Coverage Report

Created: 2024-07-27 06:39

/src/openssl31/crypto/ec/ecp_nistp521.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 2011-2022 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
/* Copyright 2011 Google Inc.
11
 *
12
 * Licensed under the Apache License, Version 2.0 (the "License");
13
 *
14
 * you may not use this file except in compliance with the License.
15
 * You may obtain a copy of the License at
16
 *
17
 *     http://www.apache.org/licenses/LICENSE-2.0
18
 *
19
 *  Unless required by applicable law or agreed to in writing, software
20
 *  distributed under the License is distributed on an "AS IS" BASIS,
21
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
22
 *  See the License for the specific language governing permissions and
23
 *  limitations under the License.
24
 */
25
26
/*
27
 * ECDSA low level APIs are deprecated for public use, but still ok for
28
 * internal use.
29
 */
30
#include "internal/deprecated.h"
31
32
/*
33
 * A 64-bit implementation of the NIST P-521 elliptic curve point multiplication
34
 *
35
 * OpenSSL integration was taken from Emilia Kasper's work in ecp_nistp224.c.
36
 * Otherwise based on Emilia's P224 work, which was inspired by my curve25519
37
 * work which got its smarts from Daniel J. Bernstein's work on the same.
38
 */
39
40
#include <openssl/e_os2.h>
41
42
#include <string.h>
43
#include <openssl/err.h>
44
#include "ec_local.h"
45
46
#include "internal/numbers.h"
47
48
#ifndef INT128_MAX
49
# error "Your compiler doesn't appear to support 128-bit integer types"
50
#endif
51
52
typedef uint8_t u8;
53
typedef uint64_t u64;
54
55
/*
56
 * The underlying field. P521 operates over GF(2^521-1). We can serialize an
57
 * element of this field into 66 bytes where the most significant byte
58
 * contains only a single bit. We call this an felem_bytearray.
59
 */
60
61
typedef u8 felem_bytearray[66];
62
63
/*
64
 * These are the parameters of P521, taken from FIPS 186-3, section D.1.2.5.
65
 * These values are big-endian.
66
 */
67
static const felem_bytearray nistp521_curve_params[5] = {
68
    {0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* p */
69
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
70
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
71
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
72
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
73
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
74
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
75
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
76
     0xff, 0xff},
77
    {0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* a = -3 */
78
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
79
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
80
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
81
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
82
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
83
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
84
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
85
     0xff, 0xfc},
86
    {0x00, 0x51, 0x95, 0x3e, 0xb9, 0x61, 0x8e, 0x1c, /* b */
87
     0x9a, 0x1f, 0x92, 0x9a, 0x21, 0xa0, 0xb6, 0x85,
88
     0x40, 0xee, 0xa2, 0xda, 0x72, 0x5b, 0x99, 0xb3,
89
     0x15, 0xf3, 0xb8, 0xb4, 0x89, 0x91, 0x8e, 0xf1,
90
     0x09, 0xe1, 0x56, 0x19, 0x39, 0x51, 0xec, 0x7e,
91
     0x93, 0x7b, 0x16, 0x52, 0xc0, 0xbd, 0x3b, 0xb1,
92
     0xbf, 0x07, 0x35, 0x73, 0xdf, 0x88, 0x3d, 0x2c,
93
     0x34, 0xf1, 0xef, 0x45, 0x1f, 0xd4, 0x6b, 0x50,
94
     0x3f, 0x00},
95
    {0x00, 0xc6, 0x85, 0x8e, 0x06, 0xb7, 0x04, 0x04, /* x */
96
     0xe9, 0xcd, 0x9e, 0x3e, 0xcb, 0x66, 0x23, 0x95,
97
     0xb4, 0x42, 0x9c, 0x64, 0x81, 0x39, 0x05, 0x3f,
98
     0xb5, 0x21, 0xf8, 0x28, 0xaf, 0x60, 0x6b, 0x4d,
99
     0x3d, 0xba, 0xa1, 0x4b, 0x5e, 0x77, 0xef, 0xe7,
100
     0x59, 0x28, 0xfe, 0x1d, 0xc1, 0x27, 0xa2, 0xff,
101
     0xa8, 0xde, 0x33, 0x48, 0xb3, 0xc1, 0x85, 0x6a,
102
     0x42, 0x9b, 0xf9, 0x7e, 0x7e, 0x31, 0xc2, 0xe5,
103
     0xbd, 0x66},
104
    {0x01, 0x18, 0x39, 0x29, 0x6a, 0x78, 0x9a, 0x3b, /* y */
105
     0xc0, 0x04, 0x5c, 0x8a, 0x5f, 0xb4, 0x2c, 0x7d,
106
     0x1b, 0xd9, 0x98, 0xf5, 0x44, 0x49, 0x57, 0x9b,
107
     0x44, 0x68, 0x17, 0xaf, 0xbd, 0x17, 0x27, 0x3e,
108
     0x66, 0x2c, 0x97, 0xee, 0x72, 0x99, 0x5e, 0xf4,
109
     0x26, 0x40, 0xc5, 0x50, 0xb9, 0x01, 0x3f, 0xad,
110
     0x07, 0x61, 0x35, 0x3c, 0x70, 0x86, 0xa2, 0x72,
111
     0xc2, 0x40, 0x88, 0xbe, 0x94, 0x76, 0x9f, 0xd1,
112
     0x66, 0x50}
113
};
114
115
/*-
116
 * The representation of field elements.
117
 * ------------------------------------
118
 *
119
 * We represent field elements with nine values. These values are either 64 or
120
 * 128 bits and the field element represented is:
121
 *   v[0]*2^0 + v[1]*2^58 + v[2]*2^116 + ... + v[8]*2^464  (mod p)
122
 * Each of the nine values is called a 'limb'. Since the limbs are spaced only
123
 * 58 bits apart, but are greater than 58 bits in length, the most significant
124
 * bits of each limb overlap with the least significant bits of the next.
125
 *
126
 * A field element with 64-bit limbs is an 'felem'. One with 128-bit limbs is a
127
 * 'largefelem' */
128
129
47.6M
#define NLIMBS 9
130
131
typedef uint64_t limb;
132
typedef limb limb_aX __attribute((__aligned__(1)));
133
typedef limb felem[NLIMBS];
134
typedef uint128_t largefelem[NLIMBS];
135
136
static const limb bottom57bits = 0x1ffffffffffffff;
137
static const limb bottom58bits = 0x3ffffffffffffff;
138
139
/*
140
 * bin66_to_felem takes a little-endian byte array and converts it into felem
141
 * form. This assumes that the CPU is little-endian.
142
 */
143
static void bin66_to_felem(felem out, const u8 in[66])
144
2.73k
{
145
2.73k
    out[0] = (*((limb *) & in[0])) & bottom58bits;
146
2.73k
    out[1] = (*((limb_aX *) & in[7]) >> 2) & bottom58bits;
147
2.73k
    out[2] = (*((limb_aX *) & in[14]) >> 4) & bottom58bits;
148
2.73k
    out[3] = (*((limb_aX *) & in[21]) >> 6) & bottom58bits;
149
2.73k
    out[4] = (*((limb_aX *) & in[29])) & bottom58bits;
150
2.73k
    out[5] = (*((limb_aX *) & in[36]) >> 2) & bottom58bits;
151
2.73k
    out[6] = (*((limb_aX *) & in[43]) >> 4) & bottom58bits;
152
2.73k
    out[7] = (*((limb_aX *) & in[50]) >> 6) & bottom58bits;
153
2.73k
    out[8] = (*((limb_aX *) & in[58])) & bottom57bits;
154
2.73k
}
155
156
/*
157
 * felem_to_bin66 takes an felem and serializes into a little endian, 66 byte
158
 * array. This assumes that the CPU is little-endian.
159
 */
160
static void felem_to_bin66(u8 out[66], const felem in)
161
5.38k
{
162
5.38k
    memset(out, 0, 66);
163
5.38k
    (*((limb *) & out[0])) = in[0];
164
5.38k
    (*((limb_aX *) & out[7])) |= in[1] << 2;
165
5.38k
    (*((limb_aX *) & out[14])) |= in[2] << 4;
166
5.38k
    (*((limb_aX *) & out[21])) |= in[3] << 6;
167
5.38k
    (*((limb_aX *) & out[29])) = in[4];
168
5.38k
    (*((limb_aX *) & out[36])) |= in[5] << 2;
169
5.38k
    (*((limb_aX *) & out[43])) |= in[6] << 4;
170
5.38k
    (*((limb_aX *) & out[50])) |= in[7] << 6;
171
5.38k
    (*((limb_aX *) & out[58])) = in[8];
172
5.38k
}
173
174
/* BN_to_felem converts an OpenSSL BIGNUM into an felem */
175
static int BN_to_felem(felem out, const BIGNUM *bn)
176
2.73k
{
177
2.73k
    felem_bytearray b_out;
178
2.73k
    int num_bytes;
179
180
2.73k
    if (BN_is_negative(bn)) {
181
0
        ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE);
182
0
        return 0;
183
0
    }
184
2.73k
    num_bytes = BN_bn2lebinpad(bn, b_out, sizeof(b_out));
185
2.73k
    if (num_bytes < 0) {
186
0
        ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE);
187
0
        return 0;
188
0
    }
189
2.73k
    bin66_to_felem(out, b_out);
190
2.73k
    return 1;
191
2.73k
}
192
193
/* felem_to_BN converts an felem into an OpenSSL BIGNUM */
194
static BIGNUM *felem_to_BN(BIGNUM *out, const felem in)
195
5.38k
{
196
5.38k
    felem_bytearray b_out;
197
5.38k
    felem_to_bin66(b_out, in);
198
5.38k
    return BN_lebin2bn(b_out, sizeof(b_out), out);
199
5.38k
}
200
201
/*-
202
 * Field operations
203
 * ----------------
204
 */
205
206
static void felem_one(felem out)
207
0
{
208
0
    out[0] = 1;
209
0
    out[1] = 0;
210
0
    out[2] = 0;
211
0
    out[3] = 0;
212
0
    out[4] = 0;
213
0
    out[5] = 0;
214
0
    out[6] = 0;
215
0
    out[7] = 0;
216
0
    out[8] = 0;
217
0
}
218
219
static void felem_assign(felem out, const felem in)
220
1.62M
{
221
1.62M
    out[0] = in[0];
222
1.62M
    out[1] = in[1];
223
1.62M
    out[2] = in[2];
224
1.62M
    out[3] = in[3];
225
1.62M
    out[4] = in[4];
226
1.62M
    out[5] = in[5];
227
1.62M
    out[6] = in[6];
228
1.62M
    out[7] = in[7];
229
1.62M
    out[8] = in[8];
230
1.62M
}
231
232
/* felem_sum64 sets out = out + in. */
233
static void felem_sum64(felem out, const felem in)
234
467k
{
235
467k
    out[0] += in[0];
236
467k
    out[1] += in[1];
237
467k
    out[2] += in[2];
238
467k
    out[3] += in[3];
239
467k
    out[4] += in[4];
240
467k
    out[5] += in[5];
241
467k
    out[6] += in[6];
242
467k
    out[7] += in[7];
243
467k
    out[8] += in[8];
244
467k
}
245
246
/* felem_scalar sets out = in * scalar */
247
static void felem_scalar(felem out, const felem in, limb scalar)
248
4.26M
{
249
4.26M
    out[0] = in[0] * scalar;
250
4.26M
    out[1] = in[1] * scalar;
251
4.26M
    out[2] = in[2] * scalar;
252
4.26M
    out[3] = in[3] * scalar;
253
4.26M
    out[4] = in[4] * scalar;
254
4.26M
    out[5] = in[5] * scalar;
255
4.26M
    out[6] = in[6] * scalar;
256
4.26M
    out[7] = in[7] * scalar;
257
4.26M
    out[8] = in[8] * scalar;
258
4.26M
}
259
260
/* felem_scalar64 sets out = out * scalar */
261
static void felem_scalar64(felem out, limb scalar)
262
730k
{
263
730k
    out[0] *= scalar;
264
730k
    out[1] *= scalar;
265
730k
    out[2] *= scalar;
266
730k
    out[3] *= scalar;
267
730k
    out[4] *= scalar;
268
730k
    out[5] *= scalar;
269
730k
    out[6] *= scalar;
270
730k
    out[7] *= scalar;
271
730k
    out[8] *= scalar;
272
730k
}
273
274
/* felem_scalar128 sets out = out * scalar */
275
static void felem_scalar128(largefelem out, limb scalar)
276
243k
{
277
243k
    out[0] *= scalar;
278
243k
    out[1] *= scalar;
279
243k
    out[2] *= scalar;
280
243k
    out[3] *= scalar;
281
243k
    out[4] *= scalar;
282
243k
    out[5] *= scalar;
283
243k
    out[6] *= scalar;
284
243k
    out[7] *= scalar;
285
243k
    out[8] *= scalar;
286
243k
}
287
288
/*-
289
 * felem_neg sets |out| to |-in|
290
 * On entry:
291
 *   in[i] < 2^59 + 2^14
292
 * On exit:
293
 *   out[i] < 2^62
294
 */
295
static void felem_neg(felem out, const felem in)
296
15.2k
{
297
    /* In order to prevent underflow, we subtract from 0 mod p. */
298
15.2k
    static const limb two62m3 = (((limb) 1) << 62) - (((limb) 1) << 5);
299
15.2k
    static const limb two62m2 = (((limb) 1) << 62) - (((limb) 1) << 4);
300
301
15.2k
    out[0] = two62m3 - in[0];
302
15.2k
    out[1] = two62m2 - in[1];
303
15.2k
    out[2] = two62m2 - in[2];
304
15.2k
    out[3] = two62m2 - in[3];
305
15.2k
    out[4] = two62m2 - in[4];
306
15.2k
    out[5] = two62m2 - in[5];
307
15.2k
    out[6] = two62m2 - in[6];
308
15.2k
    out[7] = two62m2 - in[7];
309
15.2k
    out[8] = two62m2 - in[8];
310
15.2k
}
311
312
/*-
313
 * felem_diff64 subtracts |in| from |out|
314
 * On entry:
315
 *   in[i] < 2^59 + 2^14
316
 * On exit:
317
 *   out[i] < out[i] + 2^62
318
 */
319
static void felem_diff64(felem out, const felem in)
320
394k
{
321
    /*
322
     * In order to prevent underflow, we add 0 mod p before subtracting.
323
     */
324
394k
    static const limb two62m3 = (((limb) 1) << 62) - (((limb) 1) << 5);
325
394k
    static const limb two62m2 = (((limb) 1) << 62) - (((limb) 1) << 4);
326
327
394k
    out[0] += two62m3 - in[0];
328
394k
    out[1] += two62m2 - in[1];
329
394k
    out[2] += two62m2 - in[2];
330
394k
    out[3] += two62m2 - in[3];
331
394k
    out[4] += two62m2 - in[4];
332
394k
    out[5] += two62m2 - in[5];
333
394k
    out[6] += two62m2 - in[6];
334
394k
    out[7] += two62m2 - in[7];
335
394k
    out[8] += two62m2 - in[8];
336
394k
}
337
338
/*-
339
 * felem_diff_128_64 subtracts |in| from |out|
340
 * On entry:
341
 *   in[i] < 2^62 + 2^17
342
 * On exit:
343
 *   out[i] < out[i] + 2^63
344
 */
345
static void felem_diff_128_64(largefelem out, const felem in)
346
705k
{
347
    /*
348
     * In order to prevent underflow, we add 64p mod p (which is equivalent
349
     * to 0 mod p) before subtracting. p is 2^521 - 1, i.e. in binary a 521
350
     * digit number with all bits set to 1. See "The representation of field
351
     * elements" comment above for a description of how limbs are used to
352
     * represent a number. 64p is represented with 8 limbs containing a number
353
     * with 58 bits set and one limb with a number with 57 bits set.
354
     */
355
705k
    static const limb two63m6 = (((limb) 1) << 63) - (((limb) 1) << 6);
356
705k
    static const limb two63m5 = (((limb) 1) << 63) - (((limb) 1) << 5);
357
358
705k
    out[0] += two63m6 - in[0];
359
705k
    out[1] += two63m5 - in[1];
360
705k
    out[2] += two63m5 - in[2];
361
705k
    out[3] += two63m5 - in[3];
362
705k
    out[4] += two63m5 - in[4];
363
705k
    out[5] += two63m5 - in[5];
364
705k
    out[6] += two63m5 - in[6];
365
705k
    out[7] += two63m5 - in[7];
366
705k
    out[8] += two63m5 - in[8];
367
705k
}
368
369
/*-
370
 * felem_diff_128_64 subtracts |in| from |out|
371
 * On entry:
372
 *   in[i] < 2^126
373
 * On exit:
374
 *   out[i] < out[i] + 2^127 - 2^69
375
 */
376
static void felem_diff128(largefelem out, const largefelem in)
377
243k
{
378
    /*
379
     * In order to prevent underflow, we add 0 mod p before subtracting.
380
     */
381
243k
    static const uint128_t two127m70 =
382
243k
        (((uint128_t) 1) << 127) - (((uint128_t) 1) << 70);
383
243k
    static const uint128_t two127m69 =
384
243k
        (((uint128_t) 1) << 127) - (((uint128_t) 1) << 69);
385
386
243k
    out[0] += (two127m70 - in[0]);
387
243k
    out[1] += (two127m69 - in[1]);
388
243k
    out[2] += (two127m69 - in[2]);
389
243k
    out[3] += (two127m69 - in[3]);
390
243k
    out[4] += (two127m69 - in[4]);
391
243k
    out[5] += (two127m69 - in[5]);
392
243k
    out[6] += (two127m69 - in[6]);
393
243k
    out[7] += (two127m69 - in[7]);
394
243k
    out[8] += (two127m69 - in[8]);
395
243k
}
396
397
/*-
398
 * felem_square sets |out| = |in|^2
399
 * On entry:
400
 *   in[i] < 2^62
401
 * On exit:
402
 *   out[i] < 17 * max(in[i]) * max(in[i])
403
 */
404
static void felem_square_ref(largefelem out, const felem in)
405
1.46M
{
406
1.46M
    felem inx2, inx4;
407
1.46M
    felem_scalar(inx2, in, 2);
408
1.46M
    felem_scalar(inx4, in, 4);
409
410
    /*-
411
     * We have many cases were we want to do
412
     *   in[x] * in[y] +
413
     *   in[y] * in[x]
414
     * This is obviously just
415
     *   2 * in[x] * in[y]
416
     * However, rather than do the doubling on the 128 bit result, we
417
     * double one of the inputs to the multiplication by reading from
418
     * |inx2|
419
     */
420
421
1.46M
    out[0] = ((uint128_t) in[0]) * in[0];
422
1.46M
    out[1] = ((uint128_t) in[0]) * inx2[1];
423
1.46M
    out[2] = ((uint128_t) in[0]) * inx2[2] + ((uint128_t) in[1]) * in[1];
424
1.46M
    out[3] = ((uint128_t) in[0]) * inx2[3] + ((uint128_t) in[1]) * inx2[2];
425
1.46M
    out[4] = ((uint128_t) in[0]) * inx2[4] +
426
1.46M
             ((uint128_t) in[1]) * inx2[3] + ((uint128_t) in[2]) * in[2];
427
1.46M
    out[5] = ((uint128_t) in[0]) * inx2[5] +
428
1.46M
             ((uint128_t) in[1]) * inx2[4] + ((uint128_t) in[2]) * inx2[3];
429
1.46M
    out[6] = ((uint128_t) in[0]) * inx2[6] +
430
1.46M
             ((uint128_t) in[1]) * inx2[5] +
431
1.46M
             ((uint128_t) in[2]) * inx2[4] + ((uint128_t) in[3]) * in[3];
432
1.46M
    out[7] = ((uint128_t) in[0]) * inx2[7] +
433
1.46M
             ((uint128_t) in[1]) * inx2[6] +
434
1.46M
             ((uint128_t) in[2]) * inx2[5] + ((uint128_t) in[3]) * inx2[4];
435
1.46M
    out[8] = ((uint128_t) in[0]) * inx2[8] +
436
1.46M
             ((uint128_t) in[1]) * inx2[7] +
437
1.46M
             ((uint128_t) in[2]) * inx2[6] +
438
1.46M
             ((uint128_t) in[3]) * inx2[5] + ((uint128_t) in[4]) * in[4];
439
440
    /*
441
     * The remaining limbs fall above 2^521, with the first falling at 2^522.
442
     * They correspond to locations one bit up from the limbs produced above
443
     * so we would have to multiply by two to align them. Again, rather than
444
     * operate on the 128-bit result, we double one of the inputs to the
445
     * multiplication. If we want to double for both this reason, and the
446
     * reason above, then we end up multiplying by four.
447
     */
448
449
    /* 9 */
450
1.46M
    out[0] += ((uint128_t) in[1]) * inx4[8] +
451
1.46M
              ((uint128_t) in[2]) * inx4[7] +
452
1.46M
              ((uint128_t) in[3]) * inx4[6] + ((uint128_t) in[4]) * inx4[5];
453
454
    /* 10 */
455
1.46M
    out[1] += ((uint128_t) in[2]) * inx4[8] +
456
1.46M
              ((uint128_t) in[3]) * inx4[7] +
457
1.46M
              ((uint128_t) in[4]) * inx4[6] + ((uint128_t) in[5]) * inx2[5];
458
459
    /* 11 */
460
1.46M
    out[2] += ((uint128_t) in[3]) * inx4[8] +
461
1.46M
              ((uint128_t) in[4]) * inx4[7] + ((uint128_t) in[5]) * inx4[6];
462
463
    /* 12 */
464
1.46M
    out[3] += ((uint128_t) in[4]) * inx4[8] +
465
1.46M
              ((uint128_t) in[5]) * inx4[7] + ((uint128_t) in[6]) * inx2[6];
466
467
    /* 13 */
468
1.46M
    out[4] += ((uint128_t) in[5]) * inx4[8] + ((uint128_t) in[6]) * inx4[7];
469
470
    /* 14 */
471
1.46M
    out[5] += ((uint128_t) in[6]) * inx4[8] + ((uint128_t) in[7]) * inx2[7];
472
473
    /* 15 */
474
1.46M
    out[6] += ((uint128_t) in[7]) * inx4[8];
475
476
    /* 16 */
477
1.46M
    out[7] += ((uint128_t) in[8]) * inx2[8];
478
1.46M
}
479
480
/*-
481
 * felem_mul sets |out| = |in1| * |in2|
482
 * On entry:
483
 *   in1[i] < 2^64
484
 *   in2[i] < 2^63
485
 * On exit:
486
 *   out[i] < 17 * max(in1[i]) * max(in2[i])
487
 */
488
static void felem_mul_ref(largefelem out, const felem in1, const felem in2)
489
1.25M
{
490
1.25M
    felem in2x2;
491
1.25M
    felem_scalar(in2x2, in2, 2);
492
493
1.25M
    out[0] = ((uint128_t) in1[0]) * in2[0];
494
495
1.25M
    out[1] = ((uint128_t) in1[0]) * in2[1] +
496
1.25M
             ((uint128_t) in1[1]) * in2[0];
497
498
1.25M
    out[2] = ((uint128_t) in1[0]) * in2[2] +
499
1.25M
             ((uint128_t) in1[1]) * in2[1] +
500
1.25M
             ((uint128_t) in1[2]) * in2[0];
501
502
1.25M
    out[3] = ((uint128_t) in1[0]) * in2[3] +
503
1.25M
             ((uint128_t) in1[1]) * in2[2] +
504
1.25M
             ((uint128_t) in1[2]) * in2[1] +
505
1.25M
             ((uint128_t) in1[3]) * in2[0];
506
507
1.25M
    out[4] = ((uint128_t) in1[0]) * in2[4] +
508
1.25M
             ((uint128_t) in1[1]) * in2[3] +
509
1.25M
             ((uint128_t) in1[2]) * in2[2] +
510
1.25M
             ((uint128_t) in1[3]) * in2[1] +
511
1.25M
             ((uint128_t) in1[4]) * in2[0];
512
513
1.25M
    out[5] = ((uint128_t) in1[0]) * in2[5] +
514
1.25M
             ((uint128_t) in1[1]) * in2[4] +
515
1.25M
             ((uint128_t) in1[2]) * in2[3] +
516
1.25M
             ((uint128_t) in1[3]) * in2[2] +
517
1.25M
             ((uint128_t) in1[4]) * in2[1] +
518
1.25M
             ((uint128_t) in1[5]) * in2[0];
519
520
1.25M
    out[6] = ((uint128_t) in1[0]) * in2[6] +
521
1.25M
             ((uint128_t) in1[1]) * in2[5] +
522
1.25M
             ((uint128_t) in1[2]) * in2[4] +
523
1.25M
             ((uint128_t) in1[3]) * in2[3] +
524
1.25M
             ((uint128_t) in1[4]) * in2[2] +
525
1.25M
             ((uint128_t) in1[5]) * in2[1] +
526
1.25M
             ((uint128_t) in1[6]) * in2[0];
527
528
1.25M
    out[7] = ((uint128_t) in1[0]) * in2[7] +
529
1.25M
             ((uint128_t) in1[1]) * in2[6] +
530
1.25M
             ((uint128_t) in1[2]) * in2[5] +
531
1.25M
             ((uint128_t) in1[3]) * in2[4] +
532
1.25M
             ((uint128_t) in1[4]) * in2[3] +
533
1.25M
             ((uint128_t) in1[5]) * in2[2] +
534
1.25M
             ((uint128_t) in1[6]) * in2[1] +
535
1.25M
             ((uint128_t) in1[7]) * in2[0];
536
537
1.25M
    out[8] = ((uint128_t) in1[0]) * in2[8] +
538
1.25M
             ((uint128_t) in1[1]) * in2[7] +
539
1.25M
             ((uint128_t) in1[2]) * in2[6] +
540
1.25M
             ((uint128_t) in1[3]) * in2[5] +
541
1.25M
             ((uint128_t) in1[4]) * in2[4] +
542
1.25M
             ((uint128_t) in1[5]) * in2[3] +
543
1.25M
             ((uint128_t) in1[6]) * in2[2] +
544
1.25M
             ((uint128_t) in1[7]) * in2[1] +
545
1.25M
             ((uint128_t) in1[8]) * in2[0];
546
547
    /* See comment in felem_square about the use of in2x2 here */
548
549
1.25M
    out[0] += ((uint128_t) in1[1]) * in2x2[8] +
550
1.25M
              ((uint128_t) in1[2]) * in2x2[7] +
551
1.25M
              ((uint128_t) in1[3]) * in2x2[6] +
552
1.25M
              ((uint128_t) in1[4]) * in2x2[5] +
553
1.25M
              ((uint128_t) in1[5]) * in2x2[4] +
554
1.25M
              ((uint128_t) in1[6]) * in2x2[3] +
555
1.25M
              ((uint128_t) in1[7]) * in2x2[2] +
556
1.25M
              ((uint128_t) in1[8]) * in2x2[1];
557
558
1.25M
    out[1] += ((uint128_t) in1[2]) * in2x2[8] +
559
1.25M
              ((uint128_t) in1[3]) * in2x2[7] +
560
1.25M
              ((uint128_t) in1[4]) * in2x2[6] +
561
1.25M
              ((uint128_t) in1[5]) * in2x2[5] +
562
1.25M
              ((uint128_t) in1[6]) * in2x2[4] +
563
1.25M
              ((uint128_t) in1[7]) * in2x2[3] +
564
1.25M
              ((uint128_t) in1[8]) * in2x2[2];
565
566
1.25M
    out[2] += ((uint128_t) in1[3]) * in2x2[8] +
567
1.25M
              ((uint128_t) in1[4]) * in2x2[7] +
568
1.25M
              ((uint128_t) in1[5]) * in2x2[6] +
569
1.25M
              ((uint128_t) in1[6]) * in2x2[5] +
570
1.25M
              ((uint128_t) in1[7]) * in2x2[4] +
571
1.25M
              ((uint128_t) in1[8]) * in2x2[3];
572
573
1.25M
    out[3] += ((uint128_t) in1[4]) * in2x2[8] +
574
1.25M
              ((uint128_t) in1[5]) * in2x2[7] +
575
1.25M
              ((uint128_t) in1[6]) * in2x2[6] +
576
1.25M
              ((uint128_t) in1[7]) * in2x2[5] +
577
1.25M
              ((uint128_t) in1[8]) * in2x2[4];
578
579
1.25M
    out[4] += ((uint128_t) in1[5]) * in2x2[8] +
580
1.25M
              ((uint128_t) in1[6]) * in2x2[7] +
581
1.25M
              ((uint128_t) in1[7]) * in2x2[6] +
582
1.25M
              ((uint128_t) in1[8]) * in2x2[5];
583
584
1.25M
    out[5] += ((uint128_t) in1[6]) * in2x2[8] +
585
1.25M
              ((uint128_t) in1[7]) * in2x2[7] +
586
1.25M
              ((uint128_t) in1[8]) * in2x2[6];
587
588
1.25M
    out[6] += ((uint128_t) in1[7]) * in2x2[8] +
589
1.25M
              ((uint128_t) in1[8]) * in2x2[7];
590
591
1.25M
    out[7] += ((uint128_t) in1[8]) * in2x2[8];
592
1.25M
}
593
594
static const limb bottom52bits = 0xfffffffffffff;
595
596
/*-
597
 * felem_reduce converts a largefelem to an felem.
598
 * On entry:
599
 *   in[i] < 2^128
600
 * On exit:
601
 *   out[i] < 2^59 + 2^14
602
 */
603
static void felem_reduce(felem out, const largefelem in)
604
2.47M
{
605
2.47M
    u64 overflow1, overflow2;
606
607
2.47M
    out[0] = ((limb) in[0]) & bottom58bits;
608
2.47M
    out[1] = ((limb) in[1]) & bottom58bits;
609
2.47M
    out[2] = ((limb) in[2]) & bottom58bits;
610
2.47M
    out[3] = ((limb) in[3]) & bottom58bits;
611
2.47M
    out[4] = ((limb) in[4]) & bottom58bits;
612
2.47M
    out[5] = ((limb) in[5]) & bottom58bits;
613
2.47M
    out[6] = ((limb) in[6]) & bottom58bits;
614
2.47M
    out[7] = ((limb) in[7]) & bottom58bits;
615
2.47M
    out[8] = ((limb) in[8]) & bottom58bits;
616
617
    /* out[i] < 2^58 */
618
619
2.47M
    out[1] += ((limb) in[0]) >> 58;
620
2.47M
    out[1] += (((limb) (in[0] >> 64)) & bottom52bits) << 6;
621
    /*-
622
     * out[1] < 2^58 + 2^6 + 2^58
623
     *        = 2^59 + 2^6
624
     */
625
2.47M
    out[2] += ((limb) (in[0] >> 64)) >> 52;
626
627
2.47M
    out[2] += ((limb) in[1]) >> 58;
628
2.47M
    out[2] += (((limb) (in[1] >> 64)) & bottom52bits) << 6;
629
2.47M
    out[3] += ((limb) (in[1] >> 64)) >> 52;
630
631
2.47M
    out[3] += ((limb) in[2]) >> 58;
632
2.47M
    out[3] += (((limb) (in[2] >> 64)) & bottom52bits) << 6;
633
2.47M
    out[4] += ((limb) (in[2] >> 64)) >> 52;
634
635
2.47M
    out[4] += ((limb) in[3]) >> 58;
636
2.47M
    out[4] += (((limb) (in[3] >> 64)) & bottom52bits) << 6;
637
2.47M
    out[5] += ((limb) (in[3] >> 64)) >> 52;
638
639
2.47M
    out[5] += ((limb) in[4]) >> 58;
640
2.47M
    out[5] += (((limb) (in[4] >> 64)) & bottom52bits) << 6;
641
2.47M
    out[6] += ((limb) (in[4] >> 64)) >> 52;
642
643
2.47M
    out[6] += ((limb) in[5]) >> 58;
644
2.47M
    out[6] += (((limb) (in[5] >> 64)) & bottom52bits) << 6;
645
2.47M
    out[7] += ((limb) (in[5] >> 64)) >> 52;
646
647
2.47M
    out[7] += ((limb) in[6]) >> 58;
648
2.47M
    out[7] += (((limb) (in[6] >> 64)) & bottom52bits) << 6;
649
2.47M
    out[8] += ((limb) (in[6] >> 64)) >> 52;
650
651
2.47M
    out[8] += ((limb) in[7]) >> 58;
652
2.47M
    out[8] += (((limb) (in[7] >> 64)) & bottom52bits) << 6;
653
    /*-
654
     * out[x > 1] < 2^58 + 2^6 + 2^58 + 2^12
655
     *            < 2^59 + 2^13
656
     */
657
2.47M
    overflow1 = ((limb) (in[7] >> 64)) >> 52;
658
659
2.47M
    overflow1 += ((limb) in[8]) >> 58;
660
2.47M
    overflow1 += (((limb) (in[8] >> 64)) & bottom52bits) << 6;
661
2.47M
    overflow2 = ((limb) (in[8] >> 64)) >> 52;
662
663
2.47M
    overflow1 <<= 1;            /* overflow1 < 2^13 + 2^7 + 2^59 */
664
2.47M
    overflow2 <<= 1;            /* overflow2 < 2^13 */
665
666
2.47M
    out[0] += overflow1;        /* out[0] < 2^60 */
667
2.47M
    out[1] += overflow2;        /* out[1] < 2^59 + 2^6 + 2^13 */
668
669
2.47M
    out[1] += out[0] >> 58;
670
2.47M
    out[0] &= bottom58bits;
671
    /*-
672
     * out[0] < 2^58
673
     * out[1] < 2^59 + 2^6 + 2^13 + 2^2
674
     *        < 2^59 + 2^14
675
     */
676
2.47M
}
677
678
#if defined(ECP_NISTP521_ASM)
679
void felem_square_wrapper(largefelem out, const felem in);
680
void felem_mul_wrapper(largefelem out, const felem in1, const felem in2);
681
682
static void (*felem_square_p)(largefelem out, const felem in) =
683
    felem_square_wrapper;
684
static void (*felem_mul_p)(largefelem out, const felem in1, const felem in2) =
685
    felem_mul_wrapper;
686
687
void p521_felem_square(largefelem out, const felem in);
688
void p521_felem_mul(largefelem out, const felem in1, const felem in2);
689
690
# if defined(_ARCH_PPC64)
691
#  include "crypto/ppc_arch.h"
692
# endif
693
694
void felem_select(void)
695
{
696
# if defined(_ARCH_PPC64)
697
    if ((OPENSSL_ppccap_P & PPC_MADD300) && (OPENSSL_ppccap_P & PPC_ALTIVEC)) {
698
        felem_square_p = p521_felem_square;
699
        felem_mul_p = p521_felem_mul;
700
701
        return;
702
    }
703
# endif
704
705
    /* Default */
706
    felem_square_p = felem_square_ref;
707
    felem_mul_p = felem_mul_ref;
708
}
709
710
void felem_square_wrapper(largefelem out, const felem in)
711
{
712
    felem_select();
713
    felem_square_p(out, in);
714
}
715
716
void felem_mul_wrapper(largefelem out, const felem in1, const felem in2)
717
{
718
    felem_select();
719
    felem_mul_p(out, in1, in2);
720
}
721
722
# define felem_square felem_square_p
723
# define felem_mul felem_mul_p
724
#else
725
1.46M
# define felem_square felem_square_ref
726
1.25M
# define felem_mul felem_mul_ref
727
#endif
728
729
static void felem_square_reduce(felem out, const felem in)
730
0
{
731
0
    largefelem tmp;
732
0
    felem_square(tmp, in);
733
0
    felem_reduce(out, tmp);
734
0
}
735
736
static void felem_mul_reduce(felem out, const felem in1, const felem in2)
737
0
{
738
0
    largefelem tmp;
739
0
    felem_mul(tmp, in1, in2);
740
0
    felem_reduce(out, tmp);
741
0
}
742
743
/*-
744
 * felem_inv calculates |out| = |in|^{-1}
745
 *
746
 * Based on Fermat's Little Theorem:
747
 *   a^p = a (mod p)
748
 *   a^{p-1} = 1 (mod p)
749
 *   a^{p-2} = a^{-1} (mod p)
750
 */
751
static void felem_inv(felem out, const felem in)
752
765
{
753
765
    felem ftmp, ftmp2, ftmp3, ftmp4;
754
765
    largefelem tmp;
755
765
    unsigned i;
756
757
765
    felem_square(tmp, in);
758
765
    felem_reduce(ftmp, tmp);    /* 2^1 */
759
765
    felem_mul(tmp, in, ftmp);
760
765
    felem_reduce(ftmp, tmp);    /* 2^2 - 2^0 */
761
765
    felem_assign(ftmp2, ftmp);
762
765
    felem_square(tmp, ftmp);
763
765
    felem_reduce(ftmp, tmp);    /* 2^3 - 2^1 */
764
765
    felem_mul(tmp, in, ftmp);
765
765
    felem_reduce(ftmp, tmp);    /* 2^3 - 2^0 */
766
765
    felem_square(tmp, ftmp);
767
765
    felem_reduce(ftmp, tmp);    /* 2^4 - 2^1 */
768
769
765
    felem_square(tmp, ftmp2);
770
765
    felem_reduce(ftmp3, tmp);   /* 2^3 - 2^1 */
771
765
    felem_square(tmp, ftmp3);
772
765
    felem_reduce(ftmp3, tmp);   /* 2^4 - 2^2 */
773
765
    felem_mul(tmp, ftmp3, ftmp2);
774
765
    felem_reduce(ftmp3, tmp);   /* 2^4 - 2^0 */
775
776
765
    felem_assign(ftmp2, ftmp3);
777
765
    felem_square(tmp, ftmp3);
778
765
    felem_reduce(ftmp3, tmp);   /* 2^5 - 2^1 */
779
765
    felem_square(tmp, ftmp3);
780
765
    felem_reduce(ftmp3, tmp);   /* 2^6 - 2^2 */
781
765
    felem_square(tmp, ftmp3);
782
765
    felem_reduce(ftmp3, tmp);   /* 2^7 - 2^3 */
783
765
    felem_square(tmp, ftmp3);
784
765
    felem_reduce(ftmp3, tmp);   /* 2^8 - 2^4 */
785
765
    felem_mul(tmp, ftmp3, ftmp);
786
765
    felem_reduce(ftmp4, tmp);   /* 2^8 - 2^1 */
787
765
    felem_square(tmp, ftmp4);
788
765
    felem_reduce(ftmp4, tmp);   /* 2^9 - 2^2 */
789
765
    felem_mul(tmp, ftmp3, ftmp2);
790
765
    felem_reduce(ftmp3, tmp);   /* 2^8 - 2^0 */
791
765
    felem_assign(ftmp2, ftmp3);
792
793
6.88k
    for (i = 0; i < 8; i++) {
794
6.12k
        felem_square(tmp, ftmp3);
795
6.12k
        felem_reduce(ftmp3, tmp); /* 2^16 - 2^8 */
796
6.12k
    }
797
765
    felem_mul(tmp, ftmp3, ftmp2);
798
765
    felem_reduce(ftmp3, tmp);   /* 2^16 - 2^0 */
799
765
    felem_assign(ftmp2, ftmp3);
800
801
13.0k
    for (i = 0; i < 16; i++) {
802
12.2k
        felem_square(tmp, ftmp3);
803
12.2k
        felem_reduce(ftmp3, tmp); /* 2^32 - 2^16 */
804
12.2k
    }
805
765
    felem_mul(tmp, ftmp3, ftmp2);
806
765
    felem_reduce(ftmp3, tmp);   /* 2^32 - 2^0 */
807
765
    felem_assign(ftmp2, ftmp3);
808
809
25.2k
    for (i = 0; i < 32; i++) {
810
24.4k
        felem_square(tmp, ftmp3);
811
24.4k
        felem_reduce(ftmp3, tmp); /* 2^64 - 2^32 */
812
24.4k
    }
813
765
    felem_mul(tmp, ftmp3, ftmp2);
814
765
    felem_reduce(ftmp3, tmp);   /* 2^64 - 2^0 */
815
765
    felem_assign(ftmp2, ftmp3);
816
817
49.7k
    for (i = 0; i < 64; i++) {
818
48.9k
        felem_square(tmp, ftmp3);
819
48.9k
        felem_reduce(ftmp3, tmp); /* 2^128 - 2^64 */
820
48.9k
    }
821
765
    felem_mul(tmp, ftmp3, ftmp2);
822
765
    felem_reduce(ftmp3, tmp);   /* 2^128 - 2^0 */
823
765
    felem_assign(ftmp2, ftmp3);
824
825
98.6k
    for (i = 0; i < 128; i++) {
826
97.9k
        felem_square(tmp, ftmp3);
827
97.9k
        felem_reduce(ftmp3, tmp); /* 2^256 - 2^128 */
828
97.9k
    }
829
765
    felem_mul(tmp, ftmp3, ftmp2);
830
765
    felem_reduce(ftmp3, tmp);   /* 2^256 - 2^0 */
831
765
    felem_assign(ftmp2, ftmp3);
832
833
196k
    for (i = 0; i < 256; i++) {
834
195k
        felem_square(tmp, ftmp3);
835
195k
        felem_reduce(ftmp3, tmp); /* 2^512 - 2^256 */
836
195k
    }
837
765
    felem_mul(tmp, ftmp3, ftmp2);
838
765
    felem_reduce(ftmp3, tmp);   /* 2^512 - 2^0 */
839
840
7.65k
    for (i = 0; i < 9; i++) {
841
6.88k
        felem_square(tmp, ftmp3);
842
6.88k
        felem_reduce(ftmp3, tmp); /* 2^521 - 2^9 */
843
6.88k
    }
844
765
    felem_mul(tmp, ftmp3, ftmp4);
845
765
    felem_reduce(ftmp3, tmp);   /* 2^512 - 2^2 */
846
765
    felem_mul(tmp, ftmp3, in);
847
765
    felem_reduce(out, tmp);     /* 2^512 - 3 */
848
765
}
849
850
/* This is 2^521-1, expressed as an felem */
851
static const felem kPrime = {
852
    0x03ffffffffffffff, 0x03ffffffffffffff, 0x03ffffffffffffff,
853
    0x03ffffffffffffff, 0x03ffffffffffffff, 0x03ffffffffffffff,
854
    0x03ffffffffffffff, 0x03ffffffffffffff, 0x01ffffffffffffff
855
};
856
857
/*-
858
 * felem_is_zero returns a limb with all bits set if |in| == 0 (mod p) and 0
859
 * otherwise.
860
 * On entry:
861
 *   in[i] < 2^59 + 2^14
862
 */
863
static limb felem_is_zero(const felem in)
864
371k
{
865
371k
    felem ftmp;
866
371k
    limb is_zero, is_p;
867
371k
    felem_assign(ftmp, in);
868
869
371k
    ftmp[0] += ftmp[8] >> 57;
870
371k
    ftmp[8] &= bottom57bits;
871
    /* ftmp[8] < 2^57 */
872
371k
    ftmp[1] += ftmp[0] >> 58;
873
371k
    ftmp[0] &= bottom58bits;
874
371k
    ftmp[2] += ftmp[1] >> 58;
875
371k
    ftmp[1] &= bottom58bits;
876
371k
    ftmp[3] += ftmp[2] >> 58;
877
371k
    ftmp[2] &= bottom58bits;
878
371k
    ftmp[4] += ftmp[3] >> 58;
879
371k
    ftmp[3] &= bottom58bits;
880
371k
    ftmp[5] += ftmp[4] >> 58;
881
371k
    ftmp[4] &= bottom58bits;
882
371k
    ftmp[6] += ftmp[5] >> 58;
883
371k
    ftmp[5] &= bottom58bits;
884
371k
    ftmp[7] += ftmp[6] >> 58;
885
371k
    ftmp[6] &= bottom58bits;
886
371k
    ftmp[8] += ftmp[7] >> 58;
887
371k
    ftmp[7] &= bottom58bits;
888
    /* ftmp[8] < 2^57 + 4 */
889
890
    /*
891
     * The ninth limb of 2*(2^521-1) is 0x03ffffffffffffff, which is greater
892
     * than our bound for ftmp[8]. Therefore we only have to check if the
893
     * zero is zero or 2^521-1.
894
     */
895
896
371k
    is_zero = 0;
897
371k
    is_zero |= ftmp[0];
898
371k
    is_zero |= ftmp[1];
899
371k
    is_zero |= ftmp[2];
900
371k
    is_zero |= ftmp[3];
901
371k
    is_zero |= ftmp[4];
902
371k
    is_zero |= ftmp[5];
903
371k
    is_zero |= ftmp[6];
904
371k
    is_zero |= ftmp[7];
905
371k
    is_zero |= ftmp[8];
906
907
371k
    is_zero--;
908
    /*
909
     * We know that ftmp[i] < 2^63, therefore the only way that the top bit
910
     * can be set is if is_zero was 0 before the decrement.
911
     */
912
371k
    is_zero = 0 - (is_zero >> 63);
913
914
371k
    is_p = ftmp[0] ^ kPrime[0];
915
371k
    is_p |= ftmp[1] ^ kPrime[1];
916
371k
    is_p |= ftmp[2] ^ kPrime[2];
917
371k
    is_p |= ftmp[3] ^ kPrime[3];
918
371k
    is_p |= ftmp[4] ^ kPrime[4];
919
371k
    is_p |= ftmp[5] ^ kPrime[5];
920
371k
    is_p |= ftmp[6] ^ kPrime[6];
921
371k
    is_p |= ftmp[7] ^ kPrime[7];
922
371k
    is_p |= ftmp[8] ^ kPrime[8];
923
924
371k
    is_p--;
925
371k
    is_p = 0 - (is_p >> 63);
926
927
371k
    is_zero |= is_p;
928
371k
    return is_zero;
929
371k
}
930
931
static int felem_is_zero_int(const void *in)
932
0
{
933
0
    return (int)(felem_is_zero(in) & ((limb) 1));
934
0
}
935
936
/*-
937
 * felem_contract converts |in| to its unique, minimal representation.
938
 * On entry:
939
 *   in[i] < 2^59 + 2^14
940
 */
941
static void felem_contract(felem out, const felem in)
942
3.67k
{
943
3.67k
    limb is_p, is_greater, sign;
944
3.67k
    static const limb two58 = ((limb) 1) << 58;
945
946
3.67k
    felem_assign(out, in);
947
948
3.67k
    out[0] += out[8] >> 57;
949
3.67k
    out[8] &= bottom57bits;
950
    /* out[8] < 2^57 */
951
3.67k
    out[1] += out[0] >> 58;
952
3.67k
    out[0] &= bottom58bits;
953
3.67k
    out[2] += out[1] >> 58;
954
3.67k
    out[1] &= bottom58bits;
955
3.67k
    out[3] += out[2] >> 58;
956
3.67k
    out[2] &= bottom58bits;
957
3.67k
    out[4] += out[3] >> 58;
958
3.67k
    out[3] &= bottom58bits;
959
3.67k
    out[5] += out[4] >> 58;
960
3.67k
    out[4] &= bottom58bits;
961
3.67k
    out[6] += out[5] >> 58;
962
3.67k
    out[5] &= bottom58bits;
963
3.67k
    out[7] += out[6] >> 58;
964
3.67k
    out[6] &= bottom58bits;
965
3.67k
    out[8] += out[7] >> 58;
966
3.67k
    out[7] &= bottom58bits;
967
    /* out[8] < 2^57 + 4 */
968
969
    /*
970
     * If the value is greater than 2^521-1 then we have to subtract 2^521-1
971
     * out. See the comments in felem_is_zero regarding why we don't test for
972
     * other multiples of the prime.
973
     */
974
975
    /*
976
     * First, if |out| is equal to 2^521-1, we subtract it out to get zero.
977
     */
978
979
3.67k
    is_p = out[0] ^ kPrime[0];
980
3.67k
    is_p |= out[1] ^ kPrime[1];
981
3.67k
    is_p |= out[2] ^ kPrime[2];
982
3.67k
    is_p |= out[3] ^ kPrime[3];
983
3.67k
    is_p |= out[4] ^ kPrime[4];
984
3.67k
    is_p |= out[5] ^ kPrime[5];
985
3.67k
    is_p |= out[6] ^ kPrime[6];
986
3.67k
    is_p |= out[7] ^ kPrime[7];
987
3.67k
    is_p |= out[8] ^ kPrime[8];
988
989
3.67k
    is_p--;
990
3.67k
    is_p &= is_p << 32;
991
3.67k
    is_p &= is_p << 16;
992
3.67k
    is_p &= is_p << 8;
993
3.67k
    is_p &= is_p << 4;
994
3.67k
    is_p &= is_p << 2;
995
3.67k
    is_p &= is_p << 1;
996
3.67k
    is_p = 0 - (is_p >> 63);
997
3.67k
    is_p = ~is_p;
998
999
    /* is_p is 0 iff |out| == 2^521-1 and all ones otherwise */
1000
1001
3.67k
    out[0] &= is_p;
1002
3.67k
    out[1] &= is_p;
1003
3.67k
    out[2] &= is_p;
1004
3.67k
    out[3] &= is_p;
1005
3.67k
    out[4] &= is_p;
1006
3.67k
    out[5] &= is_p;
1007
3.67k
    out[6] &= is_p;
1008
3.67k
    out[7] &= is_p;
1009
3.67k
    out[8] &= is_p;
1010
1011
    /*
1012
     * In order to test that |out| >= 2^521-1 we need only test if out[8] >>
1013
     * 57 is greater than zero as (2^521-1) + x >= 2^522
1014
     */
1015
3.67k
    is_greater = out[8] >> 57;
1016
3.67k
    is_greater |= is_greater << 32;
1017
3.67k
    is_greater |= is_greater << 16;
1018
3.67k
    is_greater |= is_greater << 8;
1019
3.67k
    is_greater |= is_greater << 4;
1020
3.67k
    is_greater |= is_greater << 2;
1021
3.67k
    is_greater |= is_greater << 1;
1022
3.67k
    is_greater = 0 - (is_greater >> 63);
1023
1024
3.67k
    out[0] -= kPrime[0] & is_greater;
1025
3.67k
    out[1] -= kPrime[1] & is_greater;
1026
3.67k
    out[2] -= kPrime[2] & is_greater;
1027
3.67k
    out[3] -= kPrime[3] & is_greater;
1028
3.67k
    out[4] -= kPrime[4] & is_greater;
1029
3.67k
    out[5] -= kPrime[5] & is_greater;
1030
3.67k
    out[6] -= kPrime[6] & is_greater;
1031
3.67k
    out[7] -= kPrime[7] & is_greater;
1032
3.67k
    out[8] -= kPrime[8] & is_greater;
1033
1034
    /* Eliminate negative coefficients */
1035
3.67k
    sign = -(out[0] >> 63);
1036
3.67k
    out[0] += (two58 & sign);
1037
3.67k
    out[1] -= (1 & sign);
1038
3.67k
    sign = -(out[1] >> 63);
1039
3.67k
    out[1] += (two58 & sign);
1040
3.67k
    out[2] -= (1 & sign);
1041
3.67k
    sign = -(out[2] >> 63);
1042
3.67k
    out[2] += (two58 & sign);
1043
3.67k
    out[3] -= (1 & sign);
1044
3.67k
    sign = -(out[3] >> 63);
1045
3.67k
    out[3] += (two58 & sign);
1046
3.67k
    out[4] -= (1 & sign);
1047
3.67k
    sign = -(out[4] >> 63);
1048
3.67k
    out[4] += (two58 & sign);
1049
3.67k
    out[5] -= (1 & sign);
1050
3.67k
    sign = -(out[0] >> 63);
1051
3.67k
    out[5] += (two58 & sign);
1052
3.67k
    out[6] -= (1 & sign);
1053
3.67k
    sign = -(out[6] >> 63);
1054
3.67k
    out[6] += (two58 & sign);
1055
3.67k
    out[7] -= (1 & sign);
1056
3.67k
    sign = -(out[7] >> 63);
1057
3.67k
    out[7] += (two58 & sign);
1058
3.67k
    out[8] -= (1 & sign);
1059
3.67k
    sign = -(out[5] >> 63);
1060
3.67k
    out[5] += (two58 & sign);
1061
3.67k
    out[6] -= (1 & sign);
1062
3.67k
    sign = -(out[6] >> 63);
1063
3.67k
    out[6] += (two58 & sign);
1064
3.67k
    out[7] -= (1 & sign);
1065
3.67k
    sign = -(out[7] >> 63);
1066
3.67k
    out[7] += (two58 & sign);
1067
3.67k
    out[8] -= (1 & sign);
1068
3.67k
}
1069
1070
/*-
1071
 * Group operations
1072
 * ----------------
1073
 *
1074
 * Building on top of the field operations we have the operations on the
1075
 * elliptic curve group itself. Points on the curve are represented in Jacobian
1076
 * coordinates */
1077
1078
/*-
1079
 * point_double calculates 2*(x_in, y_in, z_in)
1080
 *
1081
 * The method is taken from:
1082
 *   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
1083
 *
1084
 * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed.
1085
 * while x_out == y_in is not (maybe this works, but it's not tested). */
1086
static void
1087
point_double(felem x_out, felem y_out, felem z_out,
1088
             const felem x_in, const felem y_in, const felem z_in)
1089
150k
{
1090
150k
    largefelem tmp, tmp2;
1091
150k
    felem delta, gamma, beta, alpha, ftmp, ftmp2;
1092
1093
150k
    felem_assign(ftmp, x_in);
1094
150k
    felem_assign(ftmp2, x_in);
1095
1096
    /* delta = z^2 */
1097
150k
    felem_square(tmp, z_in);
1098
150k
    felem_reduce(delta, tmp);   /* delta[i] < 2^59 + 2^14 */
1099
1100
    /* gamma = y^2 */
1101
150k
    felem_square(tmp, y_in);
1102
150k
    felem_reduce(gamma, tmp);   /* gamma[i] < 2^59 + 2^14 */
1103
1104
    /* beta = x*gamma */
1105
150k
    felem_mul(tmp, x_in, gamma);
1106
150k
    felem_reduce(beta, tmp);    /* beta[i] < 2^59 + 2^14 */
1107
1108
    /* alpha = 3*(x-delta)*(x+delta) */
1109
150k
    felem_diff64(ftmp, delta);
1110
    /* ftmp[i] < 2^61 */
1111
150k
    felem_sum64(ftmp2, delta);
1112
    /* ftmp2[i] < 2^60 + 2^15 */
1113
150k
    felem_scalar64(ftmp2, 3);
1114
    /* ftmp2[i] < 3*2^60 + 3*2^15 */
1115
150k
    felem_mul(tmp, ftmp, ftmp2);
1116
    /*-
1117
     * tmp[i] < 17(3*2^121 + 3*2^76)
1118
     *        = 61*2^121 + 61*2^76
1119
     *        < 64*2^121 + 64*2^76
1120
     *        = 2^127 + 2^82
1121
     *        < 2^128
1122
     */
1123
150k
    felem_reduce(alpha, tmp);
1124
1125
    /* x' = alpha^2 - 8*beta */
1126
150k
    felem_square(tmp, alpha);
1127
    /*
1128
     * tmp[i] < 17*2^120 < 2^125
1129
     */
1130
150k
    felem_assign(ftmp, beta);
1131
150k
    felem_scalar64(ftmp, 8);
1132
    /* ftmp[i] < 2^62 + 2^17 */
1133
150k
    felem_diff_128_64(tmp, ftmp);
1134
    /* tmp[i] < 2^125 + 2^63 + 2^62 + 2^17 */
1135
150k
    felem_reduce(x_out, tmp);
1136
1137
    /* z' = (y + z)^2 - gamma - delta */
1138
150k
    felem_sum64(delta, gamma);
1139
    /* delta[i] < 2^60 + 2^15 */
1140
150k
    felem_assign(ftmp, y_in);
1141
150k
    felem_sum64(ftmp, z_in);
1142
    /* ftmp[i] < 2^60 + 2^15 */
1143
150k
    felem_square(tmp, ftmp);
1144
    /*
1145
     * tmp[i] < 17(2^122) < 2^127
1146
     */
1147
150k
    felem_diff_128_64(tmp, delta);
1148
    /* tmp[i] < 2^127 + 2^63 */
1149
150k
    felem_reduce(z_out, tmp);
1150
1151
    /* y' = alpha*(4*beta - x') - 8*gamma^2 */
1152
150k
    felem_scalar64(beta, 4);
1153
    /* beta[i] < 2^61 + 2^16 */
1154
150k
    felem_diff64(beta, x_out);
1155
    /* beta[i] < 2^61 + 2^60 + 2^16 */
1156
150k
    felem_mul(tmp, alpha, beta);
1157
    /*-
1158
     * tmp[i] < 17*((2^59 + 2^14)(2^61 + 2^60 + 2^16))
1159
     *        = 17*(2^120 + 2^75 + 2^119 + 2^74 + 2^75 + 2^30)
1160
     *        = 17*(2^120 + 2^119 + 2^76 + 2^74 + 2^30)
1161
     *        < 2^128
1162
     */
1163
150k
    felem_square(tmp2, gamma);
1164
    /*-
1165
     * tmp2[i] < 17*(2^59 + 2^14)^2
1166
     *         = 17*(2^118 + 2^74 + 2^28)
1167
     */
1168
150k
    felem_scalar128(tmp2, 8);
1169
    /*-
1170
     * tmp2[i] < 8*17*(2^118 + 2^74 + 2^28)
1171
     *         = 2^125 + 2^121 + 2^81 + 2^77 + 2^35 + 2^31
1172
     *         < 2^126
1173
     */
1174
150k
    felem_diff128(tmp, tmp2);
1175
    /*-
1176
     * tmp[i] < 2^127 - 2^69 + 17(2^120 + 2^119 + 2^76 + 2^74 + 2^30)
1177
     *        = 2^127 + 2^124 + 2^122 + 2^120 + 2^118 + 2^80 + 2^78 + 2^76 +
1178
     *          2^74 + 2^69 + 2^34 + 2^30
1179
     *        < 2^128
1180
     */
1181
150k
    felem_reduce(y_out, tmp);
1182
150k
}
1183
1184
/* copy_conditional copies in to out iff mask is all ones. */
1185
static void copy_conditional(felem out, const felem in, limb mask)
1186
572k
{
1187
572k
    unsigned i;
1188
5.72M
    for (i = 0; i < NLIMBS; ++i) {
1189
5.15M
        const limb tmp = mask & (in[i] ^ out[i]);
1190
5.15M
        out[i] ^= tmp;
1191
5.15M
    }
1192
572k
}
1193
1194
/*-
1195
 * point_add calculates (x1, y1, z1) + (x2, y2, z2)
1196
 *
1197
 * The method is taken from
1198
 *   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl,
1199
 * adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity).
1200
 *
1201
 * This function includes a branch for checking whether the two input points
1202
 * are equal (while not equal to the point at infinity). See comment below
1203
 * on constant-time.
1204
 */
1205
static void point_add(felem x3, felem y3, felem z3,
1206
                      const felem x1, const felem y1, const felem z1,
1207
                      const int mixed, const felem x2, const felem y2,
1208
                      const felem z2)
1209
92.9k
{
1210
92.9k
    felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, ftmp6, x_out, y_out, z_out;
1211
92.9k
    largefelem tmp, tmp2;
1212
92.9k
    limb x_equal, y_equal, z1_is_zero, z2_is_zero;
1213
92.9k
    limb points_equal;
1214
1215
92.9k
    z1_is_zero = felem_is_zero(z1);
1216
92.9k
    z2_is_zero = felem_is_zero(z2);
1217
1218
    /* ftmp = z1z1 = z1**2 */
1219
92.9k
    felem_square(tmp, z1);
1220
92.9k
    felem_reduce(ftmp, tmp);
1221
1222
92.9k
    if (!mixed) {
1223
        /* ftmp2 = z2z2 = z2**2 */
1224
16.0k
        felem_square(tmp, z2);
1225
16.0k
        felem_reduce(ftmp2, tmp);
1226
1227
        /* u1 = ftmp3 = x1*z2z2 */
1228
16.0k
        felem_mul(tmp, x1, ftmp2);
1229
16.0k
        felem_reduce(ftmp3, tmp);
1230
1231
        /* ftmp5 = z1 + z2 */
1232
16.0k
        felem_assign(ftmp5, z1);
1233
16.0k
        felem_sum64(ftmp5, z2);
1234
        /* ftmp5[i] < 2^61 */
1235
1236
        /* ftmp5 = (z1 + z2)**2 - z1z1 - z2z2 = 2*z1z2 */
1237
16.0k
        felem_square(tmp, ftmp5);
1238
        /* tmp[i] < 17*2^122 */
1239
16.0k
        felem_diff_128_64(tmp, ftmp);
1240
        /* tmp[i] < 17*2^122 + 2^63 */
1241
16.0k
        felem_diff_128_64(tmp, ftmp2);
1242
        /* tmp[i] < 17*2^122 + 2^64 */
1243
16.0k
        felem_reduce(ftmp5, tmp);
1244
1245
        /* ftmp2 = z2 * z2z2 */
1246
16.0k
        felem_mul(tmp, ftmp2, z2);
1247
16.0k
        felem_reduce(ftmp2, tmp);
1248
1249
        /* s1 = ftmp6 = y1 * z2**3 */
1250
16.0k
        felem_mul(tmp, y1, ftmp2);
1251
16.0k
        felem_reduce(ftmp6, tmp);
1252
76.8k
    } else {
1253
        /*
1254
         * We'll assume z2 = 1 (special case z2 = 0 is handled later)
1255
         */
1256
1257
        /* u1 = ftmp3 = x1*z2z2 */
1258
76.8k
        felem_assign(ftmp3, x1);
1259
1260
        /* ftmp5 = 2*z1z2 */
1261
76.8k
        felem_scalar(ftmp5, z1, 2);
1262
1263
        /* s1 = ftmp6 = y1 * z2**3 */
1264
76.8k
        felem_assign(ftmp6, y1);
1265
76.8k
    }
1266
1267
    /* u2 = x2*z1z1 */
1268
92.9k
    felem_mul(tmp, x2, ftmp);
1269
    /* tmp[i] < 17*2^120 */
1270
1271
    /* h = ftmp4 = u2 - u1 */
1272
92.9k
    felem_diff_128_64(tmp, ftmp3);
1273
    /* tmp[i] < 17*2^120 + 2^63 */
1274
92.9k
    felem_reduce(ftmp4, tmp);
1275
1276
92.9k
    x_equal = felem_is_zero(ftmp4);
1277
1278
    /* z_out = ftmp5 * h */
1279
92.9k
    felem_mul(tmp, ftmp5, ftmp4);
1280
92.9k
    felem_reduce(z_out, tmp);
1281
1282
    /* ftmp = z1 * z1z1 */
1283
92.9k
    felem_mul(tmp, ftmp, z1);
1284
92.9k
    felem_reduce(ftmp, tmp);
1285
1286
    /* s2 = tmp = y2 * z1**3 */
1287
92.9k
    felem_mul(tmp, y2, ftmp);
1288
    /* tmp[i] < 17*2^120 */
1289
1290
    /* r = ftmp5 = (s2 - s1)*2 */
1291
92.9k
    felem_diff_128_64(tmp, ftmp6);
1292
    /* tmp[i] < 17*2^120 + 2^63 */
1293
92.9k
    felem_reduce(ftmp5, tmp);
1294
92.9k
    y_equal = felem_is_zero(ftmp5);
1295
92.9k
    felem_scalar64(ftmp5, 2);
1296
    /* ftmp5[i] < 2^61 */
1297
1298
    /*
1299
     * The formulae are incorrect if the points are equal, in affine coordinates
1300
     * (X_1, Y_1) == (X_2, Y_2), so we check for this and do doubling if this
1301
     * happens.
1302
     *
1303
     * We use bitwise operations to avoid potential side-channels introduced by
1304
     * the short-circuiting behaviour of boolean operators.
1305
     *
1306
     * The special case of either point being the point at infinity (z1 and/or
1307
     * z2 are zero), is handled separately later on in this function, so we
1308
     * avoid jumping to point_double here in those special cases.
1309
     *
1310
     * Notice the comment below on the implications of this branching for timing
1311
     * leaks and why it is considered practically irrelevant.
1312
     */
1313
92.9k
    points_equal = (x_equal & y_equal & (~z1_is_zero) & (~z2_is_zero));
1314
1315
92.9k
    if (points_equal) {
1316
        /*
1317
         * This is obviously not constant-time but it will almost-never happen
1318
         * for ECDH / ECDSA. The case where it can happen is during scalar-mult
1319
         * where the intermediate value gets very close to the group order.
1320
         * Since |ossl_ec_GFp_nistp_recode_scalar_bits| produces signed digits
1321
         * for the scalar, it's possible for the intermediate value to be a small
1322
         * negative multiple of the base point, and for the final signed digit
1323
         * to be the same value. We believe that this only occurs for the scalar
1324
         * 1fffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
1325
         * ffffffa51868783bf2f966b7fcc0148f709a5d03bb5c9b8899c47aebb6fb
1326
         * 71e913863f7, in that case the penultimate intermediate is -9G and
1327
         * the final digit is also -9G. Since this only happens for a single
1328
         * scalar, the timing leak is irrelevant. (Any attacker who wanted to
1329
         * check whether a secret scalar was that exact value, can already do
1330
         * so.)
1331
         */
1332
0
        point_double(x3, y3, z3, x1, y1, z1);
1333
0
        return;
1334
0
    }
1335
1336
    /* I = ftmp = (2h)**2 */
1337
92.9k
    felem_assign(ftmp, ftmp4);
1338
92.9k
    felem_scalar64(ftmp, 2);
1339
    /* ftmp[i] < 2^61 */
1340
92.9k
    felem_square(tmp, ftmp);
1341
    /* tmp[i] < 17*2^122 */
1342
92.9k
    felem_reduce(ftmp, tmp);
1343
1344
    /* J = ftmp2 = h * I */
1345
92.9k
    felem_mul(tmp, ftmp4, ftmp);
1346
92.9k
    felem_reduce(ftmp2, tmp);
1347
1348
    /* V = ftmp4 = U1 * I */
1349
92.9k
    felem_mul(tmp, ftmp3, ftmp);
1350
92.9k
    felem_reduce(ftmp4, tmp);
1351
1352
    /* x_out = r**2 - J - 2V */
1353
92.9k
    felem_square(tmp, ftmp5);
1354
    /* tmp[i] < 17*2^122 */
1355
92.9k
    felem_diff_128_64(tmp, ftmp2);
1356
    /* tmp[i] < 17*2^122 + 2^63 */
1357
92.9k
    felem_assign(ftmp3, ftmp4);
1358
92.9k
    felem_scalar64(ftmp4, 2);
1359
    /* ftmp4[i] < 2^61 */
1360
92.9k
    felem_diff_128_64(tmp, ftmp4);
1361
    /* tmp[i] < 17*2^122 + 2^64 */
1362
92.9k
    felem_reduce(x_out, tmp);
1363
1364
    /* y_out = r(V-x_out) - 2 * s1 * J */
1365
92.9k
    felem_diff64(ftmp3, x_out);
1366
    /*
1367
     * ftmp3[i] < 2^60 + 2^60 = 2^61
1368
     */
1369
92.9k
    felem_mul(tmp, ftmp5, ftmp3);
1370
    /* tmp[i] < 17*2^122 */
1371
92.9k
    felem_mul(tmp2, ftmp6, ftmp2);
1372
    /* tmp2[i] < 17*2^120 */
1373
92.9k
    felem_scalar128(tmp2, 2);
1374
    /* tmp2[i] < 17*2^121 */
1375
92.9k
    felem_diff128(tmp, tmp2);
1376
        /*-
1377
         * tmp[i] < 2^127 - 2^69 + 17*2^122
1378
         *        = 2^126 - 2^122 - 2^6 - 2^2 - 1
1379
         *        < 2^127
1380
         */
1381
92.9k
    felem_reduce(y_out, tmp);
1382
1383
92.9k
    copy_conditional(x_out, x2, z1_is_zero);
1384
92.9k
    copy_conditional(x_out, x1, z2_is_zero);
1385
92.9k
    copy_conditional(y_out, y2, z1_is_zero);
1386
92.9k
    copy_conditional(y_out, y1, z2_is_zero);
1387
92.9k
    copy_conditional(z_out, z2, z1_is_zero);
1388
92.9k
    copy_conditional(z_out, z1, z2_is_zero);
1389
92.9k
    felem_assign(x3, x_out);
1390
92.9k
    felem_assign(y3, y_out);
1391
92.9k
    felem_assign(z3, z_out);
1392
92.9k
}
1393
1394
/*-
1395
 * Base point pre computation
1396
 * --------------------------
1397
 *
1398
 * Two different sorts of precomputed tables are used in the following code.
1399
 * Each contain various points on the curve, where each point is three field
1400
 * elements (x, y, z).
1401
 *
1402
 * For the base point table, z is usually 1 (0 for the point at infinity).
1403
 * This table has 16 elements:
1404
 * index | bits    | point
1405
 * ------+---------+------------------------------
1406
 *     0 | 0 0 0 0 | 0G
1407
 *     1 | 0 0 0 1 | 1G
1408
 *     2 | 0 0 1 0 | 2^130G
1409
 *     3 | 0 0 1 1 | (2^130 + 1)G
1410
 *     4 | 0 1 0 0 | 2^260G
1411
 *     5 | 0 1 0 1 | (2^260 + 1)G
1412
 *     6 | 0 1 1 0 | (2^260 + 2^130)G
1413
 *     7 | 0 1 1 1 | (2^260 + 2^130 + 1)G
1414
 *     8 | 1 0 0 0 | 2^390G
1415
 *     9 | 1 0 0 1 | (2^390 + 1)G
1416
 *    10 | 1 0 1 0 | (2^390 + 2^130)G
1417
 *    11 | 1 0 1 1 | (2^390 + 2^130 + 1)G
1418
 *    12 | 1 1 0 0 | (2^390 + 2^260)G
1419
 *    13 | 1 1 0 1 | (2^390 + 2^260 + 1)G
1420
 *    14 | 1 1 1 0 | (2^390 + 2^260 + 2^130)G
1421
 *    15 | 1 1 1 1 | (2^390 + 2^260 + 2^130 + 1)G
1422
 *
1423
 * The reason for this is so that we can clock bits into four different
1424
 * locations when doing simple scalar multiplies against the base point.
1425
 *
1426
 * Tables for other points have table[i] = iG for i in 0 .. 16. */
1427
1428
/* gmul is the table of precomputed base points */
1429
static const felem gmul[16][3] = {
1430
{{0, 0, 0, 0, 0, 0, 0, 0, 0},
1431
 {0, 0, 0, 0, 0, 0, 0, 0, 0},
1432
 {0, 0, 0, 0, 0, 0, 0, 0, 0}},
1433
{{0x017e7e31c2e5bd66, 0x022cf0615a90a6fe, 0x00127a2ffa8de334,
1434
  0x01dfbf9d64a3f877, 0x006b4d3dbaa14b5e, 0x014fed487e0a2bd8,
1435
  0x015b4429c6481390, 0x03a73678fb2d988e, 0x00c6858e06b70404},
1436
 {0x00be94769fd16650, 0x031c21a89cb09022, 0x039013fad0761353,
1437
  0x02657bd099031542, 0x03273e662c97ee72, 0x01e6d11a05ebef45,
1438
  0x03d1bd998f544495, 0x03001172297ed0b1, 0x011839296a789a3b},
1439
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1440
{{0x0373faacbc875bae, 0x00f325023721c671, 0x00f666fd3dbde5ad,
1441
  0x01a6932363f88ea7, 0x01fc6d9e13f9c47b, 0x03bcbffc2bbf734e,
1442
  0x013ee3c3647f3a92, 0x029409fefe75d07d, 0x00ef9199963d85e5},
1443
 {0x011173743ad5b178, 0x02499c7c21bf7d46, 0x035beaeabb8b1a58,
1444
  0x00f989c4752ea0a3, 0x0101e1de48a9c1a3, 0x01a20076be28ba6c,
1445
  0x02f8052e5eb2de95, 0x01bfe8f82dea117c, 0x0160074d3c36ddb7},
1446
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1447
{{0x012f3fc373393b3b, 0x03d3d6172f1419fa, 0x02adc943c0b86873,
1448
  0x00d475584177952b, 0x012a4d1673750ee2, 0x00512517a0f13b0c,
1449
  0x02b184671a7b1734, 0x0315b84236f1a50a, 0x00a4afc472edbdb9},
1450
 {0x00152a7077f385c4, 0x03044007d8d1c2ee, 0x0065829d61d52b52,
1451
  0x00494ff6b6631d0d, 0x00a11d94d5f06bcf, 0x02d2f89474d9282e,
1452
  0x0241c5727c06eeb9, 0x0386928710fbdb9d, 0x01f883f727b0dfbe},
1453
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1454
{{0x019b0c3c9185544d, 0x006243a37c9d97db, 0x02ee3cbe030a2ad2,
1455
  0x00cfdd946bb51e0d, 0x0271c00932606b91, 0x03f817d1ec68c561,
1456
  0x03f37009806a369c, 0x03c1f30baf184fd5, 0x01091022d6d2f065},
1457
 {0x0292c583514c45ed, 0x0316fca51f9a286c, 0x00300af507c1489a,
1458
  0x0295f69008298cf1, 0x02c0ed8274943d7b, 0x016509b9b47a431e,
1459
  0x02bc9de9634868ce, 0x005b34929bffcb09, 0x000c1a0121681524},
1460
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1461
{{0x0286abc0292fb9f2, 0x02665eee9805b3f7, 0x01ed7455f17f26d6,
1462
  0x0346355b83175d13, 0x006284944cd0a097, 0x0191895bcdec5e51,
1463
  0x02e288370afda7d9, 0x03b22312bfefa67a, 0x01d104d3fc0613fe},
1464
 {0x0092421a12f7e47f, 0x0077a83fa373c501, 0x03bd25c5f696bd0d,
1465
  0x035c41e4d5459761, 0x01ca0d1742b24f53, 0x00aaab27863a509c,
1466
  0x018b6de47df73917, 0x025c0b771705cd01, 0x01fd51d566d760a7},
1467
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1468
{{0x01dd92ff6b0d1dbd, 0x039c5e2e8f8afa69, 0x0261ed13242c3b27,
1469
  0x0382c6e67026e6a0, 0x01d60b10be2089f9, 0x03c15f3dce86723f,
1470
  0x03c764a32d2a062d, 0x017307eac0fad056, 0x018207c0b96c5256},
1471
 {0x0196a16d60e13154, 0x03e6ce74c0267030, 0x00ddbf2b4e52a5aa,
1472
  0x012738241bbf31c8, 0x00ebe8dc04685a28, 0x024c2ad6d380d4a2,
1473
  0x035ee062a6e62d0e, 0x0029ed74af7d3a0f, 0x00eef32aec142ebd},
1474
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1475
{{0x00c31ec398993b39, 0x03a9f45bcda68253, 0x00ac733c24c70890,
1476
  0x00872b111401ff01, 0x01d178c23195eafb, 0x03bca2c816b87f74,
1477
  0x0261a9af46fbad7a, 0x0324b2a8dd3d28f9, 0x00918121d8f24e23},
1478
 {0x032bc8c1ca983cd7, 0x00d869dfb08fc8c6, 0x01693cb61fce1516,
1479
  0x012a5ea68f4e88a8, 0x010869cab88d7ae3, 0x009081ad277ceee1,
1480
  0x033a77166d064cdc, 0x03955235a1fb3a95, 0x01251a4a9b25b65e},
1481
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1482
{{0x00148a3a1b27f40b, 0x0123186df1b31fdc, 0x00026e7beaad34ce,
1483
  0x01db446ac1d3dbba, 0x0299c1a33437eaec, 0x024540610183cbb7,
1484
  0x0173bb0e9ce92e46, 0x02b937e43921214b, 0x01ab0436a9bf01b5},
1485
 {0x0383381640d46948, 0x008dacbf0e7f330f, 0x03602122bcc3f318,
1486
  0x01ee596b200620d6, 0x03bd0585fda430b3, 0x014aed77fd123a83,
1487
  0x005ace749e52f742, 0x0390fe041da2b842, 0x0189a8ceb3299242},
1488
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1489
{{0x012a19d6b3282473, 0x00c0915918b423ce, 0x023a954eb94405ae,
1490
  0x00529f692be26158, 0x0289fa1b6fa4b2aa, 0x0198ae4ceea346ef,
1491
  0x0047d8cdfbdedd49, 0x00cc8c8953f0f6b8, 0x001424abbff49203},
1492
 {0x0256732a1115a03a, 0x0351bc38665c6733, 0x03f7b950fb4a6447,
1493
  0x000afffa94c22155, 0x025763d0a4dab540, 0x000511e92d4fc283,
1494
  0x030a7e9eda0ee96c, 0x004c3cd93a28bf0a, 0x017edb3a8719217f},
1495
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1496
{{0x011de5675a88e673, 0x031d7d0f5e567fbe, 0x0016b2062c970ae5,
1497
  0x03f4a2be49d90aa7, 0x03cef0bd13822866, 0x03f0923dcf774a6c,
1498
  0x0284bebc4f322f72, 0x016ab2645302bb2c, 0x01793f95dace0e2a},
1499
 {0x010646e13527a28f, 0x01ca1babd59dc5e7, 0x01afedfd9a5595df,
1500
  0x01f15785212ea6b1, 0x0324e5d64f6ae3f4, 0x02d680f526d00645,
1501
  0x0127920fadf627a7, 0x03b383f75df4f684, 0x0089e0057e783b0a},
1502
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1503
{{0x00f334b9eb3c26c6, 0x0298fdaa98568dce, 0x01c2d24843a82292,
1504
  0x020bcb24fa1b0711, 0x02cbdb3d2b1875e6, 0x0014907598f89422,
1505
  0x03abe3aa43b26664, 0x02cbf47f720bc168, 0x0133b5e73014b79b},
1506
 {0x034aab5dab05779d, 0x00cdc5d71fee9abb, 0x0399f16bd4bd9d30,
1507
  0x03582fa592d82647, 0x02be1cdfb775b0e9, 0x0034f7cea32e94cb,
1508
  0x0335a7f08f56f286, 0x03b707e9565d1c8b, 0x0015c946ea5b614f},
1509
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1510
{{0x024676f6cff72255, 0x00d14625cac96378, 0x00532b6008bc3767,
1511
  0x01fc16721b985322, 0x023355ea1b091668, 0x029de7afdc0317c3,
1512
  0x02fc8a7ca2da037c, 0x02de1217d74a6f30, 0x013f7173175b73bf},
1513
 {0x0344913f441490b5, 0x0200f9e272b61eca, 0x0258a246b1dd55d2,
1514
  0x03753db9ea496f36, 0x025e02937a09c5ef, 0x030cbd3d14012692,
1515
  0x01793a67e70dc72a, 0x03ec1d37048a662e, 0x006550f700c32a8d},
1516
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1517
{{0x00d3f48a347eba27, 0x008e636649b61bd8, 0x00d3b93716778fb3,
1518
  0x004d1915757bd209, 0x019d5311a3da44e0, 0x016d1afcbbe6aade,
1519
  0x0241bf5f73265616, 0x0384672e5d50d39b, 0x005009fee522b684},
1520
 {0x029b4fab064435fe, 0x018868ee095bbb07, 0x01ea3d6936cc92b8,
1521
  0x000608b00f78a2f3, 0x02db911073d1c20f, 0x018205938470100a,
1522
  0x01f1e4964cbe6ff2, 0x021a19a29eed4663, 0x01414485f42afa81},
1523
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1524
{{0x01612b3a17f63e34, 0x03813992885428e6, 0x022b3c215b5a9608,
1525
  0x029b4057e19f2fcb, 0x0384059a587af7e6, 0x02d6400ace6fe610,
1526
  0x029354d896e8e331, 0x00c047ee6dfba65e, 0x0037720542e9d49d},
1527
 {0x02ce9eed7c5e9278, 0x0374ed703e79643b, 0x01316c54c4072006,
1528
  0x005aaa09054b2ee8, 0x002824000c840d57, 0x03d4eba24771ed86,
1529
  0x0189c50aabc3bdae, 0x0338c01541e15510, 0x00466d56e38eed42},
1530
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1531
{{0x007efd8330ad8bd6, 0x02465ed48047710b, 0x0034c6606b215e0c,
1532
  0x016ae30c53cbf839, 0x01fa17bd37161216, 0x018ead4e61ce8ab9,
1533
  0x005482ed5f5dee46, 0x037543755bba1d7f, 0x005e5ac7e70a9d0f},
1534
 {0x0117e1bb2fdcb2a2, 0x03deea36249f40c4, 0x028d09b4a6246cb7,
1535
  0x03524b8855bcf756, 0x023d7d109d5ceb58, 0x0178e43e3223ef9c,
1536
  0x0154536a0c6e966a, 0x037964d1286ee9fe, 0x0199bcd90e125055},
1537
 {1, 0, 0, 0, 0, 0, 0, 0, 0}}
1538
};
1539
1540
/*
1541
 * select_point selects the |idx|th point from a precomputation table and
1542
 * copies it to out.
1543
 */
1544
 /* pre_comp below is of the size provided in |size| */
1545
static void select_point(const limb idx, unsigned int size,
1546
                         const felem pre_comp[][3], felem out[3])
1547
92.6k
{
1548
92.6k
    unsigned i, j;
1549
92.6k
    limb *outlimbs = &out[0][0];
1550
1551
92.6k
    memset(out, 0, sizeof(*out) * 3);
1552
1553
1.59M
    for (i = 0; i < size; i++) {
1554
1.49M
        const limb *inlimbs = &pre_comp[i][0][0];
1555
1.49M
        limb mask = i ^ idx;
1556
1.49M
        mask |= mask >> 4;
1557
1.49M
        mask |= mask >> 2;
1558
1.49M
        mask |= mask >> 1;
1559
1.49M
        mask &= 1;
1560
1.49M
        mask--;
1561
41.9M
        for (j = 0; j < NLIMBS * 3; j++)
1562
40.4M
            outlimbs[j] |= inlimbs[j] & mask;
1563
1.49M
    }
1564
92.6k
}
1565
1566
/* get_bit returns the |i|th bit in |in| */
1567
static char get_bit(const felem_bytearray in, int i)
1568
399k
{
1569
399k
    if (i < 0)
1570
145
        return 0;
1571
399k
    return (in[i >> 3] >> (i & 7)) & 1;
1572
399k
}
1573
1574
/*
1575
 * Interleaved point multiplication using precomputed point multiples: The
1576
 * small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[], the scalars
1577
 * in scalars[]. If g_scalar is non-NULL, we also add this multiple of the
1578
 * generator, using certain (large) precomputed multiples in g_pre_comp.
1579
 * Output point (X, Y, Z) is stored in x_out, y_out, z_out
1580
 */
1581
static void batch_mul(felem x_out, felem y_out, felem z_out,
1582
                      const felem_bytearray scalars[],
1583
                      const unsigned num_points, const u8 *g_scalar,
1584
                      const int mixed, const felem pre_comp[][17][3],
1585
                      const felem g_pre_comp[16][3])
1586
714
{
1587
714
    int i, skip;
1588
714
    unsigned num, gen_mul = (g_scalar != NULL);
1589
714
    felem nq[3], tmp[4];
1590
714
    limb bits;
1591
714
    u8 sign, digit;
1592
1593
    /* set nq to the point at infinity */
1594
714
    memset(nq, 0, sizeof(nq));
1595
1596
    /*
1597
     * Loop over all scalars msb-to-lsb, interleaving additions of multiples
1598
     * of the generator (last quarter of rounds) and additions of other
1599
     * points multiples (every 5th round).
1600
     */
1601
714
    skip = 1;                   /* save two point operations in the first
1602
                                 * round */
1603
150k
    for (i = (num_points ? 520 : 130); i >= 0; --i) {
1604
        /* double */
1605
150k
        if (!skip)
1606
149k
            point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
1607
1608
        /* add multiples of the generator */
1609
150k
        if (gen_mul && (i <= 130)) {
1610
77.4k
            bits = get_bit(g_scalar, i + 390) << 3;
1611
77.4k
            if (i < 130) {
1612
76.8k
                bits |= get_bit(g_scalar, i + 260) << 2;
1613
76.8k
                bits |= get_bit(g_scalar, i + 130) << 1;
1614
76.8k
                bits |= get_bit(g_scalar, i);
1615
76.8k
            }
1616
            /* select the point to add, in constant time */
1617
77.4k
            select_point(bits, 16, g_pre_comp, tmp);
1618
77.4k
            if (!skip) {
1619
                /* The 1 argument below is for "mixed" */
1620
76.8k
                point_add(nq[0], nq[1], nq[2],
1621
76.8k
                          nq[0], nq[1], nq[2], 1, tmp[0], tmp[1], tmp[2]);
1622
76.8k
            } else {
1623
569
                memcpy(nq, tmp, 3 * sizeof(felem));
1624
569
                skip = 0;
1625
569
            }
1626
77.4k
        }
1627
1628
        /* do other additions every 5 doublings */
1629
150k
        if (num_points && (i % 5 == 0)) {
1630
            /* loop over all scalars */
1631
30.4k
            for (num = 0; num < num_points; ++num) {
1632
15.2k
                bits = get_bit(scalars[num], i + 4) << 5;
1633
15.2k
                bits |= get_bit(scalars[num], i + 3) << 4;
1634
15.2k
                bits |= get_bit(scalars[num], i + 2) << 3;
1635
15.2k
                bits |= get_bit(scalars[num], i + 1) << 2;
1636
15.2k
                bits |= get_bit(scalars[num], i) << 1;
1637
15.2k
                bits |= get_bit(scalars[num], i - 1);
1638
15.2k
                ossl_ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
1639
1640
                /*
1641
                 * select the point to add or subtract, in constant time
1642
                 */
1643
15.2k
                select_point(digit, 17, pre_comp[num], tmp);
1644
15.2k
                felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the negative
1645
                                            * point */
1646
15.2k
                copy_conditional(tmp[1], tmp[3], (-(limb) sign));
1647
1648
15.2k
                if (!skip) {
1649
15.0k
                    point_add(nq[0], nq[1], nq[2],
1650
15.0k
                              nq[0], nq[1], nq[2],
1651
15.0k
                              mixed, tmp[0], tmp[1], tmp[2]);
1652
15.0k
                } else {
1653
145
                    memcpy(nq, tmp, 3 * sizeof(felem));
1654
145
                    skip = 0;
1655
145
                }
1656
15.2k
            }
1657
15.2k
        }
1658
150k
    }
1659
714
    felem_assign(x_out, nq[0]);
1660
714
    felem_assign(y_out, nq[1]);
1661
714
    felem_assign(z_out, nq[2]);
1662
714
}
1663
1664
/* Precomputation for the group generator. */
1665
struct nistp521_pre_comp_st {
1666
    felem g_pre_comp[16][3];
1667
    CRYPTO_REF_COUNT references;
1668
    CRYPTO_RWLOCK *lock;
1669
};
1670
1671
const EC_METHOD *EC_GFp_nistp521_method(void)
1672
11.8k
{
1673
11.8k
    static const EC_METHOD ret = {
1674
11.8k
        EC_FLAGS_DEFAULT_OCT,
1675
11.8k
        NID_X9_62_prime_field,
1676
11.8k
        ossl_ec_GFp_nistp521_group_init,
1677
11.8k
        ossl_ec_GFp_simple_group_finish,
1678
11.8k
        ossl_ec_GFp_simple_group_clear_finish,
1679
11.8k
        ossl_ec_GFp_nist_group_copy,
1680
11.8k
        ossl_ec_GFp_nistp521_group_set_curve,
1681
11.8k
        ossl_ec_GFp_simple_group_get_curve,
1682
11.8k
        ossl_ec_GFp_simple_group_get_degree,
1683
11.8k
        ossl_ec_group_simple_order_bits,
1684
11.8k
        ossl_ec_GFp_simple_group_check_discriminant,
1685
11.8k
        ossl_ec_GFp_simple_point_init,
1686
11.8k
        ossl_ec_GFp_simple_point_finish,
1687
11.8k
        ossl_ec_GFp_simple_point_clear_finish,
1688
11.8k
        ossl_ec_GFp_simple_point_copy,
1689
11.8k
        ossl_ec_GFp_simple_point_set_to_infinity,
1690
11.8k
        ossl_ec_GFp_simple_point_set_affine_coordinates,
1691
11.8k
        ossl_ec_GFp_nistp521_point_get_affine_coordinates,
1692
11.8k
        0 /* point_set_compressed_coordinates */ ,
1693
11.8k
        0 /* point2oct */ ,
1694
11.8k
        0 /* oct2point */ ,
1695
11.8k
        ossl_ec_GFp_simple_add,
1696
11.8k
        ossl_ec_GFp_simple_dbl,
1697
11.8k
        ossl_ec_GFp_simple_invert,
1698
11.8k
        ossl_ec_GFp_simple_is_at_infinity,
1699
11.8k
        ossl_ec_GFp_simple_is_on_curve,
1700
11.8k
        ossl_ec_GFp_simple_cmp,
1701
11.8k
        ossl_ec_GFp_simple_make_affine,
1702
11.8k
        ossl_ec_GFp_simple_points_make_affine,
1703
11.8k
        ossl_ec_GFp_nistp521_points_mul,
1704
11.8k
        ossl_ec_GFp_nistp521_precompute_mult,
1705
11.8k
        ossl_ec_GFp_nistp521_have_precompute_mult,
1706
11.8k
        ossl_ec_GFp_nist_field_mul,
1707
11.8k
        ossl_ec_GFp_nist_field_sqr,
1708
11.8k
        0 /* field_div */ ,
1709
11.8k
        ossl_ec_GFp_simple_field_inv,
1710
11.8k
        0 /* field_encode */ ,
1711
11.8k
        0 /* field_decode */ ,
1712
11.8k
        0,                      /* field_set_to_one */
1713
11.8k
        ossl_ec_key_simple_priv2oct,
1714
11.8k
        ossl_ec_key_simple_oct2priv,
1715
11.8k
        0, /* set private */
1716
11.8k
        ossl_ec_key_simple_generate_key,
1717
11.8k
        ossl_ec_key_simple_check_key,
1718
11.8k
        ossl_ec_key_simple_generate_public_key,
1719
11.8k
        0, /* keycopy */
1720
11.8k
        0, /* keyfinish */
1721
11.8k
        ossl_ecdh_simple_compute_key,
1722
11.8k
        ossl_ecdsa_simple_sign_setup,
1723
11.8k
        ossl_ecdsa_simple_sign_sig,
1724
11.8k
        ossl_ecdsa_simple_verify_sig,
1725
11.8k
        0, /* field_inverse_mod_ord */
1726
11.8k
        0, /* blind_coordinates */
1727
11.8k
        0, /* ladder_pre */
1728
11.8k
        0, /* ladder_step */
1729
11.8k
        0  /* ladder_post */
1730
11.8k
    };
1731
1732
11.8k
    return &ret;
1733
11.8k
}
1734
1735
/******************************************************************************/
1736
/*
1737
 * FUNCTIONS TO MANAGE PRECOMPUTATION
1738
 */
1739
1740
static NISTP521_PRE_COMP *nistp521_pre_comp_new(void)
1741
0
{
1742
0
    NISTP521_PRE_COMP *ret = OPENSSL_zalloc(sizeof(*ret));
1743
1744
0
    if (ret == NULL) {
1745
0
        ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
1746
0
        return ret;
1747
0
    }
1748
1749
0
    ret->references = 1;
1750
1751
0
    ret->lock = CRYPTO_THREAD_lock_new();
1752
0
    if (ret->lock == NULL) {
1753
0
        ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
1754
0
        OPENSSL_free(ret);
1755
0
        return NULL;
1756
0
    }
1757
0
    return ret;
1758
0
}
1759
1760
NISTP521_PRE_COMP *EC_nistp521_pre_comp_dup(NISTP521_PRE_COMP *p)
1761
0
{
1762
0
    int i;
1763
0
    if (p != NULL)
1764
0
        CRYPTO_UP_REF(&p->references, &i, p->lock);
1765
0
    return p;
1766
0
}
1767
1768
void EC_nistp521_pre_comp_free(NISTP521_PRE_COMP *p)
1769
0
{
1770
0
    int i;
1771
1772
0
    if (p == NULL)
1773
0
        return;
1774
1775
0
    CRYPTO_DOWN_REF(&p->references, &i, p->lock);
1776
0
    REF_PRINT_COUNT("EC_nistp521", p);
1777
0
    if (i > 0)
1778
0
        return;
1779
0
    REF_ASSERT_ISNT(i < 0);
1780
1781
0
    CRYPTO_THREAD_lock_free(p->lock);
1782
0
    OPENSSL_free(p);
1783
0
}
1784
1785
/******************************************************************************/
1786
/*
1787
 * OPENSSL EC_METHOD FUNCTIONS
1788
 */
1789
1790
int ossl_ec_GFp_nistp521_group_init(EC_GROUP *group)
1791
23.5k
{
1792
23.5k
    int ret;
1793
23.5k
    ret = ossl_ec_GFp_simple_group_init(group);
1794
23.5k
    group->a_is_minus3 = 1;
1795
23.5k
    return ret;
1796
23.5k
}
1797
1798
int ossl_ec_GFp_nistp521_group_set_curve(EC_GROUP *group, const BIGNUM *p,
1799
                                         const BIGNUM *a, const BIGNUM *b,
1800
                                         BN_CTX *ctx)
1801
11.8k
{
1802
11.8k
    int ret = 0;
1803
11.8k
    BIGNUM *curve_p, *curve_a, *curve_b;
1804
11.8k
#ifndef FIPS_MODULE
1805
11.8k
    BN_CTX *new_ctx = NULL;
1806
1807
11.8k
    if (ctx == NULL)
1808
0
        ctx = new_ctx = BN_CTX_new();
1809
11.8k
#endif
1810
11.8k
    if (ctx == NULL)
1811
0
        return 0;
1812
1813
11.8k
    BN_CTX_start(ctx);
1814
11.8k
    curve_p = BN_CTX_get(ctx);
1815
11.8k
    curve_a = BN_CTX_get(ctx);
1816
11.8k
    curve_b = BN_CTX_get(ctx);
1817
11.8k
    if (curve_b == NULL)
1818
0
        goto err;
1819
11.8k
    BN_bin2bn(nistp521_curve_params[0], sizeof(felem_bytearray), curve_p);
1820
11.8k
    BN_bin2bn(nistp521_curve_params[1], sizeof(felem_bytearray), curve_a);
1821
11.8k
    BN_bin2bn(nistp521_curve_params[2], sizeof(felem_bytearray), curve_b);
1822
11.8k
    if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || (BN_cmp(curve_b, b))) {
1823
0
        ERR_raise(ERR_LIB_EC, EC_R_WRONG_CURVE_PARAMETERS);
1824
0
        goto err;
1825
0
    }
1826
11.8k
    group->field_mod_func = BN_nist_mod_521;
1827
11.8k
    ret = ossl_ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
1828
11.8k
 err:
1829
11.8k
    BN_CTX_end(ctx);
1830
11.8k
#ifndef FIPS_MODULE
1831
11.8k
    BN_CTX_free(new_ctx);
1832
11.8k
#endif
1833
11.8k
    return ret;
1834
11.8k
}
1835
1836
/*
1837
 * Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') =
1838
 * (X/Z^2, Y/Z^3)
1839
 */
1840
int ossl_ec_GFp_nistp521_point_get_affine_coordinates(const EC_GROUP *group,
1841
                                                      const EC_POINT *point,
1842
                                                      BIGNUM *x, BIGNUM *y,
1843
                                                      BN_CTX *ctx)
1844
765
{
1845
765
    felem z1, z2, x_in, y_in, x_out, y_out;
1846
765
    largefelem tmp;
1847
1848
765
    if (EC_POINT_is_at_infinity(group, point)) {
1849
0
        ERR_raise(ERR_LIB_EC, EC_R_POINT_AT_INFINITY);
1850
0
        return 0;
1851
0
    }
1852
765
    if ((!BN_to_felem(x_in, point->X)) || (!BN_to_felem(y_in, point->Y)) ||
1853
765
        (!BN_to_felem(z1, point->Z)))
1854
0
        return 0;
1855
765
    felem_inv(z2, z1);
1856
765
    felem_square(tmp, z2);
1857
765
    felem_reduce(z1, tmp);
1858
765
    felem_mul(tmp, x_in, z1);
1859
765
    felem_reduce(x_in, tmp);
1860
765
    felem_contract(x_out, x_in);
1861
765
    if (x != NULL) {
1862
765
        if (!felem_to_BN(x, x_out)) {
1863
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1864
0
            return 0;
1865
0
        }
1866
765
    }
1867
765
    felem_mul(tmp, z1, z2);
1868
765
    felem_reduce(z1, tmp);
1869
765
    felem_mul(tmp, y_in, z1);
1870
765
    felem_reduce(y_in, tmp);
1871
765
    felem_contract(y_out, y_in);
1872
765
    if (y != NULL) {
1873
702
        if (!felem_to_BN(y, y_out)) {
1874
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1875
0
            return 0;
1876
0
        }
1877
702
    }
1878
765
    return 1;
1879
765
}
1880
1881
/* points below is of size |num|, and tmp_felems is of size |num+1/ */
1882
static void make_points_affine(size_t num, felem points[][3],
1883
                               felem tmp_felems[])
1884
0
{
1885
    /*
1886
     * Runs in constant time, unless an input is the point at infinity (which
1887
     * normally shouldn't happen).
1888
     */
1889
0
    ossl_ec_GFp_nistp_points_make_affine_internal(num,
1890
0
                                                  points,
1891
0
                                                  sizeof(felem),
1892
0
                                                  tmp_felems,
1893
0
                                                  (void (*)(void *))felem_one,
1894
0
                                                  felem_is_zero_int,
1895
0
                                                  (void (*)(void *, const void *))
1896
0
                                                  felem_assign,
1897
0
                                                  (void (*)(void *, const void *))
1898
0
                                                  felem_square_reduce, (void (*)
1899
0
                                                                        (void *,
1900
0
                                                                         const void
1901
0
                                                                         *,
1902
0
                                                                         const void
1903
0
                                                                         *))
1904
0
                                                  felem_mul_reduce,
1905
0
                                                  (void (*)(void *, const void *))
1906
0
                                                  felem_inv,
1907
0
                                                  (void (*)(void *, const void *))
1908
0
                                                  felem_contract);
1909
0
}
1910
1911
/*
1912
 * Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL
1913
 * values Result is stored in r (r can equal one of the inputs).
1914
 */
1915
int ossl_ec_GFp_nistp521_points_mul(const EC_GROUP *group, EC_POINT *r,
1916
                                    const BIGNUM *scalar, size_t num,
1917
                                    const EC_POINT *points[],
1918
                                    const BIGNUM *scalars[], BN_CTX *ctx)
1919
714
{
1920
714
    int ret = 0;
1921
714
    int j;
1922
714
    int mixed = 0;
1923
714
    BIGNUM *x, *y, *z, *tmp_scalar;
1924
714
    felem_bytearray g_secret;
1925
714
    felem_bytearray *secrets = NULL;
1926
714
    felem (*pre_comp)[17][3] = NULL;
1927
714
    felem *tmp_felems = NULL;
1928
714
    unsigned i;
1929
714
    int num_bytes;
1930
714
    int have_pre_comp = 0;
1931
714
    size_t num_points = num;
1932
714
    felem x_in, y_in, z_in, x_out, y_out, z_out;
1933
714
    NISTP521_PRE_COMP *pre = NULL;
1934
714
    felem(*g_pre_comp)[3] = NULL;
1935
714
    EC_POINT *generator = NULL;
1936
714
    const EC_POINT *p = NULL;
1937
714
    const BIGNUM *p_scalar = NULL;
1938
1939
714
    BN_CTX_start(ctx);
1940
714
    x = BN_CTX_get(ctx);
1941
714
    y = BN_CTX_get(ctx);
1942
714
    z = BN_CTX_get(ctx);
1943
714
    tmp_scalar = BN_CTX_get(ctx);
1944
714
    if (tmp_scalar == NULL)
1945
0
        goto err;
1946
1947
714
    if (scalar != NULL) {
1948
591
        pre = group->pre_comp.nistp521;
1949
591
        if (pre)
1950
            /* we have precomputation, try to use it */
1951
0
            g_pre_comp = &pre->g_pre_comp[0];
1952
591
        else
1953
            /* try to use the standard precomputation */
1954
591
            g_pre_comp = (felem(*)[3]) gmul;
1955
591
        generator = EC_POINT_new(group);
1956
591
        if (generator == NULL)
1957
0
            goto err;
1958
        /* get the generator from precomputation */
1959
591
        if (!felem_to_BN(x, g_pre_comp[1][0]) ||
1960
591
            !felem_to_BN(y, g_pre_comp[1][1]) ||
1961
591
            !felem_to_BN(z, g_pre_comp[1][2])) {
1962
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1963
0
            goto err;
1964
0
        }
1965
591
        if (!ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group,
1966
591
                                                                generator,
1967
591
                                                                x, y, z, ctx))
1968
0
            goto err;
1969
591
        if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
1970
            /* precomputation matches generator */
1971
591
            have_pre_comp = 1;
1972
0
        else
1973
            /*
1974
             * we don't have valid precomputation: treat the generator as a
1975
             * random point
1976
             */
1977
0
            num_points++;
1978
591
    }
1979
1980
714
    if (num_points > 0) {
1981
145
        if (num_points >= 2) {
1982
            /*
1983
             * unless we precompute multiples for just one point, converting
1984
             * those into affine form is time well spent
1985
             */
1986
0
            mixed = 1;
1987
0
        }
1988
145
        secrets = OPENSSL_zalloc(sizeof(*secrets) * num_points);
1989
145
        pre_comp = OPENSSL_zalloc(sizeof(*pre_comp) * num_points);
1990
145
        if (mixed)
1991
0
            tmp_felems =
1992
0
                OPENSSL_malloc(sizeof(*tmp_felems) * (num_points * 17 + 1));
1993
145
        if ((secrets == NULL) || (pre_comp == NULL)
1994
145
            || (mixed && (tmp_felems == NULL))) {
1995
0
            ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
1996
0
            goto err;
1997
0
        }
1998
1999
        /*
2000
         * we treat NULL scalars as 0, and NULL points as points at infinity,
2001
         * i.e., they contribute nothing to the linear combination
2002
         */
2003
290
        for (i = 0; i < num_points; ++i) {
2004
145
            if (i == num) {
2005
                /*
2006
                 * we didn't have a valid precomputation, so we pick the
2007
                 * generator
2008
                 */
2009
0
                p = EC_GROUP_get0_generator(group);
2010
0
                p_scalar = scalar;
2011
145
            } else {
2012
                /* the i^th point */
2013
145
                p = points[i];
2014
145
                p_scalar = scalars[i];
2015
145
            }
2016
145
            if ((p_scalar != NULL) && (p != NULL)) {
2017
                /* reduce scalar to 0 <= scalar < 2^521 */
2018
145
                if ((BN_num_bits(p_scalar) > 521)
2019
145
                    || (BN_is_negative(p_scalar))) {
2020
                    /*
2021
                     * this is an unusual input, and we don't guarantee
2022
                     * constant-timeness
2023
                     */
2024
0
                    if (!BN_nnmod(tmp_scalar, p_scalar, group->order, ctx)) {
2025
0
                        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
2026
0
                        goto err;
2027
0
                    }
2028
0
                    num_bytes = BN_bn2lebinpad(tmp_scalar,
2029
0
                                               secrets[i], sizeof(secrets[i]));
2030
145
                } else {
2031
145
                    num_bytes = BN_bn2lebinpad(p_scalar,
2032
145
                                               secrets[i], sizeof(secrets[i]));
2033
145
                }
2034
145
                if (num_bytes < 0) {
2035
0
                    ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
2036
0
                    goto err;
2037
0
                }
2038
                /* precompute multiples */
2039
145
                if ((!BN_to_felem(x_out, p->X)) ||
2040
145
                    (!BN_to_felem(y_out, p->Y)) ||
2041
145
                    (!BN_to_felem(z_out, p->Z)))
2042
0
                    goto err;
2043
145
                memcpy(pre_comp[i][1][0], x_out, sizeof(felem));
2044
145
                memcpy(pre_comp[i][1][1], y_out, sizeof(felem));
2045
145
                memcpy(pre_comp[i][1][2], z_out, sizeof(felem));
2046
2.32k
                for (j = 2; j <= 16; ++j) {
2047
2.17k
                    if (j & 1) {
2048
1.01k
                        point_add(pre_comp[i][j][0], pre_comp[i][j][1],
2049
1.01k
                                  pre_comp[i][j][2], pre_comp[i][1][0],
2050
1.01k
                                  pre_comp[i][1][1], pre_comp[i][1][2], 0,
2051
1.01k
                                  pre_comp[i][j - 1][0],
2052
1.01k
                                  pre_comp[i][j - 1][1],
2053
1.01k
                                  pre_comp[i][j - 1][2]);
2054
1.16k
                    } else {
2055
1.16k
                        point_double(pre_comp[i][j][0], pre_comp[i][j][1],
2056
1.16k
                                     pre_comp[i][j][2], pre_comp[i][j / 2][0],
2057
1.16k
                                     pre_comp[i][j / 2][1],
2058
1.16k
                                     pre_comp[i][j / 2][2]);
2059
1.16k
                    }
2060
2.17k
                }
2061
145
            }
2062
145
        }
2063
145
        if (mixed)
2064
0
            make_points_affine(num_points * 17, pre_comp[0], tmp_felems);
2065
145
    }
2066
2067
    /* the scalar for the generator */
2068
714
    if ((scalar != NULL) && (have_pre_comp)) {
2069
591
        memset(g_secret, 0, sizeof(g_secret));
2070
        /* reduce scalar to 0 <= scalar < 2^521 */
2071
591
        if ((BN_num_bits(scalar) > 521) || (BN_is_negative(scalar))) {
2072
            /*
2073
             * this is an unusual input, and we don't guarantee
2074
             * constant-timeness
2075
             */
2076
31
            if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) {
2077
0
                ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
2078
0
                goto err;
2079
0
            }
2080
31
            num_bytes = BN_bn2lebinpad(tmp_scalar, g_secret, sizeof(g_secret));
2081
560
        } else {
2082
560
            num_bytes = BN_bn2lebinpad(scalar, g_secret, sizeof(g_secret));
2083
560
        }
2084
        /* do the multiplication with generator precomputation */
2085
591
        batch_mul(x_out, y_out, z_out,
2086
591
                  (const felem_bytearray(*))secrets, num_points,
2087
591
                  g_secret,
2088
591
                  mixed, (const felem(*)[17][3])pre_comp,
2089
591
                  (const felem(*)[3])g_pre_comp);
2090
591
    } else {
2091
        /* do the multiplication without generator precomputation */
2092
123
        batch_mul(x_out, y_out, z_out,
2093
123
                  (const felem_bytearray(*))secrets, num_points,
2094
123
                  NULL, mixed, (const felem(*)[17][3])pre_comp, NULL);
2095
123
    }
2096
    /* reduce the output to its unique minimal representation */
2097
714
    felem_contract(x_in, x_out);
2098
714
    felem_contract(y_in, y_out);
2099
714
    felem_contract(z_in, z_out);
2100
714
    if ((!felem_to_BN(x, x_in)) || (!felem_to_BN(y, y_in)) ||
2101
714
        (!felem_to_BN(z, z_in))) {
2102
0
        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
2103
0
        goto err;
2104
0
    }
2105
714
    ret = ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group, r, x, y, z,
2106
714
                                                             ctx);
2107
2108
714
 err:
2109
714
    BN_CTX_end(ctx);
2110
714
    EC_POINT_free(generator);
2111
714
    OPENSSL_free(secrets);
2112
714
    OPENSSL_free(pre_comp);
2113
714
    OPENSSL_free(tmp_felems);
2114
714
    return ret;
2115
714
}
2116
2117
int ossl_ec_GFp_nistp521_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
2118
0
{
2119
0
    int ret = 0;
2120
0
    NISTP521_PRE_COMP *pre = NULL;
2121
0
    int i, j;
2122
0
    BIGNUM *x, *y;
2123
0
    EC_POINT *generator = NULL;
2124
0
    felem tmp_felems[16];
2125
0
#ifndef FIPS_MODULE
2126
0
    BN_CTX *new_ctx = NULL;
2127
0
#endif
2128
2129
    /* throw away old precomputation */
2130
0
    EC_pre_comp_free(group);
2131
2132
0
#ifndef FIPS_MODULE
2133
0
    if (ctx == NULL)
2134
0
        ctx = new_ctx = BN_CTX_new();
2135
0
#endif
2136
0
    if (ctx == NULL)
2137
0
        return 0;
2138
2139
0
    BN_CTX_start(ctx);
2140
0
    x = BN_CTX_get(ctx);
2141
0
    y = BN_CTX_get(ctx);
2142
0
    if (y == NULL)
2143
0
        goto err;
2144
    /* get the generator */
2145
0
    if (group->generator == NULL)
2146
0
        goto err;
2147
0
    generator = EC_POINT_new(group);
2148
0
    if (generator == NULL)
2149
0
        goto err;
2150
0
    BN_bin2bn(nistp521_curve_params[3], sizeof(felem_bytearray), x);
2151
0
    BN_bin2bn(nistp521_curve_params[4], sizeof(felem_bytearray), y);
2152
0
    if (!EC_POINT_set_affine_coordinates(group, generator, x, y, ctx))
2153
0
        goto err;
2154
0
    if ((pre = nistp521_pre_comp_new()) == NULL)
2155
0
        goto err;
2156
    /*
2157
     * if the generator is the standard one, use built-in precomputation
2158
     */
2159
0
    if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) {
2160
0
        memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp));
2161
0
        goto done;
2162
0
    }
2163
0
    if ((!BN_to_felem(pre->g_pre_comp[1][0], group->generator->X)) ||
2164
0
        (!BN_to_felem(pre->g_pre_comp[1][1], group->generator->Y)) ||
2165
0
        (!BN_to_felem(pre->g_pre_comp[1][2], group->generator->Z)))
2166
0
        goto err;
2167
    /* compute 2^130*G, 2^260*G, 2^390*G */
2168
0
    for (i = 1; i <= 4; i <<= 1) {
2169
0
        point_double(pre->g_pre_comp[2 * i][0], pre->g_pre_comp[2 * i][1],
2170
0
                     pre->g_pre_comp[2 * i][2], pre->g_pre_comp[i][0],
2171
0
                     pre->g_pre_comp[i][1], pre->g_pre_comp[i][2]);
2172
0
        for (j = 0; j < 129; ++j) {
2173
0
            point_double(pre->g_pre_comp[2 * i][0],
2174
0
                         pre->g_pre_comp[2 * i][1],
2175
0
                         pre->g_pre_comp[2 * i][2],
2176
0
                         pre->g_pre_comp[2 * i][0],
2177
0
                         pre->g_pre_comp[2 * i][1],
2178
0
                         pre->g_pre_comp[2 * i][2]);
2179
0
        }
2180
0
    }
2181
    /* g_pre_comp[0] is the point at infinity */
2182
0
    memset(pre->g_pre_comp[0], 0, sizeof(pre->g_pre_comp[0]));
2183
    /* the remaining multiples */
2184
    /* 2^130*G + 2^260*G */
2185
0
    point_add(pre->g_pre_comp[6][0], pre->g_pre_comp[6][1],
2186
0
              pre->g_pre_comp[6][2], pre->g_pre_comp[4][0],
2187
0
              pre->g_pre_comp[4][1], pre->g_pre_comp[4][2],
2188
0
              0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
2189
0
              pre->g_pre_comp[2][2]);
2190
    /* 2^130*G + 2^390*G */
2191
0
    point_add(pre->g_pre_comp[10][0], pre->g_pre_comp[10][1],
2192
0
              pre->g_pre_comp[10][2], pre->g_pre_comp[8][0],
2193
0
              pre->g_pre_comp[8][1], pre->g_pre_comp[8][2],
2194
0
              0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
2195
0
              pre->g_pre_comp[2][2]);
2196
    /* 2^260*G + 2^390*G */
2197
0
    point_add(pre->g_pre_comp[12][0], pre->g_pre_comp[12][1],
2198
0
              pre->g_pre_comp[12][2], pre->g_pre_comp[8][0],
2199
0
              pre->g_pre_comp[8][1], pre->g_pre_comp[8][2],
2200
0
              0, pre->g_pre_comp[4][0], pre->g_pre_comp[4][1],
2201
0
              pre->g_pre_comp[4][2]);
2202
    /* 2^130*G + 2^260*G + 2^390*G */
2203
0
    point_add(pre->g_pre_comp[14][0], pre->g_pre_comp[14][1],
2204
0
              pre->g_pre_comp[14][2], pre->g_pre_comp[12][0],
2205
0
              pre->g_pre_comp[12][1], pre->g_pre_comp[12][2],
2206
0
              0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
2207
0
              pre->g_pre_comp[2][2]);
2208
0
    for (i = 1; i < 8; ++i) {
2209
        /* odd multiples: add G */
2210
0
        point_add(pre->g_pre_comp[2 * i + 1][0],
2211
0
                  pre->g_pre_comp[2 * i + 1][1],
2212
0
                  pre->g_pre_comp[2 * i + 1][2], pre->g_pre_comp[2 * i][0],
2213
0
                  pre->g_pre_comp[2 * i][1], pre->g_pre_comp[2 * i][2], 0,
2214
0
                  pre->g_pre_comp[1][0], pre->g_pre_comp[1][1],
2215
0
                  pre->g_pre_comp[1][2]);
2216
0
    }
2217
0
    make_points_affine(15, &(pre->g_pre_comp[1]), tmp_felems);
2218
2219
0
 done:
2220
0
    SETPRECOMP(group, nistp521, pre);
2221
0
    ret = 1;
2222
0
    pre = NULL;
2223
0
 err:
2224
0
    BN_CTX_end(ctx);
2225
0
    EC_POINT_free(generator);
2226
0
#ifndef FIPS_MODULE
2227
0
    BN_CTX_free(new_ctx);
2228
0
#endif
2229
0
    EC_nistp521_pre_comp_free(pre);
2230
0
    return ret;
2231
0
}
2232
2233
int ossl_ec_GFp_nistp521_have_precompute_mult(const EC_GROUP *group)
2234
0
{
2235
0
    return HAVEPRECOMP(group, nistp521);
2236
0
}