Coverage Report

Created: 2025-06-13 06:58

/src/openssl30/crypto/bn/bn_rsa_fips186_4.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 2018-2023 The OpenSSL Project Authors. All Rights Reserved.
3
 * Copyright (c) 2018-2019, Oracle and/or its affiliates.  All rights reserved.
4
 *
5
 * Licensed under the Apache License 2.0 (the "License").  You may not use
6
 * this file except in compliance with the License.  You can obtain a copy
7
 * in the file LICENSE in the source distribution or at
8
 * https://www.openssl.org/source/license.html
9
 */
10
11
/*
12
 * According to NIST SP800-131A "Transitioning the use of cryptographic
13
 * algorithms and key lengths" Generation of 1024 bit RSA keys are no longer
14
 * allowed for signatures (Table 2) or key transport (Table 5). In the code
15
 * below any attempt to generate 1024 bit RSA keys will result in an error (Note
16
 * that digital signature verification can still use deprecated 1024 bit keys).
17
 *
18
 * FIPS 186-4 relies on the use of the auxiliary primes p1, p2, q1 and q2 that
19
 * must be generated before the module generates the RSA primes p and q.
20
 * Table B.1 in FIPS 186-4 specifies RSA modulus lengths of 2048 and
21
 * 3072 bits only, the min/max total length of the auxiliary primes.
22
 * FIPS 186-5 Table A.1 includes an additional entry for 4096 which has been
23
 * included here.
24
 */
25
#include <stdio.h>
26
#include <openssl/bn.h>
27
#include "bn_local.h"
28
#include "crypto/bn.h"
29
#include "internal/nelem.h"
30
31
#if BN_BITS2 == 64
32
# define BN_DEF(lo, hi) (BN_ULONG)hi<<32|lo
33
#else
34
# define BN_DEF(lo, hi) lo, hi
35
#endif
36
37
/* 1 / sqrt(2) * 2^256, rounded up */
38
static const BN_ULONG inv_sqrt_2_val[] = {
39
    BN_DEF(0x83339916UL, 0xED17AC85UL), BN_DEF(0x893BA84CUL, 0x1D6F60BAUL),
40
    BN_DEF(0x754ABE9FUL, 0x597D89B3UL), BN_DEF(0xF9DE6484UL, 0xB504F333UL)
41
};
42
43
const BIGNUM ossl_bn_inv_sqrt_2 = {
44
    (BN_ULONG *)inv_sqrt_2_val,
45
    OSSL_NELEM(inv_sqrt_2_val),
46
    OSSL_NELEM(inv_sqrt_2_val),
47
    0,
48
    BN_FLG_STATIC_DATA
49
};
50
51
/*
52
 * FIPS 186-5 Table A.1. "Min length of auxiliary primes p1, p2, q1, q2".
53
 * (FIPS 186-5 has an entry for >= 4096 bits).
54
 *
55
 * Params:
56
 *     nbits The key size in bits.
57
 * Returns:
58
 *     The minimum size of the auxiliary primes or 0 if nbits is invalid.
59
 */
60
static int bn_rsa_fips186_5_aux_prime_min_size(int nbits)
61
0
{
62
0
    if (nbits >= 4096)
63
0
        return 201;
64
0
    if (nbits >= 3072)
65
0
        return 171;
66
0
    if (nbits >= 2048)
67
0
        return 141;
68
0
    return 0;
69
0
}
70
71
/*
72
 * FIPS 186-5 Table A.1 "Max of len(p1) + len(p2) and
73
 * len(q1) + len(q2) for p,q Probable Primes".
74
 * (FIPS 186-5 has an entry for >= 4096 bits).
75
 * Params:
76
 *     nbits The key size in bits.
77
 * Returns:
78
 *     The maximum length or 0 if nbits is invalid.
79
 */
80
static int bn_rsa_fips186_5_aux_prime_max_sum_size_for_prob_primes(int nbits)
81
0
{
82
0
    if (nbits >= 4096)
83
0
        return 2030;
84
0
    if (nbits >= 3072)
85
0
        return 1518;
86
0
    if (nbits >= 2048)
87
0
        return 1007;
88
0
    return 0;
89
0
}
90
91
/*
92
 * Find the first odd integer that is a probable prime.
93
 *
94
 * See section FIPS 186-4 B.3.6 (Steps 4.2/5.2).
95
 *
96
 * Params:
97
 *     Xp1 The passed in starting point to find a probably prime.
98
 *     p1 The returned probable prime (first odd integer >= Xp1)
99
 *     ctx A BN_CTX object.
100
 *     cb An optional BIGNUM callback.
101
 * Returns: 1 on success otherwise it returns 0.
102
 */
103
static int bn_rsa_fips186_4_find_aux_prob_prime(const BIGNUM *Xp1,
104
                                                BIGNUM *p1, BN_CTX *ctx,
105
                                                BN_GENCB *cb)
106
0
{
107
0
    int ret = 0;
108
0
    int i = 0;
109
0
    int tmp = 0;
110
111
0
    if (BN_copy(p1, Xp1) == NULL)
112
0
        return 0;
113
0
    BN_set_flags(p1, BN_FLG_CONSTTIME);
114
115
    /* Find the first odd number >= Xp1 that is probably prime */
116
0
    for(;;) {
117
0
        i++;
118
0
        BN_GENCB_call(cb, 0, i);
119
        /* MR test with trial division */
120
0
        tmp = BN_check_prime(p1, ctx, cb);
121
0
        if (tmp > 0)
122
0
            break;
123
0
        if (tmp < 0)
124
0
            goto err;
125
        /* Get next odd number */
126
0
        if (!BN_add_word(p1, 2))
127
0
            goto err;
128
0
    }
129
0
    BN_GENCB_call(cb, 2, i);
130
0
    ret = 1;
131
0
err:
132
0
    return ret;
133
0
}
134
135
/*
136
 * Generate a probable prime (p or q).
137
 *
138
 * See FIPS 186-4 B.3.6 (Steps 4 & 5)
139
 *
140
 * Params:
141
 *     p The returned probable prime.
142
 *     Xpout An optionally returned random number used during generation of p.
143
 *     p1, p2 The returned auxiliary primes. If NULL they are not returned.
144
 *     Xp An optional passed in value (that is random number used during
145
 *        generation of p).
146
 *     Xp1, Xp2 Optional passed in values that are normally generated
147
 *              internally. Used to find p1, p2.
148
 *     nlen The bit length of the modulus (the key size).
149
 *     e The public exponent.
150
 *     ctx A BN_CTX object.
151
 *     cb An optional BIGNUM callback.
152
 * Returns: 1 on success otherwise it returns 0.
153
 */
154
int ossl_bn_rsa_fips186_4_gen_prob_primes(BIGNUM *p, BIGNUM *Xpout,
155
                                          BIGNUM *p1, BIGNUM *p2,
156
                                          const BIGNUM *Xp, const BIGNUM *Xp1,
157
                                          const BIGNUM *Xp2, int nlen,
158
                                          const BIGNUM *e, BN_CTX *ctx,
159
                                          BN_GENCB *cb)
160
0
{
161
0
    int ret = 0;
162
0
    BIGNUM *p1i = NULL, *p2i = NULL, *Xp1i = NULL, *Xp2i = NULL;
163
0
    int bitlen;
164
165
0
    if (p == NULL || Xpout == NULL)
166
0
        return 0;
167
168
0
    BN_CTX_start(ctx);
169
170
0
    p1i = (p1 != NULL) ? p1 : BN_CTX_get(ctx);
171
0
    p2i = (p2 != NULL) ? p2 : BN_CTX_get(ctx);
172
0
    Xp1i = (Xp1 != NULL) ? (BIGNUM *)Xp1 : BN_CTX_get(ctx);
173
0
    Xp2i = (Xp2 != NULL) ? (BIGNUM *)Xp2 : BN_CTX_get(ctx);
174
0
    if (p1i == NULL || p2i == NULL || Xp1i == NULL || Xp2i == NULL)
175
0
        goto err;
176
177
0
    bitlen = bn_rsa_fips186_5_aux_prime_min_size(nlen);
178
0
    if (bitlen == 0)
179
0
        goto err;
180
181
    /* (Steps 4.1/5.1): Randomly generate Xp1 if it is not passed in */
182
0
    if (Xp1 == NULL) {
183
        /* Set the top and bottom bits to make it odd and the correct size */
184
0
        if (!BN_priv_rand_ex(Xp1i, bitlen, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD,
185
0
                             0, ctx))
186
0
            goto err;
187
0
    }
188
    /* (Steps 4.1/5.1): Randomly generate Xp2 if it is not passed in */
189
0
    if (Xp2 == NULL) {
190
        /* Set the top and bottom bits to make it odd and the correct size */
191
0
        if (!BN_priv_rand_ex(Xp2i, bitlen, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD,
192
0
                             0, ctx))
193
0
            goto err;
194
0
    }
195
196
    /* (Steps 4.2/5.2) - find first auxiliary probable primes */
197
0
    if (!bn_rsa_fips186_4_find_aux_prob_prime(Xp1i, p1i, ctx, cb)
198
0
            || !bn_rsa_fips186_4_find_aux_prob_prime(Xp2i, p2i, ctx, cb))
199
0
        goto err;
200
    /* (Table B.1) auxiliary prime Max length check */
201
0
    if ((BN_num_bits(p1i) + BN_num_bits(p2i)) >=
202
0
            bn_rsa_fips186_5_aux_prime_max_sum_size_for_prob_primes(nlen))
203
0
        goto err;
204
    /* (Steps 4.3/5.3) - generate prime */
205
0
    if (!ossl_bn_rsa_fips186_4_derive_prime(p, Xpout, Xp, p1i, p2i, nlen, e,
206
0
                                            ctx, cb))
207
0
        goto err;
208
0
    ret = 1;
209
0
err:
210
    /* Zeroize any internally generated values that are not returned */
211
0
    if (p1 == NULL)
212
0
        BN_clear(p1i);
213
0
    if (p2 == NULL)
214
0
        BN_clear(p2i);
215
0
    if (Xp1 == NULL)
216
0
        BN_clear(Xp1i);
217
0
    if (Xp2 == NULL)
218
0
        BN_clear(Xp2i);
219
0
    BN_CTX_end(ctx);
220
0
    return ret;
221
0
}
222
223
/*
224
 * Constructs a probable prime (a candidate for p or q) using 2 auxiliary
225
 * prime numbers and the Chinese Remainder Theorem.
226
 *
227
 * See FIPS 186-4 C.9 "Compute a Probable Prime Factor Based on Auxiliary
228
 * Primes". Used by FIPS 186-4 B.3.6 Section (4.3) for p and Section (5.3) for q.
229
 *
230
 * Params:
231
 *     Y The returned prime factor (private_prime_factor) of the modulus n.
232
 *     X The returned random number used during generation of the prime factor.
233
 *     Xin An optional passed in value for X used for testing purposes.
234
 *     r1 An auxiliary prime.
235
 *     r2 An auxiliary prime.
236
 *     nlen The desired length of n (the RSA modulus).
237
 *     e The public exponent.
238
 *     ctx A BN_CTX object.
239
 *     cb An optional BIGNUM callback object.
240
 * Returns: 1 on success otherwise it returns 0.
241
 * Assumptions:
242
 *     Y, X, r1, r2, e are not NULL.
243
 */
244
int ossl_bn_rsa_fips186_4_derive_prime(BIGNUM *Y, BIGNUM *X, const BIGNUM *Xin,
245
                                       const BIGNUM *r1, const BIGNUM *r2,
246
                                       int nlen, const BIGNUM *e, BN_CTX *ctx,
247
                                       BN_GENCB *cb)
248
0
{
249
0
    int ret = 0;
250
0
    int i, imax;
251
0
    int bits = nlen >> 1;
252
0
    BIGNUM *tmp, *R, *r1r2x2, *y1, *r1x2;
253
0
    BIGNUM *base, *range;
254
255
0
    BN_CTX_start(ctx);
256
257
0
    base = BN_CTX_get(ctx);
258
0
    range = BN_CTX_get(ctx);
259
0
    R = BN_CTX_get(ctx);
260
0
    tmp = BN_CTX_get(ctx);
261
0
    r1r2x2 = BN_CTX_get(ctx);
262
0
    y1 = BN_CTX_get(ctx);
263
0
    r1x2 = BN_CTX_get(ctx);
264
0
    if (r1x2 == NULL)
265
0
        goto err;
266
267
0
    if (Xin != NULL && BN_copy(X, Xin) == NULL)
268
0
        goto err;
269
270
    /*
271
     * We need to generate a random number X in the range
272
     * 1/sqrt(2) * 2^(nlen/2) <= X < 2^(nlen/2).
273
     * We can rewrite that as:
274
     * base = 1/sqrt(2) * 2^(nlen/2)
275
     * range = ((2^(nlen/2))) - (1/sqrt(2) * 2^(nlen/2))
276
     * X = base + random(range)
277
     * We only have the first 256 bit of 1/sqrt(2)
278
     */
279
0
    if (Xin == NULL) {
280
0
        if (bits < BN_num_bits(&ossl_bn_inv_sqrt_2))
281
0
            goto err;
282
0
        if (!BN_lshift(base, &ossl_bn_inv_sqrt_2,
283
0
                       bits - BN_num_bits(&ossl_bn_inv_sqrt_2))
284
0
            || !BN_lshift(range, BN_value_one(), bits)
285
0
            || !BN_sub(range, range, base))
286
0
            goto err;
287
0
    }
288
289
0
    if (!(BN_lshift1(r1x2, r1)
290
            /* (Step 1) GCD(2r1, r2) = 1 */
291
0
            && BN_gcd(tmp, r1x2, r2, ctx)
292
0
            && BN_is_one(tmp)
293
            /* (Step 2) R = ((r2^-1 mod 2r1) * r2) - ((2r1^-1 mod r2)*2r1) */
294
0
            && BN_mod_inverse(R, r2, r1x2, ctx)
295
0
            && BN_mul(R, R, r2, ctx) /* R = (r2^-1 mod 2r1) * r2 */
296
0
            && BN_mod_inverse(tmp, r1x2, r2, ctx)
297
0
            && BN_mul(tmp, tmp, r1x2, ctx) /* tmp = (2r1^-1 mod r2)*2r1 */
298
0
            && BN_sub(R, R, tmp)
299
            /* Calculate 2r1r2 */
300
0
            && BN_mul(r1r2x2, r1x2, r2, ctx)))
301
0
        goto err;
302
    /* Make positive by adding the modulus */
303
0
    if (BN_is_negative(R) && !BN_add(R, R, r1r2x2))
304
0
        goto err;
305
306
    /*
307
     * In FIPS 186-4 imax was set to 5 * nlen/2.
308
     * Analysis by Allen Roginsky (See https://csrc.nist.gov/CSRC/media/Publications/fips/186/4/final/documents/comments-received-fips186-4-december-2015.pdf
309
     * page 68) indicates this has a 1 in 2 million chance of failure.
310
     * The number has been updated to 20 * nlen/2 as used in
311
     * FIPS186-5 Appendix B.9 Step 9.
312
     */
313
0
    imax = 20 * bits; /* max = 20/2 * nbits */
314
0
    for (;;) {
315
0
        if (Xin == NULL) {
316
            /*
317
             * (Step 3) Choose Random X such that
318
             *    sqrt(2) * 2^(nlen/2-1) <= Random X <= (2^(nlen/2)) - 1.
319
             */
320
0
            if (!BN_priv_rand_range_ex(X, range, 0, ctx) || !BN_add(X, X, base))
321
0
                goto err;
322
0
        }
323
        /* (Step 4) Y = X + ((R - X) mod 2r1r2) */
324
0
        if (!BN_mod_sub(Y, R, X, r1r2x2, ctx) || !BN_add(Y, Y, X))
325
0
            goto err;
326
        /* (Step 5) */
327
0
        i = 0;
328
0
        for (;;) {
329
            /* (Step 6) */
330
0
            if (BN_num_bits(Y) > bits) {
331
0
                if (Xin == NULL)
332
0
                    break; /* Randomly Generated X so Go back to Step 3 */
333
0
                else
334
0
                    goto err; /* X is not random so it will always fail */
335
0
            }
336
0
            BN_GENCB_call(cb, 0, 2);
337
338
            /* (Step 7) If GCD(Y-1) == 1 & Y is probably prime then return Y */
339
0
            if (BN_copy(y1, Y) == NULL
340
0
                    || !BN_sub_word(y1, 1)
341
0
                    || !BN_gcd(tmp, y1, e, ctx))
342
0
                goto err;
343
0
            if (BN_is_one(tmp)) {
344
0
                int rv = BN_check_prime(Y, ctx, cb);
345
346
0
                if (rv > 0)
347
0
                    goto end;
348
0
                if (rv < 0)
349
0
                    goto err;
350
0
            }
351
            /* (Step 8-10) */
352
0
            if (++i >= imax) {
353
0
                ERR_raise(ERR_LIB_BN, BN_R_NO_PRIME_CANDIDATE);
354
0
                goto err;
355
0
            }
356
0
            if (!BN_add(Y, Y, r1r2x2))
357
0
                goto err;
358
0
        }
359
0
    }
360
0
end:
361
0
    ret = 1;
362
0
    BN_GENCB_call(cb, 3, 0);
363
0
err:
364
0
    BN_clear(y1);
365
0
    BN_CTX_end(ctx);
366
0
    return ret;
367
0
}