/src/openssl30/crypto/bn/bn_rsa_fips186_4.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright 2018-2023 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * Copyright (c) 2018-2019, Oracle and/or its affiliates. All rights reserved. |
4 | | * |
5 | | * Licensed under the Apache License 2.0 (the "License"). You may not use |
6 | | * this file except in compliance with the License. You can obtain a copy |
7 | | * in the file LICENSE in the source distribution or at |
8 | | * https://www.openssl.org/source/license.html |
9 | | */ |
10 | | |
11 | | /* |
12 | | * According to NIST SP800-131A "Transitioning the use of cryptographic |
13 | | * algorithms and key lengths" Generation of 1024 bit RSA keys are no longer |
14 | | * allowed for signatures (Table 2) or key transport (Table 5). In the code |
15 | | * below any attempt to generate 1024 bit RSA keys will result in an error (Note |
16 | | * that digital signature verification can still use deprecated 1024 bit keys). |
17 | | * |
18 | | * FIPS 186-4 relies on the use of the auxiliary primes p1, p2, q1 and q2 that |
19 | | * must be generated before the module generates the RSA primes p and q. |
20 | | * Table B.1 in FIPS 186-4 specifies RSA modulus lengths of 2048 and |
21 | | * 3072 bits only, the min/max total length of the auxiliary primes. |
22 | | * FIPS 186-5 Table A.1 includes an additional entry for 4096 which has been |
23 | | * included here. |
24 | | */ |
25 | | #include <stdio.h> |
26 | | #include <openssl/bn.h> |
27 | | #include "bn_local.h" |
28 | | #include "crypto/bn.h" |
29 | | #include "internal/nelem.h" |
30 | | |
31 | | #if BN_BITS2 == 64 |
32 | | # define BN_DEF(lo, hi) (BN_ULONG)hi<<32|lo |
33 | | #else |
34 | | # define BN_DEF(lo, hi) lo, hi |
35 | | #endif |
36 | | |
37 | | /* 1 / sqrt(2) * 2^256, rounded up */ |
38 | | static const BN_ULONG inv_sqrt_2_val[] = { |
39 | | BN_DEF(0x83339916UL, 0xED17AC85UL), BN_DEF(0x893BA84CUL, 0x1D6F60BAUL), |
40 | | BN_DEF(0x754ABE9FUL, 0x597D89B3UL), BN_DEF(0xF9DE6484UL, 0xB504F333UL) |
41 | | }; |
42 | | |
43 | | const BIGNUM ossl_bn_inv_sqrt_2 = { |
44 | | (BN_ULONG *)inv_sqrt_2_val, |
45 | | OSSL_NELEM(inv_sqrt_2_val), |
46 | | OSSL_NELEM(inv_sqrt_2_val), |
47 | | 0, |
48 | | BN_FLG_STATIC_DATA |
49 | | }; |
50 | | |
51 | | /* |
52 | | * FIPS 186-5 Table A.1. "Min length of auxiliary primes p1, p2, q1, q2". |
53 | | * (FIPS 186-5 has an entry for >= 4096 bits). |
54 | | * |
55 | | * Params: |
56 | | * nbits The key size in bits. |
57 | | * Returns: |
58 | | * The minimum size of the auxiliary primes or 0 if nbits is invalid. |
59 | | */ |
60 | | static int bn_rsa_fips186_5_aux_prime_min_size(int nbits) |
61 | 0 | { |
62 | 0 | if (nbits >= 4096) |
63 | 0 | return 201; |
64 | 0 | if (nbits >= 3072) |
65 | 0 | return 171; |
66 | 0 | if (nbits >= 2048) |
67 | 0 | return 141; |
68 | 0 | return 0; |
69 | 0 | } |
70 | | |
71 | | /* |
72 | | * FIPS 186-5 Table A.1 "Max of len(p1) + len(p2) and |
73 | | * len(q1) + len(q2) for p,q Probable Primes". |
74 | | * (FIPS 186-5 has an entry for >= 4096 bits). |
75 | | * Params: |
76 | | * nbits The key size in bits. |
77 | | * Returns: |
78 | | * The maximum length or 0 if nbits is invalid. |
79 | | */ |
80 | | static int bn_rsa_fips186_5_aux_prime_max_sum_size_for_prob_primes(int nbits) |
81 | 0 | { |
82 | 0 | if (nbits >= 4096) |
83 | 0 | return 2030; |
84 | 0 | if (nbits >= 3072) |
85 | 0 | return 1518; |
86 | 0 | if (nbits >= 2048) |
87 | 0 | return 1007; |
88 | 0 | return 0; |
89 | 0 | } |
90 | | |
91 | | /* |
92 | | * Find the first odd integer that is a probable prime. |
93 | | * |
94 | | * See section FIPS 186-4 B.3.6 (Steps 4.2/5.2). |
95 | | * |
96 | | * Params: |
97 | | * Xp1 The passed in starting point to find a probably prime. |
98 | | * p1 The returned probable prime (first odd integer >= Xp1) |
99 | | * ctx A BN_CTX object. |
100 | | * cb An optional BIGNUM callback. |
101 | | * Returns: 1 on success otherwise it returns 0. |
102 | | */ |
103 | | static int bn_rsa_fips186_4_find_aux_prob_prime(const BIGNUM *Xp1, |
104 | | BIGNUM *p1, BN_CTX *ctx, |
105 | | BN_GENCB *cb) |
106 | 0 | { |
107 | 0 | int ret = 0; |
108 | 0 | int i = 0; |
109 | 0 | int tmp = 0; |
110 | |
|
111 | 0 | if (BN_copy(p1, Xp1) == NULL) |
112 | 0 | return 0; |
113 | 0 | BN_set_flags(p1, BN_FLG_CONSTTIME); |
114 | | |
115 | | /* Find the first odd number >= Xp1 that is probably prime */ |
116 | 0 | for(;;) { |
117 | 0 | i++; |
118 | 0 | BN_GENCB_call(cb, 0, i); |
119 | | /* MR test with trial division */ |
120 | 0 | tmp = BN_check_prime(p1, ctx, cb); |
121 | 0 | if (tmp > 0) |
122 | 0 | break; |
123 | 0 | if (tmp < 0) |
124 | 0 | goto err; |
125 | | /* Get next odd number */ |
126 | 0 | if (!BN_add_word(p1, 2)) |
127 | 0 | goto err; |
128 | 0 | } |
129 | 0 | BN_GENCB_call(cb, 2, i); |
130 | 0 | ret = 1; |
131 | 0 | err: |
132 | 0 | return ret; |
133 | 0 | } |
134 | | |
135 | | /* |
136 | | * Generate a probable prime (p or q). |
137 | | * |
138 | | * See FIPS 186-4 B.3.6 (Steps 4 & 5) |
139 | | * |
140 | | * Params: |
141 | | * p The returned probable prime. |
142 | | * Xpout An optionally returned random number used during generation of p. |
143 | | * p1, p2 The returned auxiliary primes. If NULL they are not returned. |
144 | | * Xp An optional passed in value (that is random number used during |
145 | | * generation of p). |
146 | | * Xp1, Xp2 Optional passed in values that are normally generated |
147 | | * internally. Used to find p1, p2. |
148 | | * nlen The bit length of the modulus (the key size). |
149 | | * e The public exponent. |
150 | | * ctx A BN_CTX object. |
151 | | * cb An optional BIGNUM callback. |
152 | | * Returns: 1 on success otherwise it returns 0. |
153 | | */ |
154 | | int ossl_bn_rsa_fips186_4_gen_prob_primes(BIGNUM *p, BIGNUM *Xpout, |
155 | | BIGNUM *p1, BIGNUM *p2, |
156 | | const BIGNUM *Xp, const BIGNUM *Xp1, |
157 | | const BIGNUM *Xp2, int nlen, |
158 | | const BIGNUM *e, BN_CTX *ctx, |
159 | | BN_GENCB *cb) |
160 | 0 | { |
161 | 0 | int ret = 0; |
162 | 0 | BIGNUM *p1i = NULL, *p2i = NULL, *Xp1i = NULL, *Xp2i = NULL; |
163 | 0 | int bitlen; |
164 | |
|
165 | 0 | if (p == NULL || Xpout == NULL) |
166 | 0 | return 0; |
167 | | |
168 | 0 | BN_CTX_start(ctx); |
169 | |
|
170 | 0 | p1i = (p1 != NULL) ? p1 : BN_CTX_get(ctx); |
171 | 0 | p2i = (p2 != NULL) ? p2 : BN_CTX_get(ctx); |
172 | 0 | Xp1i = (Xp1 != NULL) ? (BIGNUM *)Xp1 : BN_CTX_get(ctx); |
173 | 0 | Xp2i = (Xp2 != NULL) ? (BIGNUM *)Xp2 : BN_CTX_get(ctx); |
174 | 0 | if (p1i == NULL || p2i == NULL || Xp1i == NULL || Xp2i == NULL) |
175 | 0 | goto err; |
176 | | |
177 | 0 | bitlen = bn_rsa_fips186_5_aux_prime_min_size(nlen); |
178 | 0 | if (bitlen == 0) |
179 | 0 | goto err; |
180 | | |
181 | | /* (Steps 4.1/5.1): Randomly generate Xp1 if it is not passed in */ |
182 | 0 | if (Xp1 == NULL) { |
183 | | /* Set the top and bottom bits to make it odd and the correct size */ |
184 | 0 | if (!BN_priv_rand_ex(Xp1i, bitlen, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD, |
185 | 0 | 0, ctx)) |
186 | 0 | goto err; |
187 | 0 | } |
188 | | /* (Steps 4.1/5.1): Randomly generate Xp2 if it is not passed in */ |
189 | 0 | if (Xp2 == NULL) { |
190 | | /* Set the top and bottom bits to make it odd and the correct size */ |
191 | 0 | if (!BN_priv_rand_ex(Xp2i, bitlen, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD, |
192 | 0 | 0, ctx)) |
193 | 0 | goto err; |
194 | 0 | } |
195 | | |
196 | | /* (Steps 4.2/5.2) - find first auxiliary probable primes */ |
197 | 0 | if (!bn_rsa_fips186_4_find_aux_prob_prime(Xp1i, p1i, ctx, cb) |
198 | 0 | || !bn_rsa_fips186_4_find_aux_prob_prime(Xp2i, p2i, ctx, cb)) |
199 | 0 | goto err; |
200 | | /* (Table B.1) auxiliary prime Max length check */ |
201 | 0 | if ((BN_num_bits(p1i) + BN_num_bits(p2i)) >= |
202 | 0 | bn_rsa_fips186_5_aux_prime_max_sum_size_for_prob_primes(nlen)) |
203 | 0 | goto err; |
204 | | /* (Steps 4.3/5.3) - generate prime */ |
205 | 0 | if (!ossl_bn_rsa_fips186_4_derive_prime(p, Xpout, Xp, p1i, p2i, nlen, e, |
206 | 0 | ctx, cb)) |
207 | 0 | goto err; |
208 | 0 | ret = 1; |
209 | 0 | err: |
210 | | /* Zeroize any internally generated values that are not returned */ |
211 | 0 | if (p1 == NULL) |
212 | 0 | BN_clear(p1i); |
213 | 0 | if (p2 == NULL) |
214 | 0 | BN_clear(p2i); |
215 | 0 | if (Xp1 == NULL) |
216 | 0 | BN_clear(Xp1i); |
217 | 0 | if (Xp2 == NULL) |
218 | 0 | BN_clear(Xp2i); |
219 | 0 | BN_CTX_end(ctx); |
220 | 0 | return ret; |
221 | 0 | } |
222 | | |
223 | | /* |
224 | | * Constructs a probable prime (a candidate for p or q) using 2 auxiliary |
225 | | * prime numbers and the Chinese Remainder Theorem. |
226 | | * |
227 | | * See FIPS 186-4 C.9 "Compute a Probable Prime Factor Based on Auxiliary |
228 | | * Primes". Used by FIPS 186-4 B.3.6 Section (4.3) for p and Section (5.3) for q. |
229 | | * |
230 | | * Params: |
231 | | * Y The returned prime factor (private_prime_factor) of the modulus n. |
232 | | * X The returned random number used during generation of the prime factor. |
233 | | * Xin An optional passed in value for X used for testing purposes. |
234 | | * r1 An auxiliary prime. |
235 | | * r2 An auxiliary prime. |
236 | | * nlen The desired length of n (the RSA modulus). |
237 | | * e The public exponent. |
238 | | * ctx A BN_CTX object. |
239 | | * cb An optional BIGNUM callback object. |
240 | | * Returns: 1 on success otherwise it returns 0. |
241 | | * Assumptions: |
242 | | * Y, X, r1, r2, e are not NULL. |
243 | | */ |
244 | | int ossl_bn_rsa_fips186_4_derive_prime(BIGNUM *Y, BIGNUM *X, const BIGNUM *Xin, |
245 | | const BIGNUM *r1, const BIGNUM *r2, |
246 | | int nlen, const BIGNUM *e, BN_CTX *ctx, |
247 | | BN_GENCB *cb) |
248 | 0 | { |
249 | 0 | int ret = 0; |
250 | 0 | int i, imax; |
251 | 0 | int bits = nlen >> 1; |
252 | 0 | BIGNUM *tmp, *R, *r1r2x2, *y1, *r1x2; |
253 | 0 | BIGNUM *base, *range; |
254 | |
|
255 | 0 | BN_CTX_start(ctx); |
256 | |
|
257 | 0 | base = BN_CTX_get(ctx); |
258 | 0 | range = BN_CTX_get(ctx); |
259 | 0 | R = BN_CTX_get(ctx); |
260 | 0 | tmp = BN_CTX_get(ctx); |
261 | 0 | r1r2x2 = BN_CTX_get(ctx); |
262 | 0 | y1 = BN_CTX_get(ctx); |
263 | 0 | r1x2 = BN_CTX_get(ctx); |
264 | 0 | if (r1x2 == NULL) |
265 | 0 | goto err; |
266 | | |
267 | 0 | if (Xin != NULL && BN_copy(X, Xin) == NULL) |
268 | 0 | goto err; |
269 | | |
270 | | /* |
271 | | * We need to generate a random number X in the range |
272 | | * 1/sqrt(2) * 2^(nlen/2) <= X < 2^(nlen/2). |
273 | | * We can rewrite that as: |
274 | | * base = 1/sqrt(2) * 2^(nlen/2) |
275 | | * range = ((2^(nlen/2))) - (1/sqrt(2) * 2^(nlen/2)) |
276 | | * X = base + random(range) |
277 | | * We only have the first 256 bit of 1/sqrt(2) |
278 | | */ |
279 | 0 | if (Xin == NULL) { |
280 | 0 | if (bits < BN_num_bits(&ossl_bn_inv_sqrt_2)) |
281 | 0 | goto err; |
282 | 0 | if (!BN_lshift(base, &ossl_bn_inv_sqrt_2, |
283 | 0 | bits - BN_num_bits(&ossl_bn_inv_sqrt_2)) |
284 | 0 | || !BN_lshift(range, BN_value_one(), bits) |
285 | 0 | || !BN_sub(range, range, base)) |
286 | 0 | goto err; |
287 | 0 | } |
288 | | |
289 | 0 | if (!(BN_lshift1(r1x2, r1) |
290 | | /* (Step 1) GCD(2r1, r2) = 1 */ |
291 | 0 | && BN_gcd(tmp, r1x2, r2, ctx) |
292 | 0 | && BN_is_one(tmp) |
293 | | /* (Step 2) R = ((r2^-1 mod 2r1) * r2) - ((2r1^-1 mod r2)*2r1) */ |
294 | 0 | && BN_mod_inverse(R, r2, r1x2, ctx) |
295 | 0 | && BN_mul(R, R, r2, ctx) /* R = (r2^-1 mod 2r1) * r2 */ |
296 | 0 | && BN_mod_inverse(tmp, r1x2, r2, ctx) |
297 | 0 | && BN_mul(tmp, tmp, r1x2, ctx) /* tmp = (2r1^-1 mod r2)*2r1 */ |
298 | 0 | && BN_sub(R, R, tmp) |
299 | | /* Calculate 2r1r2 */ |
300 | 0 | && BN_mul(r1r2x2, r1x2, r2, ctx))) |
301 | 0 | goto err; |
302 | | /* Make positive by adding the modulus */ |
303 | 0 | if (BN_is_negative(R) && !BN_add(R, R, r1r2x2)) |
304 | 0 | goto err; |
305 | | |
306 | | /* |
307 | | * In FIPS 186-4 imax was set to 5 * nlen/2. |
308 | | * Analysis by Allen Roginsky (See https://csrc.nist.gov/CSRC/media/Publications/fips/186/4/final/documents/comments-received-fips186-4-december-2015.pdf |
309 | | * page 68) indicates this has a 1 in 2 million chance of failure. |
310 | | * The number has been updated to 20 * nlen/2 as used in |
311 | | * FIPS186-5 Appendix B.9 Step 9. |
312 | | */ |
313 | 0 | imax = 20 * bits; /* max = 20/2 * nbits */ |
314 | 0 | for (;;) { |
315 | 0 | if (Xin == NULL) { |
316 | | /* |
317 | | * (Step 3) Choose Random X such that |
318 | | * sqrt(2) * 2^(nlen/2-1) <= Random X <= (2^(nlen/2)) - 1. |
319 | | */ |
320 | 0 | if (!BN_priv_rand_range_ex(X, range, 0, ctx) || !BN_add(X, X, base)) |
321 | 0 | goto err; |
322 | 0 | } |
323 | | /* (Step 4) Y = X + ((R - X) mod 2r1r2) */ |
324 | 0 | if (!BN_mod_sub(Y, R, X, r1r2x2, ctx) || !BN_add(Y, Y, X)) |
325 | 0 | goto err; |
326 | | /* (Step 5) */ |
327 | 0 | i = 0; |
328 | 0 | for (;;) { |
329 | | /* (Step 6) */ |
330 | 0 | if (BN_num_bits(Y) > bits) { |
331 | 0 | if (Xin == NULL) |
332 | 0 | break; /* Randomly Generated X so Go back to Step 3 */ |
333 | 0 | else |
334 | 0 | goto err; /* X is not random so it will always fail */ |
335 | 0 | } |
336 | 0 | BN_GENCB_call(cb, 0, 2); |
337 | | |
338 | | /* (Step 7) If GCD(Y-1) == 1 & Y is probably prime then return Y */ |
339 | 0 | if (BN_copy(y1, Y) == NULL |
340 | 0 | || !BN_sub_word(y1, 1) |
341 | 0 | || !BN_gcd(tmp, y1, e, ctx)) |
342 | 0 | goto err; |
343 | 0 | if (BN_is_one(tmp)) { |
344 | 0 | int rv = BN_check_prime(Y, ctx, cb); |
345 | |
|
346 | 0 | if (rv > 0) |
347 | 0 | goto end; |
348 | 0 | if (rv < 0) |
349 | 0 | goto err; |
350 | 0 | } |
351 | | /* (Step 8-10) */ |
352 | 0 | if (++i >= imax) { |
353 | 0 | ERR_raise(ERR_LIB_BN, BN_R_NO_PRIME_CANDIDATE); |
354 | 0 | goto err; |
355 | 0 | } |
356 | 0 | if (!BN_add(Y, Y, r1r2x2)) |
357 | 0 | goto err; |
358 | 0 | } |
359 | 0 | } |
360 | 0 | end: |
361 | 0 | ret = 1; |
362 | 0 | BN_GENCB_call(cb, 3, 0); |
363 | 0 | err: |
364 | 0 | BN_clear(y1); |
365 | 0 | BN_CTX_end(ctx); |
366 | 0 | return ret; |
367 | 0 | } |