Coverage Report

Created: 2024-07-27 06:39

/src/openssl32/crypto/ec/ecp_smpl.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 2001-2022 The OpenSSL Project Authors. All Rights Reserved.
3
 * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
4
 *
5
 * Licensed under the Apache License 2.0 (the "License").  You may not use
6
 * this file except in compliance with the License.  You can obtain a copy
7
 * in the file LICENSE in the source distribution or at
8
 * https://www.openssl.org/source/license.html
9
 */
10
11
/*
12
 * ECDSA low-level APIs are deprecated for public use, but still ok for
13
 * internal use.
14
 */
15
#include "internal/deprecated.h"
16
17
#include <openssl/err.h>
18
#include <openssl/symhacks.h>
19
20
#include "ec_local.h"
21
22
const EC_METHOD *EC_GFp_simple_method(void)
23
0
{
24
0
    static const EC_METHOD ret = {
25
0
        EC_FLAGS_DEFAULT_OCT,
26
0
        NID_X9_62_prime_field,
27
0
        ossl_ec_GFp_simple_group_init,
28
0
        ossl_ec_GFp_simple_group_finish,
29
0
        ossl_ec_GFp_simple_group_clear_finish,
30
0
        ossl_ec_GFp_simple_group_copy,
31
0
        ossl_ec_GFp_simple_group_set_curve,
32
0
        ossl_ec_GFp_simple_group_get_curve,
33
0
        ossl_ec_GFp_simple_group_get_degree,
34
0
        ossl_ec_group_simple_order_bits,
35
0
        ossl_ec_GFp_simple_group_check_discriminant,
36
0
        ossl_ec_GFp_simple_point_init,
37
0
        ossl_ec_GFp_simple_point_finish,
38
0
        ossl_ec_GFp_simple_point_clear_finish,
39
0
        ossl_ec_GFp_simple_point_copy,
40
0
        ossl_ec_GFp_simple_point_set_to_infinity,
41
0
        ossl_ec_GFp_simple_point_set_affine_coordinates,
42
0
        ossl_ec_GFp_simple_point_get_affine_coordinates,
43
0
        0, 0, 0,
44
0
        ossl_ec_GFp_simple_add,
45
0
        ossl_ec_GFp_simple_dbl,
46
0
        ossl_ec_GFp_simple_invert,
47
0
        ossl_ec_GFp_simple_is_at_infinity,
48
0
        ossl_ec_GFp_simple_is_on_curve,
49
0
        ossl_ec_GFp_simple_cmp,
50
0
        ossl_ec_GFp_simple_make_affine,
51
0
        ossl_ec_GFp_simple_points_make_affine,
52
0
        0 /* mul */ ,
53
0
        0 /* precompute_mult */ ,
54
0
        0 /* have_precompute_mult */ ,
55
0
        ossl_ec_GFp_simple_field_mul,
56
0
        ossl_ec_GFp_simple_field_sqr,
57
0
        0 /* field_div */ ,
58
0
        ossl_ec_GFp_simple_field_inv,
59
0
        0 /* field_encode */ ,
60
0
        0 /* field_decode */ ,
61
0
        0,                      /* field_set_to_one */
62
0
        ossl_ec_key_simple_priv2oct,
63
0
        ossl_ec_key_simple_oct2priv,
64
0
        0, /* set private */
65
0
        ossl_ec_key_simple_generate_key,
66
0
        ossl_ec_key_simple_check_key,
67
0
        ossl_ec_key_simple_generate_public_key,
68
0
        0, /* keycopy */
69
0
        0, /* keyfinish */
70
0
        ossl_ecdh_simple_compute_key,
71
0
        ossl_ecdsa_simple_sign_setup,
72
0
        ossl_ecdsa_simple_sign_sig,
73
0
        ossl_ecdsa_simple_verify_sig,
74
0
        0, /* field_inverse_mod_ord */
75
0
        ossl_ec_GFp_simple_blind_coordinates,
76
0
        ossl_ec_GFp_simple_ladder_pre,
77
0
        ossl_ec_GFp_simple_ladder_step,
78
0
        ossl_ec_GFp_simple_ladder_post
79
0
    };
80
81
0
    return &ret;
82
0
}
83
84
/*
85
 * Most method functions in this file are designed to work with
86
 * non-trivial representations of field elements if necessary
87
 * (see ecp_mont.c): while standard modular addition and subtraction
88
 * are used, the field_mul and field_sqr methods will be used for
89
 * multiplication, and field_encode and field_decode (if defined)
90
 * will be used for converting between representations.
91
 *
92
 * Functions ec_GFp_simple_points_make_affine() and
93
 * ec_GFp_simple_point_get_affine_coordinates() specifically assume
94
 * that if a non-trivial representation is used, it is a Montgomery
95
 * representation (i.e. 'encoding' means multiplying by some factor R).
96
 */
97
98
int ossl_ec_GFp_simple_group_init(EC_GROUP *group)
99
499k
{
100
499k
    group->field = BN_new();
101
499k
    group->a = BN_new();
102
499k
    group->b = BN_new();
103
499k
    if (group->field == NULL || group->a == NULL || group->b == NULL) {
104
0
        BN_free(group->field);
105
0
        BN_free(group->a);
106
0
        BN_free(group->b);
107
0
        return 0;
108
0
    }
109
499k
    group->a_is_minus3 = 0;
110
499k
    return 1;
111
499k
}
112
113
void ossl_ec_GFp_simple_group_finish(EC_GROUP *group)
114
499k
{
115
499k
    BN_free(group->field);
116
499k
    BN_free(group->a);
117
499k
    BN_free(group->b);
118
499k
}
119
120
void ossl_ec_GFp_simple_group_clear_finish(EC_GROUP *group)
121
0
{
122
0
    BN_clear_free(group->field);
123
0
    BN_clear_free(group->a);
124
0
    BN_clear_free(group->b);
125
0
}
126
127
int ossl_ec_GFp_simple_group_copy(EC_GROUP *dest, const EC_GROUP *src)
128
230k
{
129
230k
    if (!BN_copy(dest->field, src->field))
130
0
        return 0;
131
230k
    if (!BN_copy(dest->a, src->a))
132
0
        return 0;
133
230k
    if (!BN_copy(dest->b, src->b))
134
0
        return 0;
135
136
230k
    dest->a_is_minus3 = src->a_is_minus3;
137
138
230k
    return 1;
139
230k
}
140
141
int ossl_ec_GFp_simple_group_set_curve(EC_GROUP *group,
142
                                       const BIGNUM *p, const BIGNUM *a,
143
                                       const BIGNUM *b, BN_CTX *ctx)
144
203k
{
145
203k
    int ret = 0;
146
203k
    BN_CTX *new_ctx = NULL;
147
203k
    BIGNUM *tmp_a;
148
149
    /* p must be a prime > 3 */
150
203k
    if (BN_num_bits(p) <= 2 || !BN_is_odd(p)) {
151
31
        ERR_raise(ERR_LIB_EC, EC_R_INVALID_FIELD);
152
31
        return 0;
153
31
    }
154
155
203k
    if (ctx == NULL) {
156
0
        ctx = new_ctx = BN_CTX_new_ex(group->libctx);
157
0
        if (ctx == NULL)
158
0
            return 0;
159
0
    }
160
161
203k
    BN_CTX_start(ctx);
162
203k
    tmp_a = BN_CTX_get(ctx);
163
203k
    if (tmp_a == NULL)
164
0
        goto err;
165
166
    /* group->field */
167
203k
    if (!BN_copy(group->field, p))
168
0
        goto err;
169
203k
    BN_set_negative(group->field, 0);
170
171
    /* group->a */
172
203k
    if (!BN_nnmod(tmp_a, a, p, ctx))
173
0
        goto err;
174
203k
    if (group->meth->field_encode != NULL) {
175
168k
        if (!group->meth->field_encode(group, group->a, tmp_a, ctx))
176
0
            goto err;
177
168k
    } else if (!BN_copy(group->a, tmp_a))
178
0
        goto err;
179
180
    /* group->b */
181
203k
    if (!BN_nnmod(group->b, b, p, ctx))
182
0
        goto err;
183
203k
    if (group->meth->field_encode != NULL)
184
168k
        if (!group->meth->field_encode(group, group->b, group->b, ctx))
185
0
            goto err;
186
187
    /* group->a_is_minus3 */
188
203k
    if (!BN_add_word(tmp_a, 3))
189
0
        goto err;
190
203k
    group->a_is_minus3 = (0 == BN_cmp(tmp_a, group->field));
191
192
203k
    ret = 1;
193
194
203k
 err:
195
203k
    BN_CTX_end(ctx);
196
203k
    BN_CTX_free(new_ctx);
197
203k
    return ret;
198
203k
}
199
200
int ossl_ec_GFp_simple_group_get_curve(const EC_GROUP *group, BIGNUM *p,
201
                                       BIGNUM *a, BIGNUM *b, BN_CTX *ctx)
202
98.4k
{
203
98.4k
    int ret = 0;
204
98.4k
    BN_CTX *new_ctx = NULL;
205
206
98.4k
    if (p != NULL) {
207
97.7k
        if (!BN_copy(p, group->field))
208
0
            return 0;
209
97.7k
    }
210
211
98.4k
    if (a != NULL || b != NULL) {
212
97.7k
        if (group->meth->field_decode != NULL) {
213
96.1k
            if (ctx == NULL) {
214
620
                ctx = new_ctx = BN_CTX_new_ex(group->libctx);
215
620
                if (ctx == NULL)
216
0
                    return 0;
217
620
            }
218
96.1k
            if (a != NULL) {
219
96.1k
                if (!group->meth->field_decode(group, a, group->a, ctx))
220
0
                    goto err;
221
96.1k
            }
222
96.1k
            if (b != NULL) {
223
96.1k
                if (!group->meth->field_decode(group, b, group->b, ctx))
224
0
                    goto err;
225
96.1k
            }
226
96.1k
        } else {
227
1.61k
            if (a != NULL) {
228
1.61k
                if (!BN_copy(a, group->a))
229
0
                    goto err;
230
1.61k
            }
231
1.61k
            if (b != NULL) {
232
1.61k
                if (!BN_copy(b, group->b))
233
0
                    goto err;
234
1.61k
            }
235
1.61k
        }
236
97.7k
    }
237
238
98.4k
    ret = 1;
239
240
98.4k
 err:
241
98.4k
    BN_CTX_free(new_ctx);
242
98.4k
    return ret;
243
98.4k
}
244
245
int ossl_ec_GFp_simple_group_get_degree(const EC_GROUP *group)
246
7.18k
{
247
7.18k
    return BN_num_bits(group->field);
248
7.18k
}
249
250
int ossl_ec_GFp_simple_group_check_discriminant(const EC_GROUP *group,
251
                                                BN_CTX *ctx)
252
975
{
253
975
    int ret = 0;
254
975
    BIGNUM *a, *b, *order, *tmp_1, *tmp_2;
255
975
    const BIGNUM *p = group->field;
256
975
    BN_CTX *new_ctx = NULL;
257
258
975
    if (ctx == NULL) {
259
0
        ctx = new_ctx = BN_CTX_new_ex(group->libctx);
260
0
        if (ctx == NULL) {
261
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
262
0
            goto err;
263
0
        }
264
0
    }
265
975
    BN_CTX_start(ctx);
266
975
    a = BN_CTX_get(ctx);
267
975
    b = BN_CTX_get(ctx);
268
975
    tmp_1 = BN_CTX_get(ctx);
269
975
    tmp_2 = BN_CTX_get(ctx);
270
975
    order = BN_CTX_get(ctx);
271
975
    if (order == NULL)
272
0
        goto err;
273
274
975
    if (group->meth->field_decode != NULL) {
275
608
        if (!group->meth->field_decode(group, a, group->a, ctx))
276
0
            goto err;
277
608
        if (!group->meth->field_decode(group, b, group->b, ctx))
278
0
            goto err;
279
608
    } else {
280
367
        if (!BN_copy(a, group->a))
281
0
            goto err;
282
367
        if (!BN_copy(b, group->b))
283
0
            goto err;
284
367
    }
285
286
    /*-
287
     * check the discriminant:
288
     * y^2 = x^3 + a*x + b is an elliptic curve <=> 4*a^3 + 27*b^2 != 0 (mod p)
289
     * 0 =< a, b < p
290
     */
291
975
    if (BN_is_zero(a)) {
292
134
        if (BN_is_zero(b))
293
3
            goto err;
294
841
    } else if (!BN_is_zero(b)) {
295
786
        if (!BN_mod_sqr(tmp_1, a, p, ctx))
296
0
            goto err;
297
786
        if (!BN_mod_mul(tmp_2, tmp_1, a, p, ctx))
298
0
            goto err;
299
786
        if (!BN_lshift(tmp_1, tmp_2, 2))
300
0
            goto err;
301
        /* tmp_1 = 4*a^3 */
302
303
786
        if (!BN_mod_sqr(tmp_2, b, p, ctx))
304
0
            goto err;
305
786
        if (!BN_mul_word(tmp_2, 27))
306
0
            goto err;
307
        /* tmp_2 = 27*b^2 */
308
309
786
        if (!BN_mod_add(a, tmp_1, tmp_2, p, ctx))
310
0
            goto err;
311
786
        if (BN_is_zero(a))
312
0
            goto err;
313
786
    }
314
972
    ret = 1;
315
316
975
 err:
317
975
    BN_CTX_end(ctx);
318
975
    BN_CTX_free(new_ctx);
319
975
    return ret;
320
972
}
321
322
int ossl_ec_GFp_simple_point_init(EC_POINT *point)
323
1.09M
{
324
1.09M
    point->X = BN_new();
325
1.09M
    point->Y = BN_new();
326
1.09M
    point->Z = BN_new();
327
1.09M
    point->Z_is_one = 0;
328
329
1.09M
    if (point->X == NULL || point->Y == NULL || point->Z == NULL) {
330
0
        BN_free(point->X);
331
0
        BN_free(point->Y);
332
0
        BN_free(point->Z);
333
0
        return 0;
334
0
    }
335
1.09M
    return 1;
336
1.09M
}
337
338
void ossl_ec_GFp_simple_point_finish(EC_POINT *point)
339
1.07M
{
340
1.07M
    BN_free(point->X);
341
1.07M
    BN_free(point->Y);
342
1.07M
    BN_free(point->Z);
343
1.07M
}
344
345
void ossl_ec_GFp_simple_point_clear_finish(EC_POINT *point)
346
19.7k
{
347
19.7k
    BN_clear_free(point->X);
348
19.7k
    BN_clear_free(point->Y);
349
19.7k
    BN_clear_free(point->Z);
350
19.7k
    point->Z_is_one = 0;
351
19.7k
}
352
353
int ossl_ec_GFp_simple_point_copy(EC_POINT *dest, const EC_POINT *src)
354
569k
{
355
569k
    if (!BN_copy(dest->X, src->X))
356
0
        return 0;
357
569k
    if (!BN_copy(dest->Y, src->Y))
358
0
        return 0;
359
569k
    if (!BN_copy(dest->Z, src->Z))
360
0
        return 0;
361
569k
    dest->Z_is_one = src->Z_is_one;
362
569k
    dest->curve_name = src->curve_name;
363
364
569k
    return 1;
365
569k
}
366
367
int ossl_ec_GFp_simple_point_set_to_infinity(const EC_GROUP *group,
368
                                             EC_POINT *point)
369
15.8k
{
370
15.8k
    point->Z_is_one = 0;
371
15.8k
    BN_zero(point->Z);
372
15.8k
    return 1;
373
15.8k
}
374
375
int ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(const EC_GROUP *group,
376
                                                       EC_POINT *point,
377
                                                       const BIGNUM *x,
378
                                                       const BIGNUM *y,
379
                                                       const BIGNUM *z,
380
                                                       BN_CTX *ctx)
381
448k
{
382
448k
    BN_CTX *new_ctx = NULL;
383
448k
    int ret = 0;
384
385
448k
    if (ctx == NULL) {
386
0
        ctx = new_ctx = BN_CTX_new_ex(group->libctx);
387
0
        if (ctx == NULL)
388
0
            return 0;
389
0
    }
390
391
448k
    if (x != NULL) {
392
448k
        if (!BN_nnmod(point->X, x, group->field, ctx))
393
0
            goto err;
394
448k
        if (group->meth->field_encode) {
395
362k
            if (!group->meth->field_encode(group, point->X, point->X, ctx))
396
0
                goto err;
397
362k
        }
398
448k
    }
399
400
448k
    if (y != NULL) {
401
448k
        if (!BN_nnmod(point->Y, y, group->field, ctx))
402
0
            goto err;
403
448k
        if (group->meth->field_encode) {
404
362k
            if (!group->meth->field_encode(group, point->Y, point->Y, ctx))
405
0
                goto err;
406
362k
        }
407
448k
    }
408
409
448k
    if (z != NULL) {
410
448k
        int Z_is_one;
411
412
448k
        if (!BN_nnmod(point->Z, z, group->field, ctx))
413
0
            goto err;
414
448k
        Z_is_one = BN_is_one(point->Z);
415
448k
        if (group->meth->field_encode) {
416
362k
            if (Z_is_one && (group->meth->field_set_to_one != 0)) {
417
362k
                if (!group->meth->field_set_to_one(group, point->Z, ctx))
418
0
                    goto err;
419
362k
            } else {
420
0
                if (!group->
421
0
                    meth->field_encode(group, point->Z, point->Z, ctx))
422
0
                    goto err;
423
0
            }
424
362k
        }
425
448k
        point->Z_is_one = Z_is_one;
426
448k
    }
427
428
448k
    ret = 1;
429
430
448k
 err:
431
448k
    BN_CTX_free(new_ctx);
432
448k
    return ret;
433
448k
}
434
435
int ossl_ec_GFp_simple_get_Jprojective_coordinates_GFp(const EC_GROUP *group,
436
                                                       const EC_POINT *point,
437
                                                       BIGNUM *x, BIGNUM *y,
438
                                                       BIGNUM *z, BN_CTX *ctx)
439
0
{
440
0
    BN_CTX *new_ctx = NULL;
441
0
    int ret = 0;
442
443
0
    if (group->meth->field_decode != NULL) {
444
0
        if (ctx == NULL) {
445
0
            ctx = new_ctx = BN_CTX_new_ex(group->libctx);
446
0
            if (ctx == NULL)
447
0
                return 0;
448
0
        }
449
450
0
        if (x != NULL) {
451
0
            if (!group->meth->field_decode(group, x, point->X, ctx))
452
0
                goto err;
453
0
        }
454
0
        if (y != NULL) {
455
0
            if (!group->meth->field_decode(group, y, point->Y, ctx))
456
0
                goto err;
457
0
        }
458
0
        if (z != NULL) {
459
0
            if (!group->meth->field_decode(group, z, point->Z, ctx))
460
0
                goto err;
461
0
        }
462
0
    } else {
463
0
        if (x != NULL) {
464
0
            if (!BN_copy(x, point->X))
465
0
                goto err;
466
0
        }
467
0
        if (y != NULL) {
468
0
            if (!BN_copy(y, point->Y))
469
0
                goto err;
470
0
        }
471
0
        if (z != NULL) {
472
0
            if (!BN_copy(z, point->Z))
473
0
                goto err;
474
0
        }
475
0
    }
476
477
0
    ret = 1;
478
479
0
 err:
480
0
    BN_CTX_free(new_ctx);
481
0
    return ret;
482
0
}
483
484
int ossl_ec_GFp_simple_point_set_affine_coordinates(const EC_GROUP *group,
485
                                                    EC_POINT *point,
486
                                                    const BIGNUM *x,
487
                                                    const BIGNUM *y, BN_CTX *ctx)
488
441k
{
489
441k
    if (x == NULL || y == NULL) {
490
        /*
491
         * unlike for projective coordinates, we do not tolerate this
492
         */
493
0
        ERR_raise(ERR_LIB_EC, ERR_R_PASSED_NULL_PARAMETER);
494
0
        return 0;
495
0
    }
496
497
441k
    return EC_POINT_set_Jprojective_coordinates_GFp(group, point, x, y,
498
441k
                                                    BN_value_one(), ctx);
499
441k
}
500
501
int ossl_ec_GFp_simple_point_get_affine_coordinates(const EC_GROUP *group,
502
                                                    const EC_POINT *point,
503
                                                    BIGNUM *x, BIGNUM *y,
504
                                                    BN_CTX *ctx)
505
15.3k
{
506
15.3k
    BN_CTX *new_ctx = NULL;
507
15.3k
    BIGNUM *Z, *Z_1, *Z_2, *Z_3;
508
15.3k
    const BIGNUM *Z_;
509
15.3k
    int ret = 0;
510
511
15.3k
    if (EC_POINT_is_at_infinity(group, point)) {
512
0
        ERR_raise(ERR_LIB_EC, EC_R_POINT_AT_INFINITY);
513
0
        return 0;
514
0
    }
515
516
15.3k
    if (ctx == NULL) {
517
0
        ctx = new_ctx = BN_CTX_new_ex(group->libctx);
518
0
        if (ctx == NULL)
519
0
            return 0;
520
0
    }
521
522
15.3k
    BN_CTX_start(ctx);
523
15.3k
    Z = BN_CTX_get(ctx);
524
15.3k
    Z_1 = BN_CTX_get(ctx);
525
15.3k
    Z_2 = BN_CTX_get(ctx);
526
15.3k
    Z_3 = BN_CTX_get(ctx);
527
15.3k
    if (Z_3 == NULL)
528
0
        goto err;
529
530
    /* transform  (X, Y, Z)  into  (x, y) := (X/Z^2, Y/Z^3) */
531
532
15.3k
    if (group->meth->field_decode != NULL) {
533
15.3k
        if (!group->meth->field_decode(group, Z, point->Z, ctx))
534
0
            goto err;
535
15.3k
        Z_ = Z;
536
15.3k
    } else {
537
0
        Z_ = point->Z;
538
0
    }
539
540
15.3k
    if (BN_is_one(Z_)) {
541
14.8k
        if (group->meth->field_decode != NULL) {
542
14.8k
            if (x != NULL) {
543
14.8k
                if (!group->meth->field_decode(group, x, point->X, ctx))
544
0
                    goto err;
545
14.8k
            }
546
14.8k
            if (y != NULL) {
547
14.6k
                if (!group->meth->field_decode(group, y, point->Y, ctx))
548
0
                    goto err;
549
14.6k
            }
550
14.8k
        } else {
551
0
            if (x != NULL) {
552
0
                if (!BN_copy(x, point->X))
553
0
                    goto err;
554
0
            }
555
0
            if (y != NULL) {
556
0
                if (!BN_copy(y, point->Y))
557
0
                    goto err;
558
0
            }
559
0
        }
560
14.8k
    } else {
561
469
        if (!group->meth->field_inv(group, Z_1, Z_, ctx)) {
562
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
563
0
            goto err;
564
0
        }
565
566
469
        if (group->meth->field_encode == NULL) {
567
            /* field_sqr works on standard representation */
568
0
            if (!group->meth->field_sqr(group, Z_2, Z_1, ctx))
569
0
                goto err;
570
469
        } else {
571
469
            if (!BN_mod_sqr(Z_2, Z_1, group->field, ctx))
572
0
                goto err;
573
469
        }
574
575
469
        if (x != NULL) {
576
            /*
577
             * in the Montgomery case, field_mul will cancel out Montgomery
578
             * factor in X:
579
             */
580
469
            if (!group->meth->field_mul(group, x, point->X, Z_2, ctx))
581
0
                goto err;
582
469
        }
583
584
469
        if (y != NULL) {
585
359
            if (group->meth->field_encode == NULL) {
586
                /*
587
                 * field_mul works on standard representation
588
                 */
589
0
                if (!group->meth->field_mul(group, Z_3, Z_2, Z_1, ctx))
590
0
                    goto err;
591
359
            } else {
592
359
                if (!BN_mod_mul(Z_3, Z_2, Z_1, group->field, ctx))
593
0
                    goto err;
594
359
            }
595
596
            /*
597
             * in the Montgomery case, field_mul will cancel out Montgomery
598
             * factor in Y:
599
             */
600
359
            if (!group->meth->field_mul(group, y, point->Y, Z_3, ctx))
601
0
                goto err;
602
359
        }
603
469
    }
604
605
15.3k
    ret = 1;
606
607
15.3k
 err:
608
15.3k
    BN_CTX_end(ctx);
609
15.3k
    BN_CTX_free(new_ctx);
610
15.3k
    return ret;
611
15.3k
}
612
613
int ossl_ec_GFp_simple_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
614
                           const EC_POINT *b, BN_CTX *ctx)
615
87.3k
{
616
87.3k
    int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *,
617
87.3k
                      const BIGNUM *, BN_CTX *);
618
87.3k
    int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
619
87.3k
    const BIGNUM *p;
620
87.3k
    BN_CTX *new_ctx = NULL;
621
87.3k
    BIGNUM *n0, *n1, *n2, *n3, *n4, *n5, *n6;
622
87.3k
    int ret = 0;
623
624
87.3k
    if (a == b)
625
0
        return EC_POINT_dbl(group, r, a, ctx);
626
87.3k
    if (EC_POINT_is_at_infinity(group, a))
627
7.13k
        return EC_POINT_copy(r, b);
628
80.2k
    if (EC_POINT_is_at_infinity(group, b))
629
1.08k
        return EC_POINT_copy(r, a);
630
631
79.1k
    field_mul = group->meth->field_mul;
632
79.1k
    field_sqr = group->meth->field_sqr;
633
79.1k
    p = group->field;
634
635
79.1k
    if (ctx == NULL) {
636
0
        ctx = new_ctx = BN_CTX_new_ex(group->libctx);
637
0
        if (ctx == NULL)
638
0
            return 0;
639
0
    }
640
641
79.1k
    BN_CTX_start(ctx);
642
79.1k
    n0 = BN_CTX_get(ctx);
643
79.1k
    n1 = BN_CTX_get(ctx);
644
79.1k
    n2 = BN_CTX_get(ctx);
645
79.1k
    n3 = BN_CTX_get(ctx);
646
79.1k
    n4 = BN_CTX_get(ctx);
647
79.1k
    n5 = BN_CTX_get(ctx);
648
79.1k
    n6 = BN_CTX_get(ctx);
649
79.1k
    if (n6 == NULL)
650
0
        goto end;
651
652
    /*
653
     * Note that in this function we must not read components of 'a' or 'b'
654
     * once we have written the corresponding components of 'r'. ('r' might
655
     * be one of 'a' or 'b'.)
656
     */
657
658
    /* n1, n2 */
659
79.1k
    if (b->Z_is_one) {
660
69.0k
        if (!BN_copy(n1, a->X))
661
0
            goto end;
662
69.0k
        if (!BN_copy(n2, a->Y))
663
0
            goto end;
664
        /* n1 = X_a */
665
        /* n2 = Y_a */
666
69.0k
    } else {
667
10.1k
        if (!field_sqr(group, n0, b->Z, ctx))
668
0
            goto end;
669
10.1k
        if (!field_mul(group, n1, a->X, n0, ctx))
670
0
            goto end;
671
        /* n1 = X_a * Z_b^2 */
672
673
10.1k
        if (!field_mul(group, n0, n0, b->Z, ctx))
674
0
            goto end;
675
10.1k
        if (!field_mul(group, n2, a->Y, n0, ctx))
676
0
            goto end;
677
        /* n2 = Y_a * Z_b^3 */
678
10.1k
    }
679
680
    /* n3, n4 */
681
79.1k
    if (a->Z_is_one) {
682
1.99k
        if (!BN_copy(n3, b->X))
683
0
            goto end;
684
1.99k
        if (!BN_copy(n4, b->Y))
685
0
            goto end;
686
        /* n3 = X_b */
687
        /* n4 = Y_b */
688
77.1k
    } else {
689
77.1k
        if (!field_sqr(group, n0, a->Z, ctx))
690
0
            goto end;
691
77.1k
        if (!field_mul(group, n3, b->X, n0, ctx))
692
0
            goto end;
693
        /* n3 = X_b * Z_a^2 */
694
695
77.1k
        if (!field_mul(group, n0, n0, a->Z, ctx))
696
0
            goto end;
697
77.1k
        if (!field_mul(group, n4, b->Y, n0, ctx))
698
0
            goto end;
699
        /* n4 = Y_b * Z_a^3 */
700
77.1k
    }
701
702
    /* n5, n6 */
703
79.1k
    if (!BN_mod_sub_quick(n5, n1, n3, p))
704
0
        goto end;
705
79.1k
    if (!BN_mod_sub_quick(n6, n2, n4, p))
706
0
        goto end;
707
    /* n5 = n1 - n3 */
708
    /* n6 = n2 - n4 */
709
710
79.1k
    if (BN_is_zero(n5)) {
711
1.38k
        if (BN_is_zero(n6)) {
712
            /* a is the same point as b */
713
70
            BN_CTX_end(ctx);
714
70
            ret = EC_POINT_dbl(group, r, a, ctx);
715
70
            ctx = NULL;
716
70
            goto end;
717
1.31k
        } else {
718
            /* a is the inverse of b */
719
1.31k
            BN_zero(r->Z);
720
1.31k
            r->Z_is_one = 0;
721
1.31k
            ret = 1;
722
1.31k
            goto end;
723
1.31k
        }
724
1.38k
    }
725
726
    /* 'n7', 'n8' */
727
77.7k
    if (!BN_mod_add_quick(n1, n1, n3, p))
728
0
        goto end;
729
77.7k
    if (!BN_mod_add_quick(n2, n2, n4, p))
730
0
        goto end;
731
    /* 'n7' = n1 + n3 */
732
    /* 'n8' = n2 + n4 */
733
734
    /* Z_r */
735
77.7k
    if (a->Z_is_one && b->Z_is_one) {
736
0
        if (!BN_copy(r->Z, n5))
737
0
            goto end;
738
77.7k
    } else {
739
77.7k
        if (a->Z_is_one) {
740
1.98k
            if (!BN_copy(n0, b->Z))
741
0
                goto end;
742
75.7k
        } else if (b->Z_is_one) {
743
67.6k
            if (!BN_copy(n0, a->Z))
744
0
                goto end;
745
67.6k
        } else {
746
8.10k
            if (!field_mul(group, n0, a->Z, b->Z, ctx))
747
0
                goto end;
748
8.10k
        }
749
77.7k
        if (!field_mul(group, r->Z, n0, n5, ctx))
750
0
            goto end;
751
77.7k
    }
752
77.7k
    r->Z_is_one = 0;
753
    /* Z_r = Z_a * Z_b * n5 */
754
755
    /* X_r */
756
77.7k
    if (!field_sqr(group, n0, n6, ctx))
757
0
        goto end;
758
77.7k
    if (!field_sqr(group, n4, n5, ctx))
759
0
        goto end;
760
77.7k
    if (!field_mul(group, n3, n1, n4, ctx))
761
0
        goto end;
762
77.7k
    if (!BN_mod_sub_quick(r->X, n0, n3, p))
763
0
        goto end;
764
    /* X_r = n6^2 - n5^2 * 'n7' */
765
766
    /* 'n9' */
767
77.7k
    if (!BN_mod_lshift1_quick(n0, r->X, p))
768
0
        goto end;
769
77.7k
    if (!BN_mod_sub_quick(n0, n3, n0, p))
770
0
        goto end;
771
    /* n9 = n5^2 * 'n7' - 2 * X_r */
772
773
    /* Y_r */
774
77.7k
    if (!field_mul(group, n0, n0, n6, ctx))
775
0
        goto end;
776
77.7k
    if (!field_mul(group, n5, n4, n5, ctx))
777
0
        goto end;               /* now n5 is n5^3 */
778
77.7k
    if (!field_mul(group, n1, n2, n5, ctx))
779
0
        goto end;
780
77.7k
    if (!BN_mod_sub_quick(n0, n0, n1, p))
781
0
        goto end;
782
77.7k
    if (BN_is_odd(n0))
783
38.7k
        if (!BN_add(n0, n0, p))
784
0
            goto end;
785
    /* now  0 <= n0 < 2*p,  and n0 is even */
786
77.7k
    if (!BN_rshift1(r->Y, n0))
787
0
        goto end;
788
    /* Y_r = (n6 * 'n9' - 'n8' * 'n5^3') / 2 */
789
790
77.7k
    ret = 1;
791
792
79.1k
 end:
793
79.1k
    BN_CTX_end(ctx);
794
79.1k
    BN_CTX_free(new_ctx);
795
79.1k
    return ret;
796
77.7k
}
797
798
int ossl_ec_GFp_simple_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
799
                           BN_CTX *ctx)
800
600k
{
801
600k
    int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *,
802
600k
                      const BIGNUM *, BN_CTX *);
803
600k
    int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
804
600k
    const BIGNUM *p;
805
600k
    BN_CTX *new_ctx = NULL;
806
600k
    BIGNUM *n0, *n1, *n2, *n3;
807
600k
    int ret = 0;
808
809
600k
    if (EC_POINT_is_at_infinity(group, a)) {
810
55.6k
        BN_zero(r->Z);
811
55.6k
        r->Z_is_one = 0;
812
55.6k
        return 1;
813
55.6k
    }
814
815
545k
    field_mul = group->meth->field_mul;
816
545k
    field_sqr = group->meth->field_sqr;
817
545k
    p = group->field;
818
819
545k
    if (ctx == NULL) {
820
0
        ctx = new_ctx = BN_CTX_new_ex(group->libctx);
821
0
        if (ctx == NULL)
822
0
            return 0;
823
0
    }
824
825
545k
    BN_CTX_start(ctx);
826
545k
    n0 = BN_CTX_get(ctx);
827
545k
    n1 = BN_CTX_get(ctx);
828
545k
    n2 = BN_CTX_get(ctx);
829
545k
    n3 = BN_CTX_get(ctx);
830
545k
    if (n3 == NULL)
831
0
        goto err;
832
833
    /*
834
     * Note that in this function we must not read components of 'a' once we
835
     * have written the corresponding components of 'r'. ('r' might the same
836
     * as 'a'.)
837
     */
838
839
    /* n1 */
840
545k
    if (a->Z_is_one) {
841
9.19k
        if (!field_sqr(group, n0, a->X, ctx))
842
0
            goto err;
843
9.19k
        if (!BN_mod_lshift1_quick(n1, n0, p))
844
0
            goto err;
845
9.19k
        if (!BN_mod_add_quick(n0, n0, n1, p))
846
0
            goto err;
847
9.19k
        if (!BN_mod_add_quick(n1, n0, group->a, p))
848
0
            goto err;
849
        /* n1 = 3 * X_a^2 + a_curve */
850
535k
    } else if (group->a_is_minus3) {
851
349k
        if (!field_sqr(group, n1, a->Z, ctx))
852
0
            goto err;
853
349k
        if (!BN_mod_add_quick(n0, a->X, n1, p))
854
0
            goto err;
855
349k
        if (!BN_mod_sub_quick(n2, a->X, n1, p))
856
0
            goto err;
857
349k
        if (!field_mul(group, n1, n0, n2, ctx))
858
0
            goto err;
859
349k
        if (!BN_mod_lshift1_quick(n0, n1, p))
860
0
            goto err;
861
349k
        if (!BN_mod_add_quick(n1, n0, n1, p))
862
0
            goto err;
863
        /*-
864
         * n1 = 3 * (X_a + Z_a^2) * (X_a - Z_a^2)
865
         *    = 3 * X_a^2 - 3 * Z_a^4
866
         */
867
349k
    } else {
868
186k
        if (!field_sqr(group, n0, a->X, ctx))
869
0
            goto err;
870
186k
        if (!BN_mod_lshift1_quick(n1, n0, p))
871
0
            goto err;
872
186k
        if (!BN_mod_add_quick(n0, n0, n1, p))
873
0
            goto err;
874
186k
        if (!field_sqr(group, n1, a->Z, ctx))
875
0
            goto err;
876
186k
        if (!field_sqr(group, n1, n1, ctx))
877
0
            goto err;
878
186k
        if (!field_mul(group, n1, n1, group->a, ctx))
879
0
            goto err;
880
186k
        if (!BN_mod_add_quick(n1, n1, n0, p))
881
0
            goto err;
882
        /* n1 = 3 * X_a^2 + a_curve * Z_a^4 */
883
186k
    }
884
885
    /* Z_r */
886
545k
    if (a->Z_is_one) {
887
9.19k
        if (!BN_copy(n0, a->Y))
888
0
            goto err;
889
535k
    } else {
890
535k
        if (!field_mul(group, n0, a->Y, a->Z, ctx))
891
0
            goto err;
892
535k
    }
893
545k
    if (!BN_mod_lshift1_quick(r->Z, n0, p))
894
0
        goto err;
895
545k
    r->Z_is_one = 0;
896
    /* Z_r = 2 * Y_a * Z_a */
897
898
    /* n2 */
899
545k
    if (!field_sqr(group, n3, a->Y, ctx))
900
0
        goto err;
901
545k
    if (!field_mul(group, n2, a->X, n3, ctx))
902
0
        goto err;
903
545k
    if (!BN_mod_lshift_quick(n2, n2, 2, p))
904
0
        goto err;
905
    /* n2 = 4 * X_a * Y_a^2 */
906
907
    /* X_r */
908
545k
    if (!BN_mod_lshift1_quick(n0, n2, p))
909
0
        goto err;
910
545k
    if (!field_sqr(group, r->X, n1, ctx))
911
0
        goto err;
912
545k
    if (!BN_mod_sub_quick(r->X, r->X, n0, p))
913
0
        goto err;
914
    /* X_r = n1^2 - 2 * n2 */
915
916
    /* n3 */
917
545k
    if (!field_sqr(group, n0, n3, ctx))
918
0
        goto err;
919
545k
    if (!BN_mod_lshift_quick(n3, n0, 3, p))
920
0
        goto err;
921
    /* n3 = 8 * Y_a^4 */
922
923
    /* Y_r */
924
545k
    if (!BN_mod_sub_quick(n0, n2, r->X, p))
925
0
        goto err;
926
545k
    if (!field_mul(group, n0, n1, n0, ctx))
927
0
        goto err;
928
545k
    if (!BN_mod_sub_quick(r->Y, n0, n3, p))
929
0
        goto err;
930
    /* Y_r = n1 * (n2 - X_r) - n3 */
931
932
545k
    ret = 1;
933
934
545k
 err:
935
545k
    BN_CTX_end(ctx);
936
545k
    BN_CTX_free(new_ctx);
937
545k
    return ret;
938
545k
}
939
940
int ossl_ec_GFp_simple_invert(const EC_GROUP *group, EC_POINT *point,
941
                              BN_CTX *ctx)
942
39.8k
{
943
39.8k
    if (EC_POINT_is_at_infinity(group, point) || BN_is_zero(point->Y))
944
        /* point is its own inverse */
945
4.45k
        return 1;
946
947
35.4k
    return BN_usub(point->Y, group->field, point->Y);
948
39.8k
}
949
950
int ossl_ec_GFp_simple_is_at_infinity(const EC_GROUP *group,
951
                                      const EC_POINT *point)
952
1.72M
{
953
1.72M
    return BN_is_zero(point->Z);
954
1.72M
}
955
956
int ossl_ec_GFp_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point,
957
                                   BN_CTX *ctx)
958
446k
{
959
446k
    int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *,
960
446k
                      const BIGNUM *, BN_CTX *);
961
446k
    int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
962
446k
    const BIGNUM *p;
963
446k
    BN_CTX *new_ctx = NULL;
964
446k
    BIGNUM *rh, *tmp, *Z4, *Z6;
965
446k
    int ret = -1;
966
967
446k
    if (EC_POINT_is_at_infinity(group, point))
968
0
        return 1;
969
970
446k
    field_mul = group->meth->field_mul;
971
446k
    field_sqr = group->meth->field_sqr;
972
446k
    p = group->field;
973
974
446k
    if (ctx == NULL) {
975
0
        ctx = new_ctx = BN_CTX_new_ex(group->libctx);
976
0
        if (ctx == NULL)
977
0
            return -1;
978
0
    }
979
980
446k
    BN_CTX_start(ctx);
981
446k
    rh = BN_CTX_get(ctx);
982
446k
    tmp = BN_CTX_get(ctx);
983
446k
    Z4 = BN_CTX_get(ctx);
984
446k
    Z6 = BN_CTX_get(ctx);
985
446k
    if (Z6 == NULL)
986
0
        goto err;
987
988
    /*-
989
     * We have a curve defined by a Weierstrass equation
990
     *      y^2 = x^3 + a*x + b.
991
     * The point to consider is given in Jacobian projective coordinates
992
     * where  (X, Y, Z)  represents  (x, y) = (X/Z^2, Y/Z^3).
993
     * Substituting this and multiplying by  Z^6  transforms the above equation into
994
     *      Y^2 = X^3 + a*X*Z^4 + b*Z^6.
995
     * To test this, we add up the right-hand side in 'rh'.
996
     */
997
998
    /* rh := X^2 */
999
446k
    if (!field_sqr(group, rh, point->X, ctx))
1000
0
        goto err;
1001
1002
446k
    if (!point->Z_is_one) {
1003
418
        if (!field_sqr(group, tmp, point->Z, ctx))
1004
0
            goto err;
1005
418
        if (!field_sqr(group, Z4, tmp, ctx))
1006
0
            goto err;
1007
418
        if (!field_mul(group, Z6, Z4, tmp, ctx))
1008
0
            goto err;
1009
1010
        /* rh := (rh + a*Z^4)*X */
1011
418
        if (group->a_is_minus3) {
1012
338
            if (!BN_mod_lshift1_quick(tmp, Z4, p))
1013
0
                goto err;
1014
338
            if (!BN_mod_add_quick(tmp, tmp, Z4, p))
1015
0
                goto err;
1016
338
            if (!BN_mod_sub_quick(rh, rh, tmp, p))
1017
0
                goto err;
1018
338
            if (!field_mul(group, rh, rh, point->X, ctx))
1019
0
                goto err;
1020
338
        } else {
1021
80
            if (!field_mul(group, tmp, Z4, group->a, ctx))
1022
0
                goto err;
1023
80
            if (!BN_mod_add_quick(rh, rh, tmp, p))
1024
0
                goto err;
1025
80
            if (!field_mul(group, rh, rh, point->X, ctx))
1026
0
                goto err;
1027
80
        }
1028
1029
        /* rh := rh + b*Z^6 */
1030
418
        if (!field_mul(group, tmp, group->b, Z6, ctx))
1031
0
            goto err;
1032
418
        if (!BN_mod_add_quick(rh, rh, tmp, p))
1033
0
            goto err;
1034
445k
    } else {
1035
        /* point->Z_is_one */
1036
1037
        /* rh := (rh + a)*X */
1038
445k
        if (!BN_mod_add_quick(rh, rh, group->a, p))
1039
0
            goto err;
1040
445k
        if (!field_mul(group, rh, rh, point->X, ctx))
1041
0
            goto err;
1042
        /* rh := rh + b */
1043
445k
        if (!BN_mod_add_quick(rh, rh, group->b, p))
1044
0
            goto err;
1045
445k
    }
1046
1047
    /* 'lh' := Y^2 */
1048
446k
    if (!field_sqr(group, tmp, point->Y, ctx))
1049
0
        goto err;
1050
1051
446k
    ret = (0 == BN_ucmp(tmp, rh));
1052
1053
446k
 err:
1054
446k
    BN_CTX_end(ctx);
1055
446k
    BN_CTX_free(new_ctx);
1056
446k
    return ret;
1057
446k
}
1058
1059
int ossl_ec_GFp_simple_cmp(const EC_GROUP *group, const EC_POINT *a,
1060
                           const EC_POINT *b, BN_CTX *ctx)
1061
82.7k
{
1062
    /*-
1063
     * return values:
1064
     *  -1   error
1065
     *   0   equal (in affine coordinates)
1066
     *   1   not equal
1067
     */
1068
1069
82.7k
    int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *,
1070
82.7k
                      const BIGNUM *, BN_CTX *);
1071
82.7k
    int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
1072
82.7k
    BN_CTX *new_ctx = NULL;
1073
82.7k
    BIGNUM *tmp1, *tmp2, *Za23, *Zb23;
1074
82.7k
    const BIGNUM *tmp1_, *tmp2_;
1075
82.7k
    int ret = -1;
1076
1077
82.7k
    if (EC_POINT_is_at_infinity(group, a)) {
1078
82
        return EC_POINT_is_at_infinity(group, b) ? 0 : 1;
1079
82
    }
1080
1081
82.6k
    if (EC_POINT_is_at_infinity(group, b))
1082
0
        return 1;
1083
1084
82.6k
    if (a->Z_is_one && b->Z_is_one) {
1085
82.2k
        return ((BN_cmp(a->X, b->X) == 0) && BN_cmp(a->Y, b->Y) == 0) ? 0 : 1;
1086
82.2k
    }
1087
1088
440
    field_mul = group->meth->field_mul;
1089
440
    field_sqr = group->meth->field_sqr;
1090
1091
440
    if (ctx == NULL) {
1092
0
        ctx = new_ctx = BN_CTX_new_ex(group->libctx);
1093
0
        if (ctx == NULL)
1094
0
            return -1;
1095
0
    }
1096
1097
440
    BN_CTX_start(ctx);
1098
440
    tmp1 = BN_CTX_get(ctx);
1099
440
    tmp2 = BN_CTX_get(ctx);
1100
440
    Za23 = BN_CTX_get(ctx);
1101
440
    Zb23 = BN_CTX_get(ctx);
1102
440
    if (Zb23 == NULL)
1103
0
        goto end;
1104
1105
    /*-
1106
     * We have to decide whether
1107
     *     (X_a/Z_a^2, Y_a/Z_a^3) = (X_b/Z_b^2, Y_b/Z_b^3),
1108
     * or equivalently, whether
1109
     *     (X_a*Z_b^2, Y_a*Z_b^3) = (X_b*Z_a^2, Y_b*Z_a^3).
1110
     */
1111
1112
440
    if (!b->Z_is_one) {
1113
357
        if (!field_sqr(group, Zb23, b->Z, ctx))
1114
0
            goto end;
1115
357
        if (!field_mul(group, tmp1, a->X, Zb23, ctx))
1116
0
            goto end;
1117
357
        tmp1_ = tmp1;
1118
357
    } else
1119
83
        tmp1_ = a->X;
1120
440
    if (!a->Z_is_one) {
1121
440
        if (!field_sqr(group, Za23, a->Z, ctx))
1122
0
            goto end;
1123
440
        if (!field_mul(group, tmp2, b->X, Za23, ctx))
1124
0
            goto end;
1125
440
        tmp2_ = tmp2;
1126
440
    } else
1127
0
        tmp2_ = b->X;
1128
1129
    /* compare  X_a*Z_b^2  with  X_b*Z_a^2 */
1130
440
    if (BN_cmp(tmp1_, tmp2_) != 0) {
1131
81
        ret = 1;                /* points differ */
1132
81
        goto end;
1133
81
    }
1134
1135
359
    if (!b->Z_is_one) {
1136
357
        if (!field_mul(group, Zb23, Zb23, b->Z, ctx))
1137
0
            goto end;
1138
357
        if (!field_mul(group, tmp1, a->Y, Zb23, ctx))
1139
0
            goto end;
1140
        /* tmp1_ = tmp1 */
1141
357
    } else
1142
2
        tmp1_ = a->Y;
1143
359
    if (!a->Z_is_one) {
1144
359
        if (!field_mul(group, Za23, Za23, a->Z, ctx))
1145
0
            goto end;
1146
359
        if (!field_mul(group, tmp2, b->Y, Za23, ctx))
1147
0
            goto end;
1148
        /* tmp2_ = tmp2 */
1149
359
    } else
1150
0
        tmp2_ = b->Y;
1151
1152
    /* compare  Y_a*Z_b^3  with  Y_b*Z_a^3 */
1153
359
    if (BN_cmp(tmp1_, tmp2_) != 0) {
1154
0
        ret = 1;                /* points differ */
1155
0
        goto end;
1156
0
    }
1157
1158
    /* points are equal */
1159
359
    ret = 0;
1160
1161
440
 end:
1162
440
    BN_CTX_end(ctx);
1163
440
    BN_CTX_free(new_ctx);
1164
440
    return ret;
1165
359
}
1166
1167
int ossl_ec_GFp_simple_make_affine(const EC_GROUP *group, EC_POINT *point,
1168
                                   BN_CTX *ctx)
1169
0
{
1170
0
    BN_CTX *new_ctx = NULL;
1171
0
    BIGNUM *x, *y;
1172
0
    int ret = 0;
1173
1174
0
    if (point->Z_is_one || EC_POINT_is_at_infinity(group, point))
1175
0
        return 1;
1176
1177
0
    if (ctx == NULL) {
1178
0
        ctx = new_ctx = BN_CTX_new_ex(group->libctx);
1179
0
        if (ctx == NULL)
1180
0
            return 0;
1181
0
    }
1182
1183
0
    BN_CTX_start(ctx);
1184
0
    x = BN_CTX_get(ctx);
1185
0
    y = BN_CTX_get(ctx);
1186
0
    if (y == NULL)
1187
0
        goto err;
1188
1189
0
    if (!EC_POINT_get_affine_coordinates(group, point, x, y, ctx))
1190
0
        goto err;
1191
0
    if (!EC_POINT_set_affine_coordinates(group, point, x, y, ctx))
1192
0
        goto err;
1193
0
    if (!point->Z_is_one) {
1194
0
        ERR_raise(ERR_LIB_EC, ERR_R_INTERNAL_ERROR);
1195
0
        goto err;
1196
0
    }
1197
1198
0
    ret = 1;
1199
1200
0
 err:
1201
0
    BN_CTX_end(ctx);
1202
0
    BN_CTX_free(new_ctx);
1203
0
    return ret;
1204
0
}
1205
1206
int ossl_ec_GFp_simple_points_make_affine(const EC_GROUP *group, size_t num,
1207
                                          EC_POINT *points[], BN_CTX *ctx)
1208
2.63k
{
1209
2.63k
    BN_CTX *new_ctx = NULL;
1210
2.63k
    BIGNUM *tmp, *tmp_Z;
1211
2.63k
    BIGNUM **prod_Z = NULL;
1212
2.63k
    size_t i;
1213
2.63k
    int ret = 0;
1214
1215
2.63k
    if (num == 0)
1216
0
        return 1;
1217
1218
2.63k
    if (ctx == NULL) {
1219
0
        ctx = new_ctx = BN_CTX_new_ex(group->libctx);
1220
0
        if (ctx == NULL)
1221
0
            return 0;
1222
0
    }
1223
1224
2.63k
    BN_CTX_start(ctx);
1225
2.63k
    tmp = BN_CTX_get(ctx);
1226
2.63k
    tmp_Z = BN_CTX_get(ctx);
1227
2.63k
    if (tmp_Z == NULL)
1228
0
        goto err;
1229
1230
2.63k
    prod_Z = OPENSSL_malloc(num * sizeof(prod_Z[0]));
1231
2.63k
    if (prod_Z == NULL)
1232
0
        goto err;
1233
16.6k
    for (i = 0; i < num; i++) {
1234
13.9k
        prod_Z[i] = BN_new();
1235
13.9k
        if (prod_Z[i] == NULL)
1236
0
            goto err;
1237
13.9k
    }
1238
1239
    /*
1240
     * Set each prod_Z[i] to the product of points[0]->Z .. points[i]->Z,
1241
     * skipping any zero-valued inputs (pretend that they're 1).
1242
     */
1243
1244
2.63k
    if (!BN_is_zero(points[0]->Z)) {
1245
2.63k
        if (!BN_copy(prod_Z[0], points[0]->Z))
1246
0
            goto err;
1247
2.63k
    } else {
1248
0
        if (group->meth->field_set_to_one != 0) {
1249
0
            if (!group->meth->field_set_to_one(group, prod_Z[0], ctx))
1250
0
                goto err;
1251
0
        } else {
1252
0
            if (!BN_one(prod_Z[0]))
1253
0
                goto err;
1254
0
        }
1255
0
    }
1256
1257
13.9k
    for (i = 1; i < num; i++) {
1258
11.3k
        if (!BN_is_zero(points[i]->Z)) {
1259
11.3k
            if (!group->
1260
11.3k
                meth->field_mul(group, prod_Z[i], prod_Z[i - 1], points[i]->Z,
1261
11.3k
                                ctx))
1262
0
                goto err;
1263
11.3k
        } else {
1264
13
            if (!BN_copy(prod_Z[i], prod_Z[i - 1]))
1265
0
                goto err;
1266
13
        }
1267
11.3k
    }
1268
1269
    /*
1270
     * Now use a single explicit inversion to replace every non-zero
1271
     * points[i]->Z by its inverse.
1272
     */
1273
1274
2.63k
    if (!group->meth->field_inv(group, tmp, prod_Z[num - 1], ctx)) {
1275
0
        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1276
0
        goto err;
1277
0
    }
1278
2.63k
    if (group->meth->field_encode != NULL) {
1279
        /*
1280
         * In the Montgomery case, we just turned R*H (representing H) into
1281
         * 1/(R*H), but we need R*(1/H) (representing 1/H); i.e. we need to
1282
         * multiply by the Montgomery factor twice.
1283
         */
1284
2.63k
        if (!group->meth->field_encode(group, tmp, tmp, ctx))
1285
0
            goto err;
1286
2.63k
        if (!group->meth->field_encode(group, tmp, tmp, ctx))
1287
0
            goto err;
1288
2.63k
    }
1289
1290
13.9k
    for (i = num - 1; i > 0; --i) {
1291
        /*
1292
         * Loop invariant: tmp is the product of the inverses of points[0]->Z
1293
         * .. points[i]->Z (zero-valued inputs skipped).
1294
         */
1295
11.3k
        if (!BN_is_zero(points[i]->Z)) {
1296
            /*
1297
             * Set tmp_Z to the inverse of points[i]->Z (as product of Z
1298
             * inverses 0 .. i, Z values 0 .. i - 1).
1299
             */
1300
11.3k
            if (!group->
1301
11.3k
                meth->field_mul(group, tmp_Z, prod_Z[i - 1], tmp, ctx))
1302
0
                goto err;
1303
            /*
1304
             * Update tmp to satisfy the loop invariant for i - 1.
1305
             */
1306
11.3k
            if (!group->meth->field_mul(group, tmp, tmp, points[i]->Z, ctx))
1307
0
                goto err;
1308
            /* Replace points[i]->Z by its inverse. */
1309
11.3k
            if (!BN_copy(points[i]->Z, tmp_Z))
1310
0
                goto err;
1311
11.3k
        }
1312
11.3k
    }
1313
1314
2.63k
    if (!BN_is_zero(points[0]->Z)) {
1315
        /* Replace points[0]->Z by its inverse. */
1316
2.63k
        if (!BN_copy(points[0]->Z, tmp))
1317
0
            goto err;
1318
2.63k
    }
1319
1320
    /* Finally, fix up the X and Y coordinates for all points. */
1321
1322
16.6k
    for (i = 0; i < num; i++) {
1323
13.9k
        EC_POINT *p = points[i];
1324
1325
13.9k
        if (!BN_is_zero(p->Z)) {
1326
            /* turn  (X, Y, 1/Z)  into  (X/Z^2, Y/Z^3, 1) */
1327
1328
13.9k
            if (!group->meth->field_sqr(group, tmp, p->Z, ctx))
1329
0
                goto err;
1330
13.9k
            if (!group->meth->field_mul(group, p->X, p->X, tmp, ctx))
1331
0
                goto err;
1332
1333
13.9k
            if (!group->meth->field_mul(group, tmp, tmp, p->Z, ctx))
1334
0
                goto err;
1335
13.9k
            if (!group->meth->field_mul(group, p->Y, p->Y, tmp, ctx))
1336
0
                goto err;
1337
1338
13.9k
            if (group->meth->field_set_to_one != 0) {
1339
13.9k
                if (!group->meth->field_set_to_one(group, p->Z, ctx))
1340
0
                    goto err;
1341
13.9k
            } else {
1342
0
                if (!BN_one(p->Z))
1343
0
                    goto err;
1344
0
            }
1345
13.9k
            p->Z_is_one = 1;
1346
13.9k
        }
1347
13.9k
    }
1348
1349
2.63k
    ret = 1;
1350
1351
2.63k
 err:
1352
2.63k
    BN_CTX_end(ctx);
1353
2.63k
    BN_CTX_free(new_ctx);
1354
2.63k
    if (prod_Z != NULL) {
1355
16.6k
        for (i = 0; i < num; i++) {
1356
13.9k
            if (prod_Z[i] == NULL)
1357
0
                break;
1358
13.9k
            BN_clear_free(prod_Z[i]);
1359
13.9k
        }
1360
2.63k
        OPENSSL_free(prod_Z);
1361
2.63k
    }
1362
2.63k
    return ret;
1363
2.63k
}
1364
1365
int ossl_ec_GFp_simple_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
1366
                                 const BIGNUM *b, BN_CTX *ctx)
1367
0
{
1368
0
    return BN_mod_mul(r, a, b, group->field, ctx);
1369
0
}
1370
1371
int ossl_ec_GFp_simple_field_sqr(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
1372
                                 BN_CTX *ctx)
1373
0
{
1374
0
    return BN_mod_sqr(r, a, group->field, ctx);
1375
0
}
1376
1377
/*-
1378
 * Computes the multiplicative inverse of a in GF(p), storing the result in r.
1379
 * If a is zero (or equivalent), you'll get an EC_R_CANNOT_INVERT error.
1380
 * Since we don't have a Mont structure here, SCA hardening is with blinding.
1381
 * NB: "a" must be in _decoded_ form. (i.e. field_decode must precede.)
1382
 */
1383
int ossl_ec_GFp_simple_field_inv(const EC_GROUP *group, BIGNUM *r,
1384
                                 const BIGNUM *a, BN_CTX *ctx)
1385
0
{
1386
0
    BIGNUM *e = NULL;
1387
0
    BN_CTX *new_ctx = NULL;
1388
0
    int ret = 0;
1389
1390
0
    if (ctx == NULL
1391
0
            && (ctx = new_ctx = BN_CTX_secure_new_ex(group->libctx)) == NULL)
1392
0
        return 0;
1393
1394
0
    BN_CTX_start(ctx);
1395
0
    if ((e = BN_CTX_get(ctx)) == NULL)
1396
0
        goto err;
1397
1398
0
    do {
1399
0
        if (!BN_priv_rand_range_ex(e, group->field, 0, ctx))
1400
0
        goto err;
1401
0
    } while (BN_is_zero(e));
1402
1403
    /* r := a * e */
1404
0
    if (!group->meth->field_mul(group, r, a, e, ctx))
1405
0
        goto err;
1406
    /* r := 1/(a * e) */
1407
0
    if (!BN_mod_inverse(r, r, group->field, ctx)) {
1408
0
        ERR_raise(ERR_LIB_EC, EC_R_CANNOT_INVERT);
1409
0
        goto err;
1410
0
    }
1411
    /* r := e/(a * e) = 1/a */
1412
0
    if (!group->meth->field_mul(group, r, r, e, ctx))
1413
0
        goto err;
1414
1415
0
    ret = 1;
1416
1417
0
 err:
1418
0
    BN_CTX_end(ctx);
1419
0
    BN_CTX_free(new_ctx);
1420
0
    return ret;
1421
0
}
1422
1423
/*-
1424
 * Apply randomization of EC point projective coordinates:
1425
 *
1426
 *   (X, Y, Z) = (lambda^2*X, lambda^3*Y, lambda*Z)
1427
 *   lambda = [1, group->field)
1428
 *
1429
 */
1430
int ossl_ec_GFp_simple_blind_coordinates(const EC_GROUP *group, EC_POINT *p,
1431
                                         BN_CTX *ctx)
1432
2.58k
{
1433
2.58k
    int ret = 0;
1434
2.58k
    BIGNUM *lambda = NULL;
1435
2.58k
    BIGNUM *temp = NULL;
1436
1437
2.58k
    BN_CTX_start(ctx);
1438
2.58k
    lambda = BN_CTX_get(ctx);
1439
2.58k
    temp = BN_CTX_get(ctx);
1440
2.58k
    if (temp == NULL) {
1441
0
        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1442
0
        goto end;
1443
0
    }
1444
1445
    /*-
1446
     * Make sure lambda is not zero.
1447
     * If the RNG fails, we cannot blind but nevertheless want
1448
     * code to continue smoothly and not clobber the error stack.
1449
     */
1450
2.58k
    do {
1451
2.58k
        ERR_set_mark();
1452
2.58k
        ret = BN_priv_rand_range_ex(lambda, group->field, 0, ctx);
1453
2.58k
        ERR_pop_to_mark();
1454
2.58k
        if (ret == 0) {
1455
0
            ret = 1;
1456
0
            goto end;
1457
0
        }
1458
2.58k
    } while (BN_is_zero(lambda));
1459
1460
    /* if field_encode defined convert between representations */
1461
2.58k
    if ((group->meth->field_encode != NULL
1462
2.58k
         && !group->meth->field_encode(group, lambda, lambda, ctx))
1463
2.58k
        || !group->meth->field_mul(group, p->Z, p->Z, lambda, ctx)
1464
2.58k
        || !group->meth->field_sqr(group, temp, lambda, ctx)
1465
2.58k
        || !group->meth->field_mul(group, p->X, p->X, temp, ctx)
1466
2.58k
        || !group->meth->field_mul(group, temp, temp, lambda, ctx)
1467
2.58k
        || !group->meth->field_mul(group, p->Y, p->Y, temp, ctx))
1468
0
        goto end;
1469
1470
2.58k
    p->Z_is_one = 0;
1471
2.58k
    ret = 1;
1472
1473
2.58k
 end:
1474
2.58k
    BN_CTX_end(ctx);
1475
2.58k
    return ret;
1476
2.58k
}
1477
1478
/*-
1479
 * Input:
1480
 * - p: affine coordinates
1481
 *
1482
 * Output:
1483
 * - s := p, r := 2p: blinded projective (homogeneous) coordinates
1484
 *
1485
 * For doubling we use Formula 3 from Izu-Takagi "A fast parallel elliptic curve
1486
 * multiplication resistant against side channel attacks" appendix, described at
1487
 * https://hyperelliptic.org/EFD/g1p/auto-shortw-xz.html#doubling-dbl-2002-it-2
1488
 * simplified for Z1=1.
1489
 *
1490
 * Blinding uses the equivalence relation (\lambda X, \lambda Y, \lambda Z)
1491
 * for any non-zero \lambda that holds for projective (homogeneous) coords.
1492
 */
1493
int ossl_ec_GFp_simple_ladder_pre(const EC_GROUP *group,
1494
                                  EC_POINT *r, EC_POINT *s,
1495
                                  EC_POINT *p, BN_CTX *ctx)
1496
3.61k
{
1497
3.61k
    BIGNUM *t1, *t2, *t3, *t4, *t5 = NULL;
1498
1499
3.61k
    t1 = s->Z;
1500
3.61k
    t2 = r->Z;
1501
3.61k
    t3 = s->X;
1502
3.61k
    t4 = r->X;
1503
3.61k
    t5 = s->Y;
1504
1505
3.61k
    if (!p->Z_is_one /* r := 2p */
1506
3.61k
        || !group->meth->field_sqr(group, t3, p->X, ctx)
1507
3.61k
        || !BN_mod_sub_quick(t4, t3, group->a, group->field)
1508
3.61k
        || !group->meth->field_sqr(group, t4, t4, ctx)
1509
3.61k
        || !group->meth->field_mul(group, t5, p->X, group->b, ctx)
1510
3.61k
        || !BN_mod_lshift_quick(t5, t5, 3, group->field)
1511
        /* r->X coord output */
1512
3.61k
        || !BN_mod_sub_quick(r->X, t4, t5, group->field)
1513
3.61k
        || !BN_mod_add_quick(t1, t3, group->a, group->field)
1514
3.61k
        || !group->meth->field_mul(group, t2, p->X, t1, ctx)
1515
3.61k
        || !BN_mod_add_quick(t2, group->b, t2, group->field)
1516
        /* r->Z coord output */
1517
3.61k
        || !BN_mod_lshift_quick(r->Z, t2, 2, group->field))
1518
0
        return 0;
1519
1520
    /* make sure lambda (r->Y here for storage) is not zero */
1521
3.61k
    do {
1522
3.61k
        if (!BN_priv_rand_range_ex(r->Y, group->field, 0, ctx))
1523
0
            return 0;
1524
3.61k
    } while (BN_is_zero(r->Y));
1525
1526
    /* make sure lambda (s->Z here for storage) is not zero */
1527
3.61k
    do {
1528
3.61k
        if (!BN_priv_rand_range_ex(s->Z, group->field, 0, ctx))
1529
0
            return 0;
1530
3.61k
    } while (BN_is_zero(s->Z));
1531
1532
    /* if field_encode defined convert between representations */
1533
3.61k
    if (group->meth->field_encode != NULL
1534
3.61k
        && (!group->meth->field_encode(group, r->Y, r->Y, ctx)
1535
3.61k
            || !group->meth->field_encode(group, s->Z, s->Z, ctx)))
1536
0
        return 0;
1537
1538
    /* blind r and s independently */
1539
3.61k
    if (!group->meth->field_mul(group, r->Z, r->Z, r->Y, ctx)
1540
3.61k
        || !group->meth->field_mul(group, r->X, r->X, r->Y, ctx)
1541
3.61k
        || !group->meth->field_mul(group, s->X, p->X, s->Z, ctx)) /* s := p */
1542
0
        return 0;
1543
1544
3.61k
    r->Z_is_one = 0;
1545
3.61k
    s->Z_is_one = 0;
1546
1547
3.61k
    return 1;
1548
3.61k
}
1549
1550
/*-
1551
 * Input:
1552
 * - s, r: projective (homogeneous) coordinates
1553
 * - p: affine coordinates
1554
 *
1555
 * Output:
1556
 * - s := r + s, r := 2r: projective (homogeneous) coordinates
1557
 *
1558
 * Differential addition-and-doubling using Eq. (9) and (10) from Izu-Takagi
1559
 * "A fast parallel elliptic curve multiplication resistant against side channel
1560
 * attacks", as described at
1561
 * https://hyperelliptic.org/EFD/g1p/auto-shortw-xz.html#ladder-mladd-2002-it-4
1562
 */
1563
int ossl_ec_GFp_simple_ladder_step(const EC_GROUP *group,
1564
                                   EC_POINT *r, EC_POINT *s,
1565
                                   EC_POINT *p, BN_CTX *ctx)
1566
1.50M
{
1567
1.50M
    int ret = 0;
1568
1.50M
    BIGNUM *t0, *t1, *t2, *t3, *t4, *t5, *t6 = NULL;
1569
1570
1.50M
    BN_CTX_start(ctx);
1571
1.50M
    t0 = BN_CTX_get(ctx);
1572
1.50M
    t1 = BN_CTX_get(ctx);
1573
1.50M
    t2 = BN_CTX_get(ctx);
1574
1.50M
    t3 = BN_CTX_get(ctx);
1575
1.50M
    t4 = BN_CTX_get(ctx);
1576
1.50M
    t5 = BN_CTX_get(ctx);
1577
1.50M
    t6 = BN_CTX_get(ctx);
1578
1579
1.50M
    if (t6 == NULL
1580
1.50M
        || !group->meth->field_mul(group, t6, r->X, s->X, ctx)
1581
1.50M
        || !group->meth->field_mul(group, t0, r->Z, s->Z, ctx)
1582
1.50M
        || !group->meth->field_mul(group, t4, r->X, s->Z, ctx)
1583
1.50M
        || !group->meth->field_mul(group, t3, r->Z, s->X, ctx)
1584
1.50M
        || !group->meth->field_mul(group, t5, group->a, t0, ctx)
1585
1.50M
        || !BN_mod_add_quick(t5, t6, t5, group->field)
1586
1.50M
        || !BN_mod_add_quick(t6, t3, t4, group->field)
1587
1.50M
        || !group->meth->field_mul(group, t5, t6, t5, ctx)
1588
1.50M
        || !group->meth->field_sqr(group, t0, t0, ctx)
1589
1.50M
        || !BN_mod_lshift_quick(t2, group->b, 2, group->field)
1590
1.50M
        || !group->meth->field_mul(group, t0, t2, t0, ctx)
1591
1.50M
        || !BN_mod_lshift1_quick(t5, t5, group->field)
1592
1.50M
        || !BN_mod_sub_quick(t3, t4, t3, group->field)
1593
        /* s->Z coord output */
1594
1.50M
        || !group->meth->field_sqr(group, s->Z, t3, ctx)
1595
1.50M
        || !group->meth->field_mul(group, t4, s->Z, p->X, ctx)
1596
1.50M
        || !BN_mod_add_quick(t0, t0, t5, group->field)
1597
        /* s->X coord output */
1598
1.50M
        || !BN_mod_sub_quick(s->X, t0, t4, group->field)
1599
1.50M
        || !group->meth->field_sqr(group, t4, r->X, ctx)
1600
1.50M
        || !group->meth->field_sqr(group, t5, r->Z, ctx)
1601
1.50M
        || !group->meth->field_mul(group, t6, t5, group->a, ctx)
1602
1.50M
        || !BN_mod_add_quick(t1, r->X, r->Z, group->field)
1603
1.50M
        || !group->meth->field_sqr(group, t1, t1, ctx)
1604
1.50M
        || !BN_mod_sub_quick(t1, t1, t4, group->field)
1605
1.50M
        || !BN_mod_sub_quick(t1, t1, t5, group->field)
1606
1.50M
        || !BN_mod_sub_quick(t3, t4, t6, group->field)
1607
1.50M
        || !group->meth->field_sqr(group, t3, t3, ctx)
1608
1.50M
        || !group->meth->field_mul(group, t0, t5, t1, ctx)
1609
1.50M
        || !group->meth->field_mul(group, t0, t2, t0, ctx)
1610
        /* r->X coord output */
1611
1.50M
        || !BN_mod_sub_quick(r->X, t3, t0, group->field)
1612
1.50M
        || !BN_mod_add_quick(t3, t4, t6, group->field)
1613
1.50M
        || !group->meth->field_sqr(group, t4, t5, ctx)
1614
1.50M
        || !group->meth->field_mul(group, t4, t4, t2, ctx)
1615
1.50M
        || !group->meth->field_mul(group, t1, t1, t3, ctx)
1616
1.50M
        || !BN_mod_lshift1_quick(t1, t1, group->field)
1617
        /* r->Z coord output */
1618
1.50M
        || !BN_mod_add_quick(r->Z, t4, t1, group->field))
1619
0
        goto err;
1620
1621
1.50M
    ret = 1;
1622
1623
1.50M
 err:
1624
1.50M
    BN_CTX_end(ctx);
1625
1.50M
    return ret;
1626
1.50M
}
1627
1628
/*-
1629
 * Input:
1630
 * - s, r: projective (homogeneous) coordinates
1631
 * - p: affine coordinates
1632
 *
1633
 * Output:
1634
 * - r := (x,y): affine coordinates
1635
 *
1636
 * Recovers the y-coordinate of r using Eq. (8) from Brier-Joye, "Weierstrass
1637
 * Elliptic Curves and Side-Channel Attacks", modified to work in mixed
1638
 * projective coords, i.e. p is affine and (r,s) in projective (homogeneous)
1639
 * coords, and return r in affine coordinates.
1640
 *
1641
 * X4 = two*Y1*X2*Z3*Z2;
1642
 * Y4 = two*b*Z3*SQR(Z2) + Z3*(a*Z2+X1*X2)*(X1*Z2+X2) - X3*SQR(X1*Z2-X2);
1643
 * Z4 = two*Y1*Z3*SQR(Z2);
1644
 *
1645
 * Z4 != 0 because:
1646
 *  - Z2==0 implies r is at infinity (handled by the BN_is_zero(r->Z) branch);
1647
 *  - Z3==0 implies s is at infinity (handled by the BN_is_zero(s->Z) branch);
1648
 *  - Y1==0 implies p has order 2, so either r or s are infinity and handled by
1649
 *    one of the BN_is_zero(...) branches.
1650
 */
1651
int ossl_ec_GFp_simple_ladder_post(const EC_GROUP *group,
1652
                                   EC_POINT *r, EC_POINT *s,
1653
                                   EC_POINT *p, BN_CTX *ctx)
1654
3.61k
{
1655
3.61k
    int ret = 0;
1656
3.61k
    BIGNUM *t0, *t1, *t2, *t3, *t4, *t5, *t6 = NULL;
1657
1658
3.61k
    if (BN_is_zero(r->Z))
1659
250
        return EC_POINT_set_to_infinity(group, r);
1660
1661
3.36k
    if (BN_is_zero(s->Z)) {
1662
72
        if (!EC_POINT_copy(r, p)
1663
72
            || !EC_POINT_invert(group, r, ctx))
1664
0
            return 0;
1665
72
        return 1;
1666
72
    }
1667
1668
3.29k
    BN_CTX_start(ctx);
1669
3.29k
    t0 = BN_CTX_get(ctx);
1670
3.29k
    t1 = BN_CTX_get(ctx);
1671
3.29k
    t2 = BN_CTX_get(ctx);
1672
3.29k
    t3 = BN_CTX_get(ctx);
1673
3.29k
    t4 = BN_CTX_get(ctx);
1674
3.29k
    t5 = BN_CTX_get(ctx);
1675
3.29k
    t6 = BN_CTX_get(ctx);
1676
1677
3.29k
    if (t6 == NULL
1678
3.29k
        || !BN_mod_lshift1_quick(t4, p->Y, group->field)
1679
3.29k
        || !group->meth->field_mul(group, t6, r->X, t4, ctx)
1680
3.29k
        || !group->meth->field_mul(group, t6, s->Z, t6, ctx)
1681
3.29k
        || !group->meth->field_mul(group, t5, r->Z, t6, ctx)
1682
3.29k
        || !BN_mod_lshift1_quick(t1, group->b, group->field)
1683
3.29k
        || !group->meth->field_mul(group, t1, s->Z, t1, ctx)
1684
3.29k
        || !group->meth->field_sqr(group, t3, r->Z, ctx)
1685
3.29k
        || !group->meth->field_mul(group, t2, t3, t1, ctx)
1686
3.29k
        || !group->meth->field_mul(group, t6, r->Z, group->a, ctx)
1687
3.29k
        || !group->meth->field_mul(group, t1, p->X, r->X, ctx)
1688
3.29k
        || !BN_mod_add_quick(t1, t1, t6, group->field)
1689
3.29k
        || !group->meth->field_mul(group, t1, s->Z, t1, ctx)
1690
3.29k
        || !group->meth->field_mul(group, t0, p->X, r->Z, ctx)
1691
3.29k
        || !BN_mod_add_quick(t6, r->X, t0, group->field)
1692
3.29k
        || !group->meth->field_mul(group, t6, t6, t1, ctx)
1693
3.29k
        || !BN_mod_add_quick(t6, t6, t2, group->field)
1694
3.29k
        || !BN_mod_sub_quick(t0, t0, r->X, group->field)
1695
3.29k
        || !group->meth->field_sqr(group, t0, t0, ctx)
1696
3.29k
        || !group->meth->field_mul(group, t0, t0, s->X, ctx)
1697
3.29k
        || !BN_mod_sub_quick(t0, t6, t0, group->field)
1698
3.29k
        || !group->meth->field_mul(group, t1, s->Z, t4, ctx)
1699
3.29k
        || !group->meth->field_mul(group, t1, t3, t1, ctx)
1700
3.29k
        || (group->meth->field_decode != NULL
1701
3.29k
            && !group->meth->field_decode(group, t1, t1, ctx))
1702
3.29k
        || !group->meth->field_inv(group, t1, t1, ctx)
1703
3.29k
        || (group->meth->field_encode != NULL
1704
3.29k
            && !group->meth->field_encode(group, t1, t1, ctx))
1705
3.29k
        || !group->meth->field_mul(group, r->X, t5, t1, ctx)
1706
3.29k
        || !group->meth->field_mul(group, r->Y, t0, t1, ctx))
1707
0
        goto err;
1708
1709
3.29k
    if (group->meth->field_set_to_one != NULL) {
1710
3.29k
        if (!group->meth->field_set_to_one(group, r->Z, ctx))
1711
0
            goto err;
1712
3.29k
    } else {
1713
0
        if (!BN_one(r->Z))
1714
0
            goto err;
1715
0
    }
1716
1717
3.29k
    r->Z_is_one = 1;
1718
3.29k
    ret = 1;
1719
1720
3.29k
 err:
1721
3.29k
    BN_CTX_end(ctx);
1722
3.29k
    return ret;
1723
3.29k
}