Coverage Report

Created: 2024-07-27 06:39

/src/openssl31/providers/implementations/kdfs/scrypt.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 2017-2022 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
#include <stdlib.h>
11
#include <stdarg.h>
12
#include <string.h>
13
#include <openssl/evp.h>
14
#include <openssl/kdf.h>
15
#include <openssl/err.h>
16
#include <openssl/core_names.h>
17
#include <openssl/proverr.h>
18
#include "crypto/evp.h"
19
#include "internal/numbers.h"
20
#include "prov/implementations.h"
21
#include "prov/provider_ctx.h"
22
#include "prov/providercommon.h"
23
#include "prov/provider_util.h"
24
25
#ifndef OPENSSL_NO_SCRYPT
26
27
static OSSL_FUNC_kdf_newctx_fn kdf_scrypt_new;
28
static OSSL_FUNC_kdf_dupctx_fn kdf_scrypt_dup;
29
static OSSL_FUNC_kdf_freectx_fn kdf_scrypt_free;
30
static OSSL_FUNC_kdf_reset_fn kdf_scrypt_reset;
31
static OSSL_FUNC_kdf_derive_fn kdf_scrypt_derive;
32
static OSSL_FUNC_kdf_settable_ctx_params_fn kdf_scrypt_settable_ctx_params;
33
static OSSL_FUNC_kdf_set_ctx_params_fn kdf_scrypt_set_ctx_params;
34
static OSSL_FUNC_kdf_gettable_ctx_params_fn kdf_scrypt_gettable_ctx_params;
35
static OSSL_FUNC_kdf_get_ctx_params_fn kdf_scrypt_get_ctx_params;
36
37
static int scrypt_alg(const char *pass, size_t passlen,
38
                      const unsigned char *salt, size_t saltlen,
39
                      uint64_t N, uint64_t r, uint64_t p, uint64_t maxmem,
40
                      unsigned char *key, size_t keylen, EVP_MD *sha256,
41
                      OSSL_LIB_CTX *libctx, const char *propq);
42
43
typedef struct {
44
    OSSL_LIB_CTX *libctx;
45
    char *propq;
46
    unsigned char *pass;
47
    size_t pass_len;
48
    unsigned char *salt;
49
    size_t salt_len;
50
    uint64_t N;
51
    uint64_t r, p;
52
    uint64_t maxmem_bytes;
53
    EVP_MD *sha256;
54
} KDF_SCRYPT;
55
56
static void kdf_scrypt_init(KDF_SCRYPT *ctx);
57
58
static void *kdf_scrypt_new_inner(OSSL_LIB_CTX *libctx)
59
23
{
60
23
    KDF_SCRYPT *ctx;
61
62
23
    if (!ossl_prov_is_running())
63
0
        return NULL;
64
65
23
    ctx = OPENSSL_zalloc(sizeof(*ctx));
66
23
    if (ctx == NULL) {
67
0
        ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE);
68
0
        return NULL;
69
0
    }
70
23
    ctx->libctx = libctx;
71
23
    kdf_scrypt_init(ctx);
72
23
    return ctx;
73
23
}
74
75
static void *kdf_scrypt_new(void *provctx)
76
23
{
77
23
    return kdf_scrypt_new_inner(PROV_LIBCTX_OF(provctx));
78
23
}
79
80
static void kdf_scrypt_free(void *vctx)
81
23
{
82
23
    KDF_SCRYPT *ctx = (KDF_SCRYPT *)vctx;
83
84
23
    if (ctx != NULL) {
85
23
        OPENSSL_free(ctx->propq);
86
23
        EVP_MD_free(ctx->sha256);
87
23
        kdf_scrypt_reset(ctx);
88
23
        OPENSSL_free(ctx);
89
23
    }
90
23
}
91
92
static void kdf_scrypt_reset(void *vctx)
93
23
{
94
23
    KDF_SCRYPT *ctx = (KDF_SCRYPT *)vctx;
95
96
23
    OPENSSL_free(ctx->salt);
97
23
    OPENSSL_clear_free(ctx->pass, ctx->pass_len);
98
23
    kdf_scrypt_init(ctx);
99
23
}
100
101
static void *kdf_scrypt_dup(void *vctx)
102
0
{
103
0
    const KDF_SCRYPT *src = (const KDF_SCRYPT *)vctx;
104
0
    KDF_SCRYPT *dest;
105
106
0
    dest = kdf_scrypt_new_inner(src->libctx);
107
0
    if (dest != NULL) {
108
0
        if (src->sha256 != NULL && !EVP_MD_up_ref(src->sha256))
109
0
            goto err;
110
0
        if (src->propq != NULL) {
111
0
            dest->propq = OPENSSL_strdup(src->propq);
112
0
            if (dest->propq == NULL)
113
0
                goto err;
114
0
        }
115
0
        if (!ossl_prov_memdup(src->salt, src->salt_len,
116
0
                              &dest->salt, &dest->salt_len)
117
0
                || !ossl_prov_memdup(src->pass, src->pass_len,
118
0
                                     &dest->pass , &dest->pass_len))
119
0
            goto err;
120
0
        dest->N = src->N;
121
0
        dest->r = src->r;
122
0
        dest->p = src->p;
123
0
        dest->maxmem_bytes = src->maxmem_bytes;
124
0
        dest->sha256 = src->sha256;
125
0
    }
126
0
    return dest;
127
128
0
 err:
129
0
    kdf_scrypt_free(dest);
130
0
    return NULL;
131
0
}
132
133
static void kdf_scrypt_init(KDF_SCRYPT *ctx)
134
46
{
135
    /* Default values are the most conservative recommendation given in the
136
     * original paper of C. Percival. Derivation uses roughly 1 GiB of memory
137
     * for this parameter choice (approx. 128 * r * N * p bytes).
138
     */
139
46
    ctx->N = 1 << 20;
140
46
    ctx->r = 8;
141
46
    ctx->p = 1;
142
46
    ctx->maxmem_bytes = 1025 * 1024 * 1024;
143
46
}
144
145
static int scrypt_set_membuf(unsigned char **buffer, size_t *buflen,
146
                             const OSSL_PARAM *p)
147
46
{
148
46
    OPENSSL_clear_free(*buffer, *buflen);
149
46
    *buffer = NULL;
150
46
    *buflen = 0;
151
152
46
    if (p->data_size == 0) {
153
19
        if ((*buffer = OPENSSL_malloc(1)) == NULL) {
154
0
            ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE);
155
0
            return 0;
156
0
        }
157
27
    } else if (p->data != NULL) {
158
27
        if (!OSSL_PARAM_get_octet_string(p, (void **)buffer, 0, buflen))
159
0
            return 0;
160
27
    }
161
46
    return 1;
162
46
}
163
164
static int set_digest(KDF_SCRYPT *ctx)
165
0
{
166
0
    EVP_MD_free(ctx->sha256);
167
0
    ctx->sha256 = EVP_MD_fetch(ctx->libctx, "sha256", ctx->propq);
168
0
    if (ctx->sha256 == NULL) {
169
0
        OPENSSL_free(ctx);
170
0
        ERR_raise(ERR_LIB_PROV, PROV_R_UNABLE_TO_LOAD_SHA256);
171
0
        return 0;
172
0
    }
173
0
    return 1;
174
0
}
175
176
static int set_property_query(KDF_SCRYPT *ctx, const char *propq)
177
0
{
178
0
    OPENSSL_free(ctx->propq);
179
0
    ctx->propq = NULL;
180
0
    if (propq != NULL) {
181
0
        ctx->propq = OPENSSL_strdup(propq);
182
0
        if (ctx->propq == NULL) {
183
0
            ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE);
184
0
            return 0;
185
0
        }
186
0
    }
187
0
    return 1;
188
0
}
189
190
static int kdf_scrypt_derive(void *vctx, unsigned char *key, size_t keylen,
191
                             const OSSL_PARAM params[])
192
0
{
193
0
    KDF_SCRYPT *ctx = (KDF_SCRYPT *)vctx;
194
195
0
    if (!ossl_prov_is_running() || !kdf_scrypt_set_ctx_params(ctx, params))
196
0
        return 0;
197
198
0
    if (ctx->pass == NULL) {
199
0
        ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_PASS);
200
0
        return 0;
201
0
    }
202
203
0
    if (ctx->salt == NULL) {
204
0
        ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_SALT);
205
0
        return 0;
206
0
    }
207
208
0
    if (ctx->sha256 == NULL && !set_digest(ctx))
209
0
        return 0;
210
211
0
    return scrypt_alg((char *)ctx->pass, ctx->pass_len, ctx->salt,
212
0
                      ctx->salt_len, ctx->N, ctx->r, ctx->p,
213
0
                      ctx->maxmem_bytes, key, keylen, ctx->sha256,
214
0
                      ctx->libctx, ctx->propq);
215
0
}
216
217
static int is_power_of_two(uint64_t value)
218
0
{
219
0
    return (value != 0) && ((value & (value - 1)) == 0);
220
0
}
221
222
static int kdf_scrypt_set_ctx_params(void *vctx, const OSSL_PARAM params[])
223
23
{
224
23
    const OSSL_PARAM *p;
225
23
    KDF_SCRYPT *ctx = vctx;
226
23
    uint64_t u64_value;
227
228
23
    if (params == NULL)
229
0
        return 1;
230
231
23
    if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_PASSWORD)) != NULL)
232
23
        if (!scrypt_set_membuf(&ctx->pass, &ctx->pass_len, p))
233
0
            return 0;
234
235
23
    if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SALT)) != NULL)
236
23
        if (!scrypt_set_membuf(&ctx->salt, &ctx->salt_len, p))
237
0
            return 0;
238
239
23
    if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SCRYPT_N))
240
23
        != NULL) {
241
23
        if (!OSSL_PARAM_get_uint64(p, &u64_value)
242
23
            || u64_value <= 1
243
23
            || !is_power_of_two(u64_value))
244
23
            return 0;
245
0
        ctx->N = u64_value;
246
0
    }
247
248
0
    if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SCRYPT_R))
249
0
        != NULL) {
250
0
        if (!OSSL_PARAM_get_uint64(p, &u64_value) || u64_value < 1)
251
0
            return 0;
252
0
        ctx->r = u64_value;
253
0
    }
254
255
0
    if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SCRYPT_P))
256
0
        != NULL) {
257
0
        if (!OSSL_PARAM_get_uint64(p, &u64_value) || u64_value < 1)
258
0
            return 0;
259
0
        ctx->p = u64_value;
260
0
    }
261
262
0
    if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SCRYPT_MAXMEM))
263
0
        != NULL) {
264
0
        if (!OSSL_PARAM_get_uint64(p, &u64_value) || u64_value < 1)
265
0
            return 0;
266
0
        ctx->maxmem_bytes = u64_value;
267
0
    }
268
269
0
    p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_PROPERTIES);
270
0
    if (p != NULL) {
271
0
        if (p->data_type != OSSL_PARAM_UTF8_STRING
272
0
            || !set_property_query(ctx, p->data)
273
0
            || !set_digest(ctx))
274
0
            return 0;
275
0
    }
276
0
    return 1;
277
0
}
278
279
static const OSSL_PARAM *kdf_scrypt_settable_ctx_params(ossl_unused void *ctx,
280
                                                        ossl_unused void *p_ctx)
281
24
{
282
24
    static const OSSL_PARAM known_settable_ctx_params[] = {
283
24
        OSSL_PARAM_octet_string(OSSL_KDF_PARAM_PASSWORD, NULL, 0),
284
24
        OSSL_PARAM_octet_string(OSSL_KDF_PARAM_SALT, NULL, 0),
285
24
        OSSL_PARAM_uint64(OSSL_KDF_PARAM_SCRYPT_N, NULL),
286
24
        OSSL_PARAM_uint32(OSSL_KDF_PARAM_SCRYPT_R, NULL),
287
24
        OSSL_PARAM_uint32(OSSL_KDF_PARAM_SCRYPT_P, NULL),
288
24
        OSSL_PARAM_uint64(OSSL_KDF_PARAM_SCRYPT_MAXMEM, NULL),
289
24
        OSSL_PARAM_utf8_string(OSSL_KDF_PARAM_PROPERTIES, NULL, 0),
290
24
        OSSL_PARAM_END
291
24
    };
292
24
    return known_settable_ctx_params;
293
24
}
294
295
static int kdf_scrypt_get_ctx_params(void *vctx, OSSL_PARAM params[])
296
0
{
297
0
    OSSL_PARAM *p;
298
299
0
    if ((p = OSSL_PARAM_locate(params, OSSL_KDF_PARAM_SIZE)) != NULL)
300
0
        return OSSL_PARAM_set_size_t(p, SIZE_MAX);
301
0
    return -2;
302
0
}
303
304
static const OSSL_PARAM *kdf_scrypt_gettable_ctx_params(ossl_unused void *ctx,
305
                                                        ossl_unused void *p_ctx)
306
0
{
307
0
    static const OSSL_PARAM known_gettable_ctx_params[] = {
308
0
        OSSL_PARAM_size_t(OSSL_KDF_PARAM_SIZE, NULL),
309
0
        OSSL_PARAM_END
310
0
    };
311
0
    return known_gettable_ctx_params;
312
0
}
313
314
const OSSL_DISPATCH ossl_kdf_scrypt_functions[] = {
315
    { OSSL_FUNC_KDF_NEWCTX, (void(*)(void))kdf_scrypt_new },
316
    { OSSL_FUNC_KDF_DUPCTX, (void(*)(void))kdf_scrypt_dup },
317
    { OSSL_FUNC_KDF_FREECTX, (void(*)(void))kdf_scrypt_free },
318
    { OSSL_FUNC_KDF_RESET, (void(*)(void))kdf_scrypt_reset },
319
    { OSSL_FUNC_KDF_DERIVE, (void(*)(void))kdf_scrypt_derive },
320
    { OSSL_FUNC_KDF_SETTABLE_CTX_PARAMS,
321
      (void(*)(void))kdf_scrypt_settable_ctx_params },
322
    { OSSL_FUNC_KDF_SET_CTX_PARAMS, (void(*)(void))kdf_scrypt_set_ctx_params },
323
    { OSSL_FUNC_KDF_GETTABLE_CTX_PARAMS,
324
      (void(*)(void))kdf_scrypt_gettable_ctx_params },
325
    { OSSL_FUNC_KDF_GET_CTX_PARAMS, (void(*)(void))kdf_scrypt_get_ctx_params },
326
    { 0, NULL }
327
};
328
329
0
#define R(a,b) (((a) << (b)) | ((a) >> (32 - (b))))
330
static void salsa208_word_specification(uint32_t inout[16])
331
0
{
332
0
    int i;
333
0
    uint32_t x[16];
334
335
0
    memcpy(x, inout, sizeof(x));
336
0
    for (i = 8; i > 0; i -= 2) {
337
0
        x[4] ^= R(x[0] + x[12], 7);
338
0
        x[8] ^= R(x[4] + x[0], 9);
339
0
        x[12] ^= R(x[8] + x[4], 13);
340
0
        x[0] ^= R(x[12] + x[8], 18);
341
0
        x[9] ^= R(x[5] + x[1], 7);
342
0
        x[13] ^= R(x[9] + x[5], 9);
343
0
        x[1] ^= R(x[13] + x[9], 13);
344
0
        x[5] ^= R(x[1] + x[13], 18);
345
0
        x[14] ^= R(x[10] + x[6], 7);
346
0
        x[2] ^= R(x[14] + x[10], 9);
347
0
        x[6] ^= R(x[2] + x[14], 13);
348
0
        x[10] ^= R(x[6] + x[2], 18);
349
0
        x[3] ^= R(x[15] + x[11], 7);
350
0
        x[7] ^= R(x[3] + x[15], 9);
351
0
        x[11] ^= R(x[7] + x[3], 13);
352
0
        x[15] ^= R(x[11] + x[7], 18);
353
0
        x[1] ^= R(x[0] + x[3], 7);
354
0
        x[2] ^= R(x[1] + x[0], 9);
355
0
        x[3] ^= R(x[2] + x[1], 13);
356
0
        x[0] ^= R(x[3] + x[2], 18);
357
0
        x[6] ^= R(x[5] + x[4], 7);
358
0
        x[7] ^= R(x[6] + x[5], 9);
359
0
        x[4] ^= R(x[7] + x[6], 13);
360
0
        x[5] ^= R(x[4] + x[7], 18);
361
0
        x[11] ^= R(x[10] + x[9], 7);
362
0
        x[8] ^= R(x[11] + x[10], 9);
363
0
        x[9] ^= R(x[8] + x[11], 13);
364
0
        x[10] ^= R(x[9] + x[8], 18);
365
0
        x[12] ^= R(x[15] + x[14], 7);
366
0
        x[13] ^= R(x[12] + x[15], 9);
367
0
        x[14] ^= R(x[13] + x[12], 13);
368
0
        x[15] ^= R(x[14] + x[13], 18);
369
0
    }
370
0
    for (i = 0; i < 16; ++i)
371
0
        inout[i] += x[i];
372
0
    OPENSSL_cleanse(x, sizeof(x));
373
0
}
374
375
static void scryptBlockMix(uint32_t *B_, uint32_t *B, uint64_t r)
376
0
{
377
0
    uint64_t i, j;
378
0
    uint32_t X[16], *pB;
379
380
0
    memcpy(X, B + (r * 2 - 1) * 16, sizeof(X));
381
0
    pB = B;
382
0
    for (i = 0; i < r * 2; i++) {
383
0
        for (j = 0; j < 16; j++)
384
0
            X[j] ^= *pB++;
385
0
        salsa208_word_specification(X);
386
0
        memcpy(B_ + (i / 2 + (i & 1) * r) * 16, X, sizeof(X));
387
0
    }
388
0
    OPENSSL_cleanse(X, sizeof(X));
389
0
}
390
391
static void scryptROMix(unsigned char *B, uint64_t r, uint64_t N,
392
                        uint32_t *X, uint32_t *T, uint32_t *V)
393
0
{
394
0
    unsigned char *pB;
395
0
    uint32_t *pV;
396
0
    uint64_t i, k;
397
398
    /* Convert from little endian input */
399
0
    for (pV = V, i = 0, pB = B; i < 32 * r; i++, pV++) {
400
0
        *pV = *pB++;
401
0
        *pV |= *pB++ << 8;
402
0
        *pV |= *pB++ << 16;
403
0
        *pV |= (uint32_t)*pB++ << 24;
404
0
    }
405
406
0
    for (i = 1; i < N; i++, pV += 32 * r)
407
0
        scryptBlockMix(pV, pV - 32 * r, r);
408
409
0
    scryptBlockMix(X, V + (N - 1) * 32 * r, r);
410
411
0
    for (i = 0; i < N; i++) {
412
0
        uint32_t j;
413
0
        j = X[16 * (2 * r - 1)] % N;
414
0
        pV = V + 32 * r * j;
415
0
        for (k = 0; k < 32 * r; k++)
416
0
            T[k] = X[k] ^ *pV++;
417
0
        scryptBlockMix(X, T, r);
418
0
    }
419
    /* Convert output to little endian */
420
0
    for (i = 0, pB = B; i < 32 * r; i++) {
421
0
        uint32_t xtmp = X[i];
422
0
        *pB++ = xtmp & 0xff;
423
0
        *pB++ = (xtmp >> 8) & 0xff;
424
0
        *pB++ = (xtmp >> 16) & 0xff;
425
0
        *pB++ = (xtmp >> 24) & 0xff;
426
0
    }
427
0
}
428
429
#ifndef SIZE_MAX
430
# define SIZE_MAX    ((size_t)-1)
431
#endif
432
433
/*
434
 * Maximum power of two that will fit in uint64_t: this should work on
435
 * most (all?) platforms.
436
 */
437
438
0
#define LOG2_UINT64_MAX         (sizeof(uint64_t) * 8 - 1)
439
440
/*
441
 * Maximum value of p * r:
442
 * p <= ((2^32-1) * hLen) / MFLen =>
443
 * p <= ((2^32-1) * 32) / (128 * r) =>
444
 * p * r <= (2^30-1)
445
 */
446
447
0
#define SCRYPT_PR_MAX   ((1 << 30) - 1)
448
449
static int scrypt_alg(const char *pass, size_t passlen,
450
                      const unsigned char *salt, size_t saltlen,
451
                      uint64_t N, uint64_t r, uint64_t p, uint64_t maxmem,
452
                      unsigned char *key, size_t keylen, EVP_MD *sha256,
453
                      OSSL_LIB_CTX *libctx, const char *propq)
454
0
{
455
0
    int rv = 0;
456
0
    unsigned char *B;
457
0
    uint32_t *X, *V, *T;
458
0
    uint64_t i, Blen, Vlen;
459
460
    /* Sanity check parameters */
461
    /* initial check, r,p must be non zero, N >= 2 and a power of 2 */
462
0
    if (r == 0 || p == 0 || N < 2 || (N & (N - 1)))
463
0
        return 0;
464
    /* Check p * r < SCRYPT_PR_MAX avoiding overflow */
465
0
    if (p > SCRYPT_PR_MAX / r) {
466
0
        ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED);
467
0
        return 0;
468
0
    }
469
470
    /*
471
     * Need to check N: if 2^(128 * r / 8) overflows limit this is
472
     * automatically satisfied since N <= UINT64_MAX.
473
     */
474
475
0
    if (16 * r <= LOG2_UINT64_MAX) {
476
0
        if (N >= (((uint64_t)1) << (16 * r))) {
477
0
            ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED);
478
0
            return 0;
479
0
        }
480
0
    }
481
482
    /* Memory checks: check total allocated buffer size fits in uint64_t */
483
484
    /*
485
     * B size in section 5 step 1.S
486
     * Note: we know p * 128 * r < UINT64_MAX because we already checked
487
     * p * r < SCRYPT_PR_MAX
488
     */
489
0
    Blen = p * 128 * r;
490
    /*
491
     * Yet we pass it as integer to PKCS5_PBKDF2_HMAC... [This would
492
     * have to be revised when/if PKCS5_PBKDF2_HMAC accepts size_t.]
493
     */
494
0
    if (Blen > INT_MAX) {
495
0
        ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED);
496
0
        return 0;
497
0
    }
498
499
    /*
500
     * Check 32 * r * (N + 2) * sizeof(uint32_t) fits in uint64_t
501
     * This is combined size V, X and T (section 4)
502
     */
503
0
    i = UINT64_MAX / (32 * sizeof(uint32_t));
504
0
    if (N + 2 > i / r) {
505
0
        ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED);
506
0
        return 0;
507
0
    }
508
0
    Vlen = 32 * r * (N + 2) * sizeof(uint32_t);
509
510
    /* check total allocated size fits in uint64_t */
511
0
    if (Blen > UINT64_MAX - Vlen) {
512
0
        ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED);
513
0
        return 0;
514
0
    }
515
516
    /* Check that the maximum memory doesn't exceed a size_t limits */
517
0
    if (maxmem > SIZE_MAX)
518
0
        maxmem = SIZE_MAX;
519
520
0
    if (Blen + Vlen > maxmem) {
521
0
        ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED);
522
0
        return 0;
523
0
    }
524
525
    /* If no key return to indicate parameters are OK */
526
0
    if (key == NULL)
527
0
        return 1;
528
529
0
    B = OPENSSL_malloc((size_t)(Blen + Vlen));
530
0
    if (B == NULL) {
531
0
        ERR_raise(ERR_LIB_EVP, ERR_R_MALLOC_FAILURE);
532
0
        return 0;
533
0
    }
534
0
    X = (uint32_t *)(B + Blen);
535
0
    T = X + 32 * r;
536
0
    V = T + 32 * r;
537
0
    if (ossl_pkcs5_pbkdf2_hmac_ex(pass, passlen, salt, saltlen, 1, sha256,
538
0
                                  (int)Blen, B, libctx, propq) == 0)
539
0
        goto err;
540
541
0
    for (i = 0; i < p; i++)
542
0
        scryptROMix(B + 128 * r * i, r, N, X, T, V);
543
544
0
    if (ossl_pkcs5_pbkdf2_hmac_ex(pass, passlen, B, (int)Blen, 1, sha256,
545
0
                                  keylen, key, libctx, propq) == 0)
546
0
        goto err;
547
0
    rv = 1;
548
0
 err:
549
0
    if (rv == 0)
550
0
        ERR_raise(ERR_LIB_EVP, EVP_R_PBKDF2_ERROR);
551
552
0
    OPENSSL_clear_free(B, (size_t)(Blen + Vlen));
553
0
    return rv;
554
0
}
555
556
#endif