Coverage Report

Created: 2025-06-13 06:58

/src/openssl30/crypto/bn/bn_local.h
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 1995-2023 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
#ifndef OSSL_CRYPTO_BN_LOCAL_H
11
# define OSSL_CRYPTO_BN_LOCAL_H
12
13
/*
14
 * The EDK2 build doesn't use bn_conf.h; it sets THIRTY_TWO_BIT or
15
 * SIXTY_FOUR_BIT in its own environment since it doesn't re-run our
16
 * Configure script and needs to support both 32-bit and 64-bit.
17
 */
18
# include <openssl/opensslconf.h>
19
20
# if !defined(OPENSSL_SYS_UEFI)
21
#  include "crypto/bn_conf.h"
22
# endif
23
24
# include "crypto/bn.h"
25
# include "internal/cryptlib.h"
26
# include "internal/numbers.h"
27
28
/*
29
 * These preprocessor symbols control various aspects of the bignum headers
30
 * and library code. They're not defined by any "normal" configuration, as
31
 * they are intended for development and testing purposes. NB: defining
32
 * them can be useful for debugging application code as well as openssl
33
 * itself. BN_DEBUG - turn on various debugging alterations to the bignum
34
 * code BN_RAND_DEBUG - uses random poisoning of unused words to trip up
35
 * mismanagement of bignum internals. Enable BN_RAND_DEBUG is known to
36
 * break some of the OpenSSL tests.
37
 */
38
# if defined(BN_RAND_DEBUG) && !defined(BN_DEBUG)
39
#  define BN_DEBUG
40
# endif
41
# if defined(BN_RAND_DEBUG)
42
#  include <openssl/rand.h>
43
# endif
44
45
/*
46
 * This should limit the stack usage due to alloca to about 4K.
47
 * BN_SOFT_LIMIT is a soft limit equivalent to 2*OPENSSL_RSA_MAX_MODULUS_BITS.
48
 * Beyond that size bn_mul_mont is no longer used, and the constant time
49
 * assembler code is disabled, due to the blatant alloca and bn_mul_mont usage.
50
 * Note that bn_mul_mont does an alloca that is hidden away in assembly.
51
 * It is not recommended to do computations with numbers exceeding this limit,
52
 * since the result will be highly version dependent:
53
 * While the current OpenSSL version will use non-optimized, but safe code,
54
 * previous versions will use optimized code, that may crash due to unexpected
55
 * stack overflow, and future versions may very well turn this into a hard
56
 * limit.
57
 * Note however, that it is possible to override the size limit using
58
 * "./config -DBN_SOFT_LIMIT=<limit>" if necessary, and the O/S specific
59
 * stack limit is known and taken into consideration.
60
 */
61
# ifndef BN_SOFT_LIMIT
62
185M
#  define BN_SOFT_LIMIT         (4096 / BN_BYTES)
63
# endif
64
65
# ifndef OPENSSL_SMALL_FOOTPRINT
66
#  define BN_MUL_COMBA
67
#  define BN_SQR_COMBA
68
#  define BN_RECURSION
69
# endif
70
71
/*
72
 * This next option uses the C libraries (2 word)/(1 word) function. If it is
73
 * not defined, I use my C version (which is slower). The reason for this
74
 * flag is that when the particular C compiler library routine is used, and
75
 * the library is linked with a different compiler, the library is missing.
76
 * This mostly happens when the library is built with gcc and then linked
77
 * using normal cc.  This would be a common occurrence because gcc normally
78
 * produces code that is 2 times faster than system compilers for the big
79
 * number stuff. For machines with only one compiler (or shared libraries),
80
 * this should be on.  Again this in only really a problem on machines using
81
 * "long long's", are 32bit, and are not using my assembler code.
82
 */
83
# if defined(OPENSSL_SYS_MSDOS) || defined(OPENSSL_SYS_WINDOWS) || \
84
    defined(OPENSSL_SYS_WIN32) || defined(linux)
85
#  define BN_DIV2W
86
# endif
87
88
/*
89
 * 64-bit processor with LP64 ABI
90
 */
91
# ifdef SIXTY_FOUR_BIT_LONG
92
#  define BN_ULLONG       unsigned long long
93
1.54G
#  define BN_BITS4        32
94
5.73G
#  define BN_MASK2        (0xffffffffffffffffL)
95
1.53G
#  define BN_MASK2l       (0xffffffffL)
96
938k
#  define BN_MASK2h       (0xffffffff00000000L)
97
#  define BN_MASK2h1      (0xffffffff80000000L)
98
981k
#  define BN_DEC_CONV     (10000000000000000000UL)
99
804k
#  define BN_DEC_NUM      19
100
745k
#  define BN_DEC_FMT1     "%lu"
101
235k
#  define BN_DEC_FMT2     "%019lu"
102
# endif
103
104
/*
105
 * 64-bit processor other than LP64 ABI
106
 */
107
# ifdef SIXTY_FOUR_BIT
108
#  undef BN_LLONG
109
#  undef BN_ULLONG
110
#  define BN_BITS4        32
111
#  define BN_MASK2        (0xffffffffffffffffLL)
112
#  define BN_MASK2l       (0xffffffffL)
113
#  define BN_MASK2h       (0xffffffff00000000LL)
114
#  define BN_MASK2h1      (0xffffffff80000000LL)
115
#  define BN_DEC_CONV     (10000000000000000000ULL)
116
#  define BN_DEC_NUM      19
117
#  define BN_DEC_FMT1     "%llu"
118
#  define BN_DEC_FMT2     "%019llu"
119
# endif
120
121
# ifdef THIRTY_TWO_BIT
122
#  ifdef BN_LLONG
123
#   if defined(_WIN32) && !defined(__GNUC__)
124
#    define BN_ULLONG     unsigned __int64
125
#   else
126
#    define BN_ULLONG     unsigned long long
127
#   endif
128
#  endif
129
#  define BN_BITS4        16
130
#  define BN_MASK2        (0xffffffffL)
131
#  define BN_MASK2l       (0xffff)
132
#  define BN_MASK2h1      (0xffff8000L)
133
#  define BN_MASK2h       (0xffff0000L)
134
#  define BN_DEC_CONV     (1000000000L)
135
#  define BN_DEC_NUM      9
136
#  define BN_DEC_FMT1     "%u"
137
#  define BN_DEC_FMT2     "%09u"
138
# endif
139
140
141
/*-
142
 * Bignum consistency macros
143
 * There is one "API" macro, bn_fix_top(), for stripping leading zeroes from
144
 * bignum data after direct manipulations on the data. There is also an
145
 * "internal" macro, bn_check_top(), for verifying that there are no leading
146
 * zeroes. Unfortunately, some auditing is required due to the fact that
147
 * bn_fix_top() has become an overabused duct-tape because bignum data is
148
 * occasionally passed around in an inconsistent state. So the following
149
 * changes have been made to sort this out;
150
 * - bn_fix_top()s implementation has been moved to bn_correct_top()
151
 * - if BN_DEBUG isn't defined, bn_fix_top() maps to bn_correct_top(), and
152
 *   bn_check_top() is as before.
153
 * - if BN_DEBUG *is* defined;
154
 *   - bn_check_top() tries to pollute unused words even if the bignum 'top' is
155
 *     consistent. (ed: only if BN_RAND_DEBUG is defined)
156
 *   - bn_fix_top() maps to bn_check_top() rather than "fixing" anything.
157
 * The idea is to have debug builds flag up inconsistent bignums when they
158
 * occur. If that occurs in a bn_fix_top(), we examine the code in question; if
159
 * the use of bn_fix_top() was appropriate (ie. it follows directly after code
160
 * that manipulates the bignum) it is converted to bn_correct_top(), and if it
161
 * was not appropriate, we convert it permanently to bn_check_top() and track
162
 * down the cause of the bug. Eventually, no internal code should be using the
163
 * bn_fix_top() macro. External applications and libraries should try this with
164
 * their own code too, both in terms of building against the openssl headers
165
 * with BN_DEBUG defined *and* linking with a version of OpenSSL built with it
166
 * defined. This not only improves external code, it provides more test
167
 * coverage for openssl's own code.
168
 */
169
170
# ifdef BN_DEBUG
171
/*
172
 * The new BN_FLG_FIXED_TOP flag marks vectors that were not treated with
173
 * bn_correct_top, in other words such vectors are permitted to have zeros
174
 * in most significant limbs. Such vectors are used internally to achieve
175
 * execution time invariance for critical operations with private keys.
176
 * It's BN_DEBUG-only flag, because user application is not supposed to
177
 * observe it anyway. Moreover, optimizing compiler would actually remove
178
 * all operations manipulating the bit in question in non-BN_DEBUG build.
179
 */
180
#  define BN_FLG_FIXED_TOP 0x10000
181
#  ifdef BN_RAND_DEBUG
182
#   define bn_pollute(a) \
183
        do { \
184
            const BIGNUM *_bnum1 = (a); \
185
            if (_bnum1->top < _bnum1->dmax) { \
186
                unsigned char _tmp_char; \
187
                /* We cast away const without the compiler knowing, any \
188
                 * *genuinely* constant variables that aren't mutable \
189
                 * wouldn't be constructed with top!=dmax. */ \
190
                BN_ULONG *_not_const; \
191
                memcpy(&_not_const, &_bnum1->d, sizeof(_not_const)); \
192
                (void)RAND_bytes(&_tmp_char, 1); /* Debug only - safe to ignore error return */\
193
                memset(_not_const + _bnum1->top, _tmp_char, \
194
                       sizeof(*_not_const) * (_bnum1->dmax - _bnum1->top)); \
195
            } \
196
        } while(0)
197
#  else
198
#   define bn_pollute(a)
199
#  endif
200
#  define bn_check_top(a) \
201
        do { \
202
                const BIGNUM *_bnum2 = (a); \
203
                if (_bnum2 != NULL) { \
204
                        int _top = _bnum2->top; \
205
                        (void)ossl_assert((_top == 0 && !_bnum2->neg) || \
206
                                  (_top && ((_bnum2->flags & BN_FLG_FIXED_TOP) \
207
                                            || _bnum2->d[_top - 1] != 0))); \
208
                        bn_pollute(_bnum2); \
209
                } \
210
        } while(0)
211
212
#  define bn_fix_top(a)           bn_check_top(a)
213
214
#  define bn_check_size(bn, bits) bn_wcheck_size(bn, ((bits+BN_BITS2-1))/BN_BITS2)
215
#  define bn_wcheck_size(bn, words) \
216
        do { \
217
                const BIGNUM *_bnum2 = (bn); \
218
                assert((words) <= (_bnum2)->dmax && \
219
                       (words) >= (_bnum2)->top); \
220
                /* avoid unused variable warning with NDEBUG */ \
221
                (void)(_bnum2); \
222
        } while(0)
223
224
# else                          /* !BN_DEBUG */
225
226
2.61G
#  define BN_FLG_FIXED_TOP 0
227
#  define bn_pollute(a)
228
#  define bn_check_top(a)
229
#  define bn_fix_top(a)           bn_correct_top(a)
230
#  define bn_check_size(bn, bits)
231
#  define bn_wcheck_size(bn, words)
232
233
# endif
234
235
BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num,
236
                          BN_ULONG w);
237
BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w);
238
void bn_sqr_words(BN_ULONG *rp, const BN_ULONG *ap, int num);
239
BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d);
240
BN_ULONG bn_add_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
241
                      int num);
242
BN_ULONG bn_sub_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
243
                      int num);
244
245
struct bignum_st {
246
    BN_ULONG *d;                /* Pointer to an array of 'BN_BITS2' bit
247
                                 * chunks. */
248
    int top;                    /* Index of last used d +1. */
249
    /* The next are internal book keeping for bn_expand. */
250
    int dmax;                   /* Size of the d array. */
251
    int neg;                    /* one if the number is negative */
252
    int flags;
253
};
254
255
/* Used for montgomery multiplication */
256
struct bn_mont_ctx_st {
257
    int ri;                     /* number of bits in R */
258
    BIGNUM RR;                  /* used to convert to montgomery form,
259
                                   possibly zero-padded */
260
    BIGNUM N;                   /* The modulus */
261
    BIGNUM Ni;                  /* R*(1/R mod N) - N*Ni = 1 (Ni is only
262
                                 * stored for bignum algorithm) */
263
    BN_ULONG n0[2];             /* least significant word(s) of Ni; (type
264
                                 * changed with 0.9.9, was "BN_ULONG n0;"
265
                                 * before) */
266
    int flags;
267
};
268
269
/*
270
 * Used for reciprocal division/mod functions It cannot be shared between
271
 * threads
272
 */
273
struct bn_recp_ctx_st {
274
    BIGNUM N;                   /* the divisor */
275
    BIGNUM Nr;                  /* the reciprocal */
276
    int num_bits;
277
    int shift;
278
    int flags;
279
};
280
281
/* Used for slow "generation" functions. */
282
struct bn_gencb_st {
283
    unsigned int ver;           /* To handle binary (in)compatibility */
284
    void *arg;                  /* callback-specific data */
285
    union {
286
        /* if (ver==1) - handles old style callbacks */
287
        void (*cb_1) (int, int, void *);
288
        /* if (ver==2) - new callback style */
289
        int (*cb_2) (int, int, BN_GENCB *);
290
    } cb;
291
};
292
293
/*-
294
 * BN_window_bits_for_exponent_size -- macro for sliding window mod_exp functions
295
 *
296
 *
297
 * For window size 'w' (w >= 2) and a random 'b' bits exponent,
298
 * the number of multiplications is a constant plus on average
299
 *
300
 *    2^(w-1) + (b-w)/(w+1);
301
 *
302
 * here  2^(w-1)  is for precomputing the table (we actually need
303
 * entries only for windows that have the lowest bit set), and
304
 * (b-w)/(w+1)  is an approximation for the expected number of
305
 * w-bit windows, not counting the first one.
306
 *
307
 * Thus we should use
308
 *
309
 *    w >= 6  if        b > 671
310
 *     w = 5  if  671 > b > 239
311
 *     w = 4  if  239 > b >  79
312
 *     w = 3  if   79 > b >  23
313
 *    w <= 2  if   23 > b
314
 *
315
 * (with draws in between).  Very small exponents are often selected
316
 * with low Hamming weight, so we use  w = 1  for b <= 23.
317
 */
318
# define BN_window_bits_for_exponent_size(b) \
319
200k
                ((b) > 671 ? 6 : \
320
200k
                 (b) > 239 ? 5 : \
321
197k
                 (b) >  79 ? 4 : \
322
172k
                 (b) >  23 ? 3 : 1)
323
324
/*
325
 * BN_mod_exp_mont_consttime is based on the assumption that the L1 data cache
326
 * line width of the target processor is at least the following value.
327
 */
328
98.6k
# define MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH      ( 64 )
329
49.3k
# define MOD_EXP_CTIME_MIN_CACHE_LINE_MASK       (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - 1)
330
331
/*
332
 * Window sizes optimized for fixed window size modular exponentiation
333
 * algorithm (BN_mod_exp_mont_consttime). To achieve the security goals of
334
 * BN_mode_exp_mont_consttime, the maximum size of the window must not exceed
335
 * log_2(MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH). Window size thresholds are
336
 * defined for cache line sizes of 32 and 64, cache line sizes where
337
 * log_2(32)=5 and log_2(64)=6 respectively. A window size of 7 should only be
338
 * used on processors that have a 128 byte or greater cache line size.
339
 */
340
# if MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 64
341
342
#  define BN_window_bits_for_ctime_exponent_size(b) \
343
49.3k
                ((b) > 937 ? 6 : \
344
49.3k
                 (b) > 306 ? 5 : \
345
24.2k
                 (b) >  89 ? 4 : \
346
19.7k
                 (b) >  22 ? 3 : 1)
347
#  define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE    (6)
348
349
# elif MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 32
350
351
#  define BN_window_bits_for_ctime_exponent_size(b) \
352
                ((b) > 306 ? 5 : \
353
                 (b) >  89 ? 4 : \
354
                 (b) >  22 ? 3 : 1)
355
#  define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE    (5)
356
357
# endif
358
359
/* Pentium pro 16,16,16,32,64 */
360
/* Alpha       16,16,16,16.64 */
361
17.1M
# define BN_MULL_SIZE_NORMAL                     (16)/* 32 */
362
26.4M
# define BN_MUL_RECURSIVE_SIZE_NORMAL            (16)/* 32 less than */
363
6.31M
# define BN_SQR_RECURSIVE_SIZE_NORMAL            (16)/* 32 */
364
0
# define BN_MUL_LOW_RECURSIVE_SIZE_NORMAL        (32)/* 32 */
365
# define BN_MONT_CTX_SET_SIZE_WORD               (64)/* 32 */
366
367
# if !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM) && !defined(PEDANTIC)
368
/*
369
 * BN_UMULT_HIGH section.
370
 * If the compiler doesn't support 2*N integer type, then you have to
371
 * replace every N*N multiplication with 4 (N/2)*(N/2) accompanied by some
372
 * shifts and additions which unavoidably results in severe performance
373
 * penalties. Of course provided that the hardware is capable of producing
374
 * 2*N result... That's when you normally start considering assembler
375
 * implementation. However! It should be pointed out that some CPUs (e.g.,
376
 * PowerPC, Alpha, and IA-64) provide *separate* instruction calculating
377
 * the upper half of the product placing the result into a general
378
 * purpose register. Now *if* the compiler supports inline assembler,
379
 * then it's not impossible to implement the "bignum" routines (and have
380
 * the compiler optimize 'em) exhibiting "native" performance in C. That's
381
 * what BN_UMULT_HIGH macro is about:-) Note that more recent compilers do
382
 * support 2*64 integer type, which is also used here.
383
 */
384
#  if defined(__SIZEOF_INT128__) && __SIZEOF_INT128__==16 && \
385
      (defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG))
386
#   define BN_UMULT_HIGH(a,b)          (((uint128_t)(a)*(b))>>64)
387
#   define BN_UMULT_LOHI(low,high,a,b) ({       \
388
        uint128_t ret=(uint128_t)(a)*(b);   \
389
        (high)=ret>>64; (low)=ret;      })
390
#  elif defined(__alpha) && (defined(SIXTY_FOUR_BIT_LONG) || defined(SIXTY_FOUR_BIT))
391
#   if defined(__DECC)
392
#    include <c_asm.h>
393
#    define BN_UMULT_HIGH(a,b)   (BN_ULONG)asm("umulh %a0,%a1,%v0",(a),(b))
394
#   elif defined(__GNUC__) && __GNUC__>=2
395
#    define BN_UMULT_HIGH(a,b)   ({     \
396
        register BN_ULONG ret;          \
397
        asm ("umulh     %1,%2,%0"       \
398
             : "=r"(ret)                \
399
             : "r"(a), "r"(b));         \
400
        ret;                      })
401
#   endif                       /* compiler */
402
#  elif defined(_ARCH_PPC64) && defined(SIXTY_FOUR_BIT_LONG)
403
#   if defined(__GNUC__) && __GNUC__>=2
404
#    define BN_UMULT_HIGH(a,b)   ({     \
405
        register BN_ULONG ret;          \
406
        asm ("mulhdu    %0,%1,%2"       \
407
             : "=r"(ret)                \
408
             : "r"(a), "r"(b));         \
409
        ret;                      })
410
#   endif                       /* compiler */
411
#  elif (defined(__x86_64) || defined(__x86_64__)) && \
412
       (defined(SIXTY_FOUR_BIT_LONG) || defined(SIXTY_FOUR_BIT))
413
#   if defined(__GNUC__) && __GNUC__>=2
414
#    define BN_UMULT_HIGH(a,b)   ({     \
415
        register BN_ULONG ret,discard;  \
416
        asm ("mulq      %3"             \
417
             : "=a"(discard),"=d"(ret)  \
418
             : "a"(a), "g"(b)           \
419
             : "cc");                   \
420
        ret;                      })
421
#    define BN_UMULT_LOHI(low,high,a,b) \
422
        asm ("mulq      %3"             \
423
                : "=a"(low),"=d"(high)  \
424
                : "a"(a),"g"(b)         \
425
                : "cc");
426
#   endif
427
#  elif (defined(_M_AMD64) || defined(_M_X64)) && defined(SIXTY_FOUR_BIT)
428
#   if defined(_MSC_VER) && _MSC_VER>=1400
429
unsigned __int64 __umulh(unsigned __int64 a, unsigned __int64 b);
430
unsigned __int64 _umul128(unsigned __int64 a, unsigned __int64 b,
431
                          unsigned __int64 *h);
432
#    pragma intrinsic(__umulh,_umul128)
433
#    define BN_UMULT_HIGH(a,b)           __umulh((a),(b))
434
#    define BN_UMULT_LOHI(low,high,a,b)  ((low)=_umul128((a),(b),&(high)))
435
#   endif
436
#  elif defined(__mips) && (defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG))
437
#   if defined(__GNUC__) && __GNUC__>=2
438
#    define BN_UMULT_HIGH(a,b) ({       \
439
        register BN_ULONG ret;          \
440
        asm ("dmultu    %1,%2"          \
441
             : "=h"(ret)                \
442
             : "r"(a), "r"(b) : "l");   \
443
        ret;                    })
444
#    define BN_UMULT_LOHI(low,high,a,b) \
445
        asm ("dmultu    %2,%3"          \
446
             : "=l"(low),"=h"(high)     \
447
             : "r"(a), "r"(b));
448
#   endif
449
#  elif defined(__aarch64__) && defined(SIXTY_FOUR_BIT_LONG)
450
#   if defined(__GNUC__) && __GNUC__>=2
451
#    define BN_UMULT_HIGH(a,b)   ({     \
452
        register BN_ULONG ret;          \
453
        asm ("umulh     %0,%1,%2"       \
454
             : "=r"(ret)                \
455
             : "r"(a), "r"(b));         \
456
        ret;                      })
457
#   endif
458
#  endif                        /* cpu */
459
# endif                         /* OPENSSL_NO_ASM */
460
461
# ifdef BN_RAND_DEBUG
462
#  define bn_clear_top2max(a) \
463
        { \
464
        int      ind = (a)->dmax - (a)->top; \
465
        BN_ULONG *ftl = &(a)->d[(a)->top-1]; \
466
        for (; ind != 0; ind--) \
467
                *(++ftl) = 0x0; \
468
        }
469
# else
470
#  define bn_clear_top2max(a)
471
# endif
472
473
# ifdef BN_LLONG
474
/*******************************************************************
475
 * Using the long long type, has to be twice as wide as BN_ULONG...
476
 */
477
#  define Lw(t)    (((BN_ULONG)(t))&BN_MASK2)
478
#  define Hw(t)    (((BN_ULONG)((t)>>BN_BITS2))&BN_MASK2)
479
480
#  define mul_add(r,a,w,c) { \
481
        BN_ULLONG t; \
482
        t=(BN_ULLONG)w * (a) + (r) + (c); \
483
        (r)= Lw(t); \
484
        (c)= Hw(t); \
485
        }
486
487
#  define mul(r,a,w,c) { \
488
        BN_ULLONG t; \
489
        t=(BN_ULLONG)w * (a) + (c); \
490
        (r)= Lw(t); \
491
        (c)= Hw(t); \
492
        }
493
494
#  define sqr(r0,r1,a) { \
495
        BN_ULLONG t; \
496
        t=(BN_ULLONG)(a)*(a); \
497
        (r0)=Lw(t); \
498
        (r1)=Hw(t); \
499
        }
500
501
# elif defined(BN_UMULT_LOHI)
502
#  define mul_add(r,a,w,c) {              \
503
        BN_ULONG high,low,ret,tmp=(a);  \
504
        ret =  (r);                     \
505
        BN_UMULT_LOHI(low,high,w,tmp);  \
506
        ret += (c);                     \
507
        (c) =  (ret<(c));               \
508
        (c) += high;                    \
509
        ret += low;                     \
510
        (c) += (ret<low);               \
511
        (r) =  ret;                     \
512
        }
513
514
#  define mul(r,a,w,c)    {               \
515
        BN_ULONG high,low,ret,ta=(a);   \
516
        BN_UMULT_LOHI(low,high,w,ta);   \
517
        ret =  low + (c);               \
518
        (c) =  high;                    \
519
        (c) += (ret<low);               \
520
        (r) =  ret;                     \
521
        }
522
523
#  define sqr(r0,r1,a)    {               \
524
        BN_ULONG tmp=(a);               \
525
        BN_UMULT_LOHI(r0,r1,tmp,tmp);   \
526
        }
527
528
# elif defined(BN_UMULT_HIGH)
529
#  define mul_add(r,a,w,c) {              \
530
        BN_ULONG high,low,ret,tmp=(a);  \
531
        ret =  (r);                     \
532
        high=  BN_UMULT_HIGH(w,tmp);    \
533
        ret += (c);                     \
534
        low =  (w) * tmp;               \
535
        (c) =  (ret<(c));               \
536
        (c) += high;                    \
537
        ret += low;                     \
538
        (c) += (ret<low);               \
539
        (r) =  ret;                     \
540
        }
541
542
#  define mul(r,a,w,c)    {               \
543
        BN_ULONG high,low,ret,ta=(a);   \
544
        low =  (w) * ta;                \
545
        high=  BN_UMULT_HIGH(w,ta);     \
546
        ret =  low + (c);               \
547
        (c) =  high;                    \
548
        (c) += (ret<low);               \
549
        (r) =  ret;                     \
550
        }
551
552
#  define sqr(r0,r1,a)    {               \
553
        BN_ULONG tmp=(a);               \
554
        (r0) = tmp * tmp;               \
555
        (r1) = BN_UMULT_HIGH(tmp,tmp);  \
556
        }
557
558
# else
559
/*************************************************************
560
 * No long long type
561
 */
562
563
609M
#  define LBITS(a)        ((a)&BN_MASK2l)
564
914M
#  define HBITS(a)        (((a)>>BN_BITS4)&BN_MASK2l)
565
609M
#  define L2HBITS(a)      (((a)<<BN_BITS4)&BN_MASK2)
566
567
#  define LLBITS(a)       ((a)&BN_MASKl)
568
#  define LHBITS(a)       (((a)>>BN_BITS2)&BN_MASKl)
569
#  define LL2HBITS(a)     ((BN_ULLONG)((a)&BN_MASKl)<<BN_BITS2)
570
571
#  define mul64(l,h,bl,bh) \
572
304M
        { \
573
304M
        BN_ULONG m,m1,lt,ht; \
574
304M
 \
575
304M
        lt=l; \
576
304M
        ht=h; \
577
304M
        m =(bh)*(lt); \
578
304M
        lt=(bl)*(lt); \
579
304M
        m1=(bl)*(ht); \
580
304M
        ht =(bh)*(ht); \
581
304M
        m=(m+m1)&BN_MASK2; ht += L2HBITS((BN_ULONG)(m < m1)); \
582
304M
        ht+=HBITS(m); \
583
304M
        m1=L2HBITS(m); \
584
304M
        lt=(lt+m1)&BN_MASK2; ht += (lt < m1); \
585
304M
        (l)=lt; \
586
304M
        (h)=ht; \
587
304M
        }
588
589
#  define sqr64(lo,ho,in) \
590
        { \
591
        BN_ULONG l,h,m; \
592
 \
593
        h=(in); \
594
        l=LBITS(h); \
595
        h=HBITS(h); \
596
        m =(l)*(h); \
597
        l*=l; \
598
        h*=h; \
599
        h+=(m&BN_MASK2h1)>>(BN_BITS4-1); \
600
        m =(m&BN_MASK2l)<<(BN_BITS4+1); \
601
        l=(l+m)&BN_MASK2; h += (l < m); \
602
        (lo)=l; \
603
        (ho)=h; \
604
        }
605
606
#  define mul_add(r,a,bl,bh,c) { \
607
        BN_ULONG l,h; \
608
 \
609
        h= (a); \
610
        l=LBITS(h); \
611
        h=HBITS(h); \
612
        mul64(l,h,(bl),(bh)); \
613
 \
614
        /* non-multiply part */ \
615
        l=(l+(c))&BN_MASK2; h += (l < (c)); \
616
        (c)=(r); \
617
        l=(l+(c))&BN_MASK2; h += (l < (c)); \
618
        (c)=h&BN_MASK2; \
619
        (r)=l; \
620
        }
621
622
#  define mul(r,a,bl,bh,c) { \
623
        BN_ULONG l,h; \
624
 \
625
        h= (a); \
626
        l=LBITS(h); \
627
        h=HBITS(h); \
628
        mul64(l,h,(bl),(bh)); \
629
 \
630
        /* non-multiply part */ \
631
        l+=(c); h += ((l&BN_MASK2) < (c)); \
632
        (c)=h&BN_MASK2; \
633
        (r)=l&BN_MASK2; \
634
        }
635
# endif                         /* !BN_LLONG */
636
637
void BN_RECP_CTX_init(BN_RECP_CTX *recp);
638
void BN_MONT_CTX_init(BN_MONT_CTX *ctx);
639
640
void bn_init(BIGNUM *a);
641
void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb);
642
void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b);
643
void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b);
644
void bn_sqr_normal(BN_ULONG *r, const BN_ULONG *a, int n, BN_ULONG *tmp);
645
void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a);
646
void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a);
647
int bn_cmp_words(const BN_ULONG *a, const BN_ULONG *b, int n);
648
int bn_cmp_part_words(const BN_ULONG *a, const BN_ULONG *b, int cl, int dl);
649
void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
650
                      int dna, int dnb, BN_ULONG *t);
651
void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b,
652
                           int n, int tna, int tnb, BN_ULONG *t);
653
void bn_sqr_recursive(BN_ULONG *r, const BN_ULONG *a, int n2, BN_ULONG *t);
654
void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n);
655
void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
656
                          BN_ULONG *t);
657
BN_ULONG bn_sub_part_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
658
                           int cl, int dl);
659
int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
660
                const BN_ULONG *np, const BN_ULONG *n0, int num);
661
void bn_correct_top_consttime(BIGNUM *a);
662
BIGNUM *int_bn_mod_inverse(BIGNUM *in,
663
                           const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx,
664
                           int *noinv);
665
666
static ossl_inline BIGNUM *bn_expand(BIGNUM *a, int bits)
667
2.02M
{
668
2.02M
    if (bits > (INT_MAX - BN_BITS2 + 1))
669
0
        return NULL;
670
671
2.02M
    if (((bits+BN_BITS2-1)/BN_BITS2) <= (a)->dmax)
672
1.12M
        return a;
673
674
901k
    return bn_expand2((a),(bits+BN_BITS2-1)/BN_BITS2);
675
2.02M
}
Unexecuted instantiation: bn_conv.c:bn_expand
bn_lib.c:bn_expand
Line
Count
Source
667
2.02M
{
668
2.02M
    if (bits > (INT_MAX - BN_BITS2 + 1))
669
0
        return NULL;
670
671
2.02M
    if (((bits+BN_BITS2-1)/BN_BITS2) <= (a)->dmax)
672
1.12M
        return a;
673
674
901k
    return bn_expand2((a),(bits+BN_BITS2-1)/BN_BITS2);
675
2.02M
}
Unexecuted instantiation: bn_mont.c:bn_expand
Unexecuted instantiation: bn_mul.c:bn_expand
Unexecuted instantiation: bn_shift.c:bn_expand
Unexecuted instantiation: bn_sqr.c:bn_expand
Unexecuted instantiation: bn_word.c:bn_expand
Unexecuted instantiation: x86_64-gcc.c:bn_expand
Unexecuted instantiation: bn_add.c:bn_expand
Unexecuted instantiation: bn_blind.c:bn_expand
Unexecuted instantiation: bn_ctx.c:bn_expand
Unexecuted instantiation: bn_div.c:bn_expand
Unexecuted instantiation: bn_exp.c:bn_expand
Unexecuted instantiation: bn_gcd.c:bn_expand
Unexecuted instantiation: bn_intern.c:bn_expand
Unexecuted instantiation: bn_mod.c:bn_expand
Unexecuted instantiation: bn_rand.c:bn_expand
Unexecuted instantiation: bn_recp.c:bn_expand
Unexecuted instantiation: rsaz_exp.c:bn_expand
Unexecuted instantiation: rsaz_exp_x2.c:bn_expand
Unexecuted instantiation: bn_dh.c:bn_expand
Unexecuted instantiation: bn_exp2.c:bn_expand
Unexecuted instantiation: bn_kron.c:bn_expand
Unexecuted instantiation: bn_nist.c:bn_expand
Unexecuted instantiation: bn_prime.c:bn_expand
Unexecuted instantiation: bn_print.c:bn_expand
Unexecuted instantiation: bn_rsa_fips186_4.c:bn_expand
Unexecuted instantiation: bn_sqrt.c:bn_expand
Unexecuted instantiation: bn_gf2m.c:bn_expand
Unexecuted instantiation: bn_srp.c:bn_expand
676
677
int ossl_bn_check_prime(const BIGNUM *w, int checks, BN_CTX *ctx,
678
                        int do_trial_division, BN_GENCB *cb);
679
680
#endif