 9
130
131
typedef uint64_t limb;
132
typedef limb limb_aX __attribute((__aligned__(1)));
133
typedef limb felem[NLIMBS];
134
typedef uint128_t largefelem[NLIMBS];
135
136
static const limb bottom57bits = 0x1ffffffffffffff;
137
static const limb bottom58bits = 0x3ffffffffffffff;
138
139
/*
140
 * bin66_to_felem takes a little-endian byte array and converts it into felem
141
 * form. This assumes that the CPU is little-endian.
142
 */
143
static void bin66_to_felem(felem out, const u8 in[66])
144
2.73k
{
145
2.73k
    out[0] = (*((limb *) & in[0])) & bottom58bits;
146
2.73k
    out[1] = (*((limb_aX *) & in[7]) >> 2) & bottom58bits;
147
2.73k
    out[2] = (*((limb_aX *) & in[14]) >> 4) & bottom58bits;
148
2.73k
    out[3] = (*((limb_aX *) & in[21]) >> 6) & bottom58bits;
149
2.73k
    out[4] = (*((limb_aX *) & in[29])) & bottom58bits;
150
2.73k
    out[5] = (*((limb_aX *) & in[36]) >> 2) & bottom58bits;
151
2.73k
    out[6] = (*((limb_aX *) & in[43]) >> 4) & bottom58bits;
152
2.73k
    out[7] = (*((limb_aX *) & in[50]) >> 6) & bottom58bits;
153
2.73k
    out[8] = (*((limb_aX *) & in[58])) & bottom57bits;
154
2.73k
}
155
156
/*
157
 * felem_to_bin66 takes an felem and serializes into a little endian, 66 byte
158
 * array. This assumes that the CPU is little-endian.
159
 */
160
static void felem_to_bin66(u8 out[66], const felem in)
161
5.38k
{
162
5.38k
    memset(out, 0, 66);
163
5.38k
    (*((limb *) & out[0])) = in[0];
164
5.38k
    (*((limb_aX *) & out[7])) |= in[1] << 2;
165
5.38k
    (*((limb_aX *) & out[14])) |= in[2] << 4;
166
5.38k
    (*((limb_aX *) & out[21])) |= in[3] << 6;
167
5.38k
    (*((limb_aX *) & out[29])) = in[4];
168
5.38k
    (*((limb_aX *) & out[36])) |= in[5] << 2;
169
5.38k
    (*((limb_aX *) & out[43])) |= in[6] << 4;
170
5.38k
    (*((limb_aX *) & out[50])) |= in[7] << 6;
171
5.38k
    (*((limb_aX *) & out[58])) = in[8];
172
5.38k
}
173
174
/* BN_to_felem converts an OpenSSL BIGNUM into an felem */
175
static int BN_to_felem(felem out, const BIGNUM *bn)
176
2.73k
{
177
2.73k
    felem_bytearray b_out;
178
2.73k
    int num_bytes;
179
180
2.73k
    if (BN_is_negative(bn)) {
181
0
        ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE);
182
0
        return 0;
183
0
    }
184
2.73k
    num_bytes = BN_bn2lebinpad(bn, b_out, sizeof(b_out));
185
2.73k
    if (num_bytes < 0) {
186
0
        ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE);
187
0
        return 0;
188
0
    }
189
2.73k
    bin66_to_felem(out, b_out);
190
2.73k
    return 1;
191
2.73k
}
192
193
/* felem_to_BN converts an felem into an OpenSSL BIGNUM */
194
static BIGNUM *felem_to_BN(BIGNUM *out, const felem in)
195
5.38k
{
196
5.38k
    felem_bytearray b_out;
197
5.38k
    felem_to_bin66(b_out, in);
198
5.38k
    return BN_lebin2bn(b_out, sizeof(b_out), out);
199
5.38k
}
200
201
/*-
202
 * Field operations
203
 * ----------------
204
 */
205
206
static void felem_one(felem out)
207
0
{
208
0
    out[0] = 1;
209
0
    out[1] = 0;
210
0
    out[2] = 0;
211
0
    out[3] = 0;
212
0
    out[4] = 0;
213
0
    out[5] = 0;
214
0
    out[6] = 0;
215
0
    out[7] = 0;
216
0
    out[8] = 0;
217
0
}
218
219
static void felem_assign(felem out, const felem in)
220
1.62M
{
221
1.62M
    out[0] = in[0];
222
1.62M
    out[1] = in[1];
223
1.62M
    out[2] = in[2];
224
1.62M
    out[3] = in[3];
225
1.62M
    out[4] = in[4];
226
1.62M
    out[5] = in[5];
227
1.62M
    out[6] = in[6];
228
1.62M
    out[7] = in[7];
229
1.62M
    out[8] = in[8];
230
1.62M
}
231
232
/* felem_sum64 sets out = out + in. */
233
static void felem_sum64(felem out, const felem in)
234
467k
{
235
467k
    out[0] += in[0];
236
467k
    out[1] += in[1];
237
467k
    out[2] += in[2];
238
467k
    out[3] += in[3];
239
467k
    out[4] += in[4];
240
467k
    out[5] += in[5];
241
467k
    out[6] += in[6];
242
467k
    out[7] += in[7];
243
467k
    out[8] += in[8];
244
467k
}
245
246
/* felem_scalar sets out = in * scalar */
247
static void felem_scalar(felem out, const felem in, limb scalar)
248
4.26M
{
249
4.26M
    out[0] = in[0] * scalar;
250
4.26M
    out[1] = in[1] * scalar;
251
4.26M
    out[2] = in[2] * scalar;
252
4.26M
    out[3] = in[3] * scalar;
253
4.26M
    out[4] = in[4] * scalar;
254
4.26M
    out[5] = in[5] * scalar;
255
4.26M
    out[6] = in[6] * scalar;
256
4.26M
    out[7] = in[7] * scalar;
257
4.26M
    out[8] = in[8] * scalar;
258
4.26M
}
259
260
/* felem_scalar64 sets out = out * scalar */
261
static void felem_scalar64(felem out, limb scalar)
262
730k
{
263
730k
    out[0] *= scalar;
264
730k
    out[1] *= scalar;
265
730k
    out[2] *= scalar;
266
730k
    out[3] *= scalar;
267
730k
    out[4] *= scalar;
268
730k
    out[5] *= scalar;
269
730k
    out[6] *= scalar;
270
730k
    out[7] *= scalar;
271
730k
    out[8] *= scalar;
272
730k
}
273
274
/* felem_scalar128 sets out = out * scalar */
275
static void felem_scalar128(largefelem out, limb scalar)
276
243k
{
277
243k
    out[0] *= scalar;
278
243k
    out[1] *= scalar;
279
243k
    out[2] *= scalar;
280
243k
    out[3] *= scalar;
281
243k
    out[4] *= scalar;
282
243k
    out[5] *= scalar;
283
243k
    out[6] *= scalar;
284
243k
    out[7] *= scalar;
285
243k
    out[8] *= scalar;
286
243k
}
287
288
/*-
289
 * felem_neg sets |out| to |-in|
290
 * On entry:
291
 *   in[i] < 2^59 + 2^14
292
 * On exit:
293
 *   out[i] < 2^62
294
 */
295
static void felem_neg(felem out, const felem in)
296
15.2k
{
297
    /* In order to prevent underflow, we subtract from 0 mod p. */
298
15.2k
    static const limb two62m3 = (((limb) 1) << 62) - (((limb) 1) << 5);
299
15.2k
    static const limb two62m2 = (((limb) 1) << 62) - (((limb) 1) << 4);
300
301
15.2k
    out[0] = two62m3 - in[0];
302
15.2k
    out[1] = two62m2 - in[1];
303
15.2k
    out[2] = two62m2 - in[2];
304
15.2k
    out[3] = two62m2 - in[3];
305
15.2k
    out[4] = two62m2 - in[4];
306
15.2k
    out[5] = two62m2 - in[5];
307
15.2k
    out[6] = two62m2 - in[6];
308
15.2k
    out[7] = two62m2 - in[7];
309
15.2k
    out[8] = two62m2 - in[8];
310
15.2k
}
311
312
/*-
313
 * felem_diff64 subtracts |in| from |out|
314
 * On entry:
315
 *   in[i] < 2^59 + 2^14
316
 * On exit:
317
 *   out[i] < out[i] + 2^62
318
 */
319
static void felem_diff64(felem out, const felem in)
320
394k
{
321
    /*
322
     * In order to prevent underflow, we add 0 mod p before subtracting.
323
     */
324
394k
    static const limb two62m3 = (((limb) 1) << 62) - (((limb) 1) << 5);
325
394k
    static const limb two62m2 = (((limb) 1) << 62) - (((limb) 1) << 4);
326
327
394k
    out[0] += two62m3 - in[0];
328
394k
    out[1] += two62m2 - in[1];
329
394k
    out[2] += two62m2 - in[2];
330
394k
    out[3] += two62m2 - in[3];
331
394k
    out[4] += two62m2 - in[4];
332
394k
    out[5] += two62m2 - in[5];
333
394k
    out[6] += two62m2 - in[6];
334
394k
    out[7] += two62m2 - in[7];
335
394k
    out[8] += two62m2 - in[8];
336
394k
}
337
338
/*-
339
 * felem_diff_128_64 subtracts |in| from |out|
340
 * On entry:
341
 *   in[i] < 2^62 + 2^17
342
 * On exit:
343
 *   out[i] < out[i] + 2^63
344
 */
345
static void felem_diff_128_64(largefelem out, const felem in)
346
705k
{
347
    /*
348
     * In order to prevent underflow, we add 64p mod p (which is equivalent
349
     * to 0 mod p) before subtracting. p is 2^521 - 1, i.e. in binary a 521
350
     * digit number with all bits set to 1. See "The representation of field
351
     * elements" comment above for a description of how limbs are used to
352
     * represent a number. 64p is represented with 8 limbs containing a number
353
     * with 58 bits set and one limb with a number with 57 bits set.
354
     */
355
705k
    static const limb two63m6 = (((limb) 1) << 63) - (((limb) 1) << 6);
356
705k
    static const limb two63m5 = (((limb) 1) << 63) - (((limb) 1) << 5);
357
358
705k
    out[0] += two63m6 - in[0];
359
705k
    out[1] += two63m5 - in[1];
360
705k
    out[2] += two63m5 - in[2];
361
705k
    out[3] += two63m5 - in[3];
362
705k
    out[4] += two63m5 - in[4];
363
705k
    out[5] += two63m5 - in[5];
364
705k
    out[6] += two63m5 - in[6];
365
705k
    out[7] += two63m5 - in[7];
366
705k
    out[8] += two63m5 - in[8];
367
705k
}
368
369
/*-
370
 * felem_diff_128_64 subtracts |in| from |out|
371
 * On entry:
372
 *   in[i] < 2^126
373
 * On exit:
374
 *   out[i] < out[i] + 2^127 - 2^69
375
 */
376
static void felem_diff128(largefelem out, const largefelem in)
377
243k
{
378
    /*
379
     * In order to prevent underflow, we add 0 mod p before subtracting.
380
     */
381
243k
    static const uint128_t two127m70 =
382
243k
        (((uint128_t) 1) << 127) - (((uint128_t) 1) << 70);
383
243k
    static const uint128_t two127m69 =
384
243k
        (((uint128_t) 1) << 127) - (((uint128_t) 1) << 69);
385
386
243k
    out[0] += (two127m70 - in[0]);
387
243k
    out[1] += (two127m69 - in[1]);
388
243k
    out[2] += (two127m69 - in[2]);
389
243k
    out[3] += (two127m69 - in[3]);
390
243k
    out[4] += (two127m69 - in[4]);
391
243k
    out[5] += (two127m69 - in[5]);
392
243k
    out[6] += (two127m69 - in[6]);
393
243k
    out[7] += (two127m69 - in[7]);
394
243k
    out[8] += (two127m69 - in[8]);
395
243k
}
396
397
/*-
398
 * felem_square sets |out| = |in|^2
399
 * On entry:
400
 *   in[i] < 2^62
401
 * On exit:
402
 *   out[i] < 17 * max(in[i]) * max(in[i])
403
 */
404
static void felem_square_ref(largefelem out, const felem in)
405
1.46M
{
406
1.46M
    felem inx2, inx4;
407
1.46M
    felem_scalar(inx2, in, 2);
408
1.46M
    felem_scalar(inx4, in, 4);
409
410
    /*-
411
     * We have many cases were we want to do
412
     *   in[x] * in[y] +
413
     *   in[y] * in[x]
414
     * This is obviously just
415
     *   2 * in[x] * in[y]
416
     * However, rather than do the doubling on the 128 bit result, we
417
     * double one of the inputs to the multiplication by reading from
418
     * |inx2|
419
     */
420
421
1.46M
    out[0] = ((uint128_t) in[0]) * in[0];
422
1.46M
    out[1] = ((uint128_t) in[0]) * inx2[1];
423
1.46M
    out[2] = ((uint128_t) in[0]) * inx2[2] + ((uint128_t) in[1]) * in[1];
424
1.46M
    out[3] = ((uint128_t) in[0]) * inx2[3] + ((uint128_t) in[1]) * inx2[2];
425
1.46M
    out[4] = ((uint128_t) in[0]) * inx2[4] +
426
1.46M
             ((uint128_t) in[1]) * inx2[3] + ((uint128_t) in[2]) * in[2];
427
1.46M
    out[5] = ((uint128_t) in[0]) * inx2[5] +
428
1.46M
             ((uint128_t) in[1]) * inx2[4] + ((uint128_t) in[2]) * inx2[3];
429
1.46M
    out[6] = ((uint128_t) in[0]) * inx2[6] +
430
1.46M
             ((uint128_t) in[1]) * inx2[5] +
431
1.46M
             ((uint128_t) in[2]) * inx2[4] + ((uint128_t) in[3]) * in[3];
432
1.46M
    out[7] = ((uint128_t) in[0]) * inx2[7] +
433
1.46M
             ((uint128_t) in[1]) * inx2[6] +
434
1.46M
             ((uint128_t) in[2]) * inx2[5] + ((uint128_t) in[3]) * inx2[4];
435
1.46M
    out[8] = ((uint128_t) in[0]) * inx2[8] +
436
1.46M
             ((uint128_t) in[1]) * inx2[7] +
437
1.46M
             ((uint128_t) in[2]) * inx2[6] +
438
1.46M
             ((uint128_t) in[3]) * inx2[5] + ((uint128_t) in[4]) * in[4];
439
440
    /*
441
     * The remaining limbs fall above 2^521, with the first falling at 2^522.
442
     * They correspond to locations one bit up from the limbs produced above
443
     * so we would have to multiply by two to align them. Again, rather than
444
     * operate on the 128-bit result, we double one of the inputs to the
445
     * multiplication. If we want to double for both this reason, and the
446
     * reason above, then we end up multiplying by four.
447
     */
448
449
    /* 9 */
450
1.46M
    out[0] += ((uint128_t) in[1]) * inx4[8] +
451
1.46M
              ((uint128_t) in[2]) * inx4[7] +
452
1.46M
              ((uint128_t) in[3]) * inx4[6] + ((uint128_t) in[4]) * inx4[5];
453
454
    /* 10 */
455
1.46M
    out[1] += ((uint128_t) in[2]) * inx4[8] +
456
1.46M
              ((uint128_t) in[3]) * inx4[7] +
457
1.46M
              ((uint128_t) in[4]) * inx4[6] + ((uint128_t) in[5]) * inx2[5];
458
459
    /* 11 */
460
1.46M
    out[2] += ((uint128_t) in[3]) * inx4[8] +
461
1.46M
              ((uint128_t) in[4]) * inx4[7] + ((uint128_t) in[5]) * inx4[6];
462
463
    /* 12 */
464
1.46M
    out[3] += ((uint128_t) in[4]) * inx4[8] +
465
1.46M
              ((uint128_t) in[5]) * inx4[7] + ((uint128_t) in[6]) * inx2[6];
466
467
    /* 13 */
468
1.46M
    out[4] += ((uint128_t) in[5]) * inx4[8] + ((uint128_t) in[6]) * inx4[7];
469
470
    /* 14 */
471
1.46M
    out[5] += ((uint128_t) in[6]) * inx4[8] + ((uint128_t) in[7]) * inx2[7];
472
473
    /* 15 */
474
1.46M
    out[6] += ((uint128_t) in[7]) * inx4[8];
475
476
    /* 16 */
477
1.46M
    out[7] += ((uint128_t) in[8]) * inx2[8];
478
1.46M
}
479
480
/*-
481
 * felem_mul sets |out| = |in1| * |in2|
482
 * On entry:
483
 *   in1[i] < 2^64
484
 *   in2[i] < 2^63
485
 * On exit:
486
 *   out[i] < 17 * max(in1[i]) * max(in2[i])
487
 */
488
static void felem_mul_ref(largefelem out, const felem in1, const felem in2)
489
1.25M
{
490
1.25M
    felem in2x2;
491
1.25M
    felem_scalar(in2x2, in2, 2);
492
493
1.25M
    out[0] = ((uint128_t) in1[0]) * in2[0];
494
495
1.25M
    out[1] = ((uint128_t) in1[0]) * in2[1] +
496
1.25M
             ((uint128_t) in1[1]) * in2[0];
497
498
1.25M
    out[2] = ((uint128_t) in1[0]) * in2[2] +
499
1.25M
             ((uint128_t) in1[1]) * in2[1] +
500
1.25M
             ((uint128_t) in1[2]) * in2[0];
501
502
1.25M
    out[3] = ((uint128_t) in1[0]) * in2[3] +
503
1.25M
             ((uint128_t) in1[1]) * in2[2] +
504
1.25M
             ((uint128_t) in1[2]) * in2[1] +
505
1.25M
             ((uint128_t) in1[3]) * in2[0];
506
507
1.25M
    out[4] = ((uint128_t) in1[0]) * in2[4] +
508
1.25M
             ((uint128_t) in1[1]) * in2[3] +
509
1.25M
             ((uint128_t) in1[2]) * in2[2] +
510
1.25M
             ((uint128_t) in1[3]) * in2[1] +
511
1.25M
             ((uint128_t) in1[4]) * in2[0];
512
513
1.25M
    out[5] = ((uint128_t) in1[0]) * in2[5] +
514
1.25M
             ((uint128_t) in1[1]) * in2[4] +
515
1.25M
             ((uint128_t) in1[2]) * in2[3] +
516
1.25M
             ((uint128_t) in1[3]) * in2[2] +
517
1.25M
             ((uint128_t) in1[4]) * in2[1] +
518
1.25M
             ((uint128_t) in1[5]) * in2[0];
519
520
1.25M
    out[6] = ((uint128_t) in1[0]) * in2[6] +
521
1.25M
             ((uint128_t) in1[1]) * in2[5] +
522
1.25M
             ((uint128_t) in1[2]) * in2[4] +
523
1.25M
             ((uint128_t) in1[3]) * in2[3] +
524
1.25M
             ((uint128_t) in1[4]) * in2[2] +
525
1.25M
             ((uint128_t) in1[5]) * in2[1] +
526
1.25M
             ((uint128_t) in1[6]) * in2[0];
527
528
1.25M
    out[7] = ((uint128_t) in1[0]) * in2[7] +
529
1.25M
             ((uint128_t) in1[1]) * in2[6] +
530
1.25M
             ((uint128_t) in1[2]) * in2[5] +
531
1.25M
             ((uint128_t) in1[3]) * in2[4] +
532
1.25M
             ((uint128_t) in1[4]) * in2[3] +
533
1.25M
             ((uint128_t) in1[5]) * in2[2] +
534
1.25M
             ((uint128_t) in1[6]) * in2[1] +
535
1.25M
             ((uint128_t) in1[7]) * in2[0];
536
537
1.25M
    out[8] = ((uint128_t) in1[0]) * in2[8] +
538
1.25M
             ((uint128_t) in1[1]) * in2[7] +
539
1.25M
             ((uint128_t) in1[2]) * in2[6] +
540
1.25M
             ((uint128_t) in1[3]) * in2[5] +
541
1.25M
             ((uint128_t) in1[4]) * in2[4] +
542
1.25M
             ((uint128_t) in1[5]) * in2[3] +
543
1.25M
             ((uint128_t) in1[6]) * in2[2] +
544
1.25M
             ((uint128_t) in1[7]) * in2[1] +
545
1.25M
             ((uint128_t) in1[8]) * in2[0];
546
547
    /* See comment in felem_square about the use of in2x2 here */
548
549
1.25M
    out[0] += ((uint128_t) in1[1]) * in2x2[8] +
550
1.25M
              ((uint128_t) in1[2]) * in2x2[7] +
551
1.25M
              ((uint128_t) in1[3]) * in2x2[6] +
552
1.25M
              ((uint128_t) in1[4]) * in2x2[5] +
553
1.25M
              ((uint128_t) in1[5]) * in2x2[4] +
554
1.25M
              ((uint128_t) in1[6]) * in2x2[3] +
555
1.25M
              ((uint128_t) in1[7]) * in2x2[2] +
556
1.25M
              ((uint128_t) in1[8]) * in2x2[1];
557
558
1.25M
    out[1] += ((uint128_t) in1[2]) * in2x2[8] +
559
1.25M
              ((uint128_t) in1[3]) * in2x2[7] +
560
1.25M
              ((uint128_t) in1[4]) * in2x2[6] +
561
1.25M
              ((uint128_t) in1[5]) * in2x2[5] +
562
1.25M
              ((uint128_t) in1[6]) * in2x2[4] +
563
1.25M
              ((uint128_t) in1[7]) * in2x2[3] +
564
1.25M
              ((uint128_t) in1[8]) * in2x2[2];
565
566
1.25M
    out[2] += ((uint128_t) in1[3]) * in2x2[8] +
567
1.25M
              ((uint128_t) in1[4]) * in2x2[7] +
568
1.25M
              ((uint128_t) in1[5]) * in2x2[6] +
569
1.25M
              ((uint128_t) in1[6]) * in2x2[5] +
570
1.25M
              ((uint128_t) in1[7]) * in2x2[4] +
571
1.25M
              ((uint128_t) in1[8]) * in2x2[3];
572
573
1.25M
    out[3] += ((uint128_t) in1[4]) * in2x2[8] +
574
1.25M
              ((uint128_t) in1[5]) * in2x2[7] +
575
1.25M
              ((uint128_t) in1[6]) * in2x2[6] +
576
1.25M
              ((uint128_t) in1[7]) * in2x2[5] +
577
1.25M
              ((uint128_t) in1[8]) * in2x2[4];
578
579
1.25M
    out[4] += ((uint128_t) in1[5]) * in2x2[8] +
580
1.25M
              ((uint128_t) in1[6]) * in2x2[7] +
581
1.25M
              ((uint128_t) in1[7]) * in2x2[6] +
582
1.25M
              ((uint128_t) in1[8]) * in2x2[5];
583
584
1.25M
    out[5] += ((uint128_t) in1[6]) * in2x2[8] +
585
1.25M
              ((uint128_t) in1[7]) * in2x2[7] +
586
1.25M
              ((uint128_t) in1[8]) * in2x2[6];
587
588
1.25M
    out[6] += ((uint128_t) in1[7]) * in2x2[8] +
589
1.25M
              ((uint128_t) in1[8]) * in2x2[7];
590
591
1.25M
    out[7] += ((uint128_t) in1[8]) * in2x2[8];
592
1.25M
}
593
594
static const limb bottom52bits = 0xfffffffffffff;
595
596
/*-
597
 * felem_reduce converts a largefelem to an felem.
598
 * On entry:
599
 *   in[i] < 2^128
600
 * On exit:
601
 *   out[i] < 2^59 + 2^14
602
 */
603
static void felem_reduce(felem out, const largefelem in)
604
2.47M
{
605
2.47M
    u64 overflow1, overflow2;
606
607
2.47M
    out[0] = ((limb) in[0]) & bottom58bits;
608
2.47M
    out[1] = ((limb) in[1]) & bottom58bits;
609
2.47M
    out[2] = ((limb) in[2]) & bottom58bits;
610
2.47M
    out[3] = ((limb) in[3]) & bottom58bits;
611
2.47M
    out[4] = ((limb) in[4]) & bottom58bits;
612
2.47M
    out[5] = ((limb) in[5]) & bottom58bits;
613
2.47M
    out[6] = ((limb) in[6]) & bottom58bits;
614
2.47M
    out[7] = ((limb) in[7]) & bottom58bits;
615
2.47M
    out[8] = ((limb) in[8]) & bottom58bits;
616
617
    /* out[i] < 2^58 */
618
619
2.47M
    out[1] += ((limb) in[0]) >> 58;
620
2.47M
    out[1] += (((limb) (in[0] >> 64)) & bottom52bits) << 6;
621
    /*-
622
     * out[1] < 2^58 + 2^6 + 2^58
623
     *        = 2^59 + 2^6
624
     */
625
2.47M
    out[2] += ((limb) (in[0] >> 64)) >> 52;
626
627
2.47M
    out[2] += ((limb) in[1]) >> 58;
628
2.47M
    out[2] += (((limb) (in[1] >> 64)) & bottom52bits) << 6;
629
2.47M
    out[3] += ((limb) (in[1] >> 64)) >> 52;
630
631
2.47M
    out[3] += ((limb) in[2]) >> 58;
632
2.47M
    out[3] += (((limb) (in[2] >> 64)) & bottom52bits) << 6;
633
2.47M
    out[4] += ((limb) (in[2] >> 64)) >> 52;
634
635
2.47M
    out[4] += ((limb) in[3]) >> 58;
636
2.47M
    out[4] += (((limb) (in[3] >> 64)) & bottom52bits) << 6;
637
2.47M
    out[5] += ((limb) (in[3] >> 64)) >> 52;
638
639
2.47M
    out[5] += ((limb) in[4]) >> 58;
640
2.47M
    out[5] += (((limb) (in[4] >> 64)) & bottom52bits) << 6;
641
2.47M
    out[6] += ((limb) (in[4] >> 64)) >> 52;
642
643
2.47M
    out[6] += ((limb) in[5]) >> 58;
644
2.47M
    out[6] += (((limb) (in[5] >> 64)) & bottom52bits) << 6;
645
2.47M
    out[7] += ((limb) (in[5] >> 64)) >> 52;
646
647
2.47M
    out[7] += ((limb) in[6]) >> 58;
648
2.47M
    out[7] += (((limb) (in[6] >> 64)) & bottom52bits) << 6;
649
2.47M
    out[8] += ((limb) (in[6] >> 64)) >> 52;
650
651
2.47M
    out[8] += ((limb) in[7]) >> 58;
652
2.47M
    out[8] += (((limb) (in[7] >> 64)) & bottom52bits) << 6;
653
    /*-
654
     * out[x > 1] < 2^58 + 2^6 + 2^58 + 2^12
655
     *            < 2^59 + 2^13
656
     */
657
2.47M
    overflow1 = ((limb) (in[7] >> 64)) >> 52;
658
659
2.47M
    overflow1 += ((limb) in[8]) >> 58;
660
2.47M
    overflow1 += (((limb) (in[8] >> 64)) & bottom52bits) << 6;
661
2.47M
    overflow2 = ((limb) (in[8] >> 64)) >> 52;
662
663
2.47M
    overflow1 <<= 1;            /* overflow1 < 2^13 + 2^7 + 2^59 */
664
2.47M
    overflow2 <<= 1;            /* overflow2 < 2^13 */
665
666
2.47M
    out[0] += overflow1;        /* out[0] < 2^60 */
667
2.47M
    out[1] += overflow2;        /* out[1] < 2^59 + 2^6 + 2^13 */
668
669
2.47M
    out[1] += out[0] >> 58;
670
2.47M
    out[0] &= bottom58bits;
671
    /*-
672
     * out[0] < 2^58
673
     * out[1] < 2^59 + 2^6 + 2^13 + 2^2
674
     *        < 2^59 + 2^14
675
     */
676
2.47M
}
677
678
#if defined(ECP_NISTP521_ASM)
679
void felem_square_wrapper(largefelem out, const felem in);
680
void felem_mul_wrapper(largefelem out, const felem in1, const felem in2);
681
682
static void (*felem_square_p)(largefelem out, const felem in) =
683
    felem_square_wrapper;
684
static void (*felem_mul_p)(largefelem out, const felem in1, const felem in2) =
685
    felem_mul_wrapper;
686
687
void p521_felem_square(largefelem out, const felem in);
688
void p521_felem_mul(largefelem out, const felem in1, const felem in2);
689
690
# if defined(_ARCH_PPC64)
691
#  include "crypto/ppc_arch.h"
692
# endif
693
694
void felem_select(void)
695
{
696
# if defined(_ARCH_PPC64)
697
    if ((OPENSSL_ppccap_P & PPC_MADD300) && (OPENSSL_ppccap_P & PPC_ALTIVEC)) {
698
        felem_square_p = p521_felem_square;
699
        felem_mul_p = p521_felem_mul;
700
701
        return;
702
    }
703
# endif
704
705
    /* Default */
706
    felem_square_p = felem_square_ref;
707
    felem_mul_p = felem_mul_ref;
708
}
709
710
void felem_square_wrapper(largefelem out, const felem in)
711
{
712
    felem_select();
713
    felem_square_p(out, in);
714
}
715
716
void felem_mul_wrapper(largefelem out, const felem in1, const felem in2)
717
{
718
    felem_select();
719
    felem_mul_p(out, in1, in2);
720
}
721
722
# define felem_square felem_square_p
723
# define felem_mul felem_mul_p
724
#else
725
1.46M
# define felem_square felem_square_ref
726
1.25M
# define felem_mul felem_mul_ref
727
#endif
728
729
static void felem_square_reduce(felem out, const felem in)
730
0
{
731
0
    largefelem tmp;
732
0
    felem_square(tmp, in);
733
0
    felem_reduce(out, tmp);
734
0
}
735
736
static void felem_mul_reduce(felem out, const felem in1, const felem in2)
737
0
{
738
0
    largefelem tmp;
739
0
    felem_mul(tmp, in1, in2);
740
0
    felem_reduce(out, tmp);
741
0
}
742
743
/*-
744
 * felem_inv calculates |out| = |in|^{-1}
745
 *
746
 * Based on Fermat's Little Theorem:
747
 *   a^p = a (mod p)
748
 *   a^{p-1} = 1 (mod p)
749
 *   a^{p-2} = a^{-1} (mod p)
750
 */
751
static void felem_inv(felem out, const felem in)
752
765
{
753
765
    felem ftmp, ftmp2, ftmp3, ftmp4;
754
765
    largefelem tmp;
755
765
    unsigned i;
756
757
765
    felem_square(tmp, in);
758
765
    felem_reduce(ftmp, tmp);    /* 2^1 */
759
765
    felem_mul(tmp, in, ftmp);
760
765
    felem_reduce(ftmp, tmp);    /* 2^2 - 2^0 */
761
765
    felem_assign(ftmp2, ftmp);
762
765
    felem_square(tmp, ftmp);
763
765
    felem_reduce(ftmp, tmp);    /* 2^3 - 2^1 */
764
765
    felem_mul(tmp, in, ftmp);
765
765
    felem_reduce(ftmp, tmp);    /* 2^3 - 2^0 */
766
765
    felem_square(tmp, ftmp);
767
765
    felem_reduce(ftmp, tmp);    /* 2^4 - 2^1 */
768
769
765
    felem_square(tmp, ftmp2);
770
765
    felem_reduce(ftmp3, tmp);   /* 2^3 - 2^1 */
771
765
    felem_square(tmp, ftmp3);
772
765
    felem_reduce(ftmp3, tmp);   /* 2^4 - 2^2 */
773
765
    felem_mul(tmp, ftmp3, ftmp2);
774
765
    felem_reduce(ftmp3, tmp);   /* 2^4 - 2^0 */
775
776
765
    felem_assign(ftmp2, ftmp3);
777
765
    felem_square(tmp, ftmp3);
778
765
    felem_reduce(ftmp3, tmp);   /* 2^5 - 2^1 */
779
765
    felem_square(tmp, ftmp3);
780
765
    felem_reduce(ftmp3, tmp);   /* 2^6 - 2^2 */
781
765
    felem_square(tmp, ftmp3);
782
765
    felem_reduce(ftmp3, tmp);   /* 2^7 - 2^3 */
783
765
    felem_square(tmp, ftmp3);
784
765
    felem_reduce(ftmp3, tmp);   /* 2^8 - 2^4 */
785
765
    felem_assign(ftmp4, ftmp3);
786
765
    felem_mul(tmp, ftmp3, ftmp);
787
765
    felem_reduce(ftmp4, tmp);   /* 2^8 - 2^1 */
788
765
    felem_square(tmp, ftmp4);
789
765
    felem_reduce(ftmp4, tmp);   /* 2^9 - 2^2 */
790
765
    felem_mul(tmp, ftmp3, ftmp2);
791
765
    felem_reduce(ftmp3, tmp);   /* 2^8 - 2^0 */
792
765
    felem_assign(ftmp2, ftmp3);
793
794
6.88k
    for (i = 0; i < 8; i++) {
795
6.12k
        felem_square(tmp, ftmp3);
796
6.12k
        felem_reduce(ftmp3, tmp); /* 2^16 - 2^8 */
797
6.12k
    }
798
765
    felem_mul(tmp, ftmp3, ftmp2);
799
765
    felem_reduce(ftmp3, tmp);   /* 2^16 - 2^0 */
800
765
    felem_assign(ftmp2, ftmp3);
801
802
13.0k
    for (i = 0; i < 16; i++) {
803
12.2k
        felem_square(tmp, ftmp3);
804
12.2k
        felem_reduce(ftmp3, tmp); /* 2^32 - 2^16 */
805
12.2k
    }
806
765
    felem_mul(tmp, ftmp3, ftmp2);
807
765
    felem_reduce(ftmp3, tmp);   /* 2^32 - 2^0 */
808
765
    felem_assign(ftmp2, ftmp3);
809
810
25.2k
    for (i = 0; i < 32; i++) {
811
24.4k
        felem_square(tmp, ftmp3);
812
24.4k
        felem_reduce(ftmp3, tmp); /* 2^64 - 2^32 */
813
24.4k
    }
814
765
    felem_mul(tmp, ftmp3, ftmp2);
815
765
    felem_reduce(ftmp3, tmp);   /* 2^64 - 2^0 */
816
765
    felem_assign(ftmp2, ftmp3);
817
818
49.7k
    for (i = 0; i < 64; i++) {
819
48.9k
        felem_square(tmp, ftmp3);
820
48.9k
        felem_reduce(ftmp3, tmp); /* 2^128 - 2^64 */
821
48.9k
    }
822
765
    felem_mul(tmp, ftmp3, ftmp2);
823
765
    felem_reduce(ftmp3, tmp);   /* 2^128 - 2^0 */
824
765
    felem_assign(ftmp2, ftmp3);
825
826
98.6k
    for (i = 0; i < 128; i++) {
827
97.9k
        felem_square(tmp, ftmp3);
828
97.9k
        felem_reduce(ftmp3, tmp); /* 2^256 - 2^128 */
829
97.9k
    }
830
765
    felem_mul(tmp, ftmp3, ftmp2);
831
765
    felem_reduce(ftmp3, tmp);   /* 2^256 - 2^0 */
832
765
    felem_assign(ftmp2, ftmp3);
833
834
196k
    for (i = 0; i < 256; i++) {
835
195k
        felem_square(tmp, ftmp3);
836
195k
        felem_reduce(ftmp3, tmp); /* 2^512 - 2^256 */
837
195k
    }
838
765
    felem_mul(tmp, ftmp3, ftmp2);
839
765
    felem_reduce(ftmp3, tmp);   /* 2^512 - 2^0 */
840
841
7.65k
    for (i = 0; i < 9; i++) {
842
6.88k
        felem_square(tmp, ftmp3);
843
6.88k
        felem_reduce(ftmp3, tmp); /* 2^521 - 2^9 */
844
6.88k
    }
845
765
    felem_mul(tmp, ftmp3, ftmp4);
846
765
    felem_reduce(ftmp3, tmp);   /* 2^512 - 2^2 */
847
765
    felem_mul(tmp, ftmp3, in);
848
765
    felem_reduce(out, tmp);     /* 2^512 - 3 */
849
765
}
850
851
/* This is 2^521-1, expressed as an felem */
852
static const felem kPrime = {
853
    0x03ffffffffffffff, 0x03ffffffffffffff, 0x03ffffffffffffff,
854
    0x03ffffffffffffff, 0x03ffffffffffffff, 0x03ffffffffffffff,
855
    0x03ffffffffffffff, 0x03ffffffffffffff, 0x01ffffffffffffff
856
};
857
858
/*-
859
 * felem_is_zero returns a limb with all bits set if |in| == 0 (mod p) and 0
860
 * otherwise.
861
 * On entry:
862
 *   in[i] < 2^59 + 2^14
863
 */
864
static limb felem_is_zero(const felem in)
865
371k
{
866
371k
    felem ftmp;
867
371k
    limb is_zero, is_p;
868
371k
    felem_assign(ftmp, in);
869
870
371k
    ftmp[0] += ftmp[8] >> 57;
871
371k
    ftmp[8] &= bottom57bits;
872
    /* ftmp[8] < 2^57 */
873
371k
    ftmp[1] += ftmp[0] >> 58;
874
371k
    ftmp[0] &= bottom58bits;
875
371k
    ftmp[2] += ftmp[1] >> 58;
876
371k
    ftmp[1] &= bottom58bits;
877
371k
    ftmp[3] += ftmp[2] >> 58;
878
371k
    ftmp[2] &= bottom58bits;
879
371k
    ftmp[4] += ftmp[3] >> 58;
880
371k
    ftmp[3] &= bottom58bits;
881
371k
    ftmp[5] += ftmp[4] >> 58;
882
371k
    ftmp[4] &= bottom58bits;
883
371k
    ftmp[6] += ftmp[5] >> 58;
884
371k
    ftmp[5] &= bottom58bits;
885
371k
    ftmp[7] += ftmp[6] >> 58;
886
371k
    ftmp[6] &= bottom58bits;
887
371k
    ftmp[8] += ftmp[7] >> 58;
888
371k
    ftmp[7] &= bottom58bits;
889
    /* ftmp[8] < 2^57 + 4 */
890
891
    /*
892
     * The ninth limb of 2*(2^521-1) is 0x03ffffffffffffff, which is greater
893
     * than our bound for ftmp[8]. Therefore we only have to check if the
894
     * zero is zero or 2^521-1.
895
     */
896
897
371k
    is_zero = 0;
898
371k
    is_zero |= ftmp[0];
899
371k
    is_zero |= ftmp[1];
900
371k
    is_zero |= ftmp[2];
901
371k
    is_zero |= ftmp[3];
902
371k
    is_zero |= ftmp[4];
903
371k
    is_zero |= ftmp[5];
904
371k
    is_zero |= ftmp[6];
905
371k
    is_zero |= ftmp[7];
906
371k
    is_zero |= ftmp[8];
907
908
371k
    is_zero--;
909
    /*
910
     * We know that ftmp[i] < 2^63, therefore the only way that the top bit
911
     * can be set is if is_zero was 0 before the decrement.
912
     */
913
371k
    is_zero = 0 - (is_zero >> 63);
914
915
371k
    is_p = ftmp[0] ^ kPrime[0];
916
371k
    is_p |= ftmp[1] ^ kPrime[1];
917
371k
    is_p |= ftmp[2] ^ kPrime[2];
918
371k
    is_p |= ftmp[3] ^ kPrime[3];
919
371k
    is_p |= ftmp[4] ^ kPrime[4];
920
371k
    is_p |= ftmp[5] ^ kPrime[5];
921
371k
    is_p |= ftmp[6] ^ kPrime[6];
922
371k
    is_p |= ftmp[7] ^ kPrime[7];
923
371k
    is_p |= ftmp[8] ^ kPrime[8];
924
925
371k
    is_p--;
926
371k
    is_p = 0 - (is_p >> 63);
927
928
371k
    is_zero |= is_p;
929
371k
    return is_zero;
930
371k
}
931
932
static int felem_is_zero_int(const void *in)
933
0
{
934
0
    return (int)(felem_is_zero(in) & ((limb) 1));
935
0
}
936
937
/*-
938
 * felem_contract converts |in| to its unique, minimal representation.
939
 * On entry:
940
 *   in[i] < 2^59 + 2^14
941
 */
942
static void felem_contract(felem out, const felem in)
943
3.67k
{
944
3.67k
    limb is_p, is_greater, sign;
945
3.67k
    static const limb two58 = ((limb) 1) << 58;
946
947
3.67k
    felem_assign(out, in);
948
949
3.67k
    out[0] += out[8] >> 57;
950
3.67k
    out[8] &= bottom57bits;
951
    /* out[8] < 2^57 */
952
3.67k
    out[1] += out[0] >> 58;
953
3.67k
    out[0] &= bottom58bits;
954
3.67k
    out[2] += out[1] >> 58;
955
3.67k
    out[1] &= bottom58bits;
956
3.67k
    out[3] += out[2] >> 58;
957
3.67k
    out[2] &= bottom58bits;
958
3.67k
    out[4] += out[3] >> 58;
959
3.67k
    out[3] &= bottom58bits;
960
3.67k
    out[5] += out[4] >> 58;
961
3.67k
    out[4] &= bottom58bits;
962
3.67k
    out[6] += out[5] >> 58;
963
3.67k
    out[5] &= bottom58bits;
964
3.67k
    out[7] += out[6] >> 58;
965
3.67k
    out[6] &= bottom58bits;
966
3.67k
    out[8] += out[7] >> 58;
967
3.67k
    out[7] &= bottom58bits;
968
    /* out[8] < 2^57 + 4 */
969
970
    /*
971
     * If the value is greater than 2^521-1 then we have to subtract 2^521-1
972
     * out. See the comments in felem_is_zero regarding why we don't test for
973
     * other multiples of the prime.
974
     */
975
976
    /*
977
     * First, if |out| is equal to 2^521-1, we subtract it out to get zero.
978
     */
979
980
3.67k
    is_p = out[0] ^ kPrime[0];
981
3.67k
    is_p |= out[1] ^ kPrime[1];
982
3.67k
    is_p |= out[2] ^ kPrime[2];
983
3.67k
    is_p |= out[3] ^ kPrime[3];
984
3.67k
    is_p |= out[4] ^ kPrime[4];
985
3.67k
    is_p |= out[5] ^ kPrime[5];
986
3.67k
    is_p |= out[6] ^ kPrime[6];
987
3.67k
    is_p |= out[7] ^ kPrime[7];
988
3.67k
    is_p |= out[8] ^ kPrime[8];
989
990
3.67k
    is_p--;
991
3.67k
    is_p &= is_p << 32;
992
3.67k
    is_p &= is_p << 16;
993
3.67k
    is_p &= is_p << 8;
994
3.67k
    is_p &= is_p << 4;
995
3.67k
    is_p &= is_p << 2;
996
3.67k
    is_p &= is_p << 1;
997
3.67k
    is_p = 0 - (is_p >> 63);
998
3.67k
    is_p = ~is_p;
999
1000
    /* is_p is 0 iff |out| == 2^521-1 and all ones otherwise */
1001
1002
3.67k
    out[0] &= is_p;
1003
3.67k
    out[1] &= is_p;
1004
3.67k
    out[2] &= is_p;
1005
3.67k
    out[3] &= is_p;
1006
3.67k
    out[4] &= is_p;
1007
3.67k
    out[5] &= is_p;
1008
3.67k
    out[6] &= is_p;
1009
3.67k
    out[7] &= is_p;
1010
3.67k
    out[8] &= is_p;
1011
1012
    /*
1013
     * In order to test that |out| >= 2^521-1 we need only test if out[8] >>
1014
     * 57 is greater than zero as (2^521-1) + x >= 2^522
1015
     */
1016
3.67k
    is_greater = out[8] >> 57;
1017
3.67k
    is_greater |= is_greater << 32;
1018
3.67k
    is_greater |= is_greater << 16;
1019
3.67k
    is_greater |= is_greater << 8;
1020
3.67k
    is_greater |= is_greater << 4;
1021
3.67k
    is_greater |= is_greater << 2;
1022
3.67k
    is_greater |= is_greater << 1;
1023
3.67k
    is_greater = 0 - (is_greater >> 63);
1024
1025
3.67k
    out[0] -= kPrime[0] & is_greater;
1026
3.67k
    out[1] -= kPrime[1] & is_greater;
1027
3.67k
    out[2] -= kPrime[2] & is_greater;
1028
3.67k
    out[3] -= kPrime[3] & is_greater;
1029
3.67k
    out[4] -= kPrime[4] & is_greater;
1030
3.67k
    out[5] -= kPrime[5] & is_greater;
1031
3.67k
    out[6] -= kPrime[6] & is_greater;
1032
3.67k
    out[7] -= kPrime[7] & is_greater;
1033
3.67k
    out[8] -= kPrime[8] & is_greater;
1034
1035
    /* Eliminate negative coefficients */
1036
3.67k
    sign = -(out[0] >> 63);
1037
3.67k
    out[0] += (two58 & sign);
1038
3.67k
    out[1] -= (1 & sign);
1039
3.67k
    sign = -(out[1] >> 63);
1040
3.67k
    out[1] += (two58 & sign);
1041
3.67k
    out[2] -= (1 & sign);
1042
3.67k
    sign = -(out[2] >> 63);
1043
3.67k
    out[2] += (two58 & sign);
1044
3.67k
    out[3] -= (1 & sign);
1045
3.67k
    sign = -(out[3] >> 63);
1046
3.67k
    out[3] += (two58 & sign);
1047
3.67k
    out[4] -= (1 & sign);
1048
3.67k
    sign = -(out[4] >> 63);
1049
3.67k
    out[4] += (two58 & sign);
1050
3.67k
    out[5] -= (1 & sign);
1051
3.67k
    sign = -(out[0] >> 63);
1052
3.67k
    out[5] += (two58 & sign);
1053
3.67k
    out[6] -= (1 & sign);
1054
3.67k
    sign = -(out[6] >> 63);
1055
3.67k
    out[6] += (two58 & sign);
1056
3.67k
    out[7] -= (1 & sign);
1057
3.67k
    sign = -(out[7] >> 63);
1058
3.67k
    out[7] += (two58 & sign);
1059
3.67k
    out[8] -= (1 & sign);
1060
3.67k
    sign = -(out[5] >> 63);
1061
3.67k
    out[5] += (two58 & sign);
1062
3.67k
    out[6] -= (1 & sign);
1063
3.67k
    sign = -(out[6] >> 63);
1064
3.67k
    out[6] += (two58 & sign);
1065
3.67k
    out[7] -= (1 & sign);
1066
3.67k
    sign = -(out[7] >> 63);
1067
3.67k
    out[7] += (two58 & sign);
1068
3.67k
    out[8] -= (1 & sign);
1069
3.67k
}
1070
1071
/*-
1072
 * Group operations
1073
 * ----------------
1074
 *
1075
 * Building on top of the field operations we have the operations on the
1076
 * elliptic curve group itself. Points on the curve are represented in Jacobian
1077
 * coordinates */
1078
1079
/*-
1080
 * point_double calculates 2*(x_in, y_in, z_in)
1081
 *
1082
 * The method is taken from:
1083
 *   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
1084
 *
1085
 * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed.
1086
 * while x_out == y_in is not (maybe this works, but it's not tested). */
1087
static void
1088
point_double(felem x_out, felem y_out, felem z_out,
1089
             const felem x_in, const felem y_in, const felem z_in)
1090
150k
{
1091
150k
    largefelem tmp, tmp2;
1092
150k
    felem delta, gamma, beta, alpha, ftmp, ftmp2;
1093
1094
150k
    felem_assign(ftmp, x_in);
1095
150k
    felem_assign(ftmp2, x_in);
1096
1097
    /* delta = z^2 */
1098
150k
    felem_square(tmp, z_in);
1099
150k
    felem_reduce(delta, tmp);   /* delta[i] < 2^59 + 2^14 */
1100
1101
    /* gamma = y^2 */
1102
150k
    felem_square(tmp, y_in);
1103
150k
    felem_reduce(gamma, tmp);   /* gamma[i] < 2^59 + 2^14 */
1104
1105
    /* beta = x*gamma */
1106
150k
    felem_mul(tmp, x_in, gamma);
1107
150k
    felem_reduce(beta, tmp);    /* beta[i] < 2^59 + 2^14 */
1108
1109
    /* alpha = 3*(x-delta)*(x+delta) */
1110
150k
    felem_diff64(ftmp, delta);
1111
    /* ftmp[i] < 2^61 */
1112
150k
    felem_sum64(ftmp2, delta);
1113
    /* ftmp2[i] < 2^60 + 2^15 */
1114
150k
    felem_scalar64(ftmp2, 3);
1115
    /* ftmp2[i] < 3*2^60 + 3*2^15 */
1116
150k
    felem_mul(tmp, ftmp, ftmp2);
1117
    /*-
1118
     * tmp[i] < 17(3*2^121 + 3*2^76)
1119
     *        = 61*2^121 + 61*2^76
1120
     *        < 64*2^121 + 64*2^76
1121
     *        = 2^127 + 2^82
1122
     *        < 2^128
1123
     */
1124
150k
    felem_reduce(alpha, tmp);
1125
1126
    /* x' = alpha^2 - 8*beta */
1127
150k
    felem_square(tmp, alpha);
1128
    /*
1129
     * tmp[i] < 17*2^120 < 2^125
1130
     */
1131
150k
    felem_assign(ftmp, beta);
1132
150k
    felem_scalar64(ftmp, 8);
1133
    /* ftmp[i] < 2^62 + 2^17 */
1134
150k
    felem_diff_128_64(tmp, ftmp);
1135
    /* tmp[i] < 2^125 + 2^63 + 2^62 + 2^17 */
1136
150k
    felem_reduce(x_out, tmp);
1137
1138
    /* z' = (y + z)^2 - gamma - delta */
1139
150k
    felem_sum64(delta, gamma);
1140
    /* delta[i] < 2^60 + 2^15 */
1141
150k
    felem_assign(ftmp, y_in);
1142
150k
    felem_sum64(ftmp, z_in);
1143
    /* ftmp[i] < 2^60 + 2^15 */
1144
150k
    felem_square(tmp, ftmp);
1145
    /*
1146
     * tmp[i] < 17(2^122) < 2^127
1147
     */
1148
150k
    felem_diff_128_64(tmp, delta);
1149
    /* tmp[i] < 2^127 + 2^63 */
1150
150k
    felem_reduce(z_out, tmp);
1151
1152
    /* y' = alpha*(4*beta - x') - 8*gamma^2 */
1153
150k
    felem_scalar64(beta, 4);
1154
    /* beta[i] < 2^61 + 2^16 */
1155
150k
    felem_diff64(beta, x_out);
1156
    /* beta[i] < 2^61 + 2^60 + 2^16 */
1157
150k
    felem_mul(tmp, alpha, beta);
1158
    /*-
1159
     * tmp[i] < 17*((2^59 + 2^14)(2^61 + 2^60 + 2^16))
1160
     *        = 17*(2^120 + 2^75 + 2^119 + 2^74 + 2^75 + 2^30)
1161
     *        = 17*(2^120 + 2^119 + 2^76 + 2^74 + 2^30)
1162
     *        < 2^128
1163
     */
1164
150k
    felem_square(tmp2, gamma);
1165
    /*-
1166
     * tmp2[i] < 17*(2^59 + 2^14)^2
1167
     *         = 17*(2^118 + 2^74 + 2^28)
1168
     */
1169
150k
    felem_scalar128(tmp2, 8);
1170
    /*-
1171
     * tmp2[i] < 8*17*(2^118 + 2^74 + 2^28)
1172
     *         = 2^125 + 2^121 + 2^81 + 2^77 + 2^35 + 2^31
1173
     *         < 2^126
1174
     */
1175
150k
    felem_diff128(tmp, tmp2);
1176
    /*-
1177
     * tmp[i] < 2^127 - 2^69 + 17(2^120 + 2^119 + 2^76 + 2^74 + 2^30)
1178
     *        = 2^127 + 2^124 + 2^122 + 2^120 + 2^118 + 2^80 + 2^78 + 2^76 +
1179
     *          2^74 + 2^69 + 2^34 + 2^30
1180
     *        < 2^128
1181
     */
1182
150k
    felem_reduce(y_out, tmp);
1183
150k
}
1184
1185
/* copy_conditional copies in to out iff mask is all ones. */
1186
static void copy_conditional(felem out, const felem in, limb mask)
1187
572k
{
1188
572k
    unsigned i;
1189
5.72M
    for (i = 0; i < NLIMBS; ++i) {
1190
5.15M
        const limb tmp = mask & (in[i] ^ out[i]);
1191
5.15M
        out[i] ^= tmp;
1192
5.15M
    }
1193
572k
}
1194
1195
/*-
1196
 * point_add calculates (x1, y1, z1) + (x2, y2, z2)
1197
 *
1198
 * The method is taken from
1199
 *   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl,
1200
 * adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity).
1201
 *
1202
 * This function includes a branch for checking whether the two input points
1203
 * are equal (while not equal to the point at infinity). See comment below
1204
 * on constant-time.
1205
 */
1206
static void point_add(felem x3, felem y3, felem z3,
1207
                      const felem x1, const felem y1, const felem z1,
1208
                      const int mixed, const felem x2, const felem y2,
1209
                      const felem z2)
1210
92.9k
{
1211
92.9k
    felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, ftmp6, x_out, y_out, z_out;
1212
92.9k
    largefelem tmp, tmp2;
1213
92.9k
    limb x_equal, y_equal, z1_is_zero, z2_is_zero;
1214
92.9k
    limb points_equal;
1215
1216
92.9k
    z1_is_zero = felem_is_zero(z1);
1217
92.9k
    z2_is_zero = felem_is_zero(z2);
1218
1219
    /* ftmp = z1z1 = z1**2 */
1220
92.9k
    felem_square(tmp, z1);
1221
92.9k
    felem_reduce(ftmp, tmp);
1222
1223
92.9k
    if (!mixed) {
1224
        /* ftmp2 = z2z2 = z2**2 */
1225
16.0k
        felem_square(tmp, z2);
1226
16.0k
        felem_reduce(ftmp2, tmp);
1227
1228
        /* u1 = ftmp3 = x1*z2z2 */
1229
16.0k
        felem_mul(tmp, x1, ftmp2);
1230
16.0k
        felem_reduce(ftmp3, tmp);
1231
1232
        /* ftmp5 = z1 + z2 */
1233
16.0k
        felem_assign(ftmp5, z1);
1234
16.0k
        felem_sum64(ftmp5, z2);
1235
        /* ftmp5[i] < 2^61 */
1236
1237
        /* ftmp5 = (z1 + z2)**2 - z1z1 - z2z2 = 2*z1z2 */
1238
16.0k
        felem_square(tmp, ftmp5);
1239
        /* tmp[i] < 17*2^122 */
1240
16.0k
        felem_diff_128_64(tmp, ftmp);
1241
        /* tmp[i] < 17*2^122 + 2^63 */
1242
16.0k
        felem_diff_128_64(tmp, ftmp2);
1243
        /* tmp[i] < 17*2^122 + 2^64 */
1244
16.0k
        felem_reduce(ftmp5, tmp);
1245
1246
        /* ftmp2 = z2 * z2z2 */
1247
16.0k
        felem_mul(tmp, ftmp2, z2);
1248
16.0k
        felem_reduce(ftmp2, tmp);
1249
1250
        /* s1 = ftmp6 = y1 * z2**3 */
1251
16.0k
        felem_mul(tmp, y1, ftmp2);
1252
16.0k
        felem_reduce(ftmp6, tmp);
1253
76.8k
    } else {
1254
        /*
1255
         * We'll assume z2 = 1 (special case z2 = 0 is handled later)
1256
         */
1257
1258
        /* u1 = ftmp3 = x1*z2z2 */
1259
76.8k
        felem_assign(ftmp3, x1);
1260
1261
        /* ftmp5 = 2*z1z2 */
1262
76.8k
        felem_scalar(ftmp5, z1, 2);
1263
1264
        /* s1 = ftmp6 = y1 * z2**3 */
1265
76.8k
        felem_assign(ftmp6, y1);
1266
76.8k
    }
1267
1268
    /* u2 = x2*z1z1 */
1269
92.9k
    felem_mul(tmp, x2, ftmp);
1270
    /* tmp[i] < 17*2^120 */
1271
1272
    /* h = ftmp4 = u2 - u1 */
1273
92.9k
    felem_diff_128_64(tmp, ftmp3);
1274
    /* tmp[i] < 17*2^120 + 2^63 */
1275
92.9k
    felem_reduce(ftmp4, tmp);
1276
1277
92.9k
    x_equal = felem_is_zero(ftmp4);
1278
1279
    /* z_out = ftmp5 * h */
1280
92.9k
    felem_mul(tmp, ftmp5, ftmp4);
1281
92.9k
    felem_reduce(z_out, tmp);
1282
1283
    /* ftmp = z1 * z1z1 */
1284
92.9k
    felem_mul(tmp, ftmp, z1);
1285
92.9k
    felem_reduce(ftmp, tmp);
1286
1287
    /* s2 = tmp = y2 * z1**3 */
1288
92.9k
    felem_mul(tmp, y2, ftmp);
1289
    /* tmp[i] < 17*2^120 */
1290
1291
    /* r = ftmp5 = (s2 - s1)*2 */
1292
92.9k
    felem_diff_128_64(tmp, ftmp6);
1293
    /* tmp[i] < 17*2^120 + 2^63 */
1294
92.9k
    felem_reduce(ftmp5, tmp);
1295
92.9k
    y_equal = felem_is_zero(ftmp5);
1296
92.9k
    felem_scalar64(ftmp5, 2);
1297
    /* ftmp5[i] < 2^61 */
1298
1299
    /*
1300
     * The formulae are incorrect if the points are equal, in affine coordinates
1301
     * (X_1, Y_1) == (X_2, Y_2), so we check for this and do doubling if this
1302
     * happens.
1303
     *
1304
     * We use bitwise operations to avoid potential side-channels introduced by
1305
     * the short-circuiting behaviour of boolean operators.
1306
     *
1307
     * The special case of either point being the point at infinity (z1 and/or
1308
     * z2 are zero), is handled separately later on in this function, so we
1309
     * avoid jumping to point_double here in those special cases.
1310
     *
1311
     * Notice the comment below on the implications of this branching for timing
1312
     * leaks and why it is considered practically irrelevant.
1313
     */
1314
92.9k
    points_equal = (x_equal & y_equal & (~z1_is_zero) & (~z2_is_zero));
1315
1316
92.9k
    if (points_equal) {
1317
        /*
1318
         * This is obviously not constant-time but it will almost-never happen
1319
         * for ECDH / ECDSA. The case where it can happen is during scalar-mult
1320
         * where the intermediate value gets very close to the group order.
1321
         * Since |ossl_ec_GFp_nistp_recode_scalar_bits| produces signed digits
1322
         * for the scalar, it's possible for the intermediate value to be a small
1323
         * negative multiple of the base point, and for the final signed digit
1324
         * to be the same value. We believe that this only occurs for the scalar
1325
         * 1fffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
1326
         * ffffffa51868783bf2f966b7fcc0148f709a5d03bb5c9b8899c47aebb6fb
1327
         * 71e913863f7, in that case the penultimate intermediate is -9G and
1328
         * the final digit is also -9G. Since this only happens for a single
1329
         * scalar, the timing leak is irrelevant. (Any attacker who wanted to
1330
         * check whether a secret scalar was that exact value, can already do
1331
         * so.)
1332
         */
1333
0
        point_double(x3, y3, z3, x1, y1, z1);
1334
0
        return;
1335
0
    }
1336
1337
    /* I = ftmp = (2h)**2 */
1338
92.9k
    felem_assign(ftmp, ftmp4);
1339
92.9k
    felem_scalar64(ftmp, 2);
1340
    /* ftmp[i] < 2^61 */
1341
92.9k
    felem_square(tmp, ftmp);
1342
    /* tmp[i] < 17*2^122 */
1343
92.9k
    felem_reduce(ftmp, tmp);
1344
1345
    /* J = ftmp2 = h * I */
1346
92.9k
    felem_mul(tmp, ftmp4, ftmp);
1347
92.9k
    felem_reduce(ftmp2, tmp);
1348
1349
    /* V = ftmp4 = U1 * I */
1350
92.9k
    felem_mul(tmp, ftmp3, ftmp);
1351
92.9k
    felem_reduce(ftmp4, tmp);
1352
1353
    /* x_out = r**2 - J - 2V */
1354
92.9k
    felem_square(tmp, ftmp5);
1355
    /* tmp[i] < 17*2^122 */
1356
92.9k
    felem_diff_128_64(tmp, ftmp2);
1357
    /* tmp[i] < 17*2^122 + 2^63 */
1358
92.9k
    felem_assign(ftmp3, ftmp4);
1359
92.9k
    felem_scalar64(ftmp4, 2);
1360
    /* ftmp4[i] < 2^61 */
1361
92.9k
    felem_diff_128_64(tmp, ftmp4);
1362
    /* tmp[i] < 17*2^122 + 2^64 */
1363
92.9k
    felem_reduce(x_out, tmp);
1364
1365
    /* y_out = r(V-x_out) - 2 * s1 * J */
1366
92.9k
    felem_diff64(ftmp3, x_out);
1367
    /*
1368
     * ftmp3[i] < 2^60 + 2^60 = 2^61
1369
     */
1370
92.9k
    felem_mul(tmp, ftmp5, ftmp3);
1371
    /* tmp[i] < 17*2^122 */
1372
92.9k
    felem_mul(tmp2, ftmp6, ftmp2);
1373
    /* tmp2[i] < 17*2^120 */
1374
92.9k
    felem_scalar128(tmp2, 2);
1375
    /* tmp2[i] < 17*2^121 */
1376
92.9k
    felem_diff128(tmp, tmp2);
1377
        /*-
1378
         * tmp[i] < 2^127 - 2^69 + 17*2^122
1379
         *        = 2^126 - 2^122 - 2^6 - 2^2 - 1
1380
         *        < 2^127
1381
         */
1382
92.9k
    felem_reduce(y_out, tmp);
1383
1384
92.9k
    copy_conditional(x_out, x2, z1_is_zero);
1385
92.9k
    copy_conditional(x_out, x1, z2_is_zero);
1386
92.9k
    copy_conditional(y_out, y2, z1_is_zero);
1387
92.9k
    copy_conditional(y_out, y1, z2_is_zero);
1388
92.9k
    copy_conditional(z_out, z2, z1_is_zero);
1389
92.9k
    copy_conditional(z_out, z1, z2_is_zero);
1390
92.9k
    felem_assign(x3, x_out);
1391
92.9k
    felem_assign(y3, y_out);
1392
92.9k
    felem_assign(z3, z_out);
1393
92.9k
}
1394
1395
/*-
1396
 * Base point pre computation
1397
 * --------------------------
1398
 *
1399
 * Two different sorts of precomputed tables are used in the following code.
1400
 * Each contain various points on the curve, where each point is three field
1401
 * elements (x, y, z).
1402
 *
1403
 * For the base point table, z is usually 1 (0 for the point at infinity).
1404
 * This table has 16 elements:
1405
 * index | bits    | point
1406
 * ------+---------+------------------------------
1407
 *     0 | 0 0 0 0 | 0G
1408
 *     1 | 0 0 0 1 | 1G
1409
 *     2 | 0 0 1 0 | 2^130G
1410
 *     3 | 0 0 1 1 | (2^130 + 1)G
1411
 *     4 | 0 1 0 0 | 2^260G
1412
 *     5 | 0 1 0 1 | (2^260 + 1)G
1413
 *     6 | 0 1 1 0 | (2^260 + 2^130)G
1414
 *     7 | 0 1 1 1 | (2^260 + 2^130 + 1)G
1415
 *     8 | 1 0 0 0 | 2^390G
1416
 *     9 | 1 0 0 1 | (2^390 + 1)G
1417
 *    10 | 1 0 1 0 | (2^390 + 2^130)G
1418
 *    11 | 1 0 1 1 | (2^390 + 2^130 + 1)G
1419
 *    12 | 1 1 0 0 | (2^390 + 2^260)G
1420
 *    13 | 1 1 0 1 | (2^390 + 2^260 + 1)G
1421
 *    14 | 1 1 1 0 | (2^390 + 2^260 + 2^130)G
1422
 *    15 | 1 1 1 1 | (2^390 + 2^260 + 2^130 + 1)G
1423
 *
1424
 * The reason for this is so that we can clock bits into four different
1425
 * locations when doing simple scalar multiplies against the base point.
1426
 *
1427
 * Tables for other points have table[i] = iG for i in 0 .. 16. */
1428
1429
/* gmul is the table of precomputed base points */
1430
static const felem gmul[16][3] = {
1431
{{0, 0, 0, 0, 0, 0, 0, 0, 0},
1432
 {0, 0, 0, 0, 0, 0, 0, 0, 0},
1433
 {0, 0, 0, 0, 0, 0, 0, 0, 0}},
1434
{{0x017e7e31c2e5bd66, 0x022cf0615a90a6fe, 0x00127a2ffa8de334,
1435
  0x01dfbf9d64a3f877, 0x006b4d3dbaa14b5e, 0x014fed487e0a2bd8,
1436
  0x015b4429c6481390, 0x03a73678fb2d988e, 0x00c6858e06b70404},
1437
 {0x00be94769fd16650, 0x031c21a89cb09022, 0x039013fad0761353,
1438
  0x02657bd099031542, 0x03273e662c97ee72, 0x01e6d11a05ebef45,
1439
  0x03d1bd998f544495, 0x03001172297ed0b1, 0x011839296a789a3b},
1440
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1441
{{0x0373faacbc875bae, 0x00f325023721c671, 0x00f666fd3dbde5ad,
1442
  0x01a6932363f88ea7, 0x01fc6d9e13f9c47b, 0x03bcbffc2bbf734e,
1443
  0x013ee3c3647f3a92, 0x029409fefe75d07d, 0x00ef9199963d85e5},
1444
 {0x011173743ad5b178, 0x02499c7c21bf7d46, 0x035beaeabb8b1a58,
1445
  0x00f989c4752ea0a3, 0x0101e1de48a9c1a3, 0x01a20076be28ba6c,
1446
  0x02f8052e5eb2de95, 0x01bfe8f82dea117c, 0x0160074d3c36ddb7},
1447
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1448
{{0x012f3fc373393b3b, 0x03d3d6172f1419fa, 0x02adc943c0b86873,
1449
  0x00d475584177952b, 0x012a4d1673750ee2, 0x00512517a0f13b0c,
1450
  0x02b184671a7b1734, 0x0315b84236f1a50a, 0x00a4afc472edbdb9},
1451
 {0x00152a7077f385c4, 0x03044007d8d1c2ee, 0x0065829d61d52b52,
1452
  0x00494ff6b6631d0d, 0x00a11d94d5f06bcf, 0x02d2f89474d9282e,
1453
  0x0241c5727c06eeb9, 0x0386928710fbdb9d, 0x01f883f727b0dfbe},
1454
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1455
{{0x019b0c3c9185544d, 0x006243a37c9d97db, 0x02ee3cbe030a2ad2,
1456
  0x00cfdd946bb51e0d, 0x0271c00932606b91, 0x03f817d1ec68c561,
1457
  0x03f37009806a369c, 0x03c1f30baf184fd5, 0x01091022d6d2f065},
1458
 {0x0292c583514c45ed, 0x0316fca51f9a286c, 0x00300af507c1489a,
1459
  0x0295f69008298cf1, 0x02c0ed8274943d7b, 0x016509b9b47a431e,
1460
  0x02bc9de9634868ce, 0x005b34929bffcb09, 0x000c1a0121681524},
1461
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1462
{{0x0286abc0292fb9f2, 0x02665eee9805b3f7, 0x01ed7455f17f26d6,
1463
  0x0346355b83175d13, 0x006284944cd0a097, 0x0191895bcdec5e51,
1464
  0x02e288370afda7d9, 0x03b22312bfefa67a, 0x01d104d3fc0613fe},
1465
 {0x0092421a12f7e47f, 0x0077a83fa373c501, 0x03bd25c5f696bd0d,
1466
  0x035c41e4d5459761, 0x01ca0d1742b24f53, 0x00aaab27863a509c,
1467
  0x018b6de47df73917, 0x025c0b771705cd01, 0x01fd51d566d760a7},
1468
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1469
{{0x01dd92ff6b0d1dbd, 0x039c5e2e8f8afa69, 0x0261ed13242c3b27,
1470
  0x0382c6e67026e6a0, 0x01d60b10be2089f9, 0x03c15f3dce86723f,
1471
  0x03c764a32d2a062d, 0x017307eac0fad056, 0x018207c0b96c5256},
1472
 {0x0196a16d60e13154, 0x03e6ce74c0267030, 0x00ddbf2b4e52a5aa,
1473
  0x012738241bbf31c8, 0x00ebe8dc04685a28, 0x024c2ad6d380d4a2,
1474
  0x035ee062a6e62d0e, 0x0029ed74af7d3a0f, 0x00eef32aec142ebd},
1475
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1476
{{0x00c31ec398993b39, 0x03a9f45bcda68253, 0x00ac733c24c70890,
1477
  0x00872b111401ff01, 0x01d178c23195eafb, 0x03bca2c816b87f74,
1478
  0x0261a9af46fbad7a, 0x0324b2a8dd3d28f9, 0x00918121d8f24e23},
1479
 {0x032bc8c1ca983cd7, 0x00d869dfb08fc8c6, 0x01693cb61fce1516,
1480
  0x012a5ea68f4e88a8, 0x010869cab88d7ae3, 0x009081ad277ceee1,
1481
  0x033a77166d064cdc, 0x03955235a1fb3a95, 0x01251a4a9b25b65e},
1482
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1483
{{0x00148a3a1b27f40b, 0x0123186df1b31fdc, 0x00026e7beaad34ce,
1484
  0x01db446ac1d3dbba, 0x0299c1a33437eaec, 0x024540610183cbb7,
1485
  0x0173bb0e9ce92e46, 0x02b937e43921214b, 0x01ab0436a9bf01b5},
1486
 {0x0383381640d46948, 0x008dacbf0e7f330f, 0x03602122bcc3f318,
1487
  0x01ee596b200620d6, 0x03bd0585fda430b3, 0x014aed77fd123a83,
1488
  0x005ace749e52f742, 0x0390fe041da2b842, 0x0189a8ceb3299242},
1489
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1490
{{0x012a19d6b3282473, 0x00c0915918b423ce, 0x023a954eb94405ae,
1491
  0x00529f692be26158, 0x0289fa1b6fa4b2aa, 0x0198ae4ceea346ef,
1492
  0x0047d8cdfbdedd49, 0x00cc8c8953f0f6b8, 0x001424abbff49203},
1493
 {0x0256732a1115a03a, 0x0351bc38665c6733, 0x03f7b950fb4a6447,
1494
  0x000afffa94c22155, 0x025763d0a4dab540, 0x000511e92d4fc283,
1495
  0x030a7e9eda0ee96c, 0x004c3cd93a28bf0a, 0x017edb3a8719217f},
1496
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1497
{{0x011de5675a88e673, 0x031d7d0f5e567fbe, 0x0016b2062c970ae5,
1498
  0x03f4a2be49d90aa7, 0x03cef0bd13822866, 0x03f0923dcf774a6c,
1499
  0x0284bebc4f322f72, 0x016ab2645302bb2c, 0x01793f95dace0e2a},
1500
 {0x010646e13527a28f, 0x01ca1babd59dc5e7, 0x01afedfd9a5595df,
1501
  0x01f15785212ea6b1, 0x0324e5d64f6ae3f4, 0x02d680f526d00645,
1502
  0x0127920fadf627a7, 0x03b383f75df4f684, 0x0089e0057e783b0a},
1503
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1504
{{0x00f334b9eb3c26c6, 0x0298fdaa98568dce, 0x01c2d24843a82292,
1505
  0x020bcb24fa1b0711, 0x02cbdb3d2b1875e6, 0x0014907598f89422,
1506
  0x03abe3aa43b26664, 0x02cbf47f720bc168, 0x0133b5e73014b79b},
1507
 {0x034aab5dab05779d, 0x00cdc5d71fee9abb, 0x0399f16bd4bd9d30,
1508
  0x03582fa592d82647, 0x02be1cdfb775b0e9, 0x0034f7cea32e94cb,
1509
  0x0335a7f08f56f286, 0x03b707e9565d1c8b, 0x0015c946ea5b614f},
1510
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1511
{{0x024676f6cff72255, 0x00d14625cac96378, 0x00532b6008bc3767,
1512
  0x01fc16721b985322, 0x023355ea1b091668, 0x029de7afdc0317c3,
1513
  0x02fc8a7ca2da037c, 0x02de1217d74a6f30, 0x013f7173175b73bf},
1514
 {0x0344913f441490b5, 0x0200f9e272b61eca, 0x0258a246b1dd55d2,
1515
  0x03753db9ea496f36, 0x025e02937a09c5ef, 0x030cbd3d14012692,
1516
  0x01793a67e70dc72a, 0x03ec1d37048a662e, 0x006550f700c32a8d},
1517
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1518
{{0x00d3f48a347eba27, 0x008e636649b61bd8, 0x00d3b93716778fb3,
1519
  0x004d1915757bd209, 0x019d5311a3da44e0, 0x016d1afcbbe6aade,
1520
  0x0241bf5f73265616, 0x0384672e5d50d39b, 0x005009fee522b684},
1521
 {0x029b4fab064435fe, 0x018868ee095bbb07, 0x01ea3d6936cc92b8,
1522
  0x000608b00f78a2f3, 0x02db911073d1c20f, 0x018205938470100a,
1523
  0x01f1e4964cbe6ff2, 0x021a19a29eed4663, 0x01414485f42afa81},
1524
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1525
{{0x01612b3a17f63e34, 0x03813992885428e6, 0x022b3c215b5a9608,
1526
  0x029b4057e19f2fcb, 0x0384059a587af7e6, 0x02d6400ace6fe610,
1527
  0x029354d896e8e331, 0x00c047ee6dfba65e, 0x0037720542e9d49d},
1528
 {0x02ce9eed7c5e9278, 0x0374ed703e79643b, 0x01316c54c4072006,
1529
  0x005aaa09054b2ee8, 0x002824000c840d57, 0x03d4eba24771ed86,
1530
  0x0189c50aabc3bdae, 0x0338c01541e15510, 0x00466d56e38eed42},
1531
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1532
{{0x007efd8330ad8bd6, 0x02465ed48047710b, 0x0034c6606b215e0c,
1533
  0x016ae30c53cbf839, 0x01fa17bd37161216, 0x018ead4e61ce8ab9,
1534
  0x005482ed5f5dee46, 0x037543755bba1d7f, 0x005e5ac7e70a9d0f},
1535
 {0x0117e1bb2fdcb2a2, 0x03deea36249f40c4, 0x028d09b4a6246cb7,
1536
  0x03524b8855bcf756, 0x023d7d109d5ceb58, 0x0178e43e3223ef9c,
1537
  0x0154536a0c6e966a, 0x037964d1286ee9fe, 0x0199bcd90e125055},
1538
 {1, 0, 0, 0, 0, 0, 0, 0, 0}}
1539
};
1540
1541
/*
1542
 * select_point selects the |idx|th point from a precomputation table and
1543
 * copies it to out.
1544
 */
1545
 /* pre_comp below is of the size provided in |size| */
1546
static void select_point(const limb idx, unsigned int size,
1547
                         const felem pre_comp[][3], felem out[3])
1548
92.6k
{
1549
92.6k
    unsigned i, j;
1550
92.6k
    limb *outlimbs = &out[0][0];
1551
1552
92.6k
    memset(out, 0, sizeof(*out) * 3);
1553
1554
1.59M
    for (i = 0; i < size; i++) {
1555
1.49M
        const limb *inlimbs = &pre_comp[i][0][0];
1556
1.49M
        limb mask = i ^ idx;
1557
1.49M
        mask |= mask >> 4;
1558
1.49M
        mask |= mask >> 2;
1559
1.49M
        mask |= mask >> 1;
1560
1.49M
        mask &= 1;
1561
1.49M
        mask--;
1562
41.9M
        for (j = 0; j < NLIMBS * 3; j++)
1563
40.4M
            outlimbs[j] |= inlimbs[j] & mask;
1564
1.49M
    }
1565
92.6k
}
1566
1567
/* get_bit returns the |i|th bit in |in| */
1568
static char get_bit(const felem_bytearray in, int i)
1569
399k
{
1570
399k
    if (i < 0)
1571
145
        return 0;
1572
399k
    return (in[i >> 3] >> (i & 7)) & 1;
1573
399k
}
1574
1575
/*
1576
 * Interleaved point multiplication using precomputed point multiples: The
1577
 * small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[], the scalars
1578
 * in scalars[]. If g_scalar is non-NULL, we also add this multiple of the
1579
 * generator, using certain (large) precomputed multiples in g_pre_comp.
1580
 * Output point (X, Y, Z) is stored in x_out, y_out, z_out
1581
 */
1582
static void batch_mul(felem x_out, felem y_out, felem z_out,
1583
                      const felem_bytearray scalars[],
1584
                      const unsigned num_points, const u8 *g_scalar,
1585
                      const int mixed, const felem pre_comp[][17][3],
1586
                      const felem g_pre_comp[16][3])
1587
714
{
1588
714
    int i, skip;
1589
714
    unsigned num, gen_mul = (g_scalar != NULL);
1590
714
    felem nq[3], tmp[4];
1591
714
    limb bits;
1592
714
    u8 sign, digit;
1593
1594
    /* set nq to the point at infinity */
1595
714
    memset(nq, 0, sizeof(nq));
1596
1597
    /*
1598
     * Loop over all scalars msb-to-lsb, interleaving additions of multiples
1599
     * of the generator (last quarter of rounds) and additions of other
1600
     * points multiples (every 5th round).
1601
     */
1602
714
    skip = 1;                   /* save two point operations in the first
1603
                                 * round */
1604
150k
    for (i = (num_points ? 520 : 130); i >= 0; --i) {
1605
        /* double */
1606
150k
        if (!skip)
1607
149k
            point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
1608
1609
        /* add multiples of the generator */
1610
150k
        if (gen_mul && (i <= 130)) {
1611
77.4k
            bits = get_bit(g_scalar, i + 390) << 3;
1612
77.4k
            if (i < 130) {
1613
76.8k
                bits |= get_bit(g_scalar, i + 260) << 2;
1614
76.8k
                bits |= get_bit(g_scalar, i + 130) << 1;
1615
76.8k
                bits |= get_bit(g_scalar, i);
1616
76.8k
            }
1617
            /* select the point to add, in constant time */
1618
77.4k
            select_point(bits, 16, g_pre_comp, tmp);
1619
77.4k
            if (!skip) {
1620
                /* The 1 argument below is for "mixed" */
1621
76.8k
                point_add(nq[0], nq[1], nq[2],
1622
76.8k
                          nq[0], nq[1], nq[2], 1, tmp[0], tmp[1], tmp[2]);
1623
76.8k
            } else {
1624
569
                memcpy(nq, tmp, 3 * sizeof(felem));
1625
569
                skip = 0;
1626
569
            }
1627
77.4k
        }
1628
1629
        /* do other additions every 5 doublings */
1630
150k
        if (num_points && (i % 5 == 0)) {
1631
            /* loop over all scalars */
1632
30.4k
            for (num = 0; num < num_points; ++num) {
1633
15.2k
                bits = get_bit(scalars[num], i + 4) << 5;
1634
15.2k
                bits |= get_bit(scalars[num], i + 3) << 4;
1635
15.2k
                bits |= get_bit(scalars[num], i + 2) << 3;
1636
15.2k
                bits |= get_bit(scalars[num], i + 1) << 2;
1637
15.2k
                bits |= get_bit(scalars[num], i) << 1;
1638
15.2k
                bits |= get_bit(scalars[num], i - 1);
1639
15.2k
                ossl_ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
1640
1641
                /*
1642
                 * select the point to add or subtract, in constant time
1643
                 */
1644
15.2k
                select_point(digit, 17, pre_comp[num], tmp);
1645
15.2k
                felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the negative
1646
                                            * point */
1647
15.2k
                copy_conditional(tmp[1], tmp[3], (-(limb) sign));
1648
1649
15.2k
                if (!skip) {
1650
15.0k
                    point_add(nq[0], nq[1], nq[2],
1651
15.0k
                              nq[0], nq[1], nq[2],
1652
15.0k
                              mixed, tmp[0], tmp[1], tmp[2]);
1653
15.0k
                } else {
1654
145
                    memcpy(nq, tmp, 3 * sizeof(felem));
1655
145
                    skip = 0;
1656
145
                }
1657
15.2k
            }
1658
15.2k
        }
1659
150k
    }
1660
714
    felem_assign(x_out, nq[0]);
1661
714
    felem_assign(y_out, nq[1]);
1662
714
    felem_assign(z_out, nq[2]);
1663
714
}
1664
1665
/* Precomputation for the group generator. */
1666
struct nistp521_pre_comp_st {
1667
    felem g_pre_comp[16][3];
1668
    CRYPTO_REF_COUNT references;
1669
    CRYPTO_RWLOCK *lock;
1670
};
1671
1672
const EC_METHOD *EC_GFp_nistp521_method(void)
1673
11.8k
{
1674
11.8k
    static const EC_METHOD ret = {
1675
11.8k
        EC_FLAGS_DEFAULT_OCT,
1676
11.8k
        NID_X9_62_prime_field,
1677
11.8k
        ossl_ec_GFp_nistp521_group_init,
1678
11.8k
        ossl_ec_GFp_simple_group_finish,
1679
11.8k
        ossl_ec_GFp_simple_group_clear_finish,
1680
11.8k
        ossl_ec_GFp_nist_group_copy,
1681
11.8k
        ossl_ec_GFp_nistp521_group_set_curve,
1682
11.8k
        ossl_ec_GFp_simple_group_get_curve,
1683
11.8k
        ossl_ec_GFp_simple_group_get_degree,
1684
11.8k
        ossl_ec_group_simple_order_bits,
1685
11.8k
        ossl_ec_GFp_simple_group_check_discriminant,
1686
11.8k
        ossl_ec_GFp_simple_point_init,
1687
11.8k
        ossl_ec_GFp_simple_point_finish,
1688
11.8k
        ossl_ec_GFp_simple_point_clear_finish,
1689
11.8k
        ossl_ec_GFp_simple_point_copy,
1690
11.8k
        ossl_ec_GFp_simple_point_set_to_infinity,
1691
11.8k
        ossl_ec_GFp_simple_point_set_affine_coordinates,
1692
11.8k
        ossl_ec_GFp_nistp521_point_get_affine_coordinates,
1693
11.8k
        0 /* point_set_compressed_coordinates */ ,
1694
11.8k
        0 /* point2oct */ ,
1695
11.8k
        0 /* oct2point */ ,
1696
11.8k
        ossl_ec_GFp_simple_add,
1697
11.8k
        ossl_ec_GFp_simple_dbl,
1698
11.8k
        ossl_ec_GFp_simple_invert,
1699
11.8k
        ossl_ec_GFp_simple_is_at_infinity,
1700
11.8k
        ossl_ec_GFp_simple_is_on_curve,
1701
11.8k
        ossl_ec_GFp_simple_cmp,
1702
11.8k
        ossl_ec_GFp_simple_make_affine,
1703
11.8k
        ossl_ec_GFp_simple_points_make_affine,
1704
11.8k
        ossl_ec_GFp_nistp521_points_mul,
1705
11.8k
        ossl_ec_GFp_nistp521_precompute_mult,
1706
11.8k
        ossl_ec_GFp_nistp521_have_precompute_mult,
1707
11.8k
        ossl_ec_GFp_nist_field_mul,
1708
11.8k
        ossl_ec_GFp_nist_field_sqr,
1709
11.8k
        0 /* field_div */ ,
1710
11.8k
        ossl_ec_GFp_simple_field_inv,
1711
11.8k
        0 /* field_encode */ ,
1712
11.8k
        0 /* field_decode */ ,
1713
11.8k
        0,                      /* field_set_to_one */
1714
11.8k
        ossl_ec_key_simple_priv2oct,
1715
11.8k
        ossl_ec_key_simple_oct2priv,
1716
11.8k
        0, /* set private */
1717
11.8k
        ossl_ec_key_simple_generate_key,
1718
11.8k
        ossl_ec_key_simple_check_key,
1719
11.8k
        ossl_ec_key_simple_generate_public_key,
1720
11.8k
        0, /* keycopy */
1721
11.8k
        0, /* keyfinish */
1722
11.8k
        ossl_ecdh_simple_compute_key,
1723
11.8k
        ossl_ecdsa_simple_sign_setup,
1724
11.8k
        ossl_ecdsa_simple_sign_sig,
1725
11.8k
        ossl_ecdsa_simple_verify_sig,
1726
11.8k
        0, /* field_inverse_mod_ord */
1727
11.8k
        0, /* blind_coordinates */
1728
11.8k
        0, /* ladder_pre */
1729
11.8k
        0, /* ladder_step */
1730
11.8k
        0  /* ladder_post */
1731
11.8k
    };
1732
1733
11.8k
    return &ret;
1734
11.8k
}
1735
1736
/******************************************************************************/
1737
/*
1738
 * FUNCTIONS TO MANAGE PRECOMPUTATION
1739
 */
1740
1741
static NISTP521_PRE_COMP *nistp521_pre_comp_new(void)
1742
0
{
1743
0
    NISTP521_PRE_COMP *ret = OPENSSL_zalloc(sizeof(*ret));
1744
1745
0
    if (ret == NULL) {
1746
0
        ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
1747
0
        return ret;
1748
0
    }
1749
1750
0
    ret->references = 1;
1751
1752
0
    ret->lock = CRYPTO_THREAD_lock_new();
1753
0
    if (ret->lock == NULL) {
1754
0
        ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
1755
0
        OPENSSL_free(ret);
1756
0
        return NULL;
1757
0
    }
1758
0
    return ret;
1759
0
}
1760
1761
NISTP521_PRE_COMP *EC_nistp521_pre_comp_dup(NISTP521_PRE_COMP *p)
1762
0
{
1763
0
    int i;
1764
0
    if (p != NULL)
1765
0
        CRYPTO_UP_REF(&p->references, &i, p->lock);
1766
0
    return p;
1767
0
}
1768
1769
void EC_nistp521_pre_comp_free(NISTP521_PRE_COMP *p)
1770
0
{
1771
0
    int i;
1772
1773
0
    if (p == NULL)
1774
0
        return;
1775
1776
0
    CRYPTO_DOWN_REF(&p->references, &i, p->lock);
1777
0
    REF_PRINT_COUNT("EC_nistp521", p);
1778
0
    if (i > 0)
1779
0
        return;
1780
0
    REF_ASSERT_ISNT(i < 0);
1781
1782
0
    CRYPTO_THREAD_lock_free(p->lock);
1783
0
    OPENSSL_free(p);
1784
0
}
1785
1786
/******************************************************************************/
1787
/*
1788
 * OPENSSL EC_METHOD FUNCTIONS
1789
 */
1790
1791
int ossl_ec_GFp_nistp521_group_init(EC_GROUP *group)
1792
23.5k
{
1793
23.5k
    int ret;
1794
23.5k
    ret = ossl_ec_GFp_simple_group_init(group);
1795
23.5k
    group->a_is_minus3 = 1;
1796
23.5k
    return ret;
1797
23.5k
}
1798
1799
int ossl_ec_GFp_nistp521_group_set_curve(EC_GROUP *group, const BIGNUM *p,
1800
                                         const BIGNUM *a, const BIGNUM *b,
1801
                                         BN_CTX *ctx)
1802
11.8k
{
1803
11.8k
    int ret = 0;
1804
11.8k
    BIGNUM *curve_p, *curve_a, *curve_b;
1805
11.8k
#ifndef FIPS_MODULE
1806
11.8k
    BN_CTX *new_ctx = NULL;
1807
1808
11.8k
    if (ctx == NULL)
1809
0
        ctx = new_ctx = BN_CTX_new();
1810
11.8k
#endif
1811
11.8k
    if (ctx == NULL)
1812
0
        return 0;
1813
1814
11.8k
    BN_CTX_start(ctx);
1815
11.8k
    curve_p = BN_CTX_get(ctx);
1816
11.8k
    curve_a = BN_CTX_get(ctx);
1817
11.8k
    curve_b = BN_CTX_get(ctx);
1818
11.8k
    if (curve_b == NULL)
1819
0
        goto err;
1820
11.8k
    BN_bin2bn(nistp521_curve_params[0], sizeof(felem_bytearray), curve_p);
1821
11.8k
    BN_bin2bn(nistp521_curve_params[1], sizeof(felem_bytearray), curve_a);
1822
11.8k
    BN_bin2bn(nistp521_curve_params[2], sizeof(felem_bytearray), curve_b);
1823
11.8k
    if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || (BN_cmp(curve_b, b))) {
1824
0
        ERR_raise(ERR_LIB_EC, EC_R_WRONG_CURVE_PARAMETERS);
1825
0
        goto err;
1826
0
    }
1827
11.8k
    group->field_mod_func = BN_nist_mod_521;
1828
11.8k
    ret = ossl_ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
1829
11.8k
 err:
1830
11.8k
    BN_CTX_end(ctx);
1831
11.8k
#ifndef FIPS_MODULE
1832
11.8k
    BN_CTX_free(new_ctx);
1833
11.8k
#endif
1834
11.8k
    return ret;
1835
11.8k
}
1836
1837
/*
1838
 * Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') =
1839
 * (X/Z^2, Y/Z^3)
1840
 */
1841
int ossl_ec_GFp_nistp521_point_get_affine_coordinates(const EC_GROUP *group,
1842
                                                      const EC_POINT *point,
1843
                                                      BIGNUM *x, BIGNUM *y,
1844
                                                      BN_CTX *ctx)
1845
765
{
1846
765
    felem z1, z2, x_in, y_in, x_out, y_out;
1847
765
    largefelem tmp;
1848
1849
765
    if (EC_POINT_is_at_infinity(group, point)) {
1850
0
        ERR_raise(ERR_LIB_EC, EC_R_POINT_AT_INFINITY);
1851
0
        return 0;
1852
0
    }
1853
765
    if ((!BN_to_felem(x_in, point->X)) || (!BN_to_felem(y_in, point->Y)) ||
1854
765
        (!BN_to_felem(z1, point->Z)))
1855
0
        return 0;
1856
765
    felem_inv(z2, z1);
1857
765
    felem_square(tmp, z2);
1858
765
    felem_reduce(z1, tmp);
1859
765
    felem_mul(tmp, x_in, z1);
1860
765
    felem_reduce(x_in, tmp);
1861
765
    felem_contract(x_out, x_in);
1862
765
    if (x != NULL) {
1863
765
        if (!felem_to_BN(x, x_out)) {
1864
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1865
0
            return 0;
1866
0
        }
1867
765
    }
1868
765
    felem_mul(tmp, z1, z2);
1869
765
    felem_reduce(z1, tmp);
1870
765
    felem_mul(tmp, y_in, z1);
1871
765
    felem_reduce(y_in, tmp);
1872
765
    felem_contract(y_out, y_in);
1873
765
    if (y != NULL) {
1874
702
        if (!felem_to_BN(y, y_out)) {
1875
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1876
0
            return 0;
1877
0
        }
1878
702
    }
1879
765
    return 1;
1880
765
}
1881
1882
/* points below is of size |num|, and tmp_felems is of size |num+1/ */
1883
static void make_points_affine(size_t num, felem points[][3],
1884
                               felem tmp_felems[])
1885
0
{
1886
    /*
1887
     * Runs in constant time, unless an input is the point at infinity (which
1888
     * normally shouldn't happen).
1889
     */
1890
0
    ossl_ec_GFp_nistp_points_make_affine_internal(num,
1891
0
                                                  points,
1892
0
                                                  sizeof(felem),
1893
0
                                                  tmp_felems,
1894
0
                                                  (void (*)(void *))felem_one,
1895
0
                                                  felem_is_zero_int,
1896
0
                                                  (void (*)(void *, const void *))
1897
0
                                                  felem_assign,
1898
0
                                                  (void (*)(void *, const void *))
1899
0
                                                  felem_square_reduce, (void (*)
1900
0
                                                                        (void *,
1901
0
                                                                         const void
1902
0
                                                                         *,
1903
0
                                                                         const void
1904
0
                                                                         *))
1905
0
                                                  felem_mul_reduce,
1906
0
                                                  (void (*)(void *, const void *))
1907
0
                                                  felem_inv,
1908
0
                                                  (void (*)(void *, const void *))
1909
0
                                                  felem_contract);
1910
0
}
1911
1912
/*
1913
 * Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL
1914
 * values Result is stored in r (r can equal one of the inputs).
1915
 */
1916
int ossl_ec_GFp_nistp521_points_mul(const EC_GROUP *group, EC_POINT *r,
1917
                                    const BIGNUM *scalar, size_t num,
1918
                                    const EC_POINT *points[],
1919
                                    const BIGNUM *scalars[], BN_CTX *ctx)
1920
714
{
1921
714
    int ret = 0;
1922
714
    int j;
1923
714
    int mixed = 0;
1924
714
    BIGNUM *x, *y, *z, *tmp_scalar;
1925
714
    felem_bytearray g_secret;
1926
714
    felem_bytearray *secrets = NULL;
1927
714
    felem (*pre_comp)[17][3] = NULL;
1928
714
    felem *tmp_felems = NULL;
1929
714
    unsigned i;
1930
714
    int num_bytes;
1931
714
    int have_pre_comp = 0;
1932
714
    size_t num_points = num;
1933
714
    felem x_in, y_in, z_in, x_out, y_out, z_out;
1934
714
    NISTP521_PRE_COMP *pre = NULL;
1935
714
    felem(*g_pre_comp)[3] = NULL;
1936
714
    EC_POINT *generator = NULL;
1937
714
    const EC_POINT *p = NULL;
1938
714
    const BIGNUM *p_scalar = NULL;
1939
1940
714
    BN_CTX_start(ctx);
1941
714
    x = BN_CTX_get(ctx);
1942
714
    y = BN_CTX_get(ctx);
1943
714
    z = BN_CTX_get(ctx);
1944
714
    tmp_scalar = BN_CTX_get(ctx);
1945
714
    if (tmp_scalar == NULL)
1946
0
        goto err;
1947
1948
714
    if (scalar != NULL) {
1949
591
        pre = group->pre_comp.nistp521;
1950
591
        if (pre)
1951
            /* we have precomputation, try to use it */
1952
0
            g_pre_comp = &pre->g_pre_comp[0];
1953
591
        else
1954
            /* try to use the standard precomputation */
1955
591
            g_pre_comp = (felem(*)[3]) gmul;
1956
591
        generator = EC_POINT_new(group);
1957
591
        if (generator == NULL)
1958
0
            goto err;
1959
        /* get the generator from precomputation */
1960
591
        if (!felem_to_BN(x, g_pre_comp[1][0]) ||
1961
591
            !felem_to_BN(y, g_pre_comp[1][1]) ||
1962
591
            !felem_to_BN(z, g_pre_comp[1][2])) {
1963
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1964
0
            goto err;
1965
0
        }
1966
591
        if (!ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group,
1967
591
                                                                generator,
1968
591
                                                                x, y, z, ctx))
1969
0
            goto err;
1970
591
        if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
1971
            /* precomputation matches generator */
1972
591
            have_pre_comp = 1;
1973
0
        else
1974
            /*
1975
             * we don't have valid precomputation: treat the generator as a
1976
             * random point
1977
             */
1978
0
            num_points++;
1979
591
    }
1980
1981
714
    if (num_points > 0) {
1982
145
        if (num_points >= 2) {
1983
            /*
1984
             * unless we precompute multiples for just one point, converting
1985
             * those into affine form is time well spent
1986
             */
1987
0
            mixed = 1;
1988
0
        }
1989
145
        secrets = OPENSSL_zalloc(sizeof(*secrets) * num_points);
1990
145
        pre_comp = OPENSSL_zalloc(sizeof(*pre_comp) * num_points);
1991
145
        if (mixed)
1992
0
            tmp_felems =
1993
0
                OPENSSL_malloc(sizeof(*tmp_felems) * (num_points * 17 + 1));
1994
145
        if ((secrets == NULL) || (pre_comp == NULL)
1995
145
            || (mixed && (tmp_felems == NULL))) {
1996
0
            ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
1997
0
            goto err;
1998
0
        }
1999
2000
        /*
2001
         * we treat NULL scalars as 0, and NULL points as points at infinity,
2002
         * i.e., they contribute nothing to the linear combination
2003
         */
2004
290
        for (i = 0; i < num_points; ++i) {
2005
145
            if (i == num) {
2006
                /*
2007
                 * we didn't have a valid precomputation, so we pick the
2008
                 * generator
2009
                 */
2010
0
                p = EC_GROUP_get0_generator(group);
2011
0
                p_scalar = scalar;
2012
145
            } else {
2013
                /* the i^th point */
2014
145
                p = points[i];
2015
145
                p_scalar = scalars[i];
2016
145
            }
2017
145
            if ((p_scalar != NULL) && (p != NULL)) {
2018
                /* reduce scalar to 0 <= scalar < 2^521 */
2019
145
                if ((BN_num_bits(p_scalar) > 521)
2020
145
                    || (BN_is_negative(p_scalar))) {
2021
                    /*
2022
                     * this is an unusual input, and we don't guarantee
2023
                     * constant-timeness
2024
                     */
2025
0
                    if (!BN_nnmod(tmp_scalar, p_scalar, group->order, ctx)) {
2026
0
                        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
2027
0
                        goto err;
2028
0
                    }
2029
0
                    num_bytes = BN_bn2lebinpad(tmp_scalar,
2030
0
                                               secrets[i], sizeof(secrets[i]));
2031
145
                } else {
2032
145
                    num_bytes = BN_bn2lebinpad(p_scalar,
2033
145
                                               secrets[i], sizeof(secrets[i]));
2034
145
                }
2035
145
                if (num_bytes < 0) {
2036
0
                    ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
2037
0
                    goto err;
2038
0
                }
2039
                /* precompute multiples */
2040
145
                if ((!BN_to_felem(x_out, p->X)) ||
2041
145
                    (!BN_to_felem(y_out, p->Y)) ||
2042
145
                    (!BN_to_felem(z_out, p->Z)))
2043
0
                    goto err;
2044
145
                memcpy(pre_comp[i][1][0], x_out, sizeof(felem));
2045
145
                memcpy(pre_comp[i][1][1], y_out, sizeof(felem));
2046
145
                memcpy(pre_comp[i][1][2], z_out, sizeof(felem));
2047
2.32k
                for (j = 2; j <= 16; ++j) {
2048
2.17k
                    if (j & 1) {
2049
1.01k
                        point_add(pre_comp[i][j][0], pre_comp[i][j][1],
2050
1.01k
                                  pre_comp[i][j][2], pre_comp[i][1][0],
2051
1.01k
                                  pre_comp[i][1][1], pre_comp[i][1][2], 0,
2052
1.01k
                                  pre_comp[i][j - 1][0],
2053
1.01k
                                  pre_comp[i][j - 1][1],
2054
1.01k
                                  pre_comp[i][j - 1][2]);
2055
1.16k
                    } else {
2056
1.16k
                        point_double(pre_comp[i][j][0], pre_comp[i][j][1],
2057
1.16k
                                     pre_comp[i][j][2], pre_comp[i][j / 2][0],
2058
1.16k
                                     pre_comp[i][j / 2][1],
2059
1.16k
                                     pre_comp[i][j / 2][2]);
2060
1.16k
                    }
2061
2.17k
                }
2062
145
            }
2063
145
        }
2064
145
        if (mixed)
2065
0
            make_points_affine(num_points * 17, pre_comp[0], tmp_felems);
2066
145
    }
2067
2068
    /* the scalar for the generator */
2069
714
    if ((scalar != NULL) && (have_pre_comp)) {
2070
591
        memset(g_secret, 0, sizeof(g_secret));
2071
        /* reduce scalar to 0 <= scalar < 2^521 */
2072
591
        if ((BN_num_bits(scalar) > 521) || (BN_is_negative(scalar))) {
2073
            /*
2074
             * this is an unusual input, and we don't guarantee
2075
             * constant-timeness
2076
             */
2077
31
            if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) {
2078
0
                ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
2079
0
                goto err;
2080
0
            }
2081
31
            num_bytes = BN_bn2lebinpad(tmp_scalar, g_secret, sizeof(g_secret));
2082
560
        } else {
2083
560
            num_bytes = BN_bn2lebinpad(scalar, g_secret, sizeof(g_secret));
2084
560
        }
2085
        /* do the multiplication with generator precomputation */
2086
591
        batch_mul(x_out, y_out, z_out,
2087
591
                  (const felem_bytearray(*))secrets, num_points,
2088
591
                  g_secret,
2089
591
                  mixed, (const felem(*)[17][3])pre_comp,
2090
591
                  (const felem(*)[3])g_pre_comp);
2091
591
    } else {
2092
        /* do the multiplication without generator precomputation */
2093
123
        batch_mul(x_out, y_out, z_out,
2094
123
                  (const felem_bytearray(*))secrets, num_points,
2095
123
                  NULL, mixed, (const felem(*)[17][3])pre_comp, NULL);
2096
123
    }
2097
    /* reduce the output to its unique minimal representation */
2098
714
    felem_contract(x_in, x_out);
2099
714
    felem_contract(y_in, y_out);
2100
714
    felem_contract(z_in, z_out);
2101
714
    if ((!felem_to_BN(x, x_in)) || (!felem_to_BN(y, y_in)) ||
2102
714
        (!felem_to_BN(z, z_in))) {
2103
0
        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
2104
0
        goto err;
2105
0
    }
2106
714
    ret = ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group, r, x, y, z,
2107
714
                                                             ctx);
2108
2109
714
 err:
2110
714
    BN_CTX_end(ctx);
2111
714
    EC_POINT_free(generator);
2112
714
    OPENSSL_free(secrets);
2113
714
    OPENSSL_free(pre_comp);
2114
714
    OPENSSL_free(tmp_felems);
2115
714
    return ret;
2116
714
}
2117
2118
int ossl_ec_GFp_nistp521_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
2119
0
{
2120
0
    int ret = 0;
2121
0
    NISTP521_PRE_COMP *pre = NULL;
2122
0
    int i, j;
2123
0
    BIGNUM *x, *y;
2124
0
    EC_POINT *generator = NULL;
2125
0
    felem tmp_felems[16];
2126
0
#ifndef FIPS_MODULE
2127
0
    BN_CTX *new_ctx = NULL;
2128
0
#endif
2129
2130
    /* throw away old precomputation */
2131
0
    EC_pre_comp_free(group);
2132
2133
0
#ifndef FIPS_MODULE
2134
0
    if (ctx == NULL)
2135
0
        ctx = new_ctx = BN_CTX_new();
2136
0
#endif
2137
0
    if (ctx == NULL)
2138
0
        return 0;
2139
2140
0
    BN_CTX_start(ctx);
2141
0
    x = BN_CTX_get(ctx);
2142
0
    y = BN_CTX_get(ctx);
2143
0
    if (y == NULL)
2144
0
        goto err;
2145
    /* get the generator */
2146
0
    if (group->generator == NULL)
2147
0
        goto err;
2148
0
    generator = EC_POINT_new(group);
2149
0
    if (generator == NULL)
2150
0
        goto err;
2151
0
    BN_bin2bn(nistp521_curve_params[3], sizeof(felem_bytearray), x);
2152
0
    BN_bin2bn(nistp521_curve_params[4], sizeof(felem_bytearray), y);
2153
0
    if (!EC_POINT_set_affine_coordinates(group, generator, x, y, ctx))
2154
0
        goto err;
2155
0
    if ((pre = nistp521_pre_comp_new()) == NULL)
2156
0
        goto err;
2157
    /*
2158
     * if the generator is the standard one, use built-in precomputation
2159
     */
2160
0
    if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) {
2161
0
        memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp));
2162
0
        goto done;
2163
0
    }
2164
0
    if ((!BN_to_felem(pre->g_pre_comp[1][0], group->generator->X)) ||
2165
0
        (!BN_to_felem(pre->g_pre_comp[1][1], group->generator->Y)) ||
2166
0
        (!BN_to_felem(pre->g_pre_comp[1][2], group->generator->Z)))
2167
0
        goto err;
2168
    /* compute 2^130*G, 2^260*G, 2^390*G */
2169
0
    for (i = 1; i <= 4; i <<= 1) {
2170
0
        point_double(pre->g_pre_comp[2 * i][0], pre->g_pre_comp[2 * i][1],
2171
0
                     pre->g_pre_comp[2 * i][2], pre->g_pre_comp[i][0],
2172
0
                     pre->g_pre_comp[i][1], pre->g_pre_comp[i][2]);
2173
0
        for (j = 0; j < 129; ++j) {
2174
0
            point_double(pre->g_pre_comp[2 * i][0],
2175
0
                         pre->g_pre_comp[2 * i][1],
2176
0
                         pre->g_pre_comp[2 * i][2],
2177
0
                         pre->g_pre_comp[2 * i][0],
2178
0
                         pre->g_pre_comp[2 * i][1],
2179
0
                         pre->g_pre_comp[2 * i][2]);
2180
0
        }
2181
0
    }
2182
    /* g_pre_comp[0] is the point at infinity */
2183
0
    memset(pre->g_pre_comp[0], 0, sizeof(pre->g_pre_comp[0]));
2184
    /* the remaining multiples */
2185
    /* 2^130*G + 2^260*G */
2186
0
    point_add(pre->g_pre_comp[6][0], pre->g_pre_comp[6][1],
2187
0
              pre->g_pre_comp[6][2], pre->g_pre_comp[4][0],
2188
0
              pre->g_pre_comp[4][1], pre->g_pre_comp[4][2],
2189
0
              0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
2190
0
              pre->g_pre_comp[2][2]);
2191
    /* 2^130*G + 2^390*G */
2192
0
    point_add(pre->g_pre_comp[10][0], pre->g_pre_comp[10][1],
2193
0
              pre->g_pre_comp[10][2], pre->g_pre_comp[8][0],
2194
0
              pre->g_pre_comp[8][1], pre->g_pre_comp[8][2],
2195
0
              0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
2196
0
              pre->g_pre_comp[2][2]);
2197
    /* 2^260*G + 2^390*G */
2198
0
    point_add(pre->g_pre_comp[12][0], pre->g_pre_comp[12][1],
2199
0
              pre->g_pre_comp[12][2], pre->g_pre_comp[8][0],
2200
0
              pre->g_pre_comp[8][1], pre->g_pre_comp[8][2],
2201
0
              0, pre->g_pre_comp[4][0], pre->g_pre_comp[4][1],
2202
0
              pre->g_pre_comp[4][2]);
2203
    /* 2^130*G + 2^260*G + 2^390*G */
2204
0
    point_add(pre->g_pre_comp[14][0], pre->g_pre_comp[14][1],
2205
0
              pre->g_pre_comp[14][2], pre->g_pre_comp[12][0],
2206
0
              pre->g_pre_comp[12][1], pre->g_pre_comp[12][2],
2207
0
              0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
2208
0
              pre->g_pre_comp[2][2]);
2209
0
    for (i = 1; i < 8; ++i) {
2210
        /* odd multiples: add G */
2211
0
        point_add(pre->g_pre_comp[2 * i + 1][0],
2212
0
                  pre->g_pre_comp[2 * i + 1][1],
2213
0
                  pre->g_pre_comp[2 * i + 1][2], pre->g_pre_comp[2 * i][0],
2214
0
                  pre->g_pre_comp[2 * i][1], pre->g_pre_comp[2 * i][2], 0,
2215
0
                  pre->g_pre_comp[1][0], pre->g_pre_comp[1][1],
2216
0
                  pre->g_pre_comp[1][2]);
2217
0
    }
2218
0
    make_points_affine(15, &(pre->g_pre_comp[1]), tmp_felems);
2219
2220
0
 done:
2221
0
    SETPRECOMP(group, nistp521, pre);
2222
0
    ret = 1;
2223
0
    pre = NULL;
2224
0
 err:
2225
0
    BN_CTX_end(ctx);
2226
0
    EC_POINT_free(generator);
2227
0
#ifndef FIPS_MODULE
2228
0
    BN_CTX_free(new_ctx);
2229
0
#endif
2230
0
    EC_nistp521_pre_comp_free(pre);
2231
0
    return ret;
2232
0
}
2233
2234
int ossl_ec_GFp_nistp521_have_precompute_mult(const EC_GROUP *group)
2235
0
{
2236
0
    return HAVEPRECOMP(group, nistp521);
2237
0
}