/src/openssl30/crypto/bn/bn_local.h
Line  | Count  | Source (jump to first uncovered line)  | 
1  |  | /*  | 
2  |  |  * Copyright 1995-2023 The OpenSSL Project Authors. All Rights Reserved.  | 
3  |  |  *  | 
4  |  |  * Licensed under the Apache License 2.0 (the "License").  You may not use  | 
5  |  |  * this file except in compliance with the License.  You can obtain a copy  | 
6  |  |  * in the file LICENSE in the source distribution or at  | 
7  |  |  * https://www.openssl.org/source/license.html  | 
8  |  |  */  | 
9  |  |  | 
10  |  | #ifndef OSSL_CRYPTO_BN_LOCAL_H  | 
11  |  | # define OSSL_CRYPTO_BN_LOCAL_H  | 
12  |  |  | 
13  |  | /*  | 
14  |  |  * The EDK2 build doesn't use bn_conf.h; it sets THIRTY_TWO_BIT or  | 
15  |  |  * SIXTY_FOUR_BIT in its own environment since it doesn't re-run our  | 
16  |  |  * Configure script and needs to support both 32-bit and 64-bit.  | 
17  |  |  */  | 
18  |  | # include <openssl/opensslconf.h>  | 
19  |  |  | 
20  |  | # if !defined(OPENSSL_SYS_UEFI)  | 
21  |  | #  include "crypto/bn_conf.h"  | 
22  |  | # endif  | 
23  |  |  | 
24  |  | # include "crypto/bn.h"  | 
25  |  | # include "internal/cryptlib.h"  | 
26  |  | # include "internal/numbers.h"  | 
27  |  |  | 
28  |  | /*  | 
29  |  |  * These preprocessor symbols control various aspects of the bignum headers  | 
30  |  |  * and library code. They're not defined by any "normal" configuration, as  | 
31  |  |  * they are intended for development and testing purposes. NB: defining  | 
32  |  |  * them can be useful for debugging application code as well as openssl  | 
33  |  |  * itself. BN_DEBUG - turn on various debugging alterations to the bignum  | 
34  |  |  * code BN_RAND_DEBUG - uses random poisoning of unused words to trip up  | 
35  |  |  * mismanagement of bignum internals. Enable BN_RAND_DEBUG is known to  | 
36  |  |  * break some of the OpenSSL tests.  | 
37  |  |  */  | 
38  |  | # if defined(BN_RAND_DEBUG) && !defined(BN_DEBUG)  | 
39  |  | #  define BN_DEBUG  | 
40  |  | # endif  | 
41  |  | # if defined(BN_RAND_DEBUG)  | 
42  |  | #  include <openssl/rand.h>  | 
43  |  | # endif  | 
44  |  |  | 
45  |  | /*  | 
46  |  |  * This should limit the stack usage due to alloca to about 4K.  | 
47  |  |  * BN_SOFT_LIMIT is a soft limit equivalent to 2*OPENSSL_RSA_MAX_MODULUS_BITS.  | 
48  |  |  * Beyond that size bn_mul_mont is no longer used, and the constant time  | 
49  |  |  * assembler code is disabled, due to the blatant alloca and bn_mul_mont usage.  | 
50  |  |  * Note that bn_mul_mont does an alloca that is hidden away in assembly.  | 
51  |  |  * It is not recommended to do computations with numbers exceeding this limit,  | 
52  |  |  * since the result will be highly version dependent:  | 
53  |  |  * While the current OpenSSL version will use non-optimized, but safe code,  | 
54  |  |  * previous versions will use optimized code, that may crash due to unexpected  | 
55  |  |  * stack overflow, and future versions may very well turn this into a hard  | 
56  |  |  * limit.  | 
57  |  |  * Note however, that it is possible to override the size limit using  | 
58  |  |  * "./config -DBN_SOFT_LIMIT=<limit>" if necessary, and the O/S specific  | 
59  |  |  * stack limit is known and taken into consideration.  | 
60  |  |  */  | 
61  |  | # ifndef BN_SOFT_LIMIT  | 
62  | 185M  | #  define BN_SOFT_LIMIT         (4096 / BN_BYTES)  | 
63  |  | # endif  | 
64  |  |  | 
65  |  | # ifndef OPENSSL_SMALL_FOOTPRINT  | 
66  |  | #  define BN_MUL_COMBA  | 
67  |  | #  define BN_SQR_COMBA  | 
68  |  | #  define BN_RECURSION  | 
69  |  | # endif  | 
70  |  |  | 
71  |  | /*  | 
72  |  |  * This next option uses the C libraries (2 word)/(1 word) function. If it is  | 
73  |  |  * not defined, I use my C version (which is slower). The reason for this  | 
74  |  |  * flag is that when the particular C compiler library routine is used, and  | 
75  |  |  * the library is linked with a different compiler, the library is missing.  | 
76  |  |  * This mostly happens when the library is built with gcc and then linked  | 
77  |  |  * using normal cc.  This would be a common occurrence because gcc normally  | 
78  |  |  * produces code that is 2 times faster than system compilers for the big  | 
79  |  |  * number stuff. For machines with only one compiler (or shared libraries),  | 
80  |  |  * this should be on.  Again this in only really a problem on machines using  | 
81  |  |  * "long long's", are 32bit, and are not using my assembler code.  | 
82  |  |  */  | 
83  |  | # if defined(OPENSSL_SYS_MSDOS) || defined(OPENSSL_SYS_WINDOWS) || \  | 
84  |  |     defined(OPENSSL_SYS_WIN32) || defined(linux)  | 
85  |  | #  define BN_DIV2W  | 
86  |  | # endif  | 
87  |  |  | 
88  |  | /*  | 
89  |  |  * 64-bit processor with LP64 ABI  | 
90  |  |  */  | 
91  |  | # ifdef SIXTY_FOUR_BIT_LONG  | 
92  |  | #  define BN_ULLONG       unsigned long long  | 
93  | 1.54G  | #  define BN_BITS4        32  | 
94  | 5.73G  | #  define BN_MASK2        (0xffffffffffffffffL)  | 
95  | 1.53G  | #  define BN_MASK2l       (0xffffffffL)  | 
96  | 938k  | #  define BN_MASK2h       (0xffffffff00000000L)  | 
97  |  | #  define BN_MASK2h1      (0xffffffff80000000L)  | 
98  | 981k  | #  define BN_DEC_CONV     (10000000000000000000UL)  | 
99  | 804k  | #  define BN_DEC_NUM      19  | 
100  | 745k  | #  define BN_DEC_FMT1     "%lu"  | 
101  | 235k  | #  define BN_DEC_FMT2     "%019lu"  | 
102  |  | # endif  | 
103  |  |  | 
104  |  | /*  | 
105  |  |  * 64-bit processor other than LP64 ABI  | 
106  |  |  */  | 
107  |  | # ifdef SIXTY_FOUR_BIT  | 
108  |  | #  undef BN_LLONG  | 
109  |  | #  undef BN_ULLONG  | 
110  |  | #  define BN_BITS4        32  | 
111  |  | #  define BN_MASK2        (0xffffffffffffffffLL)  | 
112  |  | #  define BN_MASK2l       (0xffffffffL)  | 
113  |  | #  define BN_MASK2h       (0xffffffff00000000LL)  | 
114  |  | #  define BN_MASK2h1      (0xffffffff80000000LL)  | 
115  |  | #  define BN_DEC_CONV     (10000000000000000000ULL)  | 
116  |  | #  define BN_DEC_NUM      19  | 
117  |  | #  define BN_DEC_FMT1     "%llu"  | 
118  |  | #  define BN_DEC_FMT2     "%019llu"  | 
119  |  | # endif  | 
120  |  |  | 
121  |  | # ifdef THIRTY_TWO_BIT  | 
122  |  | #  ifdef BN_LLONG  | 
123  |  | #   if defined(_WIN32) && !defined(__GNUC__)  | 
124  |  | #    define BN_ULLONG     unsigned __int64  | 
125  |  | #   else  | 
126  |  | #    define BN_ULLONG     unsigned long long  | 
127  |  | #   endif  | 
128  |  | #  endif  | 
129  |  | #  define BN_BITS4        16  | 
130  |  | #  define BN_MASK2        (0xffffffffL)  | 
131  |  | #  define BN_MASK2l       (0xffff)  | 
132  |  | #  define BN_MASK2h1      (0xffff8000L)  | 
133  |  | #  define BN_MASK2h       (0xffff0000L)  | 
134  |  | #  define BN_DEC_CONV     (1000000000L)  | 
135  |  | #  define BN_DEC_NUM      9  | 
136  |  | #  define BN_DEC_FMT1     "%u"  | 
137  |  | #  define BN_DEC_FMT2     "%09u"  | 
138  |  | # endif  | 
139  |  |  | 
140  |  |  | 
141  |  | /*-  | 
142  |  |  * Bignum consistency macros  | 
143  |  |  * There is one "API" macro, bn_fix_top(), for stripping leading zeroes from  | 
144  |  |  * bignum data after direct manipulations on the data. There is also an  | 
145  |  |  * "internal" macro, bn_check_top(), for verifying that there are no leading  | 
146  |  |  * zeroes. Unfortunately, some auditing is required due to the fact that  | 
147  |  |  * bn_fix_top() has become an overabused duct-tape because bignum data is  | 
148  |  |  * occasionally passed around in an inconsistent state. So the following  | 
149  |  |  * changes have been made to sort this out;  | 
150  |  |  * - bn_fix_top()s implementation has been moved to bn_correct_top()  | 
151  |  |  * - if BN_DEBUG isn't defined, bn_fix_top() maps to bn_correct_top(), and  | 
152  |  |  *   bn_check_top() is as before.  | 
153  |  |  * - if BN_DEBUG *is* defined;  | 
154  |  |  *   - bn_check_top() tries to pollute unused words even if the bignum 'top' is  | 
155  |  |  *     consistent. (ed: only if BN_RAND_DEBUG is defined)  | 
156  |  |  *   - bn_fix_top() maps to bn_check_top() rather than "fixing" anything.  | 
157  |  |  * The idea is to have debug builds flag up inconsistent bignums when they  | 
158  |  |  * occur. If that occurs in a bn_fix_top(), we examine the code in question; if  | 
159  |  |  * the use of bn_fix_top() was appropriate (ie. it follows directly after code  | 
160  |  |  * that manipulates the bignum) it is converted to bn_correct_top(), and if it  | 
161  |  |  * was not appropriate, we convert it permanently to bn_check_top() and track  | 
162  |  |  * down the cause of the bug. Eventually, no internal code should be using the  | 
163  |  |  * bn_fix_top() macro. External applications and libraries should try this with  | 
164  |  |  * their own code too, both in terms of building against the openssl headers  | 
165  |  |  * with BN_DEBUG defined *and* linking with a version of OpenSSL built with it  | 
166  |  |  * defined. This not only improves external code, it provides more test  | 
167  |  |  * coverage for openssl's own code.  | 
168  |  |  */  | 
169  |  |  | 
170  |  | # ifdef BN_DEBUG  | 
171  |  | /*  | 
172  |  |  * The new BN_FLG_FIXED_TOP flag marks vectors that were not treated with  | 
173  |  |  * bn_correct_top, in other words such vectors are permitted to have zeros  | 
174  |  |  * in most significant limbs. Such vectors are used internally to achieve  | 
175  |  |  * execution time invariance for critical operations with private keys.  | 
176  |  |  * It's BN_DEBUG-only flag, because user application is not supposed to  | 
177  |  |  * observe it anyway. Moreover, optimizing compiler would actually remove  | 
178  |  |  * all operations manipulating the bit in question in non-BN_DEBUG build.  | 
179  |  |  */  | 
180  |  | #  define BN_FLG_FIXED_TOP 0x10000  | 
181  |  | #  ifdef BN_RAND_DEBUG  | 
182  |  | #   define bn_pollute(a) \  | 
183  |  |         do { \ | 
184  |  |             const BIGNUM *_bnum1 = (a); \  | 
185  |  |             if (_bnum1->top < _bnum1->dmax) { \ | 
186  |  |                 unsigned char _tmp_char; \  | 
187  |  |                 /* We cast away const without the compiler knowing, any \  | 
188  |  |                  * *genuinely* constant variables that aren't mutable \  | 
189  |  |                  * wouldn't be constructed with top!=dmax. */ \  | 
190  |  |                 BN_ULONG *_not_const; \  | 
191  |  |                 memcpy(&_not_const, &_bnum1->d, sizeof(_not_const)); \  | 
192  |  |                 (void)RAND_bytes(&_tmp_char, 1); /* Debug only - safe to ignore error return */\  | 
193  |  |                 memset(_not_const + _bnum1->top, _tmp_char, \  | 
194  |  |                        sizeof(*_not_const) * (_bnum1->dmax - _bnum1->top)); \  | 
195  |  |             } \  | 
196  |  |         } while(0)  | 
197  |  | #  else  | 
198  |  | #   define bn_pollute(a)  | 
199  |  | #  endif  | 
200  |  | #  define bn_check_top(a) \  | 
201  |  |         do { \ | 
202  |  |                 const BIGNUM *_bnum2 = (a); \  | 
203  |  |                 if (_bnum2 != NULL) { \ | 
204  |  |                         int _top = _bnum2->top; \  | 
205  |  |                         (void)ossl_assert((_top == 0 && !_bnum2->neg) || \  | 
206  |  |                                   (_top && ((_bnum2->flags & BN_FLG_FIXED_TOP) \  | 
207  |  |                                             || _bnum2->d[_top - 1] != 0))); \  | 
208  |  |                         bn_pollute(_bnum2); \  | 
209  |  |                 } \  | 
210  |  |         } while(0)  | 
211  |  |  | 
212  |  | #  define bn_fix_top(a)           bn_check_top(a)  | 
213  |  |  | 
214  |  | #  define bn_check_size(bn, bits) bn_wcheck_size(bn, ((bits+BN_BITS2-1))/BN_BITS2)  | 
215  |  | #  define bn_wcheck_size(bn, words) \  | 
216  |  |         do { \ | 
217  |  |                 const BIGNUM *_bnum2 = (bn); \  | 
218  |  |                 assert((words) <= (_bnum2)->dmax && \  | 
219  |  |                        (words) >= (_bnum2)->top); \  | 
220  |  |                 /* avoid unused variable warning with NDEBUG */ \  | 
221  |  |                 (void)(_bnum2); \  | 
222  |  |         } while(0)  | 
223  |  |  | 
224  |  | # else                          /* !BN_DEBUG */  | 
225  |  |  | 
226  | 2.61G  | #  define BN_FLG_FIXED_TOP 0  | 
227  |  | #  define bn_pollute(a)  | 
228  |  | #  define bn_check_top(a)  | 
229  |  | #  define bn_fix_top(a)           bn_correct_top(a)  | 
230  |  | #  define bn_check_size(bn, bits)  | 
231  |  | #  define bn_wcheck_size(bn, words)  | 
232  |  |  | 
233  |  | # endif  | 
234  |  |  | 
235  |  | BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num,  | 
236  |  |                           BN_ULONG w);  | 
237  |  | BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w);  | 
238  |  | void bn_sqr_words(BN_ULONG *rp, const BN_ULONG *ap, int num);  | 
239  |  | BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d);  | 
240  |  | BN_ULONG bn_add_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,  | 
241  |  |                       int num);  | 
242  |  | BN_ULONG bn_sub_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,  | 
243  |  |                       int num);  | 
244  |  |  | 
245  |  | struct bignum_st { | 
246  |  |     BN_ULONG *d;                /* Pointer to an array of 'BN_BITS2' bit  | 
247  |  |                                  * chunks. */  | 
248  |  |     int top;                    /* Index of last used d +1. */  | 
249  |  |     /* The next are internal book keeping for bn_expand. */  | 
250  |  |     int dmax;                   /* Size of the d array. */  | 
251  |  |     int neg;                    /* one if the number is negative */  | 
252  |  |     int flags;  | 
253  |  | };  | 
254  |  |  | 
255  |  | /* Used for montgomery multiplication */  | 
256  |  | struct bn_mont_ctx_st { | 
257  |  |     int ri;                     /* number of bits in R */  | 
258  |  |     BIGNUM RR;                  /* used to convert to montgomery form,  | 
259  |  |                                    possibly zero-padded */  | 
260  |  |     BIGNUM N;                   /* The modulus */  | 
261  |  |     BIGNUM Ni;                  /* R*(1/R mod N) - N*Ni = 1 (Ni is only  | 
262  |  |                                  * stored for bignum algorithm) */  | 
263  |  |     BN_ULONG n0[2];             /* least significant word(s) of Ni; (type  | 
264  |  |                                  * changed with 0.9.9, was "BN_ULONG n0;"  | 
265  |  |                                  * before) */  | 
266  |  |     int flags;  | 
267  |  | };  | 
268  |  |  | 
269  |  | /*  | 
270  |  |  * Used for reciprocal division/mod functions It cannot be shared between  | 
271  |  |  * threads  | 
272  |  |  */  | 
273  |  | struct bn_recp_ctx_st { | 
274  |  |     BIGNUM N;                   /* the divisor */  | 
275  |  |     BIGNUM Nr;                  /* the reciprocal */  | 
276  |  |     int num_bits;  | 
277  |  |     int shift;  | 
278  |  |     int flags;  | 
279  |  | };  | 
280  |  |  | 
281  |  | /* Used for slow "generation" functions. */  | 
282  |  | struct bn_gencb_st { | 
283  |  |     unsigned int ver;           /* To handle binary (in)compatibility */  | 
284  |  |     void *arg;                  /* callback-specific data */  | 
285  |  |     union { | 
286  |  |         /* if (ver==1) - handles old style callbacks */  | 
287  |  |         void (*cb_1) (int, int, void *);  | 
288  |  |         /* if (ver==2) - new callback style */  | 
289  |  |         int (*cb_2) (int, int, BN_GENCB *);  | 
290  |  |     } cb;  | 
291  |  | };  | 
292  |  |  | 
293  |  | /*-  | 
294  |  |  * BN_window_bits_for_exponent_size -- macro for sliding window mod_exp functions  | 
295  |  |  *  | 
296  |  |  *  | 
297  |  |  * For window size 'w' (w >= 2) and a random 'b' bits exponent,  | 
298  |  |  * the number of multiplications is a constant plus on average  | 
299  |  |  *  | 
300  |  |  *    2^(w-1) + (b-w)/(w+1);  | 
301  |  |  *  | 
302  |  |  * here  2^(w-1)  is for precomputing the table (we actually need  | 
303  |  |  * entries only for windows that have the lowest bit set), and  | 
304  |  |  * (b-w)/(w+1)  is an approximation for the expected number of  | 
305  |  |  * w-bit windows, not counting the first one.  | 
306  |  |  *  | 
307  |  |  * Thus we should use  | 
308  |  |  *  | 
309  |  |  *    w >= 6  if        b > 671  | 
310  |  |  *     w = 5  if  671 > b > 239  | 
311  |  |  *     w = 4  if  239 > b >  79  | 
312  |  |  *     w = 3  if   79 > b >  23  | 
313  |  |  *    w <= 2  if   23 > b  | 
314  |  |  *  | 
315  |  |  * (with draws in between).  Very small exponents are often selected  | 
316  |  |  * with low Hamming weight, so we use  w = 1  for b <= 23.  | 
317  |  |  */  | 
318  |  | # define BN_window_bits_for_exponent_size(b) \  | 
319  | 200k  |                 ((b) > 671 ? 6 : \  | 
320  | 200k  |                  (b) > 239 ? 5 : \  | 
321  | 197k  |                  (b) >  79 ? 4 : \  | 
322  | 172k  |                  (b) >  23 ? 3 : 1)  | 
323  |  |  | 
324  |  | /*  | 
325  |  |  * BN_mod_exp_mont_consttime is based on the assumption that the L1 data cache  | 
326  |  |  * line width of the target processor is at least the following value.  | 
327  |  |  */  | 
328  | 98.6k  | # define MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH      ( 64 )  | 
329  | 49.3k  | # define MOD_EXP_CTIME_MIN_CACHE_LINE_MASK       (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - 1)  | 
330  |  |  | 
331  |  | /*  | 
332  |  |  * Window sizes optimized for fixed window size modular exponentiation  | 
333  |  |  * algorithm (BN_mod_exp_mont_consttime). To achieve the security goals of  | 
334  |  |  * BN_mode_exp_mont_consttime, the maximum size of the window must not exceed  | 
335  |  |  * log_2(MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH). Window size thresholds are  | 
336  |  |  * defined for cache line sizes of 32 and 64, cache line sizes where  | 
337  |  |  * log_2(32)=5 and log_2(64)=6 respectively. A window size of 7 should only be  | 
338  |  |  * used on processors that have a 128 byte or greater cache line size.  | 
339  |  |  */  | 
340  |  | # if MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 64  | 
341  |  |  | 
342  |  | #  define BN_window_bits_for_ctime_exponent_size(b) \  | 
343  | 49.3k  |                 ((b) > 937 ? 6 : \  | 
344  | 49.3k  |                  (b) > 306 ? 5 : \  | 
345  | 24.2k  |                  (b) >  89 ? 4 : \  | 
346  | 19.7k  |                  (b) >  22 ? 3 : 1)  | 
347  |  | #  define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE    (6)  | 
348  |  |  | 
349  |  | # elif MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 32  | 
350  |  |  | 
351  |  | #  define BN_window_bits_for_ctime_exponent_size(b) \  | 
352  |  |                 ((b) > 306 ? 5 : \  | 
353  |  |                  (b) >  89 ? 4 : \  | 
354  |  |                  (b) >  22 ? 3 : 1)  | 
355  |  | #  define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE    (5)  | 
356  |  |  | 
357  |  | # endif  | 
358  |  |  | 
359  |  | /* Pentium pro 16,16,16,32,64 */  | 
360  |  | /* Alpha       16,16,16,16.64 */  | 
361  | 17.1M  | # define BN_MULL_SIZE_NORMAL                     (16)/* 32 */  | 
362  | 26.4M  | # define BN_MUL_RECURSIVE_SIZE_NORMAL            (16)/* 32 less than */  | 
363  | 6.31M  | # define BN_SQR_RECURSIVE_SIZE_NORMAL            (16)/* 32 */  | 
364  | 0  | # define BN_MUL_LOW_RECURSIVE_SIZE_NORMAL        (32)/* 32 */  | 
365  |  | # define BN_MONT_CTX_SET_SIZE_WORD               (64)/* 32 */  | 
366  |  |  | 
367  |  | # if !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM) && !defined(PEDANTIC)  | 
368  |  | /*  | 
369  |  |  * BN_UMULT_HIGH section.  | 
370  |  |  * If the compiler doesn't support 2*N integer type, then you have to  | 
371  |  |  * replace every N*N multiplication with 4 (N/2)*(N/2) accompanied by some  | 
372  |  |  * shifts and additions which unavoidably results in severe performance  | 
373  |  |  * penalties. Of course provided that the hardware is capable of producing  | 
374  |  |  * 2*N result... That's when you normally start considering assembler  | 
375  |  |  * implementation. However! It should be pointed out that some CPUs (e.g.,  | 
376  |  |  * PowerPC, Alpha, and IA-64) provide *separate* instruction calculating  | 
377  |  |  * the upper half of the product placing the result into a general  | 
378  |  |  * purpose register. Now *if* the compiler supports inline assembler,  | 
379  |  |  * then it's not impossible to implement the "bignum" routines (and have  | 
380  |  |  * the compiler optimize 'em) exhibiting "native" performance in C. That's  | 
381  |  |  * what BN_UMULT_HIGH macro is about:-) Note that more recent compilers do  | 
382  |  |  * support 2*64 integer type, which is also used here.  | 
383  |  |  */  | 
384  |  | #  if defined(__SIZEOF_INT128__) && __SIZEOF_INT128__==16 && \  | 
385  |  |       (defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG))  | 
386  |  | #   define BN_UMULT_HIGH(a,b)          (((uint128_t)(a)*(b))>>64)  | 
387  |  | #   define BN_UMULT_LOHI(low,high,a,b) ({       \ | 
388  |  |         uint128_t ret=(uint128_t)(a)*(b);   \  | 
389  |  |         (high)=ret>>64; (low)=ret;      })  | 
390  |  | #  elif defined(__alpha) && (defined(SIXTY_FOUR_BIT_LONG) || defined(SIXTY_FOUR_BIT))  | 
391  |  | #   if defined(__DECC)  | 
392  |  | #    include <c_asm.h>  | 
393  |  | #    define BN_UMULT_HIGH(a,b)   (BN_ULONG)asm("umulh %a0,%a1,%v0",(a),(b)) | 
394  |  | #   elif defined(__GNUC__) && __GNUC__>=2  | 
395  |  | #    define BN_UMULT_HIGH(a,b)   ({     \ | 
396  |  |         register BN_ULONG ret;          \  | 
397  |  |         asm ("umulh     %1,%2,%0"       \ | 
398  |  |              : "=r"(ret)                \  | 
399  |  |              : "r"(a), "r"(b));         \  | 
400  |  |         ret;                      })  | 
401  |  | #   endif                       /* compiler */  | 
402  |  | #  elif defined(_ARCH_PPC64) && defined(SIXTY_FOUR_BIT_LONG)  | 
403  |  | #   if defined(__GNUC__) && __GNUC__>=2  | 
404  |  | #    define BN_UMULT_HIGH(a,b)   ({     \ | 
405  |  |         register BN_ULONG ret;          \  | 
406  |  |         asm ("mulhdu    %0,%1,%2"       \ | 
407  |  |              : "=r"(ret)                \  | 
408  |  |              : "r"(a), "r"(b));         \  | 
409  |  |         ret;                      })  | 
410  |  | #   endif                       /* compiler */  | 
411  |  | #  elif (defined(__x86_64) || defined(__x86_64__)) && \  | 
412  |  |        (defined(SIXTY_FOUR_BIT_LONG) || defined(SIXTY_FOUR_BIT))  | 
413  |  | #   if defined(__GNUC__) && __GNUC__>=2  | 
414  |  | #    define BN_UMULT_HIGH(a,b)   ({     \ | 
415  |  |         register BN_ULONG ret,discard;  \  | 
416  |  |         asm ("mulq      %3"             \ | 
417  |  |              : "=a"(discard),"=d"(ret)  \  | 
418  |  |              : "a"(a), "g"(b)           \  | 
419  |  |              : "cc");                   \  | 
420  |  |         ret;                      })  | 
421  |  | #    define BN_UMULT_LOHI(low,high,a,b) \  | 
422  |  |         asm ("mulq      %3"             \ | 
423  |  |                 : "=a"(low),"=d"(high)  \  | 
424  |  |                 : "a"(a),"g"(b)         \  | 
425  |  |                 : "cc");  | 
426  |  | #   endif  | 
427  |  | #  elif (defined(_M_AMD64) || defined(_M_X64)) && defined(SIXTY_FOUR_BIT)  | 
428  |  | #   if defined(_MSC_VER) && _MSC_VER>=1400  | 
429  |  | unsigned __int64 __umulh(unsigned __int64 a, unsigned __int64 b);  | 
430  |  | unsigned __int64 _umul128(unsigned __int64 a, unsigned __int64 b,  | 
431  |  |                           unsigned __int64 *h);  | 
432  |  | #    pragma intrinsic(__umulh,_umul128)  | 
433  |  | #    define BN_UMULT_HIGH(a,b)           __umulh((a),(b))  | 
434  |  | #    define BN_UMULT_LOHI(low,high,a,b)  ((low)=_umul128((a),(b),&(high)))  | 
435  |  | #   endif  | 
436  |  | #  elif defined(__mips) && (defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG))  | 
437  |  | #   if defined(__GNUC__) && __GNUC__>=2  | 
438  |  | #    define BN_UMULT_HIGH(a,b) ({       \ | 
439  |  |         register BN_ULONG ret;          \  | 
440  |  |         asm ("dmultu    %1,%2"          \ | 
441  |  |              : "=h"(ret)                \  | 
442  |  |              : "r"(a), "r"(b) : "l");   \  | 
443  |  |         ret;                    })  | 
444  |  | #    define BN_UMULT_LOHI(low,high,a,b) \  | 
445  |  |         asm ("dmultu    %2,%3"          \ | 
446  |  |              : "=l"(low),"=h"(high)     \  | 
447  |  |              : "r"(a), "r"(b));  | 
448  |  | #   endif  | 
449  |  | #  elif defined(__aarch64__) && defined(SIXTY_FOUR_BIT_LONG)  | 
450  |  | #   if defined(__GNUC__) && __GNUC__>=2  | 
451  |  | #    define BN_UMULT_HIGH(a,b)   ({     \ | 
452  |  |         register BN_ULONG ret;          \  | 
453  |  |         asm ("umulh     %0,%1,%2"       \ | 
454  |  |              : "=r"(ret)                \  | 
455  |  |              : "r"(a), "r"(b));         \  | 
456  |  |         ret;                      })  | 
457  |  | #   endif  | 
458  |  | #  endif                        /* cpu */  | 
459  |  | # endif                         /* OPENSSL_NO_ASM */  | 
460  |  |  | 
461  |  | # ifdef BN_RAND_DEBUG  | 
462  |  | #  define bn_clear_top2max(a) \  | 
463  |  |         { \ | 
464  |  |         int      ind = (a)->dmax - (a)->top; \  | 
465  |  |         BN_ULONG *ftl = &(a)->d[(a)->top-1]; \  | 
466  |  |         for (; ind != 0; ind--) \  | 
467  |  |                 *(++ftl) = 0x0; \  | 
468  |  |         }  | 
469  |  | # else  | 
470  |  | #  define bn_clear_top2max(a)  | 
471  |  | # endif  | 
472  |  |  | 
473  |  | # ifdef BN_LLONG  | 
474  |  | /*******************************************************************  | 
475  |  |  * Using the long long type, has to be twice as wide as BN_ULONG...  | 
476  |  |  */  | 
477  |  | #  define Lw(t)    (((BN_ULONG)(t))&BN_MASK2)  | 
478  |  | #  define Hw(t)    (((BN_ULONG)((t)>>BN_BITS2))&BN_MASK2)  | 
479  |  |  | 
480  |  | #  define mul_add(r,a,w,c) { \ | 
481  |  |         BN_ULLONG t; \  | 
482  |  |         t=(BN_ULLONG)w * (a) + (r) + (c); \  | 
483  |  |         (r)= Lw(t); \  | 
484  |  |         (c)= Hw(t); \  | 
485  |  |         }  | 
486  |  |  | 
487  |  | #  define mul(r,a,w,c) { \ | 
488  |  |         BN_ULLONG t; \  | 
489  |  |         t=(BN_ULLONG)w * (a) + (c); \  | 
490  |  |         (r)= Lw(t); \  | 
491  |  |         (c)= Hw(t); \  | 
492  |  |         }  | 
493  |  |  | 
494  |  | #  define sqr(r0,r1,a) { \ | 
495  |  |         BN_ULLONG t; \  | 
496  |  |         t=(BN_ULLONG)(a)*(a); \  | 
497  |  |         (r0)=Lw(t); \  | 
498  |  |         (r1)=Hw(t); \  | 
499  |  |         }  | 
500  |  |  | 
501  |  | # elif defined(BN_UMULT_LOHI)  | 
502  |  | #  define mul_add(r,a,w,c) {              \ | 
503  |  |         BN_ULONG high,low,ret,tmp=(a);  \  | 
504  |  |         ret =  (r);                     \  | 
505  |  |         BN_UMULT_LOHI(low,high,w,tmp);  \  | 
506  |  |         ret += (c);                     \  | 
507  |  |         (c) =  (ret<(c));               \  | 
508  |  |         (c) += high;                    \  | 
509  |  |         ret += low;                     \  | 
510  |  |         (c) += (ret<low);               \  | 
511  |  |         (r) =  ret;                     \  | 
512  |  |         }  | 
513  |  |  | 
514  |  | #  define mul(r,a,w,c)    {               \ | 
515  |  |         BN_ULONG high,low,ret,ta=(a);   \  | 
516  |  |         BN_UMULT_LOHI(low,high,w,ta);   \  | 
517  |  |         ret =  low + (c);               \  | 
518  |  |         (c) =  high;                    \  | 
519  |  |         (c) += (ret<low);               \  | 
520  |  |         (r) =  ret;                     \  | 
521  |  |         }  | 
522  |  |  | 
523  |  | #  define sqr(r0,r1,a)    {               \ | 
524  |  |         BN_ULONG tmp=(a);               \  | 
525  |  |         BN_UMULT_LOHI(r0,r1,tmp,tmp);   \  | 
526  |  |         }  | 
527  |  |  | 
528  |  | # elif defined(BN_UMULT_HIGH)  | 
529  |  | #  define mul_add(r,a,w,c) {              \ | 
530  |  |         BN_ULONG high,low,ret,tmp=(a);  \  | 
531  |  |         ret =  (r);                     \  | 
532  |  |         high=  BN_UMULT_HIGH(w,tmp);    \  | 
533  |  |         ret += (c);                     \  | 
534  |  |         low =  (w) * tmp;               \  | 
535  |  |         (c) =  (ret<(c));               \  | 
536  |  |         (c) += high;                    \  | 
537  |  |         ret += low;                     \  | 
538  |  |         (c) += (ret<low);               \  | 
539  |  |         (r) =  ret;                     \  | 
540  |  |         }  | 
541  |  |  | 
542  |  | #  define mul(r,a,w,c)    {               \ | 
543  |  |         BN_ULONG high,low,ret,ta=(a);   \  | 
544  |  |         low =  (w) * ta;                \  | 
545  |  |         high=  BN_UMULT_HIGH(w,ta);     \  | 
546  |  |         ret =  low + (c);               \  | 
547  |  |         (c) =  high;                    \  | 
548  |  |         (c) += (ret<low);               \  | 
549  |  |         (r) =  ret;                     \  | 
550  |  |         }  | 
551  |  |  | 
552  |  | #  define sqr(r0,r1,a)    {               \ | 
553  |  |         BN_ULONG tmp=(a);               \  | 
554  |  |         (r0) = tmp * tmp;               \  | 
555  |  |         (r1) = BN_UMULT_HIGH(tmp,tmp);  \  | 
556  |  |         }  | 
557  |  |  | 
558  |  | # else  | 
559  |  | /*************************************************************  | 
560  |  |  * No long long type  | 
561  |  |  */  | 
562  |  |  | 
563  | 609M  | #  define LBITS(a)        ((a)&BN_MASK2l)  | 
564  | 914M  | #  define HBITS(a)        (((a)>>BN_BITS4)&BN_MASK2l)  | 
565  | 609M  | #  define L2HBITS(a)      (((a)<<BN_BITS4)&BN_MASK2)  | 
566  |  |  | 
567  |  | #  define LLBITS(a)       ((a)&BN_MASKl)  | 
568  |  | #  define LHBITS(a)       (((a)>>BN_BITS2)&BN_MASKl)  | 
569  |  | #  define LL2HBITS(a)     ((BN_ULLONG)((a)&BN_MASKl)<<BN_BITS2)  | 
570  |  |  | 
571  |  | #  define mul64(l,h,bl,bh) \  | 
572  | 304M  |         { \ | 
573  | 304M  |         BN_ULONG m,m1,lt,ht; \  | 
574  | 304M  |  \  | 
575  | 304M  |         lt=l; \  | 
576  | 304M  |         ht=h; \  | 
577  | 304M  |         m =(bh)*(lt); \  | 
578  | 304M  |         lt=(bl)*(lt); \  | 
579  | 304M  |         m1=(bl)*(ht); \  | 
580  | 304M  |         ht =(bh)*(ht); \  | 
581  | 304M  |         m=(m+m1)&BN_MASK2; ht += L2HBITS((BN_ULONG)(m < m1)); \  | 
582  | 304M  |         ht+=HBITS(m); \  | 
583  | 304M  |         m1=L2HBITS(m); \  | 
584  | 304M  |         lt=(lt+m1)&BN_MASK2; ht += (lt < m1); \  | 
585  | 304M  |         (l)=lt; \  | 
586  | 304M  |         (h)=ht; \  | 
587  | 304M  |         }  | 
588  |  |  | 
589  |  | #  define sqr64(lo,ho,in) \  | 
590  |  |         { \ | 
591  |  |         BN_ULONG l,h,m; \  | 
592  |  |  \  | 
593  |  |         h=(in); \  | 
594  |  |         l=LBITS(h); \  | 
595  |  |         h=HBITS(h); \  | 
596  |  |         m =(l)*(h); \  | 
597  |  |         l*=l; \  | 
598  |  |         h*=h; \  | 
599  |  |         h+=(m&BN_MASK2h1)>>(BN_BITS4-1); \  | 
600  |  |         m =(m&BN_MASK2l)<<(BN_BITS4+1); \  | 
601  |  |         l=(l+m)&BN_MASK2; h += (l < m); \  | 
602  |  |         (lo)=l; \  | 
603  |  |         (ho)=h; \  | 
604  |  |         }  | 
605  |  |  | 
606  |  | #  define mul_add(r,a,bl,bh,c) { \ | 
607  |  |         BN_ULONG l,h; \  | 
608  |  |  \  | 
609  |  |         h= (a); \  | 
610  |  |         l=LBITS(h); \  | 
611  |  |         h=HBITS(h); \  | 
612  |  |         mul64(l,h,(bl),(bh)); \  | 
613  |  |  \  | 
614  |  |         /* non-multiply part */ \  | 
615  |  |         l=(l+(c))&BN_MASK2; h += (l < (c)); \  | 
616  |  |         (c)=(r); \  | 
617  |  |         l=(l+(c))&BN_MASK2; h += (l < (c)); \  | 
618  |  |         (c)=h&BN_MASK2; \  | 
619  |  |         (r)=l; \  | 
620  |  |         }  | 
621  |  |  | 
622  |  | #  define mul(r,a,bl,bh,c) { \ | 
623  |  |         BN_ULONG l,h; \  | 
624  |  |  \  | 
625  |  |         h= (a); \  | 
626  |  |         l=LBITS(h); \  | 
627  |  |         h=HBITS(h); \  | 
628  |  |         mul64(l,h,(bl),(bh)); \  | 
629  |  |  \  | 
630  |  |         /* non-multiply part */ \  | 
631  |  |         l+=(c); h += ((l&BN_MASK2) < (c)); \  | 
632  |  |         (c)=h&BN_MASK2; \  | 
633  |  |         (r)=l&BN_MASK2; \  | 
634  |  |         }  | 
635  |  | # endif                         /* !BN_LLONG */  | 
636  |  |  | 
637  |  | void BN_RECP_CTX_init(BN_RECP_CTX *recp);  | 
638  |  | void BN_MONT_CTX_init(BN_MONT_CTX *ctx);  | 
639  |  |  | 
640  |  | void bn_init(BIGNUM *a);  | 
641  |  | void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb);  | 
642  |  | void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b);  | 
643  |  | void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b);  | 
644  |  | void bn_sqr_normal(BN_ULONG *r, const BN_ULONG *a, int n, BN_ULONG *tmp);  | 
645  |  | void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a);  | 
646  |  | void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a);  | 
647  |  | int bn_cmp_words(const BN_ULONG *a, const BN_ULONG *b, int n);  | 
648  |  | int bn_cmp_part_words(const BN_ULONG *a, const BN_ULONG *b, int cl, int dl);  | 
649  |  | void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,  | 
650  |  |                       int dna, int dnb, BN_ULONG *t);  | 
651  |  | void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b,  | 
652  |  |                            int n, int tna, int tnb, BN_ULONG *t);  | 
653  |  | void bn_sqr_recursive(BN_ULONG *r, const BN_ULONG *a, int n2, BN_ULONG *t);  | 
654  |  | void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n);  | 
655  |  | void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,  | 
656  |  |                           BN_ULONG *t);  | 
657  |  | BN_ULONG bn_sub_part_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,  | 
658  |  |                            int cl, int dl);  | 
659  |  | int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,  | 
660  |  |                 const BN_ULONG *np, const BN_ULONG *n0, int num);  | 
661  |  | void bn_correct_top_consttime(BIGNUM *a);  | 
662  |  | BIGNUM *int_bn_mod_inverse(BIGNUM *in,  | 
663  |  |                            const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx,  | 
664  |  |                            int *noinv);  | 
665  |  |  | 
666  |  | static ossl_inline BIGNUM *bn_expand(BIGNUM *a, int bits)  | 
667  | 2.02M  | { | 
668  | 2.02M  |     if (bits > (INT_MAX - BN_BITS2 + 1))  | 
669  | 0  |         return NULL;  | 
670  |  |  | 
671  | 2.02M  |     if (((bits+BN_BITS2-1)/BN_BITS2) <= (a)->dmax)  | 
672  | 1.12M  |         return a;  | 
673  |  |  | 
674  | 901k  |     return bn_expand2((a),(bits+BN_BITS2-1)/BN_BITS2);  | 
675  | 2.02M  | } Unexecuted instantiation: bn_conv.c:bn_expand Line  | Count  | Source  |  667  | 2.02M  | { |  668  | 2.02M  |     if (bits > (INT_MAX - BN_BITS2 + 1))  |  669  | 0  |         return NULL;  |  670  |  |  |  671  | 2.02M  |     if (((bits+BN_BITS2-1)/BN_BITS2) <= (a)->dmax)  |  672  | 1.12M  |         return a;  |  673  |  |  |  674  | 901k  |     return bn_expand2((a),(bits+BN_BITS2-1)/BN_BITS2);  |  675  | 2.02M  | }  |  
 Unexecuted instantiation: bn_mont.c:bn_expand Unexecuted instantiation: bn_mul.c:bn_expand Unexecuted instantiation: bn_shift.c:bn_expand Unexecuted instantiation: bn_sqr.c:bn_expand Unexecuted instantiation: bn_word.c:bn_expand Unexecuted instantiation: x86_64-gcc.c:bn_expand Unexecuted instantiation: bn_add.c:bn_expand Unexecuted instantiation: bn_blind.c:bn_expand Unexecuted instantiation: bn_ctx.c:bn_expand Unexecuted instantiation: bn_div.c:bn_expand Unexecuted instantiation: bn_exp.c:bn_expand Unexecuted instantiation: bn_gcd.c:bn_expand Unexecuted instantiation: bn_intern.c:bn_expand Unexecuted instantiation: bn_mod.c:bn_expand Unexecuted instantiation: bn_rand.c:bn_expand Unexecuted instantiation: bn_recp.c:bn_expand Unexecuted instantiation: rsaz_exp.c:bn_expand Unexecuted instantiation: rsaz_exp_x2.c:bn_expand Unexecuted instantiation: bn_dh.c:bn_expand Unexecuted instantiation: bn_exp2.c:bn_expand Unexecuted instantiation: bn_kron.c:bn_expand Unexecuted instantiation: bn_nist.c:bn_expand Unexecuted instantiation: bn_prime.c:bn_expand Unexecuted instantiation: bn_print.c:bn_expand Unexecuted instantiation: bn_rsa_fips186_4.c:bn_expand Unexecuted instantiation: bn_sqrt.c:bn_expand Unexecuted instantiation: bn_gf2m.c:bn_expand Unexecuted instantiation: bn_srp.c:bn_expand  | 
676  |  |  | 
677  |  | int ossl_bn_check_prime(const BIGNUM *w, int checks, BN_CTX *ctx,  | 
678  |  |                         int do_trial_division, BN_GENCB *cb);  | 
679  |  |  | 
680  |  | #endif  |