Coverage Report

Created: 2025-06-13 06:58

/src/openssl30/crypto/ec/ecp_nistp224.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 2010-2021 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
/* Copyright 2011 Google Inc.
11
 *
12
 * Licensed under the Apache License, Version 2.0 (the "License");
13
 *
14
 * you may not use this file except in compliance with the License.
15
 * You may obtain a copy of the License at
16
 *
17
 *     http://www.apache.org/licenses/LICENSE-2.0
18
 *
19
 *  Unless required by applicable law or agreed to in writing, software
20
 *  distributed under the License is distributed on an "AS IS" BASIS,
21
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
22
 *  See the License for the specific language governing permissions and
23
 *  limitations under the License.
24
 */
25
26
/*
27
 * ECDSA low level APIs are deprecated for public use, but still ok for
28
 * internal use.
29
 */
30
#include "internal/deprecated.h"
31
32
/*
33
 * A 64-bit implementation of the NIST P-224 elliptic curve point multiplication
34
 *
35
 * Inspired by Daniel J. Bernstein's public domain nistp224 implementation
36
 * and Adam Langley's public domain 64-bit C implementation of curve25519
37
 */
38
39
#include <openssl/opensslconf.h>
40
41
#include <stdint.h>
42
#include <string.h>
43
#include <openssl/err.h>
44
#include "ec_local.h"
45
46
#include "internal/numbers.h"
47
48
#ifndef INT128_MAX
49
# error "Your compiler doesn't appear to support 128-bit integer types"
50
#endif
51
52
typedef uint8_t u8;
53
typedef uint64_t u64;
54
55
/******************************************************************************/
56
/*-
57
 * INTERNAL REPRESENTATION OF FIELD ELEMENTS
58
 *
59
 * Field elements are represented as a_0 + 2^56*a_1 + 2^112*a_2 + 2^168*a_3
60
 * using 64-bit coefficients called 'limbs',
61
 * and sometimes (for multiplication results) as
62
 * b_0 + 2^56*b_1 + 2^112*b_2 + 2^168*b_3 + 2^224*b_4 + 2^280*b_5 + 2^336*b_6
63
 * using 128-bit coefficients called 'widelimbs'.
64
 * A 4-limb representation is an 'felem';
65
 * a 7-widelimb representation is a 'widefelem'.
66
 * Even within felems, bits of adjacent limbs overlap, and we don't always
67
 * reduce the representations: we ensure that inputs to each felem
68
 * multiplication satisfy a_i < 2^60, so outputs satisfy b_i < 4*2^60*2^60,
69
 * and fit into a 128-bit word without overflow. The coefficients are then
70
 * again partially reduced to obtain an felem satisfying a_i < 2^57.
71
 * We only reduce to the unique minimal representation at the end of the
72
 * computation.
73
 */
74
75
typedef uint64_t limb;
76
typedef uint64_t limb_aX __attribute((__aligned__(1)));
77
typedef uint128_t widelimb;
78
79
typedef limb felem[4];
80
typedef widelimb widefelem[7];
81
82
/*
83
 * Field element represented as a byte array. 28*8 = 224 bits is also the
84
 * group order size for the elliptic curve, and we also use this type for
85
 * scalars for point multiplication.
86
 */
87
typedef u8 felem_bytearray[28];
88
89
static const felem_bytearray nistp224_curve_params[5] = {
90
    {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* p */
91
     0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00,
92
     0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01},
93
    {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* a */
94
     0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF,
95
     0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE},
96
    {0xB4, 0x05, 0x0A, 0x85, 0x0C, 0x04, 0xB3, 0xAB, 0xF5, 0x41, /* b */
97
     0x32, 0x56, 0x50, 0x44, 0xB0, 0xB7, 0xD7, 0xBF, 0xD8, 0xBA,
98
     0x27, 0x0B, 0x39, 0x43, 0x23, 0x55, 0xFF, 0xB4},
99
    {0xB7, 0x0E, 0x0C, 0xBD, 0x6B, 0xB4, 0xBF, 0x7F, 0x32, 0x13, /* x */
100
     0x90, 0xB9, 0x4A, 0x03, 0xC1, 0xD3, 0x56, 0xC2, 0x11, 0x22,
101
     0x34, 0x32, 0x80, 0xD6, 0x11, 0x5C, 0x1D, 0x21},
102
    {0xbd, 0x37, 0x63, 0x88, 0xb5, 0xf7, 0x23, 0xfb, 0x4c, 0x22, /* y */
103
     0xdf, 0xe6, 0xcd, 0x43, 0x75, 0xa0, 0x5a, 0x07, 0x47, 0x64,
104
     0x44, 0xd5, 0x81, 0x99, 0x85, 0x00, 0x7e, 0x34}
105
};
106
107
/*-
108
 * Precomputed multiples of the standard generator
109
 * Points are given in coordinates (X, Y, Z) where Z normally is 1
110
 * (0 for the point at infinity).
111
 * For each field element, slice a_0 is word 0, etc.
112
 *
113
 * The table has 2 * 16 elements, starting with the following:
114
 * index | bits    | point
115
 * ------+---------+------------------------------
116
 *     0 | 0 0 0 0 | 0G
117
 *     1 | 0 0 0 1 | 1G
118
 *     2 | 0 0 1 0 | 2^56G
119
 *     3 | 0 0 1 1 | (2^56 + 1)G
120
 *     4 | 0 1 0 0 | 2^112G
121
 *     5 | 0 1 0 1 | (2^112 + 1)G
122
 *     6 | 0 1 1 0 | (2^112 + 2^56)G
123
 *     7 | 0 1 1 1 | (2^112 + 2^56 + 1)G
124
 *     8 | 1 0 0 0 | 2^168G
125
 *     9 | 1 0 0 1 | (2^168 + 1)G
126
 *    10 | 1 0 1 0 | (2^168 + 2^56)G
127
 *    11 | 1 0 1 1 | (2^168 + 2^56 + 1)G
128
 *    12 | 1 1 0 0 | (2^168 + 2^112)G
129
 *    13 | 1 1 0 1 | (2^168 + 2^112 + 1)G
130
 *    14 | 1 1 1 0 | (2^168 + 2^112 + 2^56)G
131
 *    15 | 1 1 1 1 | (2^168 + 2^112 + 2^56 + 1)G
132
 * followed by a copy of this with each element multiplied by 2^28.
133
 *
134
 * The reason for this is so that we can clock bits into four different
135
 * locations when doing simple scalar multiplies against the base point,
136
 * and then another four locations using the second 16 elements.
137
 */
138
static const felem gmul[2][16][3] = {
139
{{{0, 0, 0, 0},
140
  {0, 0, 0, 0},
141
  {0, 0, 0, 0}},
142
 {{0x3280d6115c1d21, 0xc1d356c2112234, 0x7f321390b94a03, 0xb70e0cbd6bb4bf},
143
  {0xd5819985007e34, 0x75a05a07476444, 0xfb4c22dfe6cd43, 0xbd376388b5f723},
144
  {1, 0, 0, 0}},
145
 {{0xfd9675666ebbe9, 0xbca7664d40ce5e, 0x2242df8d8a2a43, 0x1f49bbb0f99bc5},
146
  {0x29e0b892dc9c43, 0xece8608436e662, 0xdc858f185310d0, 0x9812dd4eb8d321},
147
  {1, 0, 0, 0}},
148
 {{0x6d3e678d5d8eb8, 0x559eed1cb362f1, 0x16e9a3bbce8a3f, 0xeedcccd8c2a748},
149
  {0xf19f90ed50266d, 0xabf2b4bf65f9df, 0x313865468fafec, 0x5cb379ba910a17},
150
  {1, 0, 0, 0}},
151
 {{0x0641966cab26e3, 0x91fb2991fab0a0, 0xefec27a4e13a0b, 0x0499aa8a5f8ebe},
152
  {0x7510407766af5d, 0x84d929610d5450, 0x81d77aae82f706, 0x6916f6d4338c5b},
153
  {1, 0, 0, 0}},
154
 {{0xea95ac3b1f15c6, 0x086000905e82d4, 0xdd323ae4d1c8b1, 0x932b56be7685a3},
155
  {0x9ef93dea25dbbf, 0x41665960f390f0, 0xfdec76dbe2a8a7, 0x523e80f019062a},
156
  {1, 0, 0, 0}},
157
 {{0x822fdd26732c73, 0xa01c83531b5d0f, 0x363f37347c1ba4, 0xc391b45c84725c},
158
  {0xbbd5e1b2d6ad24, 0xddfbcde19dfaec, 0xc393da7e222a7f, 0x1efb7890ede244},
159
  {1, 0, 0, 0}},
160
 {{0x4c9e90ca217da1, 0xd11beca79159bb, 0xff8d33c2c98b7c, 0x2610b39409f849},
161
  {0x44d1352ac64da0, 0xcdbb7b2c46b4fb, 0x966c079b753c89, 0xfe67e4e820b112},
162
  {1, 0, 0, 0}},
163
 {{0xe28cae2df5312d, 0xc71b61d16f5c6e, 0x79b7619a3e7c4c, 0x05c73240899b47},
164
  {0x9f7f6382c73e3a, 0x18615165c56bda, 0x641fab2116fd56, 0x72855882b08394},
165
  {1, 0, 0, 0}},
166
 {{0x0469182f161c09, 0x74a98ca8d00fb5, 0xb89da93489a3e0, 0x41c98768fb0c1d},
167
  {0xe5ea05fb32da81, 0x3dce9ffbca6855, 0x1cfe2d3fbf59e6, 0x0e5e03408738a7},
168
  {1, 0, 0, 0}},
169
 {{0xdab22b2333e87f, 0x4430137a5dd2f6, 0xe03ab9f738beb8, 0xcb0c5d0dc34f24},
170
  {0x764a7df0c8fda5, 0x185ba5c3fa2044, 0x9281d688bcbe50, 0xc40331df893881},
171
  {1, 0, 0, 0}},
172
 {{0xb89530796f0f60, 0xade92bd26909a3, 0x1a0c83fb4884da, 0x1765bf22a5a984},
173
  {0x772a9ee75db09e, 0x23bc6c67cec16f, 0x4c1edba8b14e2f, 0xe2a215d9611369},
174
  {1, 0, 0, 0}},
175
 {{0x571e509fb5efb3, 0xade88696410552, 0xc8ae85fada74fe, 0x6c7e4be83bbde3},
176
  {0xff9f51160f4652, 0xb47ce2495a6539, 0xa2946c53b582f4, 0x286d2db3ee9a60},
177
  {1, 0, 0, 0}},
178
 {{0x40bbd5081a44af, 0x0995183b13926c, 0xbcefba6f47f6d0, 0x215619e9cc0057},
179
  {0x8bc94d3b0df45e, 0xf11c54a3694f6f, 0x8631b93cdfe8b5, 0xe7e3f4b0982db9},
180
  {1, 0, 0, 0}},
181
 {{0xb17048ab3e1c7b, 0xac38f36ff8a1d8, 0x1c29819435d2c6, 0xc813132f4c07e9},
182
  {0x2891425503b11f, 0x08781030579fea, 0xf5426ba5cc9674, 0x1e28ebf18562bc},
183
  {1, 0, 0, 0}},
184
 {{0x9f31997cc864eb, 0x06cd91d28b5e4c, 0xff17036691a973, 0xf1aef351497c58},
185
  {0xdd1f2d600564ff, 0xdead073b1402db, 0x74a684435bd693, 0xeea7471f962558},
186
  {1, 0, 0, 0}}},
187
{{{0, 0, 0, 0},
188
  {0, 0, 0, 0},
189
  {0, 0, 0, 0}},
190
 {{0x9665266dddf554, 0x9613d78b60ef2d, 0xce27a34cdba417, 0xd35ab74d6afc31},
191
  {0x85ccdd22deb15e, 0x2137e5783a6aab, 0xa141cffd8c93c6, 0x355a1830e90f2d},
192
  {1, 0, 0, 0}},
193
 {{0x1a494eadaade65, 0xd6da4da77fe53c, 0xe7992996abec86, 0x65c3553c6090e3},
194
  {0xfa610b1fb09346, 0xf1c6540b8a4aaf, 0xc51a13ccd3cbab, 0x02995b1b18c28a},
195
  {1, 0, 0, 0}},
196
 {{0x7874568e7295ef, 0x86b419fbe38d04, 0xdc0690a7550d9a, 0xd3966a44beac33},
197
  {0x2b7280ec29132f, 0xbeaa3b6a032df3, 0xdc7dd88ae41200, 0xd25e2513e3a100},
198
  {1, 0, 0, 0}},
199
 {{0x924857eb2efafd, 0xac2bce41223190, 0x8edaa1445553fc, 0x825800fd3562d5},
200
  {0x8d79148ea96621, 0x23a01c3dd9ed8d, 0xaf8b219f9416b5, 0xd8db0cc277daea},
201
  {1, 0, 0, 0}},
202
 {{0x76a9c3b1a700f0, 0xe9acd29bc7e691, 0x69212d1a6b0327, 0x6322e97fe154be},
203
  {0x469fc5465d62aa, 0x8d41ed18883b05, 0x1f8eae66c52b88, 0xe4fcbe9325be51},
204
  {1, 0, 0, 0}},
205
 {{0x825fdf583cac16, 0x020b857c7b023a, 0x683c17744b0165, 0x14ffd0a2daf2f1},
206
  {0x323b36184218f9, 0x4944ec4e3b47d4, 0xc15b3080841acf, 0x0bced4b01a28bb},
207
  {1, 0, 0, 0}},
208
 {{0x92ac22230df5c4, 0x52f33b4063eda8, 0xcb3f19870c0c93, 0x40064f2ba65233},
209
  {0xfe16f0924f8992, 0x012da25af5b517, 0x1a57bb24f723a6, 0x06f8bc76760def},
210
  {1, 0, 0, 0}},
211
 {{0x4a7084f7817cb9, 0xbcab0738ee9a78, 0x3ec11e11d9c326, 0xdc0fe90e0f1aae},
212
  {0xcf639ea5f98390, 0x5c350aa22ffb74, 0x9afae98a4047b7, 0x956ec2d617fc45},
213
  {1, 0, 0, 0}},
214
 {{0x4306d648c1be6a, 0x9247cd8bc9a462, 0xf5595e377d2f2e, 0xbd1c3caff1a52e},
215
  {0x045e14472409d0, 0x29f3e17078f773, 0x745a602b2d4f7d, 0x191837685cdfbb},
216
  {1, 0, 0, 0}},
217
 {{0x5b6ee254a8cb79, 0x4953433f5e7026, 0xe21faeb1d1def4, 0xc4c225785c09de},
218
  {0x307ce7bba1e518, 0x31b125b1036db8, 0x47e91868839e8f, 0xc765866e33b9f3},
219
  {1, 0, 0, 0}},
220
 {{0x3bfece24f96906, 0x4794da641e5093, 0xde5df64f95db26, 0x297ecd89714b05},
221
  {0x701bd3ebb2c3aa, 0x7073b4f53cb1d5, 0x13c5665658af16, 0x9895089d66fe58},
222
  {1, 0, 0, 0}},
223
 {{0x0fef05f78c4790, 0x2d773633b05d2e, 0x94229c3a951c94, 0xbbbd70df4911bb},
224
  {0xb2c6963d2c1168, 0x105f47a72b0d73, 0x9fdf6111614080, 0x7b7e94b39e67b0},
225
  {1, 0, 0, 0}},
226
 {{0xad1a7d6efbe2b3, 0xf012482c0da69d, 0x6b3bdf12438345, 0x40d7558d7aa4d9},
227
  {0x8a09fffb5c6d3d, 0x9a356e5d9ffd38, 0x5973f15f4f9b1c, 0xdcd5f59f63c3ea},
228
  {1, 0, 0, 0}},
229
 {{0xacf39f4c5ca7ab, 0x4c8071cc5fd737, 0xc64e3602cd1184, 0x0acd4644c9abba},
230
  {0x6c011a36d8bf6e, 0xfecd87ba24e32a, 0x19f6f56574fad8, 0x050b204ced9405},
231
  {1, 0, 0, 0}},
232
 {{0xed4f1cae7d9a96, 0x5ceef7ad94c40a, 0x778e4a3bf3ef9b, 0x7405783dc3b55e},
233
  {0x32477c61b6e8c6, 0xb46a97570f018b, 0x91176d0a7e95d1, 0x3df90fbc4c7d0e},
234
  {1, 0, 0, 0}}}
235
};
236
237
/* Precomputation for the group generator. */
238
struct nistp224_pre_comp_st {
239
    felem g_pre_comp[2][16][3];
240
    CRYPTO_REF_COUNT references;
241
    CRYPTO_RWLOCK *lock;
242
};
243
244
const EC_METHOD *EC_GFp_nistp224_method(void)
245
32.5k
{
246
32.5k
    static const EC_METHOD ret = {
247
32.5k
        EC_FLAGS_DEFAULT_OCT,
248
32.5k
        NID_X9_62_prime_field,
249
32.5k
        ossl_ec_GFp_nistp224_group_init,
250
32.5k
        ossl_ec_GFp_simple_group_finish,
251
32.5k
        ossl_ec_GFp_simple_group_clear_finish,
252
32.5k
        ossl_ec_GFp_nist_group_copy,
253
32.5k
        ossl_ec_GFp_nistp224_group_set_curve,
254
32.5k
        ossl_ec_GFp_simple_group_get_curve,
255
32.5k
        ossl_ec_GFp_simple_group_get_degree,
256
32.5k
        ossl_ec_group_simple_order_bits,
257
32.5k
        ossl_ec_GFp_simple_group_check_discriminant,
258
32.5k
        ossl_ec_GFp_simple_point_init,
259
32.5k
        ossl_ec_GFp_simple_point_finish,
260
32.5k
        ossl_ec_GFp_simple_point_clear_finish,
261
32.5k
        ossl_ec_GFp_simple_point_copy,
262
32.5k
        ossl_ec_GFp_simple_point_set_to_infinity,
263
32.5k
        ossl_ec_GFp_simple_point_set_affine_coordinates,
264
32.5k
        ossl_ec_GFp_nistp224_point_get_affine_coordinates,
265
32.5k
        0 /* point_set_compressed_coordinates */ ,
266
32.5k
        0 /* point2oct */ ,
267
32.5k
        0 /* oct2point */ ,
268
32.5k
        ossl_ec_GFp_simple_add,
269
32.5k
        ossl_ec_GFp_simple_dbl,
270
32.5k
        ossl_ec_GFp_simple_invert,
271
32.5k
        ossl_ec_GFp_simple_is_at_infinity,
272
32.5k
        ossl_ec_GFp_simple_is_on_curve,
273
32.5k
        ossl_ec_GFp_simple_cmp,
274
32.5k
        ossl_ec_GFp_simple_make_affine,
275
32.5k
        ossl_ec_GFp_simple_points_make_affine,
276
32.5k
        ossl_ec_GFp_nistp224_points_mul,
277
32.5k
        ossl_ec_GFp_nistp224_precompute_mult,
278
32.5k
        ossl_ec_GFp_nistp224_have_precompute_mult,
279
32.5k
        ossl_ec_GFp_nist_field_mul,
280
32.5k
        ossl_ec_GFp_nist_field_sqr,
281
32.5k
        0 /* field_div */ ,
282
32.5k
        ossl_ec_GFp_simple_field_inv,
283
32.5k
        0 /* field_encode */ ,
284
32.5k
        0 /* field_decode */ ,
285
32.5k
        0,                      /* field_set_to_one */
286
32.5k
        ossl_ec_key_simple_priv2oct,
287
32.5k
        ossl_ec_key_simple_oct2priv,
288
32.5k
        0, /* set private */
289
32.5k
        ossl_ec_key_simple_generate_key,
290
32.5k
        ossl_ec_key_simple_check_key,
291
32.5k
        ossl_ec_key_simple_generate_public_key,
292
32.5k
        0, /* keycopy */
293
32.5k
        0, /* keyfinish */
294
32.5k
        ossl_ecdh_simple_compute_key,
295
32.5k
        ossl_ecdsa_simple_sign_setup,
296
32.5k
        ossl_ecdsa_simple_sign_sig,
297
32.5k
        ossl_ecdsa_simple_verify_sig,
298
32.5k
        0, /* field_inverse_mod_ord */
299
32.5k
        0, /* blind_coordinates */
300
32.5k
        0, /* ladder_pre */
301
32.5k
        0, /* ladder_step */
302
32.5k
        0  /* ladder_post */
303
32.5k
    };
304
305
32.5k
    return &ret;
306
32.5k
}
307
308
/*
309
 * Helper functions to convert field elements to/from internal representation
310
 */
311
static void bin28_to_felem(felem out, const u8 in[28])
312
8.63k
{
313
8.63k
    out[0] = *((const limb *)(in)) & 0x00ffffffffffffff;
314
8.63k
    out[1] = (*((const limb_aX *)(in + 7))) & 0x00ffffffffffffff;
315
8.63k
    out[2] = (*((const limb_aX *)(in + 14))) & 0x00ffffffffffffff;
316
8.63k
    out[3] = (*((const limb_aX *)(in + 20))) >> 8;
317
8.63k
}
318
319
static void felem_to_bin28(u8 out[28], const felem in)
320
12.3k
{
321
12.3k
    unsigned i;
322
99.1k
    for (i = 0; i < 7; ++i) {
323
86.7k
        out[i] = in[0] >> (8 * i);
324
86.7k
        out[i + 7] = in[1] >> (8 * i);
325
86.7k
        out[i + 14] = in[2] >> (8 * i);
326
86.7k
        out[i + 21] = in[3] >> (8 * i);
327
86.7k
    }
328
12.3k
}
329
330
/* From OpenSSL BIGNUM to internal representation */
331
static int BN_to_felem(felem out, const BIGNUM *bn)
332
8.63k
{
333
8.63k
    felem_bytearray b_out;
334
8.63k
    int num_bytes;
335
336
8.63k
    if (BN_is_negative(bn)) {
337
0
        ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE);
338
0
        return 0;
339
0
    }
340
8.63k
    num_bytes = BN_bn2lebinpad(bn, b_out, sizeof(b_out));
341
8.63k
    if (num_bytes < 0) {
342
0
        ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE);
343
0
        return 0;
344
0
    }
345
8.63k
    bin28_to_felem(out, b_out);
346
8.63k
    return 1;
347
8.63k
}
348
349
/* From internal representation to OpenSSL BIGNUM */
350
static BIGNUM *felem_to_BN(BIGNUM *out, const felem in)
351
12.3k
{
352
12.3k
    felem_bytearray b_out;
353
12.3k
    felem_to_bin28(b_out, in);
354
12.3k
    return BN_lebin2bn(b_out, sizeof(b_out), out);
355
12.3k
}
356
357
/******************************************************************************/
358
/*-
359
 *                              FIELD OPERATIONS
360
 *
361
 * Field operations, using the internal representation of field elements.
362
 * NB! These operations are specific to our point multiplication and cannot be
363
 * expected to be correct in general - e.g., multiplication with a large scalar
364
 * will cause an overflow.
365
 *
366
 */
367
368
static void felem_one(felem out)
369
0
{
370
0
    out[0] = 1;
371
0
    out[1] = 0;
372
0
    out[2] = 0;
373
0
    out[3] = 0;
374
0
}
375
376
static void felem_assign(felem out, const felem in)
377
867k
{
378
867k
    out[0] = in[0];
379
867k
    out[1] = in[1];
380
867k
    out[2] = in[2];
381
867k
    out[3] = in[3];
382
867k
}
383
384
/* Sum two field elements: out += in */
385
static void felem_sum(felem out, const felem in)
386
249k
{
387
249k
    out[0] += in[0];
388
249k
    out[1] += in[1];
389
249k
    out[2] += in[2];
390
249k
    out[3] += in[3];
391
249k
}
392
393
/* Subtract field elements: out -= in */
394
/* Assumes in[i] < 2^57 */
395
static void felem_diff(felem out, const felem in)
396
236k
{
397
236k
    static const limb two58p2 = (((limb) 1) << 58) + (((limb) 1) << 2);
398
236k
    static const limb two58m2 = (((limb) 1) << 58) - (((limb) 1) << 2);
399
236k
    static const limb two58m42m2 = (((limb) 1) << 58) -
400
236k
        (((limb) 1) << 42) - (((limb) 1) << 2);
401
402
    /* Add 0 mod 2^224-2^96+1 to ensure out > in */
403
236k
    out[0] += two58p2;
404
236k
    out[1] += two58m42m2;
405
236k
    out[2] += two58m2;
406
236k
    out[3] += two58m2;
407
408
236k
    out[0] -= in[0];
409
236k
    out[1] -= in[1];
410
236k
    out[2] -= in[2];
411
236k
    out[3] -= in[3];
412
236k
}
413
414
/* Subtract in unreduced 128-bit mode: out -= in */
415
/* Assumes in[i] < 2^119 */
416
static void widefelem_diff(widefelem out, const widefelem in)
417
153k
{
418
153k
    static const widelimb two120 = ((widelimb) 1) << 120;
419
153k
    static const widelimb two120m64 = (((widelimb) 1) << 120) -
420
153k
        (((widelimb) 1) << 64);
421
153k
    static const widelimb two120m104m64 = (((widelimb) 1) << 120) -
422
153k
        (((widelimb) 1) << 104) - (((widelimb) 1) << 64);
423
424
    /* Add 0 mod 2^224-2^96+1 to ensure out > in */
425
153k
    out[0] += two120;
426
153k
    out[1] += two120m64;
427
153k
    out[2] += two120m64;
428
153k
    out[3] += two120;
429
153k
    out[4] += two120m104m64;
430
153k
    out[5] += two120m64;
431
153k
    out[6] += two120m64;
432
433
153k
    out[0] -= in[0];
434
153k
    out[1] -= in[1];
435
153k
    out[2] -= in[2];
436
153k
    out[3] -= in[3];
437
153k
    out[4] -= in[4];
438
153k
    out[5] -= in[5];
439
153k
    out[6] -= in[6];
440
153k
}
441
442
/* Subtract in mixed mode: out128 -= in64 */
443
/* in[i] < 2^63 */
444
static void felem_diff_128_64(widefelem out, const felem in)
445
460k
{
446
460k
    static const widelimb two64p8 = (((widelimb) 1) << 64) +
447
460k
        (((widelimb) 1) << 8);
448
460k
    static const widelimb two64m8 = (((widelimb) 1) << 64) -
449
460k
        (((widelimb) 1) << 8);
450
460k
    static const widelimb two64m48m8 = (((widelimb) 1) << 64) -
451
460k
        (((widelimb) 1) << 48) - (((widelimb) 1) << 8);
452
453
    /* Add 0 mod 2^224-2^96+1 to ensure out > in */
454
460k
    out[0] += two64p8;
455
460k
    out[1] += two64m48m8;
456
460k
    out[2] += two64m8;
457
460k
    out[3] += two64m8;
458
459
460k
    out[0] -= in[0];
460
460k
    out[1] -= in[1];
461
460k
    out[2] -= in[2];
462
460k
    out[3] -= in[3];
463
460k
}
464
465
/*
466
 * Multiply a field element by a scalar: out = out * scalar The scalars we
467
 * actually use are small, so results fit without overflow
468
 */
469
static void felem_scalar(felem out, const limb scalar)
470
320k
{
471
320k
    out[0] *= scalar;
472
320k
    out[1] *= scalar;
473
320k
    out[2] *= scalar;
474
320k
    out[3] *= scalar;
475
320k
}
476
477
/*
478
 * Multiply an unreduced field element by a scalar: out = out * scalar The
479
 * scalars we actually use are small, so results fit without overflow
480
 */
481
static void widefelem_scalar(widefelem out, const widelimb scalar)
482
83.0k
{
483
83.0k
    out[0] *= scalar;
484
83.0k
    out[1] *= scalar;
485
83.0k
    out[2] *= scalar;
486
83.0k
    out[3] *= scalar;
487
83.0k
    out[4] *= scalar;
488
83.0k
    out[5] *= scalar;
489
83.0k
    out[6] *= scalar;
490
83.0k
}
491
492
/* Square a field element: out = in^2 */
493
static void felem_square(widefelem out, const felem in)
494
1.23M
{
495
1.23M
    limb tmp0, tmp1, tmp2;
496
1.23M
    tmp0 = 2 * in[0];
497
1.23M
    tmp1 = 2 * in[1];
498
1.23M
    tmp2 = 2 * in[2];
499
1.23M
    out[0] = ((widelimb) in[0]) * in[0];
500
1.23M
    out[1] = ((widelimb) in[0]) * tmp1;
501
1.23M
    out[2] = ((widelimb) in[0]) * tmp2 + ((widelimb) in[1]) * in[1];
502
1.23M
    out[3] = ((widelimb) in[3]) * tmp0 + ((widelimb) in[1]) * tmp2;
503
1.23M
    out[4] = ((widelimb) in[3]) * tmp1 + ((widelimb) in[2]) * in[2];
504
1.23M
    out[5] = ((widelimb) in[3]) * tmp2;
505
1.23M
    out[6] = ((widelimb) in[3]) * in[3];
506
1.23M
}
507
508
/* Multiply two field elements: out = in1 * in2 */
509
static void felem_mul(widefelem out, const felem in1, const felem in2)
510
901k
{
511
901k
    out[0] = ((widelimb) in1[0]) * in2[0];
512
901k
    out[1] = ((widelimb) in1[0]) * in2[1] + ((widelimb) in1[1]) * in2[0];
513
901k
    out[2] = ((widelimb) in1[0]) * in2[2] + ((widelimb) in1[1]) * in2[1] +
514
901k
             ((widelimb) in1[2]) * in2[0];
515
901k
    out[3] = ((widelimb) in1[0]) * in2[3] + ((widelimb) in1[1]) * in2[2] +
516
901k
             ((widelimb) in1[2]) * in2[1] + ((widelimb) in1[3]) * in2[0];
517
901k
    out[4] = ((widelimb) in1[1]) * in2[3] + ((widelimb) in1[2]) * in2[2] +
518
901k
             ((widelimb) in1[3]) * in2[1];
519
901k
    out[5] = ((widelimb) in1[2]) * in2[3] + ((widelimb) in1[3]) * in2[2];
520
901k
    out[6] = ((widelimb) in1[3]) * in2[3];
521
901k
}
522
523
/*-
524
 * Reduce seven 128-bit coefficients to four 64-bit coefficients.
525
 * Requires in[i] < 2^126,
526
 * ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16 */
527
static void felem_reduce(felem out, const widefelem in)
528
1.98M
{
529
1.98M
    static const widelimb two127p15 = (((widelimb) 1) << 127) +
530
1.98M
        (((widelimb) 1) << 15);
531
1.98M
    static const widelimb two127m71 = (((widelimb) 1) << 127) -
532
1.98M
        (((widelimb) 1) << 71);
533
1.98M
    static const widelimb two127m71m55 = (((widelimb) 1) << 127) -
534
1.98M
        (((widelimb) 1) << 71) - (((widelimb) 1) << 55);
535
1.98M
    widelimb output[5];
536
537
    /* Add 0 mod 2^224-2^96+1 to ensure all differences are positive */
538
1.98M
    output[0] = in[0] + two127p15;
539
1.98M
    output[1] = in[1] + two127m71m55;
540
1.98M
    output[2] = in[2] + two127m71;
541
1.98M
    output[3] = in[3];
542
1.98M
    output[4] = in[4];
543
544
    /* Eliminate in[4], in[5], in[6] */
545
1.98M
    output[4] += in[6] >> 16;
546
1.98M
    output[3] += (in[6] & 0xffff) << 40;
547
1.98M
    output[2] -= in[6];
548
549
1.98M
    output[3] += in[5] >> 16;
550
1.98M
    output[2] += (in[5] & 0xffff) << 40;
551
1.98M
    output[1] -= in[5];
552
553
1.98M
    output[2] += output[4] >> 16;
554
1.98M
    output[1] += (output[4] & 0xffff) << 40;
555
1.98M
    output[0] -= output[4];
556
557
    /* Carry 2 -> 3 -> 4 */
558
1.98M
    output[3] += output[2] >> 56;
559
1.98M
    output[2] &= 0x00ffffffffffffff;
560
561
1.98M
    output[4] = output[3] >> 56;
562
1.98M
    output[3] &= 0x00ffffffffffffff;
563
564
    /* Now output[2] < 2^56, output[3] < 2^56, output[4] < 2^72 */
565
566
    /* Eliminate output[4] */
567
1.98M
    output[2] += output[4] >> 16;
568
    /* output[2] < 2^56 + 2^56 = 2^57 */
569
1.98M
    output[1] += (output[4] & 0xffff) << 40;
570
1.98M
    output[0] -= output[4];
571
572
    /* Carry 0 -> 1 -> 2 -> 3 */
573
1.98M
    output[1] += output[0] >> 56;
574
1.98M
    out[0] = output[0] & 0x00ffffffffffffff;
575
576
1.98M
    output[2] += output[1] >> 56;
577
    /* output[2] < 2^57 + 2^72 */
578
1.98M
    out[1] = output[1] & 0x00ffffffffffffff;
579
1.98M
    output[3] += output[2] >> 56;
580
    /* output[3] <= 2^56 + 2^16 */
581
1.98M
    out[2] = output[2] & 0x00ffffffffffffff;
582
583
    /*-
584
     * out[0] < 2^56, out[1] < 2^56, out[2] < 2^56,
585
     * out[3] <= 2^56 + 2^16 (due to final carry),
586
     * so out < 2*p
587
     */
588
1.98M
    out[3] = output[3];
589
1.98M
}
590
591
static void felem_square_reduce(felem out, const felem in)
592
0
{
593
0
    widefelem tmp;
594
0
    felem_square(tmp, in);
595
0
    felem_reduce(out, tmp);
596
0
}
597
598
static void felem_mul_reduce(felem out, const felem in1, const felem in2)
599
0
{
600
0
    widefelem tmp;
601
0
    felem_mul(tmp, in1, in2);
602
0
    felem_reduce(out, tmp);
603
0
}
604
605
/*
606
 * Reduce to unique minimal representation. Requires 0 <= in < 2*p (always
607
 * call felem_reduce first)
608
 */
609
static void felem_contract(felem out, const felem in)
610
9.19k
{
611
9.19k
    static const int64_t two56 = ((limb) 1) << 56;
612
    /* 0 <= in < 2*p, p = 2^224 - 2^96 + 1 */
613
    /* if in > p , reduce in = in - 2^224 + 2^96 - 1 */
614
9.19k
    int64_t tmp[4], a;
615
9.19k
    tmp[0] = in[0];
616
9.19k
    tmp[1] = in[1];
617
9.19k
    tmp[2] = in[2];
618
9.19k
    tmp[3] = in[3];
619
    /* Case 1: a = 1 iff in >= 2^224 */
620
9.19k
    a = (in[3] >> 56);
621
9.19k
    tmp[0] -= a;
622
9.19k
    tmp[1] += a << 40;
623
9.19k
    tmp[3] &= 0x00ffffffffffffff;
624
    /*
625
     * Case 2: a = 0 iff p <= in < 2^224, i.e., the high 128 bits are all 1
626
     * and the lower part is non-zero
627
     */
628
9.19k
    a = ((in[3] & in[2] & (in[1] | 0x000000ffffffffff)) + 1) |
629
9.19k
        (((int64_t) (in[0] + (in[1] & 0x000000ffffffffff)) - 1) >> 63);
630
9.19k
    a &= 0x00ffffffffffffff;
631
    /* turn a into an all-one mask (if a = 0) or an all-zero mask */
632
9.19k
    a = (a - 1) >> 63;
633
    /* subtract 2^224 - 2^96 + 1 if a is all-one */
634
9.19k
    tmp[3] &= a ^ 0xffffffffffffffff;
635
9.19k
    tmp[2] &= a ^ 0xffffffffffffffff;
636
9.19k
    tmp[1] &= (a ^ 0xffffffffffffffff) | 0x000000ffffffffff;
637
9.19k
    tmp[0] -= 1 & a;
638
639
    /*
640
     * eliminate negative coefficients: if tmp[0] is negative, tmp[1] must be
641
     * non-zero, so we only need one step
642
     */
643
9.19k
    a = tmp[0] >> 63;
644
9.19k
    tmp[0] += two56 & a;
645
9.19k
    tmp[1] -= 1 & a;
646
647
    /* carry 1 -> 2 -> 3 */
648
9.19k
    tmp[2] += tmp[1] >> 56;
649
9.19k
    tmp[1] &= 0x00ffffffffffffff;
650
651
9.19k
    tmp[3] += tmp[2] >> 56;
652
9.19k
    tmp[2] &= 0x00ffffffffffffff;
653
654
    /* Now 0 <= out < p */
655
9.19k
    out[0] = tmp[0];
656
9.19k
    out[1] = tmp[1];
657
9.19k
    out[2] = tmp[2];
658
9.19k
    out[3] = tmp[3];
659
9.19k
}
660
661
/*
662
 * Get negative value: out = -in
663
 * Requires in[i] < 2^63,
664
 * ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16
665
 */
666
static void felem_neg(felem out, const felem in)
667
10.7k
{
668
10.7k
    widefelem tmp;
669
670
10.7k
    memset(tmp, 0, sizeof(tmp));
671
10.7k
    felem_diff_128_64(tmp, in);
672
10.7k
    felem_reduce(out, tmp);
673
10.7k
}
674
675
/*
676
 * Zero-check: returns 1 if input is 0, and 0 otherwise. We know that field
677
 * elements are reduced to in < 2^225, so we only need to check three cases:
678
 * 0, 2^224 - 2^96 + 1, and 2^225 - 2^97 + 2
679
 */
680
static limb felem_is_zero(const felem in)
681
283k
{
682
283k
    limb zero, two224m96p1, two225m97p2;
683
684
283k
    zero = in[0] | in[1] | in[2] | in[3];
685
283k
    zero = (((int64_t) (zero) - 1) >> 63) & 1;
686
283k
    two224m96p1 = (in[0] ^ 1) | (in[1] ^ 0x00ffff0000000000)
687
283k
        | (in[2] ^ 0x00ffffffffffffff) | (in[3] ^ 0x00ffffffffffffff);
688
283k
    two224m96p1 = (((int64_t) (two224m96p1) - 1) >> 63) & 1;
689
283k
    two225m97p2 = (in[0] ^ 2) | (in[1] ^ 0x00fffe0000000000)
690
283k
        | (in[2] ^ 0x00ffffffffffffff) | (in[3] ^ 0x01ffffffffffffff);
691
283k
    two225m97p2 = (((int64_t) (two225m97p2) - 1) >> 63) & 1;
692
283k
    return (zero | two224m96p1 | two225m97p2);
693
283k
}
694
695
static int felem_is_zero_int(const void *in)
696
0
{
697
0
    return (int)(felem_is_zero(in) & ((limb) 1));
698
0
}
699
700
/* Invert a field element */
701
/* Computation chain copied from djb's code */
702
static void felem_inv(felem out, const felem in)
703
2.64k
{
704
2.64k
    felem ftmp, ftmp2, ftmp3, ftmp4;
705
2.64k
    widefelem tmp;
706
2.64k
    unsigned i;
707
708
2.64k
    felem_square(tmp, in);
709
2.64k
    felem_reduce(ftmp, tmp);    /* 2 */
710
2.64k
    felem_mul(tmp, in, ftmp);
711
2.64k
    felem_reduce(ftmp, tmp);    /* 2^2 - 1 */
712
2.64k
    felem_square(tmp, ftmp);
713
2.64k
    felem_reduce(ftmp, tmp);    /* 2^3 - 2 */
714
2.64k
    felem_mul(tmp, in, ftmp);
715
2.64k
    felem_reduce(ftmp, tmp);    /* 2^3 - 1 */
716
2.64k
    felem_square(tmp, ftmp);
717
2.64k
    felem_reduce(ftmp2, tmp);   /* 2^4 - 2 */
718
2.64k
    felem_square(tmp, ftmp2);
719
2.64k
    felem_reduce(ftmp2, tmp);   /* 2^5 - 4 */
720
2.64k
    felem_square(tmp, ftmp2);
721
2.64k
    felem_reduce(ftmp2, tmp);   /* 2^6 - 8 */
722
2.64k
    felem_mul(tmp, ftmp2, ftmp);
723
2.64k
    felem_reduce(ftmp, tmp);    /* 2^6 - 1 */
724
2.64k
    felem_square(tmp, ftmp);
725
2.64k
    felem_reduce(ftmp2, tmp);   /* 2^7 - 2 */
726
15.8k
    for (i = 0; i < 5; ++i) {   /* 2^12 - 2^6 */
727
13.2k
        felem_square(tmp, ftmp2);
728
13.2k
        felem_reduce(ftmp2, tmp);
729
13.2k
    }
730
2.64k
    felem_mul(tmp, ftmp2, ftmp);
731
2.64k
    felem_reduce(ftmp2, tmp);   /* 2^12 - 1 */
732
2.64k
    felem_square(tmp, ftmp2);
733
2.64k
    felem_reduce(ftmp3, tmp);   /* 2^13 - 2 */
734
31.6k
    for (i = 0; i < 11; ++i) {  /* 2^24 - 2^12 */
735
29.0k
        felem_square(tmp, ftmp3);
736
29.0k
        felem_reduce(ftmp3, tmp);
737
29.0k
    }
738
2.64k
    felem_mul(tmp, ftmp3, ftmp2);
739
2.64k
    felem_reduce(ftmp2, tmp);   /* 2^24 - 1 */
740
2.64k
    felem_square(tmp, ftmp2);
741
2.64k
    felem_reduce(ftmp3, tmp);   /* 2^25 - 2 */
742
63.3k
    for (i = 0; i < 23; ++i) {  /* 2^48 - 2^24 */
743
60.7k
        felem_square(tmp, ftmp3);
744
60.7k
        felem_reduce(ftmp3, tmp);
745
60.7k
    }
746
2.64k
    felem_mul(tmp, ftmp3, ftmp2);
747
2.64k
    felem_reduce(ftmp3, tmp);   /* 2^48 - 1 */
748
2.64k
    felem_square(tmp, ftmp3);
749
2.64k
    felem_reduce(ftmp4, tmp);   /* 2^49 - 2 */
750
126k
    for (i = 0; i < 47; ++i) {  /* 2^96 - 2^48 */
751
124k
        felem_square(tmp, ftmp4);
752
124k
        felem_reduce(ftmp4, tmp);
753
124k
    }
754
2.64k
    felem_mul(tmp, ftmp3, ftmp4);
755
2.64k
    felem_reduce(ftmp3, tmp);   /* 2^96 - 1 */
756
2.64k
    felem_square(tmp, ftmp3);
757
2.64k
    felem_reduce(ftmp4, tmp);   /* 2^97 - 2 */
758
63.3k
    for (i = 0; i < 23; ++i) {  /* 2^120 - 2^24 */
759
60.7k
        felem_square(tmp, ftmp4);
760
60.7k
        felem_reduce(ftmp4, tmp);
761
60.7k
    }
762
2.64k
    felem_mul(tmp, ftmp2, ftmp4);
763
2.64k
    felem_reduce(ftmp2, tmp);   /* 2^120 - 1 */
764
18.4k
    for (i = 0; i < 6; ++i) {   /* 2^126 - 2^6 */
765
15.8k
        felem_square(tmp, ftmp2);
766
15.8k
        felem_reduce(ftmp2, tmp);
767
15.8k
    }
768
2.64k
    felem_mul(tmp, ftmp2, ftmp);
769
2.64k
    felem_reduce(ftmp, tmp);    /* 2^126 - 1 */
770
2.64k
    felem_square(tmp, ftmp);
771
2.64k
    felem_reduce(ftmp, tmp);    /* 2^127 - 2 */
772
2.64k
    felem_mul(tmp, ftmp, in);
773
2.64k
    felem_reduce(ftmp, tmp);    /* 2^127 - 1 */
774
258k
    for (i = 0; i < 97; ++i) {  /* 2^224 - 2^97 */
775
256k
        felem_square(tmp, ftmp);
776
256k
        felem_reduce(ftmp, tmp);
777
256k
    }
778
2.64k
    felem_mul(tmp, ftmp, ftmp3);
779
2.64k
    felem_reduce(out, tmp);     /* 2^224 - 2^96 - 1 */
780
2.64k
}
781
782
/*
783
 * Copy in constant time: if icopy == 1, copy in to out, if icopy == 0, copy
784
 * out to itself.
785
 */
786
static void copy_conditional(felem out, const felem in, limb icopy)
787
435k
{
788
435k
    unsigned i;
789
    /*
790
     * icopy is a (64-bit) 0 or 1, so copy is either all-zero or all-one
791
     */
792
435k
    const limb copy = -icopy;
793
2.17M
    for (i = 0; i < 4; ++i) {
794
1.74M
        const limb tmp = copy & (in[i] ^ out[i]);
795
1.74M
        out[i] ^= tmp;
796
1.74M
    }
797
435k
}
798
799
/******************************************************************************/
800
/*-
801
 *                       ELLIPTIC CURVE POINT OPERATIONS
802
 *
803
 * Points are represented in Jacobian projective coordinates:
804
 * (X, Y, Z) corresponds to the affine point (X/Z^2, Y/Z^3),
805
 * or to the point at infinity if Z == 0.
806
 *
807
 */
808
809
/*-
810
 * Double an elliptic curve point:
811
 * (X', Y', Z') = 2 * (X, Y, Z), where
812
 * X' = (3 * (X - Z^2) * (X + Z^2))^2 - 8 * X * Y^2
813
 * Y' = 3 * (X - Z^2) * (X + Z^2) * (4 * X * Y^2 - X') - 8 * Y^4
814
 * Z' = (Y + Z)^2 - Y^2 - Z^2 = 2 * Y * Z
815
 * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed,
816
 * while x_out == y_in is not (maybe this works, but it's not tested).
817
 */
818
static void
819
point_double(felem x_out, felem y_out, felem z_out,
820
             const felem x_in, const felem y_in, const felem z_in)
821
83.0k
{
822
83.0k
    widefelem tmp, tmp2;
823
83.0k
    felem delta, gamma, beta, alpha, ftmp, ftmp2;
824
825
83.0k
    felem_assign(ftmp, x_in);
826
83.0k
    felem_assign(ftmp2, x_in);
827
828
    /* delta = z^2 */
829
83.0k
    felem_square(tmp, z_in);
830
83.0k
    felem_reduce(delta, tmp);
831
832
    /* gamma = y^2 */
833
83.0k
    felem_square(tmp, y_in);
834
83.0k
    felem_reduce(gamma, tmp);
835
836
    /* beta = x*gamma */
837
83.0k
    felem_mul(tmp, x_in, gamma);
838
83.0k
    felem_reduce(beta, tmp);
839
840
    /* alpha = 3*(x-delta)*(x+delta) */
841
83.0k
    felem_diff(ftmp, delta);
842
    /* ftmp[i] < 2^57 + 2^58 + 2 < 2^59 */
843
83.0k
    felem_sum(ftmp2, delta);
844
    /* ftmp2[i] < 2^57 + 2^57 = 2^58 */
845
83.0k
    felem_scalar(ftmp2, 3);
846
    /* ftmp2[i] < 3 * 2^58 < 2^60 */
847
83.0k
    felem_mul(tmp, ftmp, ftmp2);
848
    /* tmp[i] < 2^60 * 2^59 * 4 = 2^121 */
849
83.0k
    felem_reduce(alpha, tmp);
850
851
    /* x' = alpha^2 - 8*beta */
852
83.0k
    felem_square(tmp, alpha);
853
    /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
854
83.0k
    felem_assign(ftmp, beta);
855
83.0k
    felem_scalar(ftmp, 8);
856
    /* ftmp[i] < 8 * 2^57 = 2^60 */
857
83.0k
    felem_diff_128_64(tmp, ftmp);
858
    /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
859
83.0k
    felem_reduce(x_out, tmp);
860
861
    /* z' = (y + z)^2 - gamma - delta */
862
83.0k
    felem_sum(delta, gamma);
863
    /* delta[i] < 2^57 + 2^57 = 2^58 */
864
83.0k
    felem_assign(ftmp, y_in);
865
83.0k
    felem_sum(ftmp, z_in);
866
    /* ftmp[i] < 2^57 + 2^57 = 2^58 */
867
83.0k
    felem_square(tmp, ftmp);
868
    /* tmp[i] < 4 * 2^58 * 2^58 = 2^118 */
869
83.0k
    felem_diff_128_64(tmp, delta);
870
    /* tmp[i] < 2^118 + 2^64 + 8 < 2^119 */
871
83.0k
    felem_reduce(z_out, tmp);
872
873
    /* y' = alpha*(4*beta - x') - 8*gamma^2 */
874
83.0k
    felem_scalar(beta, 4);
875
    /* beta[i] < 4 * 2^57 = 2^59 */
876
83.0k
    felem_diff(beta, x_out);
877
    /* beta[i] < 2^59 + 2^58 + 2 < 2^60 */
878
83.0k
    felem_mul(tmp, alpha, beta);
879
    /* tmp[i] < 4 * 2^57 * 2^60 = 2^119 */
880
83.0k
    felem_square(tmp2, gamma);
881
    /* tmp2[i] < 4 * 2^57 * 2^57 = 2^116 */
882
83.0k
    widefelem_scalar(tmp2, 8);
883
    /* tmp2[i] < 8 * 2^116 = 2^119 */
884
83.0k
    widefelem_diff(tmp, tmp2);
885
    /* tmp[i] < 2^119 + 2^120 < 2^121 */
886
83.0k
    felem_reduce(y_out, tmp);
887
83.0k
}
888
889
/*-
890
 * Add two elliptic curve points:
891
 * (X_1, Y_1, Z_1) + (X_2, Y_2, Z_2) = (X_3, Y_3, Z_3), where
892
 * X_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1)^2 - (Z_1^2 * X_2 - Z_2^2 * X_1)^3 -
893
 * 2 * Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2
894
 * Y_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1) * (Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2 - X_3) -
895
 *        Z_2^3 * Y_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^3
896
 * Z_3 = (Z_1^2 * X_2 - Z_2^2 * X_1) * (Z_1 * Z_2)
897
 *
898
 * This runs faster if 'mixed' is set, which requires Z_2 = 1 or Z_2 = 0.
899
 */
900
901
/*
902
 * This function is not entirely constant-time: it includes a branch for
903
 * checking whether the two input points are equal, (while not equal to the
904
 * point at infinity). This case never happens during single point
905
 * multiplication, so there is no timing leak for ECDH or ECDSA signing.
906
 */
907
static void point_add(felem x3, felem y3, felem z3,
908
                      const felem x1, const felem y1, const felem z1,
909
                      const int mixed, const felem x2, const felem y2,
910
                      const felem z2)
911
70.8k
{
912
70.8k
    felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, x_out, y_out, z_out;
913
70.8k
    widefelem tmp, tmp2;
914
70.8k
    limb z1_is_zero, z2_is_zero, x_equal, y_equal;
915
70.8k
    limb points_equal;
916
917
70.8k
    if (!mixed) {
918
        /* ftmp2 = z2^2 */
919
12.1k
        felem_square(tmp, z2);
920
12.1k
        felem_reduce(ftmp2, tmp);
921
922
        /* ftmp4 = z2^3 */
923
12.1k
        felem_mul(tmp, ftmp2, z2);
924
12.1k
        felem_reduce(ftmp4, tmp);
925
926
        /* ftmp4 = z2^3*y1 */
927
12.1k
        felem_mul(tmp2, ftmp4, y1);
928
12.1k
        felem_reduce(ftmp4, tmp2);
929
930
        /* ftmp2 = z2^2*x1 */
931
12.1k
        felem_mul(tmp2, ftmp2, x1);
932
12.1k
        felem_reduce(ftmp2, tmp2);
933
58.6k
    } else {
934
        /*
935
         * We'll assume z2 = 1 (special case z2 = 0 is handled later)
936
         */
937
938
        /* ftmp4 = z2^3*y1 */
939
58.6k
        felem_assign(ftmp4, y1);
940
941
        /* ftmp2 = z2^2*x1 */
942
58.6k
        felem_assign(ftmp2, x1);
943
58.6k
    }
944
945
    /* ftmp = z1^2 */
946
70.8k
    felem_square(tmp, z1);
947
70.8k
    felem_reduce(ftmp, tmp);
948
949
    /* ftmp3 = z1^3 */
950
70.8k
    felem_mul(tmp, ftmp, z1);
951
70.8k
    felem_reduce(ftmp3, tmp);
952
953
    /* tmp = z1^3*y2 */
954
70.8k
    felem_mul(tmp, ftmp3, y2);
955
    /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
956
957
    /* ftmp3 = z1^3*y2 - z2^3*y1 */
958
70.8k
    felem_diff_128_64(tmp, ftmp4);
959
    /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
960
70.8k
    felem_reduce(ftmp3, tmp);
961
962
    /* tmp = z1^2*x2 */
963
70.8k
    felem_mul(tmp, ftmp, x2);
964
    /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
965
966
    /* ftmp = z1^2*x2 - z2^2*x1 */
967
70.8k
    felem_diff_128_64(tmp, ftmp2);
968
    /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
969
70.8k
    felem_reduce(ftmp, tmp);
970
971
    /*
972
     * The formulae are incorrect if the points are equal, in affine coordinates
973
     * (X_1, Y_1) == (X_2, Y_2), so we check for this and do doubling if this
974
     * happens.
975
     *
976
     * We use bitwise operations to avoid potential side-channels introduced by
977
     * the short-circuiting behaviour of boolean operators.
978
     */
979
70.8k
    x_equal = felem_is_zero(ftmp);
980
70.8k
    y_equal = felem_is_zero(ftmp3);
981
    /*
982
     * The special case of either point being the point at infinity (z1 and/or
983
     * z2 are zero), is handled separately later on in this function, so we
984
     * avoid jumping to point_double here in those special cases.
985
     */
986
70.8k
    z1_is_zero = felem_is_zero(z1);
987
70.8k
    z2_is_zero = felem_is_zero(z2);
988
989
    /*
990
     * Compared to `ecp_nistp256.c` and `ecp_nistp521.c`, in this
991
     * specific implementation `felem_is_zero()` returns truth as `0x1`
992
     * (rather than `0xff..ff`).
993
     *
994
     * This implies that `~true` in this implementation becomes
995
     * `0xff..fe` (rather than `0x0`): for this reason, to be used in
996
     * the if expression, we mask out only the last bit in the next
997
     * line.
998
     */
999
70.8k
    points_equal = (x_equal & y_equal & (~z1_is_zero) & (~z2_is_zero)) & 1;
1000
1001
70.8k
    if (points_equal) {
1002
        /*
1003
         * This is obviously not constant-time but, as mentioned before, this
1004
         * case never happens during single point multiplication, so there is no
1005
         * timing leak for ECDH or ECDSA signing.
1006
         */
1007
0
        point_double(x3, y3, z3, x1, y1, z1);
1008
0
        return;
1009
0
    }
1010
1011
    /* ftmp5 = z1*z2 */
1012
70.8k
    if (!mixed) {
1013
12.1k
        felem_mul(tmp, z1, z2);
1014
12.1k
        felem_reduce(ftmp5, tmp);
1015
58.6k
    } else {
1016
        /* special case z2 = 0 is handled later */
1017
58.6k
        felem_assign(ftmp5, z1);
1018
58.6k
    }
1019
1020
    /* z_out = (z1^2*x2 - z2^2*x1)*(z1*z2) */
1021
70.8k
    felem_mul(tmp, ftmp, ftmp5);
1022
70.8k
    felem_reduce(z_out, tmp);
1023
1024
    /* ftmp = (z1^2*x2 - z2^2*x1)^2 */
1025
70.8k
    felem_assign(ftmp5, ftmp);
1026
70.8k
    felem_square(tmp, ftmp);
1027
70.8k
    felem_reduce(ftmp, tmp);
1028
1029
    /* ftmp5 = (z1^2*x2 - z2^2*x1)^3 */
1030
70.8k
    felem_mul(tmp, ftmp, ftmp5);
1031
70.8k
    felem_reduce(ftmp5, tmp);
1032
1033
    /* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */
1034
70.8k
    felem_mul(tmp, ftmp2, ftmp);
1035
70.8k
    felem_reduce(ftmp2, tmp);
1036
1037
    /* tmp = z2^3*y1*(z1^2*x2 - z2^2*x1)^3 */
1038
70.8k
    felem_mul(tmp, ftmp4, ftmp5);
1039
    /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
1040
1041
    /* tmp2 = (z1^3*y2 - z2^3*y1)^2 */
1042
70.8k
    felem_square(tmp2, ftmp3);
1043
    /* tmp2[i] < 4 * 2^57 * 2^57 < 2^116 */
1044
1045
    /* tmp2 = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 */
1046
70.8k
    felem_diff_128_64(tmp2, ftmp5);
1047
    /* tmp2[i] < 2^116 + 2^64 + 8 < 2^117 */
1048
1049
    /* ftmp5 = 2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */
1050
70.8k
    felem_assign(ftmp5, ftmp2);
1051
70.8k
    felem_scalar(ftmp5, 2);
1052
    /* ftmp5[i] < 2 * 2^57 = 2^58 */
1053
1054
    /*-
1055
     * x_out = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 -
1056
     *  2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2
1057
     */
1058
70.8k
    felem_diff_128_64(tmp2, ftmp5);
1059
    /* tmp2[i] < 2^117 + 2^64 + 8 < 2^118 */
1060
70.8k
    felem_reduce(x_out, tmp2);
1061
1062
    /* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out */
1063
70.8k
    felem_diff(ftmp2, x_out);
1064
    /* ftmp2[i] < 2^57 + 2^58 + 2 < 2^59 */
1065
1066
    /*
1067
     * tmp2 = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out)
1068
     */
1069
70.8k
    felem_mul(tmp2, ftmp3, ftmp2);
1070
    /* tmp2[i] < 4 * 2^57 * 2^59 = 2^118 */
1071
1072
    /*-
1073
     * y_out = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out) -
1074
     *  z2^3*y1*(z1^2*x2 - z2^2*x1)^3
1075
     */
1076
70.8k
    widefelem_diff(tmp2, tmp);
1077
    /* tmp2[i] < 2^118 + 2^120 < 2^121 */
1078
70.8k
    felem_reduce(y_out, tmp2);
1079
1080
    /*
1081
     * the result (x_out, y_out, z_out) is incorrect if one of the inputs is
1082
     * the point at infinity, so we need to check for this separately
1083
     */
1084
1085
    /*
1086
     * if point 1 is at infinity, copy point 2 to output, and vice versa
1087
     */
1088
70.8k
    copy_conditional(x_out, x2, z1_is_zero);
1089
70.8k
    copy_conditional(x_out, x1, z2_is_zero);
1090
70.8k
    copy_conditional(y_out, y2, z1_is_zero);
1091
70.8k
    copy_conditional(y_out, y1, z2_is_zero);
1092
70.8k
    copy_conditional(z_out, z2, z1_is_zero);
1093
70.8k
    copy_conditional(z_out, z1, z2_is_zero);
1094
70.8k
    felem_assign(x3, x_out);
1095
70.8k
    felem_assign(y3, y_out);
1096
70.8k
    felem_assign(z3, z_out);
1097
70.8k
}
1098
1099
/*
1100
 * select_point selects the |idx|th point from a precomputation table and
1101
 * copies it to out.
1102
 * The pre_comp array argument should be size of |size| argument
1103
 */
1104
static void select_point(const u64 idx, unsigned int size,
1105
                         const felem pre_comp[][3], felem out[3])
1106
70.4k
{
1107
70.4k
    unsigned i, j;
1108
70.4k
    limb *outlimbs = &out[0][0];
1109
1110
70.4k
    memset(out, 0, sizeof(*out) * 3);
1111
1.20M
    for (i = 0; i < size; i++) {
1112
1.13M
        const limb *inlimbs = &pre_comp[i][0][0];
1113
1.13M
        u64 mask = i ^ idx;
1114
1.13M
        mask |= mask >> 4;
1115
1.13M
        mask |= mask >> 2;
1116
1.13M
        mask |= mask >> 1;
1117
1.13M
        mask &= 1;
1118
1.13M
        mask--;
1119
14.7M
        for (j = 0; j < 4 * 3; j++)
1120
13.6M
            outlimbs[j] |= inlimbs[j] & mask;
1121
1.13M
    }
1122
70.4k
}
1123
1124
/* get_bit returns the |i|th bit in |in| */
1125
static char get_bit(const felem_bytearray in, unsigned i)
1126
303k
{
1127
303k
    if (i >= 224)
1128
476
        return 0;
1129
302k
    return (in[i >> 3] >> (i & 7)) & 1;
1130
303k
}
1131
1132
/*
1133
 * Interleaved point multiplication using precomputed point multiples: The
1134
 * small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[], the scalars
1135
 * in scalars[]. If g_scalar is non-NULL, we also add this multiple of the
1136
 * generator, using certain (large) precomputed multiples in g_pre_comp.
1137
 * Output point (X, Y, Z) is stored in x_out, y_out, z_out
1138
 */
1139
static void batch_mul(felem x_out, felem y_out, felem z_out,
1140
                      const felem_bytearray scalars[],
1141
                      const unsigned num_points, const u8 *g_scalar,
1142
                      const int mixed, const felem pre_comp[][17][3],
1143
                      const felem g_pre_comp[2][16][3])
1144
1.30k
{
1145
1.30k
    int i, skip;
1146
1.30k
    unsigned num;
1147
1.30k
    unsigned gen_mul = (g_scalar != NULL);
1148
1.30k
    felem nq[3], tmp[4];
1149
1.30k
    u64 bits;
1150
1.30k
    u8 sign, digit;
1151
1152
    /* set nq to the point at infinity */
1153
1.30k
    memset(nq, 0, sizeof(nq));
1154
1155
    /*
1156
     * Loop over all scalars msb-to-lsb, interleaving additions of multiples
1157
     * of the generator (two in each of the last 28 rounds) and additions of
1158
     * other points multiples (every 5th round).
1159
     */
1160
1.30k
    skip = 1;                   /* save two point operations in the first
1161
                                 * round */
1162
83.7k
    for (i = (num_points ? 220 : 27); i >= 0; --i) {
1163
        /* double */
1164
82.4k
        if (!skip)
1165
81.1k
            point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
1166
1167
        /* add multiples of the generator */
1168
82.4k
        if (gen_mul && (i <= 27)) {
1169
            /* first, look 28 bits upwards */
1170
29.8k
            bits = get_bit(g_scalar, i + 196) << 3;
1171
29.8k
            bits |= get_bit(g_scalar, i + 140) << 2;
1172
29.8k
            bits |= get_bit(g_scalar, i + 84) << 1;
1173
29.8k
            bits |= get_bit(g_scalar, i + 28);
1174
            /* select the point to add, in constant time */
1175
29.8k
            select_point(bits, 16, g_pre_comp[1], tmp);
1176
1177
29.8k
            if (!skip) {
1178
                /* value 1 below is argument for "mixed" */
1179
28.8k
                point_add(nq[0], nq[1], nq[2],
1180
28.8k
                          nq[0], nq[1], nq[2], 1, tmp[0], tmp[1], tmp[2]);
1181
28.8k
            } else {
1182
1.06k
                memcpy(nq, tmp, 3 * sizeof(felem));
1183
1.06k
                skip = 0;
1184
1.06k
            }
1185
1186
            /* second, look at the current position */
1187
29.8k
            bits = get_bit(g_scalar, i + 168) << 3;
1188
29.8k
            bits |= get_bit(g_scalar, i + 112) << 2;
1189
29.8k
            bits |= get_bit(g_scalar, i + 56) << 1;
1190
29.8k
            bits |= get_bit(g_scalar, i);
1191
            /* select the point to add, in constant time */
1192
29.8k
            select_point(bits, 16, g_pre_comp[0], tmp);
1193
29.8k
            point_add(nq[0], nq[1], nq[2],
1194
29.8k
                      nq[0], nq[1], nq[2],
1195
29.8k
                      1 /* mixed */ , tmp[0], tmp[1], tmp[2]);
1196
29.8k
        }
1197
1198
        /* do other additions every 5 doublings */
1199
82.4k
        if (num_points && (i % 5 == 0)) {
1200
            /* loop over all scalars */
1201
21.4k
            for (num = 0; num < num_points; ++num) {
1202
10.7k
                bits = get_bit(scalars[num], i + 4) << 5;
1203
10.7k
                bits |= get_bit(scalars[num], i + 3) << 4;
1204
10.7k
                bits |= get_bit(scalars[num], i + 2) << 3;
1205
10.7k
                bits |= get_bit(scalars[num], i + 1) << 2;
1206
10.7k
                bits |= get_bit(scalars[num], i) << 1;
1207
10.7k
                bits |= get_bit(scalars[num], i - 1);
1208
10.7k
                ossl_ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
1209
1210
                /* select the point to add or subtract */
1211
10.7k
                select_point(digit, 17, pre_comp[num], tmp);
1212
10.7k
                felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the negative
1213
                                            * point */
1214
10.7k
                copy_conditional(tmp[1], tmp[3], sign);
1215
1216
10.7k
                if (!skip) {
1217
10.4k
                    point_add(nq[0], nq[1], nq[2],
1218
10.4k
                              nq[0], nq[1], nq[2],
1219
10.4k
                              mixed, tmp[0], tmp[1], tmp[2]);
1220
10.4k
                } else {
1221
238
                    memcpy(nq, tmp, 3 * sizeof(felem));
1222
238
                    skip = 0;
1223
238
                }
1224
10.7k
            }
1225
10.7k
        }
1226
82.4k
    }
1227
1.30k
    felem_assign(x_out, nq[0]);
1228
1.30k
    felem_assign(y_out, nq[1]);
1229
1.30k
    felem_assign(z_out, nq[2]);
1230
1.30k
}
1231
1232
/******************************************************************************/
1233
/*
1234
 * FUNCTIONS TO MANAGE PRECOMPUTATION
1235
 */
1236
1237
static NISTP224_PRE_COMP *nistp224_pre_comp_new(void)
1238
0
{
1239
0
    NISTP224_PRE_COMP *ret = OPENSSL_zalloc(sizeof(*ret));
1240
1241
0
    if (!ret) {
1242
0
        ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
1243
0
        return ret;
1244
0
    }
1245
1246
0
    ret->references = 1;
1247
1248
0
    ret->lock = CRYPTO_THREAD_lock_new();
1249
0
    if (ret->lock == NULL) {
1250
0
        ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
1251
0
        OPENSSL_free(ret);
1252
0
        return NULL;
1253
0
    }
1254
0
    return ret;
1255
0
}
1256
1257
NISTP224_PRE_COMP *EC_nistp224_pre_comp_dup(NISTP224_PRE_COMP *p)
1258
0
{
1259
0
    int i;
1260
0
    if (p != NULL)
1261
0
        CRYPTO_UP_REF(&p->references, &i, p->lock);
1262
0
    return p;
1263
0
}
1264
1265
void EC_nistp224_pre_comp_free(NISTP224_PRE_COMP *p)
1266
0
{
1267
0
    int i;
1268
1269
0
    if (p == NULL)
1270
0
        return;
1271
1272
0
    CRYPTO_DOWN_REF(&p->references, &i, p->lock);
1273
0
    REF_PRINT_COUNT("EC_nistp224", p);
1274
0
    if (i > 0)
1275
0
        return;
1276
0
    REF_ASSERT_ISNT(i < 0);
1277
1278
0
    CRYPTO_THREAD_lock_free(p->lock);
1279
0
    OPENSSL_free(p);
1280
0
}
1281
1282
/******************************************************************************/
1283
/*
1284
 * OPENSSL EC_METHOD FUNCTIONS
1285
 */
1286
1287
int ossl_ec_GFp_nistp224_group_init(EC_GROUP *group)
1288
63.2k
{
1289
63.2k
    int ret;
1290
63.2k
    ret = ossl_ec_GFp_simple_group_init(group);
1291
63.2k
    group->a_is_minus3 = 1;
1292
63.2k
    return ret;
1293
63.2k
}
1294
1295
int ossl_ec_GFp_nistp224_group_set_curve(EC_GROUP *group, const BIGNUM *p,
1296
                                         const BIGNUM *a, const BIGNUM *b,
1297
                                         BN_CTX *ctx)
1298
32.5k
{
1299
32.5k
    int ret = 0;
1300
32.5k
    BIGNUM *curve_p, *curve_a, *curve_b;
1301
32.5k
#ifndef FIPS_MODULE
1302
32.5k
    BN_CTX *new_ctx = NULL;
1303
1304
32.5k
    if (ctx == NULL)
1305
0
        ctx = new_ctx = BN_CTX_new();
1306
32.5k
#endif
1307
32.5k
    if (ctx == NULL)
1308
0
        return 0;
1309
1310
32.5k
    BN_CTX_start(ctx);
1311
32.5k
    curve_p = BN_CTX_get(ctx);
1312
32.5k
    curve_a = BN_CTX_get(ctx);
1313
32.5k
    curve_b = BN_CTX_get(ctx);
1314
32.5k
    if (curve_b == NULL)
1315
0
        goto err;
1316
32.5k
    BN_bin2bn(nistp224_curve_params[0], sizeof(felem_bytearray), curve_p);
1317
32.5k
    BN_bin2bn(nistp224_curve_params[1], sizeof(felem_bytearray), curve_a);
1318
32.5k
    BN_bin2bn(nistp224_curve_params[2], sizeof(felem_bytearray), curve_b);
1319
32.5k
    if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || (BN_cmp(curve_b, b))) {
1320
0
        ERR_raise(ERR_LIB_EC, EC_R_WRONG_CURVE_PARAMETERS);
1321
0
        goto err;
1322
0
    }
1323
32.5k
    group->field_mod_func = BN_nist_mod_224;
1324
32.5k
    ret = ossl_ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
1325
32.5k
 err:
1326
32.5k
    BN_CTX_end(ctx);
1327
32.5k
#ifndef FIPS_MODULE
1328
32.5k
    BN_CTX_free(new_ctx);
1329
32.5k
#endif
1330
32.5k
    return ret;
1331
32.5k
}
1332
1333
/*
1334
 * Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') =
1335
 * (X/Z^2, Y/Z^3)
1336
 */
1337
int ossl_ec_GFp_nistp224_point_get_affine_coordinates(const EC_GROUP *group,
1338
                                                      const EC_POINT *point,
1339
                                                      BIGNUM *x, BIGNUM *y,
1340
                                                      BN_CTX *ctx)
1341
2.64k
{
1342
2.64k
    felem z1, z2, x_in, y_in, x_out, y_out;
1343
2.64k
    widefelem tmp;
1344
1345
2.64k
    if (EC_POINT_is_at_infinity(group, point)) {
1346
0
        ERR_raise(ERR_LIB_EC, EC_R_POINT_AT_INFINITY);
1347
0
        return 0;
1348
0
    }
1349
2.64k
    if ((!BN_to_felem(x_in, point->X)) || (!BN_to_felem(y_in, point->Y)) ||
1350
2.64k
        (!BN_to_felem(z1, point->Z)))
1351
0
        return 0;
1352
2.64k
    felem_inv(z2, z1);
1353
2.64k
    felem_square(tmp, z2);
1354
2.64k
    felem_reduce(z1, tmp);
1355
2.64k
    felem_mul(tmp, x_in, z1);
1356
2.64k
    felem_reduce(x_in, tmp);
1357
2.64k
    felem_contract(x_out, x_in);
1358
2.64k
    if (x != NULL) {
1359
2.64k
        if (!felem_to_BN(x, x_out)) {
1360
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1361
0
            return 0;
1362
0
        }
1363
2.64k
    }
1364
2.64k
    felem_mul(tmp, z1, z2);
1365
2.64k
    felem_reduce(z1, tmp);
1366
2.64k
    felem_mul(tmp, y_in, z1);
1367
2.64k
    felem_reduce(y_in, tmp);
1368
2.64k
    felem_contract(y_out, y_in);
1369
2.64k
    if (y != NULL) {
1370
2.64k
        if (!felem_to_BN(y, y_out)) {
1371
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1372
0
            return 0;
1373
0
        }
1374
2.64k
    }
1375
2.64k
    return 1;
1376
2.64k
}
1377
1378
static void make_points_affine(size_t num, felem points[ /* num */ ][3],
1379
                               felem tmp_felems[ /* num+1 */ ])
1380
0
{
1381
    /*
1382
     * Runs in constant time, unless an input is the point at infinity (which
1383
     * normally shouldn't happen).
1384
     */
1385
0
    ossl_ec_GFp_nistp_points_make_affine_internal(num,
1386
0
                                                  points,
1387
0
                                                  sizeof(felem),
1388
0
                                                  tmp_felems,
1389
0
                                                  (void (*)(void *))felem_one,
1390
0
                                                  felem_is_zero_int,
1391
0
                                                  (void (*)(void *, const void *))
1392
0
                                                  felem_assign,
1393
0
                                                  (void (*)(void *, const void *))
1394
0
                                                  felem_square_reduce, (void (*)
1395
0
                                                                        (void *,
1396
0
                                                                         const void
1397
0
                                                                         *,
1398
0
                                                                         const void
1399
0
                                                                         *))
1400
0
                                                  felem_mul_reduce,
1401
0
                                                  (void (*)(void *, const void *))
1402
0
                                                  felem_inv,
1403
0
                                                  (void (*)(void *, const void *))
1404
0
                                                  felem_contract);
1405
0
}
1406
1407
/*
1408
 * Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL
1409
 * values Result is stored in r (r can equal one of the inputs).
1410
 */
1411
int ossl_ec_GFp_nistp224_points_mul(const EC_GROUP *group, EC_POINT *r,
1412
                                    const BIGNUM *scalar, size_t num,
1413
                                    const EC_POINT *points[],
1414
                                    const BIGNUM *scalars[], BN_CTX *ctx)
1415
1.30k
{
1416
1.30k
    int ret = 0;
1417
1.30k
    int j;
1418
1.30k
    unsigned i;
1419
1.30k
    int mixed = 0;
1420
1.30k
    BIGNUM *x, *y, *z, *tmp_scalar;
1421
1.30k
    felem_bytearray g_secret;
1422
1.30k
    felem_bytearray *secrets = NULL;
1423
1.30k
    felem (*pre_comp)[17][3] = NULL;
1424
1.30k
    felem *tmp_felems = NULL;
1425
1.30k
    int num_bytes;
1426
1.30k
    int have_pre_comp = 0;
1427
1.30k
    size_t num_points = num;
1428
1.30k
    felem x_in, y_in, z_in, x_out, y_out, z_out;
1429
1.30k
    NISTP224_PRE_COMP *pre = NULL;
1430
1.30k
    const felem(*g_pre_comp)[16][3] = NULL;
1431
1.30k
    EC_POINT *generator = NULL;
1432
1.30k
    const EC_POINT *p = NULL;
1433
1.30k
    const BIGNUM *p_scalar = NULL;
1434
1435
1.30k
    BN_CTX_start(ctx);
1436
1.30k
    x = BN_CTX_get(ctx);
1437
1.30k
    y = BN_CTX_get(ctx);
1438
1.30k
    z = BN_CTX_get(ctx);
1439
1.30k
    tmp_scalar = BN_CTX_get(ctx);
1440
1.30k
    if (tmp_scalar == NULL)
1441
0
        goto err;
1442
1443
1.30k
    if (scalar != NULL) {
1444
1.06k
        pre = group->pre_comp.nistp224;
1445
1.06k
        if (pre)
1446
            /* we have precomputation, try to use it */
1447
0
            g_pre_comp = (const felem(*)[16][3])pre->g_pre_comp;
1448
1.06k
        else
1449
            /* try to use the standard precomputation */
1450
1.06k
            g_pre_comp = &gmul[0];
1451
1.06k
        generator = EC_POINT_new(group);
1452
1.06k
        if (generator == NULL)
1453
0
            goto err;
1454
        /* get the generator from precomputation */
1455
1.06k
        if (!felem_to_BN(x, g_pre_comp[0][1][0]) ||
1456
1.06k
            !felem_to_BN(y, g_pre_comp[0][1][1]) ||
1457
1.06k
            !felem_to_BN(z, g_pre_comp[0][1][2])) {
1458
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1459
0
            goto err;
1460
0
        }
1461
1.06k
        if (!ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group,
1462
1.06k
                                                                generator,
1463
1.06k
                                                                x, y, z, ctx))
1464
0
            goto err;
1465
1.06k
        if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
1466
            /* precomputation matches generator */
1467
1.06k
            have_pre_comp = 1;
1468
0
        else
1469
            /*
1470
             * we don't have valid precomputation: treat the generator as a
1471
             * random point
1472
             */
1473
0
            num_points = num_points + 1;
1474
1.06k
    }
1475
1476
1.30k
    if (num_points > 0) {
1477
238
        if (num_points >= 3) {
1478
            /*
1479
             * unless we precompute multiples for just one or two points,
1480
             * converting those into affine form is time well spent
1481
             */
1482
0
            mixed = 1;
1483
0
        }
1484
238
        secrets = OPENSSL_zalloc(sizeof(*secrets) * num_points);
1485
238
        pre_comp = OPENSSL_zalloc(sizeof(*pre_comp) * num_points);
1486
238
        if (mixed)
1487
0
            tmp_felems =
1488
0
                OPENSSL_malloc(sizeof(felem) * (num_points * 17 + 1));
1489
238
        if ((secrets == NULL) || (pre_comp == NULL)
1490
238
            || (mixed && (tmp_felems == NULL))) {
1491
0
            ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
1492
0
            goto err;
1493
0
        }
1494
1495
        /*
1496
         * we treat NULL scalars as 0, and NULL points as points at infinity,
1497
         * i.e., they contribute nothing to the linear combination
1498
         */
1499
476
        for (i = 0; i < num_points; ++i) {
1500
238
            if (i == num) {
1501
                /* the generator */
1502
0
                p = EC_GROUP_get0_generator(group);
1503
0
                p_scalar = scalar;
1504
238
            } else {
1505
                /* the i^th point */
1506
238
                p = points[i];
1507
238
                p_scalar = scalars[i];
1508
238
            }
1509
238
            if ((p_scalar != NULL) && (p != NULL)) {
1510
                /* reduce scalar to 0 <= scalar < 2^224 */
1511
238
                if ((BN_num_bits(p_scalar) > 224)
1512
238
                    || (BN_is_negative(p_scalar))) {
1513
                    /*
1514
                     * this is an unusual input, and we don't guarantee
1515
                     * constant-timeness
1516
                     */
1517
0
                    if (!BN_nnmod(tmp_scalar, p_scalar, group->order, ctx)) {
1518
0
                        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1519
0
                        goto err;
1520
0
                    }
1521
0
                    num_bytes = BN_bn2lebinpad(tmp_scalar,
1522
0
                                               secrets[i], sizeof(secrets[i]));
1523
238
                } else {
1524
238
                    num_bytes = BN_bn2lebinpad(p_scalar,
1525
238
                                               secrets[i], sizeof(secrets[i]));
1526
238
                }
1527
238
                if (num_bytes < 0) {
1528
0
                    ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1529
0
                    goto err;
1530
0
                }
1531
                /* precompute multiples */
1532
238
                if ((!BN_to_felem(x_out, p->X)) ||
1533
238
                    (!BN_to_felem(y_out, p->Y)) ||
1534
238
                    (!BN_to_felem(z_out, p->Z)))
1535
0
                    goto err;
1536
238
                felem_assign(pre_comp[i][1][0], x_out);
1537
238
                felem_assign(pre_comp[i][1][1], y_out);
1538
238
                felem_assign(pre_comp[i][1][2], z_out);
1539
3.80k
                for (j = 2; j <= 16; ++j) {
1540
3.57k
                    if (j & 1) {
1541
1.66k
                        point_add(pre_comp[i][j][0], pre_comp[i][j][1],
1542
1.66k
                                  pre_comp[i][j][2], pre_comp[i][1][0],
1543
1.66k
                                  pre_comp[i][1][1], pre_comp[i][1][2], 0,
1544
1.66k
                                  pre_comp[i][j - 1][0],
1545
1.66k
                                  pre_comp[i][j - 1][1],
1546
1.66k
                                  pre_comp[i][j - 1][2]);
1547
1.90k
                    } else {
1548
1.90k
                        point_double(pre_comp[i][j][0], pre_comp[i][j][1],
1549
1.90k
                                     pre_comp[i][j][2], pre_comp[i][j / 2][0],
1550
1.90k
                                     pre_comp[i][j / 2][1],
1551
1.90k
                                     pre_comp[i][j / 2][2]);
1552
1.90k
                    }
1553
3.57k
                }
1554
238
            }
1555
238
        }
1556
238
        if (mixed)
1557
0
            make_points_affine(num_points * 17, pre_comp[0], tmp_felems);
1558
238
    }
1559
1560
    /* the scalar for the generator */
1561
1.30k
    if ((scalar != NULL) && (have_pre_comp)) {
1562
1.06k
        memset(g_secret, 0, sizeof(g_secret));
1563
        /* reduce scalar to 0 <= scalar < 2^224 */
1564
1.06k
        if ((BN_num_bits(scalar) > 224) || (BN_is_negative(scalar))) {
1565
            /*
1566
             * this is an unusual input, and we don't guarantee
1567
             * constant-timeness
1568
             */
1569
111
            if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) {
1570
0
                ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1571
0
                goto err;
1572
0
            }
1573
111
            num_bytes = BN_bn2lebinpad(tmp_scalar, g_secret, sizeof(g_secret));
1574
956
        } else {
1575
956
            num_bytes = BN_bn2lebinpad(scalar, g_secret, sizeof(g_secret));
1576
956
        }
1577
        /* do the multiplication with generator precomputation */
1578
1.06k
        batch_mul(x_out, y_out, z_out,
1579
1.06k
                  (const felem_bytearray(*))secrets, num_points,
1580
1.06k
                  g_secret,
1581
1.06k
                  mixed, (const felem(*)[17][3])pre_comp, g_pre_comp);
1582
1.06k
    } else {
1583
        /* do the multiplication without generator precomputation */
1584
238
        batch_mul(x_out, y_out, z_out,
1585
238
                  (const felem_bytearray(*))secrets, num_points,
1586
238
                  NULL, mixed, (const felem(*)[17][3])pre_comp, NULL);
1587
238
    }
1588
    /* reduce the output to its unique minimal representation */
1589
1.30k
    felem_contract(x_in, x_out);
1590
1.30k
    felem_contract(y_in, y_out);
1591
1.30k
    felem_contract(z_in, z_out);
1592
1.30k
    if ((!felem_to_BN(x, x_in)) || (!felem_to_BN(y, y_in)) ||
1593
1.30k
        (!felem_to_BN(z, z_in))) {
1594
0
        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1595
0
        goto err;
1596
0
    }
1597
1.30k
    ret = ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group, r, x, y, z,
1598
1.30k
                                                             ctx);
1599
1600
1.30k
 err:
1601
1.30k
    BN_CTX_end(ctx);
1602
1.30k
    EC_POINT_free(generator);
1603
1.30k
    OPENSSL_free(secrets);
1604
1.30k
    OPENSSL_free(pre_comp);
1605
1.30k
    OPENSSL_free(tmp_felems);
1606
1.30k
    return ret;
1607
1.30k
}
1608
1609
int ossl_ec_GFp_nistp224_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
1610
0
{
1611
0
    int ret = 0;
1612
0
    NISTP224_PRE_COMP *pre = NULL;
1613
0
    int i, j;
1614
0
    BIGNUM *x, *y;
1615
0
    EC_POINT *generator = NULL;
1616
0
    felem tmp_felems[32];
1617
0
#ifndef FIPS_MODULE
1618
0
    BN_CTX *new_ctx = NULL;
1619
0
#endif
1620
1621
    /* throw away old precomputation */
1622
0
    EC_pre_comp_free(group);
1623
1624
0
#ifndef FIPS_MODULE
1625
0
    if (ctx == NULL)
1626
0
        ctx = new_ctx = BN_CTX_new();
1627
0
#endif
1628
0
    if (ctx == NULL)
1629
0
        return 0;
1630
1631
0
    BN_CTX_start(ctx);
1632
0
    x = BN_CTX_get(ctx);
1633
0
    y = BN_CTX_get(ctx);
1634
0
    if (y == NULL)
1635
0
        goto err;
1636
    /* get the generator */
1637
0
    if (group->generator == NULL)
1638
0
        goto err;
1639
0
    generator = EC_POINT_new(group);
1640
0
    if (generator == NULL)
1641
0
        goto err;
1642
0
    BN_bin2bn(nistp224_curve_params[3], sizeof(felem_bytearray), x);
1643
0
    BN_bin2bn(nistp224_curve_params[4], sizeof(felem_bytearray), y);
1644
0
    if (!EC_POINT_set_affine_coordinates(group, generator, x, y, ctx))
1645
0
        goto err;
1646
0
    if ((pre = nistp224_pre_comp_new()) == NULL)
1647
0
        goto err;
1648
    /*
1649
     * if the generator is the standard one, use built-in precomputation
1650
     */
1651
0
    if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) {
1652
0
        memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp));
1653
0
        goto done;
1654
0
    }
1655
0
    if ((!BN_to_felem(pre->g_pre_comp[0][1][0], group->generator->X)) ||
1656
0
        (!BN_to_felem(pre->g_pre_comp[0][1][1], group->generator->Y)) ||
1657
0
        (!BN_to_felem(pre->g_pre_comp[0][1][2], group->generator->Z)))
1658
0
        goto err;
1659
    /*
1660
     * compute 2^56*G, 2^112*G, 2^168*G for the first table, 2^28*G, 2^84*G,
1661
     * 2^140*G, 2^196*G for the second one
1662
     */
1663
0
    for (i = 1; i <= 8; i <<= 1) {
1664
0
        point_double(pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1],
1665
0
                     pre->g_pre_comp[1][i][2], pre->g_pre_comp[0][i][0],
1666
0
                     pre->g_pre_comp[0][i][1], pre->g_pre_comp[0][i][2]);
1667
0
        for (j = 0; j < 27; ++j) {
1668
0
            point_double(pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1],
1669
0
                         pre->g_pre_comp[1][i][2], pre->g_pre_comp[1][i][0],
1670
0
                         pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]);
1671
0
        }
1672
0
        if (i == 8)
1673
0
            break;
1674
0
        point_double(pre->g_pre_comp[0][2 * i][0],
1675
0
                     pre->g_pre_comp[0][2 * i][1],
1676
0
                     pre->g_pre_comp[0][2 * i][2], pre->g_pre_comp[1][i][0],
1677
0
                     pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]);
1678
0
        for (j = 0; j < 27; ++j) {
1679
0
            point_double(pre->g_pre_comp[0][2 * i][0],
1680
0
                         pre->g_pre_comp[0][2 * i][1],
1681
0
                         pre->g_pre_comp[0][2 * i][2],
1682
0
                         pre->g_pre_comp[0][2 * i][0],
1683
0
                         pre->g_pre_comp[0][2 * i][1],
1684
0
                         pre->g_pre_comp[0][2 * i][2]);
1685
0
        }
1686
0
    }
1687
0
    for (i = 0; i < 2; i++) {
1688
        /* g_pre_comp[i][0] is the point at infinity */
1689
0
        memset(pre->g_pre_comp[i][0], 0, sizeof(pre->g_pre_comp[i][0]));
1690
        /* the remaining multiples */
1691
        /* 2^56*G + 2^112*G resp. 2^84*G + 2^140*G */
1692
0
        point_add(pre->g_pre_comp[i][6][0], pre->g_pre_comp[i][6][1],
1693
0
                  pre->g_pre_comp[i][6][2], pre->g_pre_comp[i][4][0],
1694
0
                  pre->g_pre_comp[i][4][1], pre->g_pre_comp[i][4][2],
1695
0
                  0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
1696
0
                  pre->g_pre_comp[i][2][2]);
1697
        /* 2^56*G + 2^168*G resp. 2^84*G + 2^196*G */
1698
0
        point_add(pre->g_pre_comp[i][10][0], pre->g_pre_comp[i][10][1],
1699
0
                  pre->g_pre_comp[i][10][2], pre->g_pre_comp[i][8][0],
1700
0
                  pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2],
1701
0
                  0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
1702
0
                  pre->g_pre_comp[i][2][2]);
1703
        /* 2^112*G + 2^168*G resp. 2^140*G + 2^196*G */
1704
0
        point_add(pre->g_pre_comp[i][12][0], pre->g_pre_comp[i][12][1],
1705
0
                  pre->g_pre_comp[i][12][2], pre->g_pre_comp[i][8][0],
1706
0
                  pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2],
1707
0
                  0, pre->g_pre_comp[i][4][0], pre->g_pre_comp[i][4][1],
1708
0
                  pre->g_pre_comp[i][4][2]);
1709
        /*
1710
         * 2^56*G + 2^112*G + 2^168*G resp. 2^84*G + 2^140*G + 2^196*G
1711
         */
1712
0
        point_add(pre->g_pre_comp[i][14][0], pre->g_pre_comp[i][14][1],
1713
0
                  pre->g_pre_comp[i][14][2], pre->g_pre_comp[i][12][0],
1714
0
                  pre->g_pre_comp[i][12][1], pre->g_pre_comp[i][12][2],
1715
0
                  0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
1716
0
                  pre->g_pre_comp[i][2][2]);
1717
0
        for (j = 1; j < 8; ++j) {
1718
            /* odd multiples: add G resp. 2^28*G */
1719
0
            point_add(pre->g_pre_comp[i][2 * j + 1][0],
1720
0
                      pre->g_pre_comp[i][2 * j + 1][1],
1721
0
                      pre->g_pre_comp[i][2 * j + 1][2],
1722
0
                      pre->g_pre_comp[i][2 * j][0],
1723
0
                      pre->g_pre_comp[i][2 * j][1],
1724
0
                      pre->g_pre_comp[i][2 * j][2], 0,
1725
0
                      pre->g_pre_comp[i][1][0], pre->g_pre_comp[i][1][1],
1726
0
                      pre->g_pre_comp[i][1][2]);
1727
0
        }
1728
0
    }
1729
0
    make_points_affine(31, &(pre->g_pre_comp[0][1]), tmp_felems);
1730
1731
0
 done:
1732
0
    SETPRECOMP(group, nistp224, pre);
1733
0
    pre = NULL;
1734
0
    ret = 1;
1735
0
 err:
1736
0
    BN_CTX_end(ctx);
1737
0
    EC_POINT_free(generator);
1738
0
#ifndef FIPS_MODULE
1739
0
    BN_CTX_free(new_ctx);
1740
0
#endif
1741
0
    EC_nistp224_pre_comp_free(pre);
1742
0
    return ret;
1743
0
}
1744
1745
int ossl_ec_GFp_nistp224_have_precompute_mult(const EC_GROUP *group)
1746
0
{
1747
0
    return HAVEPRECOMP(group, nistp224);
1748
0
}