/src/openssl30/crypto/ec/ecp_nistz256.c
Line  | Count  | Source (jump to first uncovered line)  | 
1  |  | /*  | 
2  |  |  * Copyright 2014-2022 The OpenSSL Project Authors. All Rights Reserved.  | 
3  |  |  * Copyright (c) 2014, Intel Corporation. All Rights Reserved.  | 
4  |  |  * Copyright (c) 2015, CloudFlare, Inc.  | 
5  |  |  *  | 
6  |  |  * Licensed under the Apache License 2.0 (the "License").  You may not use  | 
7  |  |  * this file except in compliance with the License.  You can obtain a copy  | 
8  |  |  * in the file LICENSE in the source distribution or at  | 
9  |  |  * https://www.openssl.org/source/license.html  | 
10  |  |  *  | 
11  |  |  * Originally written by Shay Gueron (1, 2), and Vlad Krasnov (1, 3)  | 
12  |  |  * (1) Intel Corporation, Israel Development Center, Haifa, Israel  | 
13  |  |  * (2) University of Haifa, Israel  | 
14  |  |  * (3) CloudFlare, Inc.  | 
15  |  |  *  | 
16  |  |  * Reference:  | 
17  |  |  * S.Gueron and V.Krasnov, "Fast Prime Field Elliptic Curve Cryptography with  | 
18  |  |  *                          256 Bit Primes"  | 
19  |  |  */  | 
20  |  |  | 
21  |  | /*  | 
22  |  |  * ECDSA low level APIs are deprecated for public use, but still ok for  | 
23  |  |  * internal use.  | 
24  |  |  */  | 
25  |  | #include "internal/deprecated.h"  | 
26  |  |  | 
27  |  | #include <string.h>  | 
28  |  |  | 
29  |  | #include "internal/cryptlib.h"  | 
30  |  | #include "crypto/bn.h"  | 
31  |  | #include "ec_local.h"  | 
32  |  | #include "internal/refcount.h"  | 
33  |  |  | 
34  |  | #if BN_BITS2 != 64  | 
35  |  | # define TOBN(hi,lo)    lo,hi  | 
36  |  | #else  | 
37  | 24.1k  | # define TOBN(hi,lo)    ((BN_ULONG)hi<<32|lo)  | 
38  |  | #endif  | 
39  |  |  | 
40  |  | #if defined(__GNUC__)  | 
41  | 7.32k  | # define ALIGN32        __attribute((aligned(32)))  | 
42  |  | #elif defined(_MSC_VER)  | 
43  |  | # define ALIGN32        __declspec(align(32))  | 
44  |  | #else  | 
45  |  | # define ALIGN32  | 
46  |  | #endif  | 
47  |  |  | 
48  | 2.07k  | #define ALIGNPTR(p,N)   ((unsigned char *)p+N-(size_t)p%N)  | 
49  | 698k  | #define P256_LIMBS      (256/BN_BITS2)  | 
50  |  |  | 
51  |  | typedef unsigned short u16;  | 
52  |  |  | 
53  |  | typedef struct { | 
54  |  |     BN_ULONG X[P256_LIMBS];  | 
55  |  |     BN_ULONG Y[P256_LIMBS];  | 
56  |  |     BN_ULONG Z[P256_LIMBS];  | 
57  |  | } P256_POINT;  | 
58  |  |  | 
59  |  | typedef struct { | 
60  |  |     BN_ULONG X[P256_LIMBS];  | 
61  |  |     BN_ULONG Y[P256_LIMBS];  | 
62  |  | } P256_POINT_AFFINE;  | 
63  |  |  | 
64  |  | typedef P256_POINT_AFFINE PRECOMP256_ROW[64];  | 
65  |  |  | 
66  |  | /* structure for precomputed multiples of the generator */  | 
67  |  | struct nistz256_pre_comp_st { | 
68  |  |     const EC_GROUP *group;      /* Parent EC_GROUP object */  | 
69  |  |     size_t w;                   /* Window size */  | 
70  |  |     /*  | 
71  |  |      * Constant time access to the X and Y coordinates of the pre-computed,  | 
72  |  |      * generator multiplies, in the Montgomery domain. Pre-calculated  | 
73  |  |      * multiplies are stored in affine form.  | 
74  |  |      */  | 
75  |  |     PRECOMP256_ROW *precomp;  | 
76  |  |     void *precomp_storage;  | 
77  |  |     CRYPTO_REF_COUNT references;  | 
78  |  |     CRYPTO_RWLOCK *lock;  | 
79  |  | };  | 
80  |  |  | 
81  |  | /* Functions implemented in assembly */  | 
82  |  | /*  | 
83  |  |  * Most of below mentioned functions *preserve* the property of inputs  | 
84  |  |  * being fully reduced, i.e. being in [0, modulus) range. Simply put if  | 
85  |  |  * inputs are fully reduced, then output is too. Note that reverse is  | 
86  |  |  * not true, in sense that given partially reduced inputs output can be  | 
87  |  |  * either, not unlikely reduced. And "most" in first sentence refers to  | 
88  |  |  * the fact that given the calculations flow one can tolerate that  | 
89  |  |  * addition, 1st function below, produces partially reduced result *if*  | 
90  |  |  * multiplications by 2 and 3, which customarily use addition, fully  | 
91  |  |  * reduce it. This effectively gives two options: a) addition produces  | 
92  |  |  * fully reduced result [as long as inputs are, just like remaining  | 
93  |  |  * functions]; b) addition is allowed to produce partially reduced  | 
94  |  |  * result, but multiplications by 2 and 3 perform additional reduction  | 
95  |  |  * step. Choice between the two can be platform-specific, but it was a)  | 
96  |  |  * in all cases so far...  | 
97  |  |  */  | 
98  |  | /* Modular add: res = a+b mod P   */  | 
99  |  | void ecp_nistz256_add(BN_ULONG res[P256_LIMBS],  | 
100  |  |                       const BN_ULONG a[P256_LIMBS],  | 
101  |  |                       const BN_ULONG b[P256_LIMBS]);  | 
102  |  | /* Modular mul by 2: res = 2*a mod P */  | 
103  |  | void ecp_nistz256_mul_by_2(BN_ULONG res[P256_LIMBS],  | 
104  |  |                            const BN_ULONG a[P256_LIMBS]);  | 
105  |  | /* Modular mul by 3: res = 3*a mod P */  | 
106  |  | void ecp_nistz256_mul_by_3(BN_ULONG res[P256_LIMBS],  | 
107  |  |                            const BN_ULONG a[P256_LIMBS]);  | 
108  |  |  | 
109  |  | /* Modular div by 2: res = a/2 mod P */  | 
110  |  | void ecp_nistz256_div_by_2(BN_ULONG res[P256_LIMBS],  | 
111  |  |                            const BN_ULONG a[P256_LIMBS]);  | 
112  |  | /* Modular sub: res = a-b mod P   */  | 
113  |  | void ecp_nistz256_sub(BN_ULONG res[P256_LIMBS],  | 
114  |  |                       const BN_ULONG a[P256_LIMBS],  | 
115  |  |                       const BN_ULONG b[P256_LIMBS]);  | 
116  |  | /* Modular neg: res = -a mod P    */  | 
117  |  | void ecp_nistz256_neg(BN_ULONG res[P256_LIMBS], const BN_ULONG a[P256_LIMBS]);  | 
118  |  | /* Montgomery mul: res = a*b*2^-256 mod P */  | 
119  |  | void ecp_nistz256_mul_mont(BN_ULONG res[P256_LIMBS],  | 
120  |  |                            const BN_ULONG a[P256_LIMBS],  | 
121  |  |                            const BN_ULONG b[P256_LIMBS]);  | 
122  |  | /* Montgomery sqr: res = a*a*2^-256 mod P */  | 
123  |  | void ecp_nistz256_sqr_mont(BN_ULONG res[P256_LIMBS],  | 
124  |  |                            const BN_ULONG a[P256_LIMBS]);  | 
125  |  | /* Convert a number from Montgomery domain, by multiplying with 1 */  | 
126  |  | void ecp_nistz256_from_mont(BN_ULONG res[P256_LIMBS],  | 
127  |  |                             const BN_ULONG in[P256_LIMBS]);  | 
128  |  | /* Convert a number to Montgomery domain, by multiplying with 2^512 mod P*/  | 
129  |  | void ecp_nistz256_to_mont(BN_ULONG res[P256_LIMBS],  | 
130  |  |                           const BN_ULONG in[P256_LIMBS]);  | 
131  |  | /* Functions that perform constant time access to the precomputed tables */  | 
132  |  | void ecp_nistz256_scatter_w5(P256_POINT *val,  | 
133  |  |                              const P256_POINT *in_t, int idx);  | 
134  |  | void ecp_nistz256_gather_w5(P256_POINT *val,  | 
135  |  |                             const P256_POINT *in_t, int idx);  | 
136  |  | void ecp_nistz256_scatter_w7(P256_POINT_AFFINE *val,  | 
137  |  |                              const P256_POINT_AFFINE *in_t, int idx);  | 
138  |  | void ecp_nistz256_gather_w7(P256_POINT_AFFINE *val,  | 
139  |  |                             const P256_POINT_AFFINE *in_t, int idx);  | 
140  |  |  | 
141  |  | /* One converted into the Montgomery domain */  | 
142  |  | static const BN_ULONG ONE[P256_LIMBS] = { | 
143  |  |     TOBN(0x00000000, 0x00000001), TOBN(0xffffffff, 0x00000000),  | 
144  |  |     TOBN(0xffffffff, 0xffffffff), TOBN(0x00000000, 0xfffffffe)  | 
145  |  | };  | 
146  |  |  | 
147  |  | static NISTZ256_PRE_COMP *ecp_nistz256_pre_comp_new(const EC_GROUP *group);  | 
148  |  |  | 
149  |  | /* Precomputed tables for the default generator */  | 
150  |  | extern const PRECOMP256_ROW ecp_nistz256_precomputed[37];  | 
151  |  |  | 
152  |  | /* Recode window to a signed digit, see ecp_nistputil.c for details */  | 
153  |  | static unsigned int _booth_recode_w5(unsigned int in)  | 
154  | 107k  | { | 
155  | 107k  |     unsigned int s, d;  | 
156  |  |  | 
157  | 107k  |     s = ~((in >> 5) - 1);  | 
158  | 107k  |     d = (1 << 6) - in - 1;  | 
159  | 107k  |     d = (d & s) | (in & ~s);  | 
160  | 107k  |     d = (d >> 1) + (d & 1);  | 
161  |  |  | 
162  | 107k  |     return (d << 1) + (s & 1);  | 
163  | 107k  | }  | 
164  |  |  | 
165  |  | static unsigned int _booth_recode_w7(unsigned int in)  | 
166  | 197k  | { | 
167  | 197k  |     unsigned int s, d;  | 
168  |  |  | 
169  | 197k  |     s = ~((in >> 7) - 1);  | 
170  | 197k  |     d = (1 << 8) - in - 1;  | 
171  | 197k  |     d = (d & s) | (in & ~s);  | 
172  | 197k  |     d = (d >> 1) + (d & 1);  | 
173  |  |  | 
174  | 197k  |     return (d << 1) + (s & 1);  | 
175  | 197k  | }  | 
176  |  |  | 
177  |  | static void copy_conditional(BN_ULONG dst[P256_LIMBS],  | 
178  |  |                              const BN_ULONG src[P256_LIMBS], BN_ULONG move)  | 
179  | 303k  | { | 
180  | 303k  |     BN_ULONG mask1 = 0-move;  | 
181  | 303k  |     BN_ULONG mask2 = ~mask1;  | 
182  |  |  | 
183  | 303k  |     dst[0] = (src[0] & mask1) ^ (dst[0] & mask2);  | 
184  | 303k  |     dst[1] = (src[1] & mask1) ^ (dst[1] & mask2);  | 
185  | 303k  |     dst[2] = (src[2] & mask1) ^ (dst[2] & mask2);  | 
186  | 303k  |     dst[3] = (src[3] & mask1) ^ (dst[3] & mask2);  | 
187  | 303k  |     if (P256_LIMBS == 8) { | 
188  | 0  |         dst[4] = (src[4] & mask1) ^ (dst[4] & mask2);  | 
189  | 0  |         dst[5] = (src[5] & mask1) ^ (dst[5] & mask2);  | 
190  | 0  |         dst[6] = (src[6] & mask1) ^ (dst[6] & mask2);  | 
191  | 0  |         dst[7] = (src[7] & mask1) ^ (dst[7] & mask2);  | 
192  | 0  |     }  | 
193  | 303k  | }  | 
194  |  |  | 
195  |  | static BN_ULONG is_zero(BN_ULONG in)  | 
196  | 27.8k  | { | 
197  | 27.8k  |     in |= (0 - in);  | 
198  | 27.8k  |     in = ~in;  | 
199  | 27.8k  |     in >>= BN_BITS2 - 1;  | 
200  | 27.8k  |     return in;  | 
201  | 27.8k  | }  | 
202  |  |  | 
203  |  | static BN_ULONG is_equal(const BN_ULONG a[P256_LIMBS],  | 
204  |  |                          const BN_ULONG b[P256_LIMBS])  | 
205  | 10.6k  | { | 
206  | 10.6k  |     BN_ULONG res;  | 
207  |  |  | 
208  | 10.6k  |     res = a[0] ^ b[0];  | 
209  | 10.6k  |     res |= a[1] ^ b[1];  | 
210  | 10.6k  |     res |= a[2] ^ b[2];  | 
211  | 10.6k  |     res |= a[3] ^ b[3];  | 
212  | 10.6k  |     if (P256_LIMBS == 8) { | 
213  | 0  |         res |= a[4] ^ b[4];  | 
214  | 0  |         res |= a[5] ^ b[5];  | 
215  | 0  |         res |= a[6] ^ b[6];  | 
216  | 0  |         res |= a[7] ^ b[7];  | 
217  | 0  |     }  | 
218  |  |  | 
219  | 10.6k  |     return is_zero(res);  | 
220  | 10.6k  | }  | 
221  |  |  | 
222  |  | static BN_ULONG is_one(const BIGNUM *z)  | 
223  | 12.6k  | { | 
224  | 12.6k  |     BN_ULONG res = 0;  | 
225  | 12.6k  |     BN_ULONG *a = bn_get_words(z);  | 
226  |  |  | 
227  | 12.6k  |     if (bn_get_top(z) == (P256_LIMBS - P256_LIMBS / 8)) { | 
228  | 11.7k  |         res = a[0] ^ ONE[0];  | 
229  | 11.7k  |         res |= a[1] ^ ONE[1];  | 
230  | 11.7k  |         res |= a[2] ^ ONE[2];  | 
231  | 11.7k  |         res |= a[3] ^ ONE[3];  | 
232  | 11.7k  |         if (P256_LIMBS == 8) { | 
233  | 0  |             res |= a[4] ^ ONE[4];  | 
234  | 0  |             res |= a[5] ^ ONE[5];  | 
235  | 0  |             res |= a[6] ^ ONE[6];  | 
236  |  |             /*  | 
237  |  |              * no check for a[7] (being zero) on 32-bit platforms,  | 
238  |  |              * because value of "one" takes only 7 limbs.  | 
239  |  |              */  | 
240  | 0  |         }  | 
241  | 11.7k  |         res = is_zero(res);  | 
242  | 11.7k  |     }  | 
243  |  |  | 
244  | 12.6k  |     return res;  | 
245  | 12.6k  | }  | 
246  |  |  | 
247  |  | /*  | 
248  |  |  * For reference, this macro is used only when new ecp_nistz256 assembly  | 
249  |  |  * module is being developed.  For example, configure with  | 
250  |  |  * -DECP_NISTZ256_REFERENCE_IMPLEMENTATION and implement only functions  | 
251  |  |  * performing simplest arithmetic operations on 256-bit vectors. Then  | 
252  |  |  * work on implementation of higher-level functions performing point  | 
253  |  |  * operations. Then remove ECP_NISTZ256_REFERENCE_IMPLEMENTATION  | 
254  |  |  * and never define it again. (The correct macro denoting presence of  | 
255  |  |  * ecp_nistz256 module is ECP_NISTZ256_ASM.)  | 
256  |  |  */  | 
257  |  | #ifndef ECP_NISTZ256_REFERENCE_IMPLEMENTATION  | 
258  |  | void ecp_nistz256_point_double(P256_POINT *r, const P256_POINT *a);  | 
259  |  | void ecp_nistz256_point_add(P256_POINT *r,  | 
260  |  |                             const P256_POINT *a, const P256_POINT *b);  | 
261  |  | void ecp_nistz256_point_add_affine(P256_POINT *r,  | 
262  |  |                                    const P256_POINT *a,  | 
263  |  |                                    const P256_POINT_AFFINE *b);  | 
264  |  | #else  | 
265  |  | /* Point double: r = 2*a */  | 
266  |  | static void ecp_nistz256_point_double(P256_POINT *r, const P256_POINT *a)  | 
267  |  | { | 
268  |  |     BN_ULONG S[P256_LIMBS];  | 
269  |  |     BN_ULONG M[P256_LIMBS];  | 
270  |  |     BN_ULONG Zsqr[P256_LIMBS];  | 
271  |  |     BN_ULONG tmp0[P256_LIMBS];  | 
272  |  |  | 
273  |  |     const BN_ULONG *in_x = a->X;  | 
274  |  |     const BN_ULONG *in_y = a->Y;  | 
275  |  |     const BN_ULONG *in_z = a->Z;  | 
276  |  |  | 
277  |  |     BN_ULONG *res_x = r->X;  | 
278  |  |     BN_ULONG *res_y = r->Y;  | 
279  |  |     BN_ULONG *res_z = r->Z;  | 
280  |  |  | 
281  |  |     ecp_nistz256_mul_by_2(S, in_y);  | 
282  |  |  | 
283  |  |     ecp_nistz256_sqr_mont(Zsqr, in_z);  | 
284  |  |  | 
285  |  |     ecp_nistz256_sqr_mont(S, S);  | 
286  |  |  | 
287  |  |     ecp_nistz256_mul_mont(res_z, in_z, in_y);  | 
288  |  |     ecp_nistz256_mul_by_2(res_z, res_z);  | 
289  |  |  | 
290  |  |     ecp_nistz256_add(M, in_x, Zsqr);  | 
291  |  |     ecp_nistz256_sub(Zsqr, in_x, Zsqr);  | 
292  |  |  | 
293  |  |     ecp_nistz256_sqr_mont(res_y, S);  | 
294  |  |     ecp_nistz256_div_by_2(res_y, res_y);  | 
295  |  |  | 
296  |  |     ecp_nistz256_mul_mont(M, M, Zsqr);  | 
297  |  |     ecp_nistz256_mul_by_3(M, M);  | 
298  |  |  | 
299  |  |     ecp_nistz256_mul_mont(S, S, in_x);  | 
300  |  |     ecp_nistz256_mul_by_2(tmp0, S);  | 
301  |  |  | 
302  |  |     ecp_nistz256_sqr_mont(res_x, M);  | 
303  |  |  | 
304  |  |     ecp_nistz256_sub(res_x, res_x, tmp0);  | 
305  |  |     ecp_nistz256_sub(S, S, res_x);  | 
306  |  |  | 
307  |  |     ecp_nistz256_mul_mont(S, S, M);  | 
308  |  |     ecp_nistz256_sub(res_y, S, res_y);  | 
309  |  | }  | 
310  |  |  | 
311  |  | /* Point addition: r = a+b */  | 
312  |  | static void ecp_nistz256_point_add(P256_POINT *r,  | 
313  |  |                                    const P256_POINT *a, const P256_POINT *b)  | 
314  |  | { | 
315  |  |     BN_ULONG U2[P256_LIMBS], S2[P256_LIMBS];  | 
316  |  |     BN_ULONG U1[P256_LIMBS], S1[P256_LIMBS];  | 
317  |  |     BN_ULONG Z1sqr[P256_LIMBS];  | 
318  |  |     BN_ULONG Z2sqr[P256_LIMBS];  | 
319  |  |     BN_ULONG H[P256_LIMBS], R[P256_LIMBS];  | 
320  |  |     BN_ULONG Hsqr[P256_LIMBS];  | 
321  |  |     BN_ULONG Rsqr[P256_LIMBS];  | 
322  |  |     BN_ULONG Hcub[P256_LIMBS];  | 
323  |  |  | 
324  |  |     BN_ULONG res_x[P256_LIMBS];  | 
325  |  |     BN_ULONG res_y[P256_LIMBS];  | 
326  |  |     BN_ULONG res_z[P256_LIMBS];  | 
327  |  |  | 
328  |  |     BN_ULONG in1infty, in2infty;  | 
329  |  |  | 
330  |  |     const BN_ULONG *in1_x = a->X;  | 
331  |  |     const BN_ULONG *in1_y = a->Y;  | 
332  |  |     const BN_ULONG *in1_z = a->Z;  | 
333  |  |  | 
334  |  |     const BN_ULONG *in2_x = b->X;  | 
335  |  |     const BN_ULONG *in2_y = b->Y;  | 
336  |  |     const BN_ULONG *in2_z = b->Z;  | 
337  |  |  | 
338  |  |     /*  | 
339  |  |      * Infinity in encoded as (,,0)  | 
340  |  |      */  | 
341  |  |     in1infty = (in1_z[0] | in1_z[1] | in1_z[2] | in1_z[3]);  | 
342  |  |     if (P256_LIMBS == 8)  | 
343  |  |         in1infty |= (in1_z[4] | in1_z[5] | in1_z[6] | in1_z[7]);  | 
344  |  |  | 
345  |  |     in2infty = (in2_z[0] | in2_z[1] | in2_z[2] | in2_z[3]);  | 
346  |  |     if (P256_LIMBS == 8)  | 
347  |  |         in2infty |= (in2_z[4] | in2_z[5] | in2_z[6] | in2_z[7]);  | 
348  |  |  | 
349  |  |     in1infty = is_zero(in1infty);  | 
350  |  |     in2infty = is_zero(in2infty);  | 
351  |  |  | 
352  |  |     ecp_nistz256_sqr_mont(Z2sqr, in2_z);        /* Z2^2 */  | 
353  |  |     ecp_nistz256_sqr_mont(Z1sqr, in1_z);        /* Z1^2 */  | 
354  |  |  | 
355  |  |     ecp_nistz256_mul_mont(S1, Z2sqr, in2_z);    /* S1 = Z2^3 */  | 
356  |  |     ecp_nistz256_mul_mont(S2, Z1sqr, in1_z);    /* S2 = Z1^3 */  | 
357  |  |  | 
358  |  |     ecp_nistz256_mul_mont(S1, S1, in1_y);       /* S1 = Y1*Z2^3 */  | 
359  |  |     ecp_nistz256_mul_mont(S2, S2, in2_y);       /* S2 = Y2*Z1^3 */  | 
360  |  |     ecp_nistz256_sub(R, S2, S1);                /* R = S2 - S1 */  | 
361  |  |  | 
362  |  |     ecp_nistz256_mul_mont(U1, in1_x, Z2sqr);    /* U1 = X1*Z2^2 */  | 
363  |  |     ecp_nistz256_mul_mont(U2, in2_x, Z1sqr);    /* U2 = X2*Z1^2 */  | 
364  |  |     ecp_nistz256_sub(H, U2, U1);                /* H = U2 - U1 */  | 
365  |  |  | 
366  |  |     /*  | 
367  |  |      * The formulae are incorrect if the points are equal so we check for  | 
368  |  |      * this and do doubling if this happens.  | 
369  |  |      *  | 
370  |  |      * Points here are in Jacobian projective coordinates (Xi, Yi, Zi)  | 
371  |  |      * that are bound to the affine coordinates (xi, yi) by the following  | 
372  |  |      * equations:  | 
373  |  |      *     - xi = Xi / (Zi)^2  | 
374  |  |      *     - y1 = Yi / (Zi)^3  | 
375  |  |      *  | 
376  |  |      * For the sake of optimization, the algorithm operates over  | 
377  |  |      * intermediate variables U1, U2 and S1, S2 that are derived from  | 
378  |  |      * the projective coordinates:  | 
379  |  |      *     - U1 = X1 * (Z2)^2 ; U2 = X2 * (Z1)^2  | 
380  |  |      *     - S1 = Y1 * (Z2)^3 ; S2 = Y2 * (Z1)^3  | 
381  |  |      *  | 
382  |  |      * It is easy to prove that is_equal(U1, U2) implies that the affine  | 
383  |  |      * x-coordinates are equal, or either point is at infinity.  | 
384  |  |      * Likewise is_equal(S1, S2) implies that the affine y-coordinates are  | 
385  |  |      * equal, or either point is at infinity.  | 
386  |  |      *  | 
387  |  |      * The special case of either point being the point at infinity (Z1 or Z2  | 
388  |  |      * is zero), is handled separately later on in this function, so we avoid  | 
389  |  |      * jumping to point_double here in those special cases.  | 
390  |  |      *  | 
391  |  |      * When both points are inverse of each other, we know that the affine  | 
392  |  |      * x-coordinates are equal, and the y-coordinates have different sign.  | 
393  |  |      * Therefore since U1 = U2, we know H = 0, and therefore Z3 = H*Z1*Z2  | 
394  |  |      * will equal 0, thus the result is infinity, if we simply let this  | 
395  |  |      * function continue normally.  | 
396  |  |      *  | 
397  |  |      * We use bitwise operations to avoid potential side-channels introduced by  | 
398  |  |      * the short-circuiting behaviour of boolean operators.  | 
399  |  |      */  | 
400  |  |     if (is_equal(U1, U2) & ~in1infty & ~in2infty & is_equal(S1, S2)) { | 
401  |  |         /*  | 
402  |  |          * This is obviously not constant-time but it should never happen during  | 
403  |  |          * single point multiplication, so there is no timing leak for ECDH or  | 
404  |  |          * ECDSA signing.  | 
405  |  |          */  | 
406  |  |         ecp_nistz256_point_double(r, a);  | 
407  |  |         return;  | 
408  |  |     }  | 
409  |  |  | 
410  |  |     ecp_nistz256_sqr_mont(Rsqr, R);             /* R^2 */  | 
411  |  |     ecp_nistz256_mul_mont(res_z, H, in1_z);     /* Z3 = H*Z1*Z2 */  | 
412  |  |     ecp_nistz256_sqr_mont(Hsqr, H);             /* H^2 */  | 
413  |  |     ecp_nistz256_mul_mont(res_z, res_z, in2_z); /* Z3 = H*Z1*Z2 */  | 
414  |  |     ecp_nistz256_mul_mont(Hcub, Hsqr, H);       /* H^3 */  | 
415  |  |  | 
416  |  |     ecp_nistz256_mul_mont(U2, U1, Hsqr);        /* U1*H^2 */  | 
417  |  |     ecp_nistz256_mul_by_2(Hsqr, U2);            /* 2*U1*H^2 */  | 
418  |  |  | 
419  |  |     ecp_nistz256_sub(res_x, Rsqr, Hsqr);  | 
420  |  |     ecp_nistz256_sub(res_x, res_x, Hcub);  | 
421  |  |  | 
422  |  |     ecp_nistz256_sub(res_y, U2, res_x);  | 
423  |  |  | 
424  |  |     ecp_nistz256_mul_mont(S2, S1, Hcub);  | 
425  |  |     ecp_nistz256_mul_mont(res_y, R, res_y);  | 
426  |  |     ecp_nistz256_sub(res_y, res_y, S2);  | 
427  |  |  | 
428  |  |     copy_conditional(res_x, in2_x, in1infty);  | 
429  |  |     copy_conditional(res_y, in2_y, in1infty);  | 
430  |  |     copy_conditional(res_z, in2_z, in1infty);  | 
431  |  |  | 
432  |  |     copy_conditional(res_x, in1_x, in2infty);  | 
433  |  |     copy_conditional(res_y, in1_y, in2infty);  | 
434  |  |     copy_conditional(res_z, in1_z, in2infty);  | 
435  |  |  | 
436  |  |     memcpy(r->X, res_x, sizeof(res_x));  | 
437  |  |     memcpy(r->Y, res_y, sizeof(res_y));  | 
438  |  |     memcpy(r->Z, res_z, sizeof(res_z));  | 
439  |  | }  | 
440  |  |  | 
441  |  | /* Point addition when b is known to be affine: r = a+b */  | 
442  |  | static void ecp_nistz256_point_add_affine(P256_POINT *r,  | 
443  |  |                                           const P256_POINT *a,  | 
444  |  |                                           const P256_POINT_AFFINE *b)  | 
445  |  | { | 
446  |  |     BN_ULONG U2[P256_LIMBS], S2[P256_LIMBS];  | 
447  |  |     BN_ULONG Z1sqr[P256_LIMBS];  | 
448  |  |     BN_ULONG H[P256_LIMBS], R[P256_LIMBS];  | 
449  |  |     BN_ULONG Hsqr[P256_LIMBS];  | 
450  |  |     BN_ULONG Rsqr[P256_LIMBS];  | 
451  |  |     BN_ULONG Hcub[P256_LIMBS];  | 
452  |  |  | 
453  |  |     BN_ULONG res_x[P256_LIMBS];  | 
454  |  |     BN_ULONG res_y[P256_LIMBS];  | 
455  |  |     BN_ULONG res_z[P256_LIMBS];  | 
456  |  |  | 
457  |  |     BN_ULONG in1infty, in2infty;  | 
458  |  |  | 
459  |  |     const BN_ULONG *in1_x = a->X;  | 
460  |  |     const BN_ULONG *in1_y = a->Y;  | 
461  |  |     const BN_ULONG *in1_z = a->Z;  | 
462  |  |  | 
463  |  |     const BN_ULONG *in2_x = b->X;  | 
464  |  |     const BN_ULONG *in2_y = b->Y;  | 
465  |  |  | 
466  |  |     /*  | 
467  |  |      * Infinity in encoded as (,,0)  | 
468  |  |      */  | 
469  |  |     in1infty = (in1_z[0] | in1_z[1] | in1_z[2] | in1_z[3]);  | 
470  |  |     if (P256_LIMBS == 8)  | 
471  |  |         in1infty |= (in1_z[4] | in1_z[5] | in1_z[6] | in1_z[7]);  | 
472  |  |  | 
473  |  |     /*  | 
474  |  |      * In affine representation we encode infinity as (0,0), which is  | 
475  |  |      * not on the curve, so it is OK  | 
476  |  |      */  | 
477  |  |     in2infty = (in2_x[0] | in2_x[1] | in2_x[2] | in2_x[3] |  | 
478  |  |                 in2_y[0] | in2_y[1] | in2_y[2] | in2_y[3]);  | 
479  |  |     if (P256_LIMBS == 8)  | 
480  |  |         in2infty |= (in2_x[4] | in2_x[5] | in2_x[6] | in2_x[7] |  | 
481  |  |                      in2_y[4] | in2_y[5] | in2_y[6] | in2_y[7]);  | 
482  |  |  | 
483  |  |     in1infty = is_zero(in1infty);  | 
484  |  |     in2infty = is_zero(in2infty);  | 
485  |  |  | 
486  |  |     ecp_nistz256_sqr_mont(Z1sqr, in1_z);        /* Z1^2 */  | 
487  |  |  | 
488  |  |     ecp_nistz256_mul_mont(U2, in2_x, Z1sqr);    /* U2 = X2*Z1^2 */  | 
489  |  |     ecp_nistz256_sub(H, U2, in1_x);             /* H = U2 - U1 */  | 
490  |  |  | 
491  |  |     ecp_nistz256_mul_mont(S2, Z1sqr, in1_z);    /* S2 = Z1^3 */  | 
492  |  |  | 
493  |  |     ecp_nistz256_mul_mont(res_z, H, in1_z);     /* Z3 = H*Z1*Z2 */  | 
494  |  |  | 
495  |  |     ecp_nistz256_mul_mont(S2, S2, in2_y);       /* S2 = Y2*Z1^3 */  | 
496  |  |     ecp_nistz256_sub(R, S2, in1_y);             /* R = S2 - S1 */  | 
497  |  |  | 
498  |  |     ecp_nistz256_sqr_mont(Hsqr, H);             /* H^2 */  | 
499  |  |     ecp_nistz256_sqr_mont(Rsqr, R);             /* R^2 */  | 
500  |  |     ecp_nistz256_mul_mont(Hcub, Hsqr, H);       /* H^3 */  | 
501  |  |  | 
502  |  |     ecp_nistz256_mul_mont(U2, in1_x, Hsqr);     /* U1*H^2 */  | 
503  |  |     ecp_nistz256_mul_by_2(Hsqr, U2);            /* 2*U1*H^2 */  | 
504  |  |  | 
505  |  |     ecp_nistz256_sub(res_x, Rsqr, Hsqr);  | 
506  |  |     ecp_nistz256_sub(res_x, res_x, Hcub);  | 
507  |  |     ecp_nistz256_sub(H, U2, res_x);  | 
508  |  |  | 
509  |  |     ecp_nistz256_mul_mont(S2, in1_y, Hcub);  | 
510  |  |     ecp_nistz256_mul_mont(H, H, R);  | 
511  |  |     ecp_nistz256_sub(res_y, H, S2);  | 
512  |  |  | 
513  |  |     copy_conditional(res_x, in2_x, in1infty);  | 
514  |  |     copy_conditional(res_x, in1_x, in2infty);  | 
515  |  |  | 
516  |  |     copy_conditional(res_y, in2_y, in1infty);  | 
517  |  |     copy_conditional(res_y, in1_y, in2infty);  | 
518  |  |  | 
519  |  |     copy_conditional(res_z, ONE, in1infty);  | 
520  |  |     copy_conditional(res_z, in1_z, in2infty);  | 
521  |  |  | 
522  |  |     memcpy(r->X, res_x, sizeof(res_x));  | 
523  |  |     memcpy(r->Y, res_y, sizeof(res_y));  | 
524  |  |     memcpy(r->Z, res_z, sizeof(res_z));  | 
525  |  | }  | 
526  |  | #endif  | 
527  |  |  | 
528  |  | /* r = in^-1 mod p */  | 
529  |  | static void ecp_nistz256_mod_inverse(BN_ULONG r[P256_LIMBS],  | 
530  |  |                                      const BN_ULONG in[P256_LIMBS])  | 
531  | 58.5k  | { | 
532  |  |     /*  | 
533  |  |      * The poly is ffffffff 00000001 00000000 00000000 00000000 ffffffff  | 
534  |  |      * ffffffff ffffffff We use FLT and used poly-2 as exponent  | 
535  |  |      */  | 
536  | 58.5k  |     BN_ULONG p2[P256_LIMBS];  | 
537  | 58.5k  |     BN_ULONG p4[P256_LIMBS];  | 
538  | 58.5k  |     BN_ULONG p8[P256_LIMBS];  | 
539  | 58.5k  |     BN_ULONG p16[P256_LIMBS];  | 
540  | 58.5k  |     BN_ULONG p32[P256_LIMBS];  | 
541  | 58.5k  |     BN_ULONG res[P256_LIMBS];  | 
542  | 58.5k  |     int i;  | 
543  |  |  | 
544  | 58.5k  |     ecp_nistz256_sqr_mont(res, in);  | 
545  | 58.5k  |     ecp_nistz256_mul_mont(p2, res, in);         /* 3*p */  | 
546  |  |  | 
547  | 58.5k  |     ecp_nistz256_sqr_mont(res, p2);  | 
548  | 58.5k  |     ecp_nistz256_sqr_mont(res, res);  | 
549  | 58.5k  |     ecp_nistz256_mul_mont(p4, res, p2);         /* f*p */  | 
550  |  |  | 
551  | 58.5k  |     ecp_nistz256_sqr_mont(res, p4);  | 
552  | 58.5k  |     ecp_nistz256_sqr_mont(res, res);  | 
553  | 58.5k  |     ecp_nistz256_sqr_mont(res, res);  | 
554  | 58.5k  |     ecp_nistz256_sqr_mont(res, res);  | 
555  | 58.5k  |     ecp_nistz256_mul_mont(p8, res, p4);         /* ff*p */  | 
556  |  |  | 
557  | 58.5k  |     ecp_nistz256_sqr_mont(res, p8);  | 
558  | 468k  |     for (i = 0; i < 7; i++)  | 
559  | 409k  |         ecp_nistz256_sqr_mont(res, res);  | 
560  | 58.5k  |     ecp_nistz256_mul_mont(p16, res, p8);        /* ffff*p */  | 
561  |  |  | 
562  | 58.5k  |     ecp_nistz256_sqr_mont(res, p16);  | 
563  | 937k  |     for (i = 0; i < 15; i++)  | 
564  | 878k  |         ecp_nistz256_sqr_mont(res, res);  | 
565  | 58.5k  |     ecp_nistz256_mul_mont(p32, res, p16);       /* ffffffff*p */  | 
566  |  |  | 
567  | 58.5k  |     ecp_nistz256_sqr_mont(res, p32);  | 
568  | 1.87M  |     for (i = 0; i < 31; i++)  | 
569  | 1.81M  |         ecp_nistz256_sqr_mont(res, res);  | 
570  | 58.5k  |     ecp_nistz256_mul_mont(res, res, in);  | 
571  |  |  | 
572  | 7.55M  |     for (i = 0; i < 32 * 4; i++)  | 
573  | 7.49M  |         ecp_nistz256_sqr_mont(res, res);  | 
574  | 58.5k  |     ecp_nistz256_mul_mont(res, res, p32);  | 
575  |  |  | 
576  | 1.93M  |     for (i = 0; i < 32; i++)  | 
577  | 1.87M  |         ecp_nistz256_sqr_mont(res, res);  | 
578  | 58.5k  |     ecp_nistz256_mul_mont(res, res, p32);  | 
579  |  |  | 
580  | 995k  |     for (i = 0; i < 16; i++)  | 
581  | 937k  |         ecp_nistz256_sqr_mont(res, res);  | 
582  | 58.5k  |     ecp_nistz256_mul_mont(res, res, p16);  | 
583  |  |  | 
584  | 527k  |     for (i = 0; i < 8; i++)  | 
585  | 468k  |         ecp_nistz256_sqr_mont(res, res);  | 
586  | 58.5k  |     ecp_nistz256_mul_mont(res, res, p8);  | 
587  |  |  | 
588  | 58.5k  |     ecp_nistz256_sqr_mont(res, res);  | 
589  | 58.5k  |     ecp_nistz256_sqr_mont(res, res);  | 
590  | 58.5k  |     ecp_nistz256_sqr_mont(res, res);  | 
591  | 58.5k  |     ecp_nistz256_sqr_mont(res, res);  | 
592  | 58.5k  |     ecp_nistz256_mul_mont(res, res, p4);  | 
593  |  |  | 
594  | 58.5k  |     ecp_nistz256_sqr_mont(res, res);  | 
595  | 58.5k  |     ecp_nistz256_sqr_mont(res, res);  | 
596  | 58.5k  |     ecp_nistz256_mul_mont(res, res, p2);  | 
597  |  |  | 
598  | 58.5k  |     ecp_nistz256_sqr_mont(res, res);  | 
599  | 58.5k  |     ecp_nistz256_sqr_mont(res, res);  | 
600  | 58.5k  |     ecp_nistz256_mul_mont(res, res, in);  | 
601  |  |  | 
602  | 58.5k  |     memcpy(r, res, sizeof(res));  | 
603  | 58.5k  | }  | 
604  |  |  | 
605  |  | /*  | 
606  |  |  * ecp_nistz256_bignum_to_field_elem copies the contents of |in| to |out| and  | 
607  |  |  * returns one if it fits. Otherwise it returns zero.  | 
608  |  |  */  | 
609  |  | __owur static int ecp_nistz256_bignum_to_field_elem(BN_ULONG out[P256_LIMBS],  | 
610  |  |                                                     const BIGNUM *in)  | 
611  | 184k  | { | 
612  | 184k  |     return bn_copy_words(out, in, P256_LIMBS);  | 
613  | 184k  | }  | 
614  |  |  | 
615  |  | /* r = sum(scalar[i]*point[i]) */  | 
616  |  | __owur static int ecp_nistz256_windowed_mul(const EC_GROUP *group,  | 
617  |  |                                             P256_POINT *r,  | 
618  |  |                                             const BIGNUM **scalar,  | 
619  |  |                                             const EC_POINT **point,  | 
620  |  |                                             size_t num, BN_CTX *ctx)  | 
621  | 2.07k  | { | 
622  | 2.07k  |     size_t i;  | 
623  | 2.07k  |     int j, ret = 0;  | 
624  | 2.07k  |     unsigned int idx;  | 
625  | 2.07k  |     unsigned char (*p_str)[33] = NULL;  | 
626  | 2.07k  |     const unsigned int window_size = 5;  | 
627  | 2.07k  |     const unsigned int mask = (1 << (window_size + 1)) - 1;  | 
628  | 2.07k  |     unsigned int wvalue;  | 
629  | 2.07k  |     P256_POINT *temp;           /* place for 5 temporary points */  | 
630  | 2.07k  |     const BIGNUM **scalars = NULL;  | 
631  | 2.07k  |     P256_POINT (*table)[16] = NULL;  | 
632  | 2.07k  |     void *table_storage = NULL;  | 
633  |  |  | 
634  | 2.07k  |     if ((num * 16 + 6) > OPENSSL_MALLOC_MAX_NELEMS(P256_POINT)  | 
635  | 2.07k  |         || (table_storage =  | 
636  | 2.07k  |             OPENSSL_malloc((num * 16 + 5) * sizeof(P256_POINT) + 64)) == NULL  | 
637  | 2.07k  |         || (p_str =  | 
638  | 2.07k  |             OPENSSL_malloc(num * 33 * sizeof(unsigned char))) == NULL  | 
639  | 2.07k  |         || (scalars = OPENSSL_malloc(num * sizeof(BIGNUM *))) == NULL) { | 
640  | 0  |         ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);  | 
641  | 0  |         goto err;  | 
642  | 0  |     }  | 
643  |  |  | 
644  | 2.07k  |     table = (void *)ALIGNPTR(table_storage, 64);  | 
645  | 2.07k  |     temp = (P256_POINT *)(table + num);  | 
646  |  |  | 
647  | 4.14k  |     for (i = 0; i < num; i++) { | 
648  | 2.07k  |         P256_POINT *row = table[i];  | 
649  |  |  | 
650  |  |         /* This is an unusual input, we don't guarantee constant-timeness. */  | 
651  | 2.07k  |         if ((BN_num_bits(scalar[i]) > 256) || BN_is_negative(scalar[i])) { | 
652  | 0  |             BIGNUM *mod;  | 
653  |  | 
  | 
654  | 0  |             if ((mod = BN_CTX_get(ctx)) == NULL)  | 
655  | 0  |                 goto err;  | 
656  | 0  |             if (!BN_nnmod(mod, scalar[i], group->order, ctx)) { | 
657  | 0  |                 ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);  | 
658  | 0  |                 goto err;  | 
659  | 0  |             }  | 
660  | 0  |             scalars[i] = mod;  | 
661  | 0  |         } else  | 
662  | 2.07k  |             scalars[i] = scalar[i];  | 
663  |  |  | 
664  | 10.3k  |         for (j = 0; j < bn_get_top(scalars[i]) * BN_BYTES; j += BN_BYTES) { | 
665  | 8.25k  |             BN_ULONG d = bn_get_words(scalars[i])[j / BN_BYTES];  | 
666  |  |  | 
667  | 8.25k  |             p_str[i][j + 0] = (unsigned char)d;  | 
668  | 8.25k  |             p_str[i][j + 1] = (unsigned char)(d >> 8);  | 
669  | 8.25k  |             p_str[i][j + 2] = (unsigned char)(d >> 16);  | 
670  | 8.25k  |             p_str[i][j + 3] = (unsigned char)(d >>= 24);  | 
671  | 8.25k  |             if (BN_BYTES == 8) { | 
672  | 8.25k  |                 d >>= 8;  | 
673  | 8.25k  |                 p_str[i][j + 4] = (unsigned char)d;  | 
674  | 8.25k  |                 p_str[i][j + 5] = (unsigned char)(d >> 8);  | 
675  | 8.25k  |                 p_str[i][j + 6] = (unsigned char)(d >> 16);  | 
676  | 8.25k  |                 p_str[i][j + 7] = (unsigned char)(d >> 24);  | 
677  | 8.25k  |             }  | 
678  | 8.25k  |         }  | 
679  | 4.38k  |         for (; j < 33; j++)  | 
680  | 2.31k  |             p_str[i][j] = 0;  | 
681  |  |  | 
682  | 2.07k  |         if (!ecp_nistz256_bignum_to_field_elem(temp[0].X, point[i]->X)  | 
683  | 2.07k  |             || !ecp_nistz256_bignum_to_field_elem(temp[0].Y, point[i]->Y)  | 
684  | 2.07k  |             || !ecp_nistz256_bignum_to_field_elem(temp[0].Z, point[i]->Z)) { | 
685  | 0  |             ERR_raise(ERR_LIB_EC, EC_R_COORDINATES_OUT_OF_RANGE);  | 
686  | 0  |             goto err;  | 
687  | 0  |         }  | 
688  |  |  | 
689  |  |         /*  | 
690  |  |          * row[0] is implicitly (0,0,0) (the point at infinity), therefore it  | 
691  |  |          * is not stored. All other values are actually stored with an offset  | 
692  |  |          * of -1 in table.  | 
693  |  |          */  | 
694  |  |  | 
695  | 2.07k  |         ecp_nistz256_scatter_w5  (row, &temp[0], 1);  | 
696  | 2.07k  |         ecp_nistz256_point_double(&temp[1], &temp[0]);              /*1+1=2  */  | 
697  | 2.07k  |         ecp_nistz256_scatter_w5  (row, &temp[1], 2);  | 
698  | 2.07k  |         ecp_nistz256_point_add   (&temp[2], &temp[1], &temp[0]);    /*2+1=3  */  | 
699  | 2.07k  |         ecp_nistz256_scatter_w5  (row, &temp[2], 3);  | 
700  | 2.07k  |         ecp_nistz256_point_double(&temp[1], &temp[1]);              /*2*2=4  */  | 
701  | 2.07k  |         ecp_nistz256_scatter_w5  (row, &temp[1], 4);  | 
702  | 2.07k  |         ecp_nistz256_point_double(&temp[2], &temp[2]);              /*2*3=6  */  | 
703  | 2.07k  |         ecp_nistz256_scatter_w5  (row, &temp[2], 6);  | 
704  | 2.07k  |         ecp_nistz256_point_add   (&temp[3], &temp[1], &temp[0]);    /*4+1=5  */  | 
705  | 2.07k  |         ecp_nistz256_scatter_w5  (row, &temp[3], 5);  | 
706  | 2.07k  |         ecp_nistz256_point_add   (&temp[4], &temp[2], &temp[0]);    /*6+1=7  */  | 
707  | 2.07k  |         ecp_nistz256_scatter_w5  (row, &temp[4], 7);  | 
708  | 2.07k  |         ecp_nistz256_point_double(&temp[1], &temp[1]);              /*2*4=8  */  | 
709  | 2.07k  |         ecp_nistz256_scatter_w5  (row, &temp[1], 8);  | 
710  | 2.07k  |         ecp_nistz256_point_double(&temp[2], &temp[2]);              /*2*6=12 */  | 
711  | 2.07k  |         ecp_nistz256_scatter_w5  (row, &temp[2], 12);  | 
712  | 2.07k  |         ecp_nistz256_point_double(&temp[3], &temp[3]);              /*2*5=10 */  | 
713  | 2.07k  |         ecp_nistz256_scatter_w5  (row, &temp[3], 10);  | 
714  | 2.07k  |         ecp_nistz256_point_double(&temp[4], &temp[4]);              /*2*7=14 */  | 
715  | 2.07k  |         ecp_nistz256_scatter_w5  (row, &temp[4], 14);  | 
716  | 2.07k  |         ecp_nistz256_point_add   (&temp[2], &temp[2], &temp[0]);    /*12+1=13*/  | 
717  | 2.07k  |         ecp_nistz256_scatter_w5  (row, &temp[2], 13);  | 
718  | 2.07k  |         ecp_nistz256_point_add   (&temp[3], &temp[3], &temp[0]);    /*10+1=11*/  | 
719  | 2.07k  |         ecp_nistz256_scatter_w5  (row, &temp[3], 11);  | 
720  | 2.07k  |         ecp_nistz256_point_add   (&temp[4], &temp[4], &temp[0]);    /*14+1=15*/  | 
721  | 2.07k  |         ecp_nistz256_scatter_w5  (row, &temp[4], 15);  | 
722  | 2.07k  |         ecp_nistz256_point_add   (&temp[2], &temp[1], &temp[0]);    /*8+1=9  */  | 
723  | 2.07k  |         ecp_nistz256_scatter_w5  (row, &temp[2], 9);  | 
724  | 2.07k  |         ecp_nistz256_point_double(&temp[1], &temp[1]);              /*2*8=16 */  | 
725  | 2.07k  |         ecp_nistz256_scatter_w5  (row, &temp[1], 16);  | 
726  | 2.07k  |     }  | 
727  |  |  | 
728  | 2.07k  |     idx = 255;  | 
729  |  |  | 
730  | 2.07k  |     wvalue = p_str[0][(idx - 1) / 8];  | 
731  | 2.07k  |     wvalue = (wvalue >> ((idx - 1) % 8)) & mask;  | 
732  |  |  | 
733  |  |     /*  | 
734  |  |      * We gather to temp[0], because we know it's position relative  | 
735  |  |      * to table  | 
736  |  |      */  | 
737  | 2.07k  |     ecp_nistz256_gather_w5(&temp[0], table[0], _booth_recode_w5(wvalue) >> 1);  | 
738  | 2.07k  |     memcpy(r, &temp[0], sizeof(temp[0]));  | 
739  |  |  | 
740  | 107k  |     while (idx >= 5) { | 
741  | 209k  |         for (i = (idx == 255 ? 1 : 0); i < num; i++) { | 
742  | 103k  |             unsigned int off = (idx - 1) / 8;  | 
743  |  |  | 
744  | 103k  |             wvalue = p_str[i][off] | p_str[i][off + 1] << 8;  | 
745  | 103k  |             wvalue = (wvalue >> ((idx - 1) % 8)) & mask;  | 
746  |  |  | 
747  | 103k  |             wvalue = _booth_recode_w5(wvalue);  | 
748  |  |  | 
749  | 103k  |             ecp_nistz256_gather_w5(&temp[0], table[i], wvalue >> 1);  | 
750  |  |  | 
751  | 103k  |             ecp_nistz256_neg(temp[1].Y, temp[0].Y);  | 
752  | 103k  |             copy_conditional(temp[0].Y, temp[1].Y, (wvalue & 1));  | 
753  |  |  | 
754  | 103k  |             ecp_nistz256_point_add(r, r, &temp[0]);  | 
755  | 103k  |         }  | 
756  |  |  | 
757  | 105k  |         idx -= window_size;  | 
758  |  |  | 
759  | 105k  |         ecp_nistz256_point_double(r, r);  | 
760  | 105k  |         ecp_nistz256_point_double(r, r);  | 
761  | 105k  |         ecp_nistz256_point_double(r, r);  | 
762  | 105k  |         ecp_nistz256_point_double(r, r);  | 
763  | 105k  |         ecp_nistz256_point_double(r, r);  | 
764  | 105k  |     }  | 
765  |  |  | 
766  |  |     /* Final window */  | 
767  | 4.14k  |     for (i = 0; i < num; i++) { | 
768  | 2.07k  |         wvalue = p_str[i][0];  | 
769  | 2.07k  |         wvalue = (wvalue << 1) & mask;  | 
770  |  |  | 
771  | 2.07k  |         wvalue = _booth_recode_w5(wvalue);  | 
772  |  |  | 
773  | 2.07k  |         ecp_nistz256_gather_w5(&temp[0], table[i], wvalue >> 1);  | 
774  |  |  | 
775  | 2.07k  |         ecp_nistz256_neg(temp[1].Y, temp[0].Y);  | 
776  | 2.07k  |         copy_conditional(temp[0].Y, temp[1].Y, wvalue & 1);  | 
777  |  |  | 
778  | 2.07k  |         ecp_nistz256_point_add(r, r, &temp[0]);  | 
779  | 2.07k  |     }  | 
780  |  |  | 
781  | 2.07k  |     ret = 1;  | 
782  | 2.07k  |  err:  | 
783  | 2.07k  |     OPENSSL_free(table_storage);  | 
784  | 2.07k  |     OPENSSL_free(p_str);  | 
785  | 2.07k  |     OPENSSL_free(scalars);  | 
786  | 2.07k  |     return ret;  | 
787  | 2.07k  | }  | 
788  |  |  | 
789  |  | /* Coordinates of G, for which we have precomputed tables */  | 
790  |  | static const BN_ULONG def_xG[P256_LIMBS] = { | 
791  |  |     TOBN(0x79e730d4, 0x18a9143c), TOBN(0x75ba95fc, 0x5fedb601),  | 
792  |  |     TOBN(0x79fb732b, 0x77622510), TOBN(0x18905f76, 0xa53755c6)  | 
793  |  | };  | 
794  |  |  | 
795  |  | static const BN_ULONG def_yG[P256_LIMBS] = { | 
796  |  |     TOBN(0xddf25357, 0xce95560a), TOBN(0x8b4ab8e4, 0xba19e45c),  | 
797  |  |     TOBN(0xd2e88688, 0xdd21f325), TOBN(0x8571ff18, 0x25885d85)  | 
798  |  | };  | 
799  |  |  | 
800  |  | /*  | 
801  |  |  * ecp_nistz256_is_affine_G returns one if |generator| is the standard, P-256  | 
802  |  |  * generator.  | 
803  |  |  */  | 
804  |  | static int ecp_nistz256_is_affine_G(const EC_POINT *generator)  | 
805  | 5.33k  | { | 
806  | 5.33k  |     return (bn_get_top(generator->X) == P256_LIMBS) &&  | 
807  | 5.33k  |         (bn_get_top(generator->Y) == P256_LIMBS) &&  | 
808  | 5.33k  |         is_equal(bn_get_words(generator->X), def_xG) &&  | 
809  | 5.33k  |         is_equal(bn_get_words(generator->Y), def_yG) &&  | 
810  | 5.33k  |         is_one(generator->Z);  | 
811  | 5.33k  | }  | 
812  |  |  | 
813  |  | __owur static int ecp_nistz256_mult_precompute(EC_GROUP *group, BN_CTX *ctx)  | 
814  | 0  | { | 
815  |  |     /*  | 
816  |  |      * We precompute a table for a Booth encoded exponent (wNAF) based  | 
817  |  |      * computation. Each table holds 64 values for safe access, with an  | 
818  |  |      * implicit value of infinity at index zero. We use window of size 7, and  | 
819  |  |      * therefore require ceil(256/7) = 37 tables.  | 
820  |  |      */  | 
821  | 0  |     const BIGNUM *order;  | 
822  | 0  |     EC_POINT *P = NULL, *T = NULL;  | 
823  | 0  |     const EC_POINT *generator;  | 
824  | 0  |     NISTZ256_PRE_COMP *pre_comp;  | 
825  | 0  |     BN_CTX *new_ctx = NULL;  | 
826  | 0  |     int i, j, k, ret = 0;  | 
827  | 0  |     size_t w;  | 
828  |  | 
  | 
829  | 0  |     PRECOMP256_ROW *preComputedTable = NULL;  | 
830  | 0  |     unsigned char *precomp_storage = NULL;  | 
831  |  |  | 
832  |  |     /* if there is an old NISTZ256_PRE_COMP object, throw it away */  | 
833  | 0  |     EC_pre_comp_free(group);  | 
834  | 0  |     generator = EC_GROUP_get0_generator(group);  | 
835  | 0  |     if (generator == NULL) { | 
836  | 0  |         ERR_raise(ERR_LIB_EC, EC_R_UNDEFINED_GENERATOR);  | 
837  | 0  |         return 0;  | 
838  | 0  |     }  | 
839  |  |  | 
840  | 0  |     if (ecp_nistz256_is_affine_G(generator)) { | 
841  |  |         /*  | 
842  |  |          * No need to calculate tables for the standard generator because we  | 
843  |  |          * have them statically.  | 
844  |  |          */  | 
845  | 0  |         return 1;  | 
846  | 0  |     }  | 
847  |  |  | 
848  | 0  |     if ((pre_comp = ecp_nistz256_pre_comp_new(group)) == NULL)  | 
849  | 0  |         return 0;  | 
850  |  |  | 
851  | 0  |     if (ctx == NULL) { | 
852  | 0  |         ctx = new_ctx = BN_CTX_new_ex(group->libctx);  | 
853  | 0  |         if (ctx == NULL)  | 
854  | 0  |             goto err;  | 
855  | 0  |     }  | 
856  |  |  | 
857  | 0  |     BN_CTX_start(ctx);  | 
858  |  | 
  | 
859  | 0  |     order = EC_GROUP_get0_order(group);  | 
860  | 0  |     if (order == NULL)  | 
861  | 0  |         goto err;  | 
862  |  |  | 
863  | 0  |     if (BN_is_zero(order)) { | 
864  | 0  |         ERR_raise(ERR_LIB_EC, EC_R_UNKNOWN_ORDER);  | 
865  | 0  |         goto err;  | 
866  | 0  |     }  | 
867  |  |  | 
868  | 0  |     w = 7;  | 
869  |  | 
  | 
870  | 0  |     if ((precomp_storage =  | 
871  | 0  |          OPENSSL_malloc(37 * 64 * sizeof(P256_POINT_AFFINE) + 64)) == NULL) { | 
872  | 0  |         ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);  | 
873  | 0  |         goto err;  | 
874  | 0  |     }  | 
875  |  |  | 
876  | 0  |     preComputedTable = (void *)ALIGNPTR(precomp_storage, 64);  | 
877  |  | 
  | 
878  | 0  |     P = EC_POINT_new(group);  | 
879  | 0  |     T = EC_POINT_new(group);  | 
880  | 0  |     if (P == NULL || T == NULL)  | 
881  | 0  |         goto err;  | 
882  |  |  | 
883  |  |     /*  | 
884  |  |      * The zero entry is implicitly infinity, and we skip it, storing other  | 
885  |  |      * values with -1 offset.  | 
886  |  |      */  | 
887  | 0  |     if (!EC_POINT_copy(T, generator))  | 
888  | 0  |         goto err;  | 
889  |  |  | 
890  | 0  |     for (k = 0; k < 64; k++) { | 
891  | 0  |         if (!EC_POINT_copy(P, T))  | 
892  | 0  |             goto err;  | 
893  | 0  |         for (j = 0; j < 37; j++) { | 
894  | 0  |             P256_POINT_AFFINE temp;  | 
895  |  |             /*  | 
896  |  |              * It would be faster to use EC_POINTs_make_affine and  | 
897  |  |              * make multiple points affine at the same time.  | 
898  |  |              */  | 
899  | 0  |             if (group->meth->make_affine == NULL  | 
900  | 0  |                 || !group->meth->make_affine(group, P, ctx))  | 
901  | 0  |                 goto err;  | 
902  | 0  |             if (!ecp_nistz256_bignum_to_field_elem(temp.X, P->X) ||  | 
903  | 0  |                 !ecp_nistz256_bignum_to_field_elem(temp.Y, P->Y)) { | 
904  | 0  |                 ERR_raise(ERR_LIB_EC, EC_R_COORDINATES_OUT_OF_RANGE);  | 
905  | 0  |                 goto err;  | 
906  | 0  |             }  | 
907  | 0  |             ecp_nistz256_scatter_w7(preComputedTable[j], &temp, k);  | 
908  | 0  |             for (i = 0; i < 7; i++) { | 
909  | 0  |                 if (!EC_POINT_dbl(group, P, P, ctx))  | 
910  | 0  |                     goto err;  | 
911  | 0  |             }  | 
912  | 0  |         }  | 
913  | 0  |         if (!EC_POINT_add(group, T, T, generator, ctx))  | 
914  | 0  |             goto err;  | 
915  | 0  |     }  | 
916  |  |  | 
917  | 0  |     pre_comp->group = group;  | 
918  | 0  |     pre_comp->w = w;  | 
919  | 0  |     pre_comp->precomp = preComputedTable;  | 
920  | 0  |     pre_comp->precomp_storage = precomp_storage;  | 
921  | 0  |     precomp_storage = NULL;  | 
922  | 0  |     SETPRECOMP(group, nistz256, pre_comp);  | 
923  | 0  |     pre_comp = NULL;  | 
924  | 0  |     ret = 1;  | 
925  |  | 
  | 
926  | 0  |  err:  | 
927  | 0  |     BN_CTX_end(ctx);  | 
928  | 0  |     BN_CTX_free(new_ctx);  | 
929  |  | 
  | 
930  | 0  |     EC_nistz256_pre_comp_free(pre_comp);  | 
931  | 0  |     OPENSSL_free(precomp_storage);  | 
932  | 0  |     EC_POINT_free(P);  | 
933  | 0  |     EC_POINT_free(T);  | 
934  | 0  |     return ret;  | 
935  | 0  | }  | 
936  |  |  | 
937  |  | __owur static int ecp_nistz256_set_from_affine(EC_POINT *out, const EC_GROUP *group,  | 
938  |  |                                                const P256_POINT_AFFINE *in,  | 
939  |  |                                                BN_CTX *ctx)  | 
940  | 0  | { | 
941  | 0  |     int ret = 0;  | 
942  |  | 
  | 
943  | 0  |     if ((ret = bn_set_words(out->X, in->X, P256_LIMBS))  | 
944  | 0  |         && (ret = bn_set_words(out->Y, in->Y, P256_LIMBS))  | 
945  | 0  |         && (ret = bn_set_words(out->Z, ONE, P256_LIMBS)))  | 
946  | 0  |         out->Z_is_one = 1;  | 
947  |  | 
  | 
948  | 0  |     return ret;  | 
949  | 0  | }  | 
950  |  |  | 
951  |  | /* r = scalar*G + sum(scalars[i]*points[i]) */  | 
952  |  | __owur static int ecp_nistz256_points_mul(const EC_GROUP *group,  | 
953  |  |                                           EC_POINT *r,  | 
954  |  |                                           const BIGNUM *scalar,  | 
955  |  |                                           size_t num,  | 
956  |  |                                           const EC_POINT *points[],  | 
957  |  |                                           const BIGNUM *scalars[], BN_CTX *ctx)  | 
958  | 7.32k  | { | 
959  | 7.32k  |     int i = 0, ret = 0, no_precomp_for_generator = 0, p_is_infinity = 0;  | 
960  | 7.32k  |     unsigned char p_str[33] = { 0 }; | 
961  | 7.32k  |     const PRECOMP256_ROW *preComputedTable = NULL;  | 
962  | 7.32k  |     const NISTZ256_PRE_COMP *pre_comp = NULL;  | 
963  | 7.32k  |     const EC_POINT *generator = NULL;  | 
964  | 7.32k  |     const BIGNUM **new_scalars = NULL;  | 
965  | 7.32k  |     const EC_POINT **new_points = NULL;  | 
966  | 7.32k  |     unsigned int idx = 0;  | 
967  | 7.32k  |     const unsigned int window_size = 7;  | 
968  | 7.32k  |     const unsigned int mask = (1 << (window_size + 1)) - 1;  | 
969  | 7.32k  |     unsigned int wvalue;  | 
970  | 7.32k  |     ALIGN32 union { | 
971  | 7.32k  |         P256_POINT p;  | 
972  | 7.32k  |         P256_POINT_AFFINE a;  | 
973  | 7.32k  |     } t, p;  | 
974  | 7.32k  |     BIGNUM *tmp_scalar;  | 
975  |  |  | 
976  | 7.32k  |     if ((num + 1) == 0 || (num + 1) > OPENSSL_MALLOC_MAX_NELEMS(void *)) { | 
977  | 0  |         ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);  | 
978  | 0  |         return 0;  | 
979  | 0  |     }  | 
980  |  |  | 
981  | 7.32k  |     memset(&p, 0, sizeof(p));  | 
982  | 7.32k  |     BN_CTX_start(ctx);  | 
983  |  |  | 
984  | 7.32k  |     if (scalar) { | 
985  | 5.33k  |         generator = EC_GROUP_get0_generator(group);  | 
986  | 5.33k  |         if (generator == NULL) { | 
987  | 0  |             ERR_raise(ERR_LIB_EC, EC_R_UNDEFINED_GENERATOR);  | 
988  | 0  |             goto err;  | 
989  | 0  |         }  | 
990  |  |  | 
991  |  |         /* look if we can use precomputed multiples of generator */  | 
992  | 5.33k  |         pre_comp = group->pre_comp.nistz256;  | 
993  |  |  | 
994  | 5.33k  |         if (pre_comp) { | 
995  |  |             /*  | 
996  |  |              * If there is a precomputed table for the generator, check that  | 
997  |  |              * it was generated with the same generator.  | 
998  |  |              */  | 
999  | 0  |             EC_POINT *pre_comp_generator = EC_POINT_new(group);  | 
1000  | 0  |             if (pre_comp_generator == NULL)  | 
1001  | 0  |                 goto err;  | 
1002  |  |  | 
1003  | 0  |             ecp_nistz256_gather_w7(&p.a, pre_comp->precomp[0], 1);  | 
1004  | 0  |             if (!ecp_nistz256_set_from_affine(pre_comp_generator,  | 
1005  | 0  |                                               group, &p.a, ctx)) { | 
1006  | 0  |                 EC_POINT_free(pre_comp_generator);  | 
1007  | 0  |                 goto err;  | 
1008  | 0  |             }  | 
1009  |  |  | 
1010  | 0  |             if (0 == EC_POINT_cmp(group, generator, pre_comp_generator, ctx))  | 
1011  | 0  |                 preComputedTable = (const PRECOMP256_ROW *)pre_comp->precomp;  | 
1012  |  | 
  | 
1013  | 0  |             EC_POINT_free(pre_comp_generator);  | 
1014  | 0  |         }  | 
1015  |  |  | 
1016  | 5.33k  |         if (preComputedTable == NULL && ecp_nistz256_is_affine_G(generator)) { | 
1017  |  |             /*  | 
1018  |  |              * If there is no precomputed data, but the generator is the  | 
1019  |  |              * default, a hardcoded table of precomputed data is used. This  | 
1020  |  |              * is because applications, such as Apache, do not use  | 
1021  |  |              * EC_KEY_precompute_mult.  | 
1022  |  |              */  | 
1023  | 5.33k  |             preComputedTable = ecp_nistz256_precomputed;  | 
1024  | 5.33k  |         }  | 
1025  |  |  | 
1026  | 5.33k  |         if (preComputedTable) { | 
1027  | 5.33k  |             BN_ULONG infty;  | 
1028  |  |  | 
1029  | 5.33k  |             if ((BN_num_bits(scalar) > 256)  | 
1030  | 5.33k  |                 || BN_is_negative(scalar)) { | 
1031  | 18  |                 if ((tmp_scalar = BN_CTX_get(ctx)) == NULL)  | 
1032  | 0  |                     goto err;  | 
1033  |  |  | 
1034  | 18  |                 if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) { | 
1035  | 0  |                     ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);  | 
1036  | 0  |                     goto err;  | 
1037  | 0  |                 }  | 
1038  | 18  |                 scalar = tmp_scalar;  | 
1039  | 18  |             }  | 
1040  |  |  | 
1041  | 26.4k  |             for (i = 0; i < bn_get_top(scalar) * BN_BYTES; i += BN_BYTES) { | 
1042  | 21.1k  |                 BN_ULONG d = bn_get_words(scalar)[i / BN_BYTES];  | 
1043  |  |  | 
1044  | 21.1k  |                 p_str[i + 0] = (unsigned char)d;  | 
1045  | 21.1k  |                 p_str[i + 1] = (unsigned char)(d >> 8);  | 
1046  | 21.1k  |                 p_str[i + 2] = (unsigned char)(d >> 16);  | 
1047  | 21.1k  |                 p_str[i + 3] = (unsigned char)(d >>= 24);  | 
1048  | 21.1k  |                 if (BN_BYTES == 8) { | 
1049  | 21.1k  |                     d >>= 8;  | 
1050  | 21.1k  |                     p_str[i + 4] = (unsigned char)d;  | 
1051  | 21.1k  |                     p_str[i + 5] = (unsigned char)(d >> 8);  | 
1052  | 21.1k  |                     p_str[i + 6] = (unsigned char)(d >> 16);  | 
1053  | 21.1k  |                     p_str[i + 7] = (unsigned char)(d >> 24);  | 
1054  | 21.1k  |                 }  | 
1055  | 21.1k  |             }  | 
1056  |  |  | 
1057  | 12.6k  |             for (; i < 33; i++)  | 
1058  | 7.31k  |                 p_str[i] = 0;  | 
1059  |  |  | 
1060  |  |             /* First window */  | 
1061  | 5.33k  |             wvalue = (p_str[0] << 1) & mask;  | 
1062  | 5.33k  |             idx += window_size;  | 
1063  |  |  | 
1064  | 5.33k  |             wvalue = _booth_recode_w7(wvalue);  | 
1065  |  |  | 
1066  | 5.33k  |             ecp_nistz256_gather_w7(&p.a, preComputedTable[0],  | 
1067  | 5.33k  |                                    wvalue >> 1);  | 
1068  |  |  | 
1069  | 5.33k  |             ecp_nistz256_neg(p.p.Z, p.p.Y);  | 
1070  | 5.33k  |             copy_conditional(p.p.Y, p.p.Z, wvalue & 1);  | 
1071  |  |  | 
1072  |  |             /*  | 
1073  |  |              * Since affine infinity is encoded as (0,0) and  | 
1074  |  |              * Jacobian is (,,0), we need to harmonize them  | 
1075  |  |              * by assigning "one" or zero to Z.  | 
1076  |  |              */  | 
1077  | 5.33k  |             infty = (p.p.X[0] | p.p.X[1] | p.p.X[2] | p.p.X[3] |  | 
1078  | 5.33k  |                      p.p.Y[0] | p.p.Y[1] | p.p.Y[2] | p.p.Y[3]);  | 
1079  | 5.33k  |             if (P256_LIMBS == 8)  | 
1080  | 0  |                 infty |= (p.p.X[4] | p.p.X[5] | p.p.X[6] | p.p.X[7] |  | 
1081  | 0  |                           p.p.Y[4] | p.p.Y[5] | p.p.Y[6] | p.p.Y[7]);  | 
1082  |  |  | 
1083  | 5.33k  |             infty = 0 - is_zero(infty);  | 
1084  | 5.33k  |             infty = ~infty;  | 
1085  |  |  | 
1086  | 5.33k  |             p.p.Z[0] = ONE[0] & infty;  | 
1087  | 5.33k  |             p.p.Z[1] = ONE[1] & infty;  | 
1088  | 5.33k  |             p.p.Z[2] = ONE[2] & infty;  | 
1089  | 5.33k  |             p.p.Z[3] = ONE[3] & infty;  | 
1090  | 5.33k  |             if (P256_LIMBS == 8) { | 
1091  | 0  |                 p.p.Z[4] = ONE[4] & infty;  | 
1092  | 0  |                 p.p.Z[5] = ONE[5] & infty;  | 
1093  | 0  |                 p.p.Z[6] = ONE[6] & infty;  | 
1094  | 0  |                 p.p.Z[7] = ONE[7] & infty;  | 
1095  | 0  |             }  | 
1096  |  |  | 
1097  | 197k  |             for (i = 1; i < 37; i++) { | 
1098  | 192k  |                 unsigned int off = (idx - 1) / 8;  | 
1099  | 192k  |                 wvalue = p_str[off] | p_str[off + 1] << 8;  | 
1100  | 192k  |                 wvalue = (wvalue >> ((idx - 1) % 8)) & mask;  | 
1101  | 192k  |                 idx += window_size;  | 
1102  |  |  | 
1103  | 192k  |                 wvalue = _booth_recode_w7(wvalue);  | 
1104  |  |  | 
1105  | 192k  |                 ecp_nistz256_gather_w7(&t.a,  | 
1106  | 192k  |                                        preComputedTable[i], wvalue >> 1);  | 
1107  |  |  | 
1108  | 192k  |                 ecp_nistz256_neg(t.p.Z, t.a.Y);  | 
1109  | 192k  |                 copy_conditional(t.a.Y, t.p.Z, wvalue & 1);  | 
1110  |  |  | 
1111  | 192k  |                 ecp_nistz256_point_add_affine(&p.p, &p.p, &t.a);  | 
1112  | 192k  |             }  | 
1113  | 5.33k  |         } else { | 
1114  | 0  |             p_is_infinity = 1;  | 
1115  | 0  |             no_precomp_for_generator = 1;  | 
1116  | 0  |         }  | 
1117  | 5.33k  |     } else  | 
1118  | 1.98k  |         p_is_infinity = 1;  | 
1119  |  |  | 
1120  | 7.32k  |     if (no_precomp_for_generator) { | 
1121  |  |         /*  | 
1122  |  |          * Without a precomputed table for the generator, it has to be  | 
1123  |  |          * handled like a normal point.  | 
1124  |  |          */  | 
1125  | 0  |         new_scalars = OPENSSL_malloc((num + 1) * sizeof(BIGNUM *));  | 
1126  | 0  |         if (new_scalars == NULL) { | 
1127  | 0  |             ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);  | 
1128  | 0  |             goto err;  | 
1129  | 0  |         }  | 
1130  |  |  | 
1131  | 0  |         new_points = OPENSSL_malloc((num + 1) * sizeof(EC_POINT *));  | 
1132  | 0  |         if (new_points == NULL) { | 
1133  | 0  |             ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);  | 
1134  | 0  |             goto err;  | 
1135  | 0  |         }  | 
1136  |  |  | 
1137  | 0  |         memcpy(new_scalars, scalars, num * sizeof(BIGNUM *));  | 
1138  | 0  |         new_scalars[num] = scalar;  | 
1139  | 0  |         memcpy(new_points, points, num * sizeof(EC_POINT *));  | 
1140  | 0  |         new_points[num] = generator;  | 
1141  |  | 
  | 
1142  | 0  |         scalars = new_scalars;  | 
1143  | 0  |         points = new_points;  | 
1144  | 0  |         num++;  | 
1145  | 0  |     }  | 
1146  |  |  | 
1147  | 7.32k  |     if (num) { | 
1148  | 2.07k  |         P256_POINT *out = &t.p;  | 
1149  | 2.07k  |         if (p_is_infinity)  | 
1150  | 1.98k  |             out = &p.p;  | 
1151  |  |  | 
1152  | 2.07k  |         if (!ecp_nistz256_windowed_mul(group, out, scalars, points, num, ctx))  | 
1153  | 0  |             goto err;  | 
1154  |  |  | 
1155  | 2.07k  |         if (!p_is_infinity)  | 
1156  | 91  |             ecp_nistz256_point_add(&p.p, &p.p, out);  | 
1157  | 2.07k  |     }  | 
1158  |  |  | 
1159  |  |     /* Not constant-time, but we're only operating on the public output. */  | 
1160  | 7.32k  |     if (!bn_set_words(r->X, p.p.X, P256_LIMBS) ||  | 
1161  | 7.32k  |         !bn_set_words(r->Y, p.p.Y, P256_LIMBS) ||  | 
1162  | 7.32k  |         !bn_set_words(r->Z, p.p.Z, P256_LIMBS)) { | 
1163  | 0  |         goto err;  | 
1164  | 0  |     }  | 
1165  | 7.32k  |     r->Z_is_one = is_one(r->Z) & 1;  | 
1166  |  |  | 
1167  | 7.32k  |     ret = 1;  | 
1168  |  |  | 
1169  | 7.32k  | err:  | 
1170  | 7.32k  |     BN_CTX_end(ctx);  | 
1171  | 7.32k  |     OPENSSL_free(new_points);  | 
1172  | 7.32k  |     OPENSSL_free(new_scalars);  | 
1173  | 7.32k  |     return ret;  | 
1174  | 7.32k  | }  | 
1175  |  |  | 
1176  |  | __owur static int ecp_nistz256_get_affine(const EC_GROUP *group,  | 
1177  |  |                                           const EC_POINT *point,  | 
1178  |  |                                           BIGNUM *x, BIGNUM *y, BN_CTX *ctx)  | 
1179  | 58.5k  | { | 
1180  | 58.5k  |     BN_ULONG z_inv2[P256_LIMBS];  | 
1181  | 58.5k  |     BN_ULONG z_inv3[P256_LIMBS];  | 
1182  | 58.5k  |     BN_ULONG x_aff[P256_LIMBS];  | 
1183  | 58.5k  |     BN_ULONG y_aff[P256_LIMBS];  | 
1184  | 58.5k  |     BN_ULONG point_x[P256_LIMBS], point_y[P256_LIMBS], point_z[P256_LIMBS];  | 
1185  | 58.5k  |     BN_ULONG x_ret[P256_LIMBS], y_ret[P256_LIMBS];  | 
1186  |  |  | 
1187  | 58.5k  |     if (EC_POINT_is_at_infinity(group, point)) { | 
1188  | 0  |         ERR_raise(ERR_LIB_EC, EC_R_POINT_AT_INFINITY);  | 
1189  | 0  |         return 0;  | 
1190  | 0  |     }  | 
1191  |  |  | 
1192  | 58.5k  |     if (!ecp_nistz256_bignum_to_field_elem(point_x, point->X) ||  | 
1193  | 58.5k  |         !ecp_nistz256_bignum_to_field_elem(point_y, point->Y) ||  | 
1194  | 58.5k  |         !ecp_nistz256_bignum_to_field_elem(point_z, point->Z)) { | 
1195  | 0  |         ERR_raise(ERR_LIB_EC, EC_R_COORDINATES_OUT_OF_RANGE);  | 
1196  | 0  |         return 0;  | 
1197  | 0  |     }  | 
1198  |  |  | 
1199  | 58.5k  |     ecp_nistz256_mod_inverse(z_inv3, point_z);  | 
1200  | 58.5k  |     ecp_nistz256_sqr_mont(z_inv2, z_inv3);  | 
1201  | 58.5k  |     ecp_nistz256_mul_mont(x_aff, z_inv2, point_x);  | 
1202  |  |  | 
1203  | 58.5k  |     if (x != NULL) { | 
1204  | 58.5k  |         ecp_nistz256_from_mont(x_ret, x_aff);  | 
1205  | 58.5k  |         if (!bn_set_words(x, x_ret, P256_LIMBS))  | 
1206  | 0  |             return 0;  | 
1207  | 58.5k  |     }  | 
1208  |  |  | 
1209  | 58.5k  |     if (y != NULL) { | 
1210  | 54.3k  |         ecp_nistz256_mul_mont(z_inv3, z_inv3, z_inv2);  | 
1211  | 54.3k  |         ecp_nistz256_mul_mont(y_aff, z_inv3, point_y);  | 
1212  | 54.3k  |         ecp_nistz256_from_mont(y_ret, y_aff);  | 
1213  | 54.3k  |         if (!bn_set_words(y, y_ret, P256_LIMBS))  | 
1214  | 0  |             return 0;  | 
1215  | 54.3k  |     }  | 
1216  |  |  | 
1217  | 58.5k  |     return 1;  | 
1218  | 58.5k  | }  | 
1219  |  |  | 
1220  |  | static NISTZ256_PRE_COMP *ecp_nistz256_pre_comp_new(const EC_GROUP *group)  | 
1221  | 0  | { | 
1222  | 0  |     NISTZ256_PRE_COMP *ret = NULL;  | 
1223  |  | 
  | 
1224  | 0  |     if (!group)  | 
1225  | 0  |         return NULL;  | 
1226  |  |  | 
1227  | 0  |     ret = OPENSSL_zalloc(sizeof(*ret));  | 
1228  |  | 
  | 
1229  | 0  |     if (ret == NULL) { | 
1230  | 0  |         ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);  | 
1231  | 0  |         return ret;  | 
1232  | 0  |     }  | 
1233  |  |  | 
1234  | 0  |     ret->group = group;  | 
1235  | 0  |     ret->w = 6;                 /* default */  | 
1236  | 0  |     ret->references = 1;  | 
1237  |  | 
  | 
1238  | 0  |     ret->lock = CRYPTO_THREAD_lock_new();  | 
1239  | 0  |     if (ret->lock == NULL) { | 
1240  | 0  |         ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);  | 
1241  | 0  |         OPENSSL_free(ret);  | 
1242  | 0  |         return NULL;  | 
1243  | 0  |     }  | 
1244  | 0  |     return ret;  | 
1245  | 0  | }  | 
1246  |  |  | 
1247  |  | NISTZ256_PRE_COMP *EC_nistz256_pre_comp_dup(NISTZ256_PRE_COMP *p)  | 
1248  | 0  | { | 
1249  | 0  |     int i;  | 
1250  | 0  |     if (p != NULL)  | 
1251  | 0  |         CRYPTO_UP_REF(&p->references, &i, p->lock);  | 
1252  | 0  |     return p;  | 
1253  | 0  | }  | 
1254  |  |  | 
1255  |  | void EC_nistz256_pre_comp_free(NISTZ256_PRE_COMP *pre)  | 
1256  | 0  | { | 
1257  | 0  |     int i;  | 
1258  |  | 
  | 
1259  | 0  |     if (pre == NULL)  | 
1260  | 0  |         return;  | 
1261  |  |  | 
1262  | 0  |     CRYPTO_DOWN_REF(&pre->references, &i, pre->lock);  | 
1263  | 0  |     REF_PRINT_COUNT("EC_nistz256", pre); | 
1264  | 0  |     if (i > 0)  | 
1265  | 0  |         return;  | 
1266  | 0  |     REF_ASSERT_ISNT(i < 0);  | 
1267  |  | 
  | 
1268  | 0  |     OPENSSL_free(pre->precomp_storage);  | 
1269  | 0  |     CRYPTO_THREAD_lock_free(pre->lock);  | 
1270  | 0  |     OPENSSL_free(pre);  | 
1271  | 0  | }  | 
1272  |  |  | 
1273  |  |  | 
1274  |  | static int ecp_nistz256_window_have_precompute_mult(const EC_GROUP *group)  | 
1275  | 0  | { | 
1276  |  |     /* There is a hard-coded table for the default generator. */  | 
1277  | 0  |     const EC_POINT *generator = EC_GROUP_get0_generator(group);  | 
1278  |  | 
  | 
1279  | 0  |     if (generator != NULL && ecp_nistz256_is_affine_G(generator)) { | 
1280  |  |         /* There is a hard-coded table for the default generator. */  | 
1281  | 0  |         return 1;  | 
1282  | 0  |     }  | 
1283  |  |  | 
1284  | 0  |     return HAVEPRECOMP(group, nistz256);  | 
1285  | 0  | }  | 
1286  |  |  | 
1287  |  | #if defined(__x86_64) || defined(__x86_64__) || \  | 
1288  |  |     defined(_M_AMD64) || defined(_M_X64) || \  | 
1289  |  |     defined(__powerpc64__) || defined(_ARCH_PP64) || \  | 
1290  |  |     defined(__aarch64__)  | 
1291  |  | /*  | 
1292  |  |  * Montgomery mul modulo Order(P): res = a*b*2^-256 mod Order(P)  | 
1293  |  |  */  | 
1294  |  | void ecp_nistz256_ord_mul_mont(BN_ULONG res[P256_LIMBS],  | 
1295  |  |                                const BN_ULONG a[P256_LIMBS],  | 
1296  |  |                                const BN_ULONG b[P256_LIMBS]);  | 
1297  |  | void ecp_nistz256_ord_sqr_mont(BN_ULONG res[P256_LIMBS],  | 
1298  |  |                                const BN_ULONG a[P256_LIMBS],  | 
1299  |  |                                BN_ULONG rep);  | 
1300  |  |  | 
1301  |  | static int ecp_nistz256_inv_mod_ord(const EC_GROUP *group, BIGNUM *r,  | 
1302  |  |                                     const BIGNUM *x, BN_CTX *ctx)  | 
1303  | 3.02k  | { | 
1304  |  |     /* RR = 2^512 mod ord(p256) */  | 
1305  | 3.02k  |     static const BN_ULONG RR[P256_LIMBS]  = { | 
1306  | 3.02k  |         TOBN(0x83244c95,0xbe79eea2), TOBN(0x4699799c,0x49bd6fa6),  | 
1307  | 3.02k  |         TOBN(0x2845b239,0x2b6bec59), TOBN(0x66e12d94,0xf3d95620)  | 
1308  | 3.02k  |     };  | 
1309  |  |     /* The constant 1 (unlike ONE that is one in Montgomery representation) */  | 
1310  | 3.02k  |     static const BN_ULONG one[P256_LIMBS] = { | 
1311  | 3.02k  |         TOBN(0,1), TOBN(0,0), TOBN(0,0), TOBN(0,0)  | 
1312  | 3.02k  |     };  | 
1313  |  |     /*  | 
1314  |  |      * We don't use entry 0 in the table, so we omit it and address  | 
1315  |  |      * with -1 offset.  | 
1316  |  |      */  | 
1317  | 3.02k  |     BN_ULONG table[15][P256_LIMBS];  | 
1318  | 3.02k  |     BN_ULONG out[P256_LIMBS], t[P256_LIMBS];  | 
1319  | 3.02k  |     int i, ret = 0;  | 
1320  | 3.02k  |     enum { | 
1321  | 3.02k  |         i_1 = 0, i_10,     i_11,     i_101, i_111, i_1010, i_1111,  | 
1322  | 3.02k  |         i_10101, i_101010, i_101111, i_x6,  i_x8,  i_x16,  i_x32  | 
1323  | 3.02k  |     };  | 
1324  |  |  | 
1325  |  |     /*  | 
1326  |  |      * Catch allocation failure early.  | 
1327  |  |      */  | 
1328  | 3.02k  |     if (bn_wexpand(r, P256_LIMBS) == NULL) { | 
1329  | 0  |         ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);  | 
1330  | 0  |         goto err;  | 
1331  | 0  |     }  | 
1332  |  |  | 
1333  | 3.02k  |     if ((BN_num_bits(x) > 256) || BN_is_negative(x)) { | 
1334  | 0  |         BIGNUM *tmp;  | 
1335  |  | 
  | 
1336  | 0  |         if ((tmp = BN_CTX_get(ctx)) == NULL  | 
1337  | 0  |             || !BN_nnmod(tmp, x, group->order, ctx)) { | 
1338  | 0  |             ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);  | 
1339  | 0  |             goto err;  | 
1340  | 0  |         }  | 
1341  | 0  |         x = tmp;  | 
1342  | 0  |     }  | 
1343  |  |  | 
1344  | 3.02k  |     if (!ecp_nistz256_bignum_to_field_elem(t, x)) { | 
1345  | 0  |         ERR_raise(ERR_LIB_EC, EC_R_COORDINATES_OUT_OF_RANGE);  | 
1346  | 0  |         goto err;  | 
1347  | 0  |     }  | 
1348  |  |  | 
1349  | 3.02k  |     ecp_nistz256_ord_mul_mont(table[0], t, RR);  | 
1350  |  | #if 0  | 
1351  |  |     /*  | 
1352  |  |      * Original sparse-then-fixed-window algorithm, retained for reference.  | 
1353  |  |      */  | 
1354  |  |     for (i = 2; i < 16; i += 2) { | 
1355  |  |         ecp_nistz256_ord_sqr_mont(table[i-1], table[i/2-1], 1);  | 
1356  |  |         ecp_nistz256_ord_mul_mont(table[i], table[i-1], table[0]);  | 
1357  |  |     }  | 
1358  |  |  | 
1359  |  |     /*  | 
1360  |  |      * The top 128bit of the exponent are highly redudndant, so we  | 
1361  |  |      * perform an optimized flow  | 
1362  |  |      */  | 
1363  |  |     ecp_nistz256_ord_sqr_mont(t, table[15-1], 4);   /* f0 */  | 
1364  |  |     ecp_nistz256_ord_mul_mont(t, t, table[15-1]);   /* ff */  | 
1365  |  |  | 
1366  |  |     ecp_nistz256_ord_sqr_mont(out, t, 8);           /* ff00 */  | 
1367  |  |     ecp_nistz256_ord_mul_mont(out, out, t);         /* ffff */  | 
1368  |  |  | 
1369  |  |     ecp_nistz256_ord_sqr_mont(t, out, 16);          /* ffff0000 */  | 
1370  |  |     ecp_nistz256_ord_mul_mont(t, t, out);           /* ffffffff */  | 
1371  |  |  | 
1372  |  |     ecp_nistz256_ord_sqr_mont(out, t, 64);          /* ffffffff0000000000000000 */  | 
1373  |  |     ecp_nistz256_ord_mul_mont(out, out, t);         /* ffffffff00000000ffffffff */  | 
1374  |  |  | 
1375  |  |     ecp_nistz256_ord_sqr_mont(out, out, 32);        /* ffffffff00000000ffffffff00000000 */  | 
1376  |  |     ecp_nistz256_ord_mul_mont(out, out, t);         /* ffffffff00000000ffffffffffffffff */  | 
1377  |  |  | 
1378  |  |     /*  | 
1379  |  |      * The bottom 128 bit of the exponent are processed with fixed 4-bit window  | 
1380  |  |      */  | 
1381  |  |     for(i = 0; i < 32; i++) { | 
1382  |  |         /* expLo - the low 128 bits of the exponent we use (ord(p256) - 2),  | 
1383  |  |          * split into nibbles */  | 
1384  |  |         static const unsigned char expLo[32]  = { | 
1385  |  |             0xb,0xc,0xe,0x6,0xf,0xa,0xa,0xd,0xa,0x7,0x1,0x7,0x9,0xe,0x8,0x4,  | 
1386  |  |             0xf,0x3,0xb,0x9,0xc,0xa,0xc,0x2,0xf,0xc,0x6,0x3,0x2,0x5,0x4,0xf  | 
1387  |  |         };  | 
1388  |  |  | 
1389  |  |         ecp_nistz256_ord_sqr_mont(out, out, 4);  | 
1390  |  |         /* The exponent is public, no need in constant-time access */  | 
1391  |  |         ecp_nistz256_ord_mul_mont(out, out, table[expLo[i]-1]);  | 
1392  |  |     }  | 
1393  |  | #else  | 
1394  |  |     /*  | 
1395  |  |      * https://briansmith.org/ecc-inversion-addition-chains-01#p256_scalar_inversion  | 
1396  |  |      *  | 
1397  |  |      * Even though this code path spares 12 squarings, 4.5%, and 13  | 
1398  |  |      * multiplications, 25%, on grand scale sign operation is not that  | 
1399  |  |      * much faster, not more that 2%...  | 
1400  |  |      */  | 
1401  |  |  | 
1402  |  |     /* pre-calculate powers */  | 
1403  | 3.02k  |     ecp_nistz256_ord_sqr_mont(table[i_10], table[i_1], 1);  | 
1404  |  |  | 
1405  | 3.02k  |     ecp_nistz256_ord_mul_mont(table[i_11], table[i_1], table[i_10]);  | 
1406  |  |  | 
1407  | 3.02k  |     ecp_nistz256_ord_mul_mont(table[i_101], table[i_11], table[i_10]);  | 
1408  |  |  | 
1409  | 3.02k  |     ecp_nistz256_ord_mul_mont(table[i_111], table[i_101], table[i_10]);  | 
1410  |  |  | 
1411  | 3.02k  |     ecp_nistz256_ord_sqr_mont(table[i_1010], table[i_101], 1);  | 
1412  |  |  | 
1413  | 3.02k  |     ecp_nistz256_ord_mul_mont(table[i_1111], table[i_1010], table[i_101]);  | 
1414  |  |  | 
1415  | 3.02k  |     ecp_nistz256_ord_sqr_mont(table[i_10101], table[i_1010], 1);  | 
1416  | 3.02k  |     ecp_nistz256_ord_mul_mont(table[i_10101], table[i_10101], table[i_1]);  | 
1417  |  |  | 
1418  | 3.02k  |     ecp_nistz256_ord_sqr_mont(table[i_101010], table[i_10101], 1);  | 
1419  |  |  | 
1420  | 3.02k  |     ecp_nistz256_ord_mul_mont(table[i_101111], table[i_101010], table[i_101]);  | 
1421  |  |  | 
1422  | 3.02k  |     ecp_nistz256_ord_mul_mont(table[i_x6], table[i_101010], table[i_10101]);  | 
1423  |  |  | 
1424  | 3.02k  |     ecp_nistz256_ord_sqr_mont(table[i_x8], table[i_x6], 2);  | 
1425  | 3.02k  |     ecp_nistz256_ord_mul_mont(table[i_x8], table[i_x8], table[i_11]);  | 
1426  |  |  | 
1427  | 3.02k  |     ecp_nistz256_ord_sqr_mont(table[i_x16], table[i_x8], 8);  | 
1428  | 3.02k  |     ecp_nistz256_ord_mul_mont(table[i_x16], table[i_x16], table[i_x8]);  | 
1429  |  |  | 
1430  | 3.02k  |     ecp_nistz256_ord_sqr_mont(table[i_x32], table[i_x16], 16);  | 
1431  | 3.02k  |     ecp_nistz256_ord_mul_mont(table[i_x32], table[i_x32], table[i_x16]);  | 
1432  |  |  | 
1433  |  |     /* calculations */  | 
1434  | 3.02k  |     ecp_nistz256_ord_sqr_mont(out, table[i_x32], 64);  | 
1435  | 3.02k  |     ecp_nistz256_ord_mul_mont(out, out, table[i_x32]);  | 
1436  |  |  | 
1437  | 84.6k  |     for (i = 0; i < 27; i++) { | 
1438  | 81.6k  |         static const struct { unsigned char p, i; } chain[27] = { | 
1439  | 81.6k  |             { 32, i_x32 }, { 6,  i_101111 }, { 5,  i_111    }, | 
1440  | 81.6k  |             { 4,  i_11  }, { 5,  i_1111   }, { 5,  i_10101  }, | 
1441  | 81.6k  |             { 4,  i_101 }, { 3,  i_101    }, { 3,  i_101    }, | 
1442  | 81.6k  |             { 5,  i_111 }, { 9,  i_101111 }, { 6,  i_1111   }, | 
1443  | 81.6k  |             { 2,  i_1   }, { 5,  i_1      }, { 6,  i_1111   }, | 
1444  | 81.6k  |             { 5,  i_111 }, { 4,  i_111    }, { 5,  i_111    }, | 
1445  | 81.6k  |             { 5,  i_101 }, { 3,  i_11     }, { 10, i_101111 }, | 
1446  | 81.6k  |             { 2,  i_11  }, { 5,  i_11     }, { 5,  i_11     }, | 
1447  | 81.6k  |             { 3,  i_1   }, { 7,  i_10101  }, { 6,  i_1111   } | 
1448  | 81.6k  |         };  | 
1449  |  |  | 
1450  | 81.6k  |         ecp_nistz256_ord_sqr_mont(out, out, chain[i].p);  | 
1451  | 81.6k  |         ecp_nistz256_ord_mul_mont(out, out, table[chain[i].i]);  | 
1452  | 81.6k  |     }  | 
1453  | 3.02k  | #endif  | 
1454  | 3.02k  |     ecp_nistz256_ord_mul_mont(out, out, one);  | 
1455  |  |  | 
1456  |  |     /*  | 
1457  |  |      * Can't fail, but check return code to be consistent anyway.  | 
1458  |  |      */  | 
1459  | 3.02k  |     if (!bn_set_words(r, out, P256_LIMBS))  | 
1460  | 0  |         goto err;  | 
1461  |  |  | 
1462  | 3.02k  |     ret = 1;  | 
1463  | 3.02k  | err:  | 
1464  | 3.02k  |     return ret;  | 
1465  | 3.02k  | }  | 
1466  |  | #else  | 
1467  |  | # define ecp_nistz256_inv_mod_ord NULL  | 
1468  |  | #endif  | 
1469  |  |  | 
1470  |  | const EC_METHOD *EC_GFp_nistz256_method(void)  | 
1471  | 114k  | { | 
1472  | 114k  |     static const EC_METHOD ret = { | 
1473  | 114k  |         EC_FLAGS_DEFAULT_OCT,  | 
1474  | 114k  |         NID_X9_62_prime_field,  | 
1475  | 114k  |         ossl_ec_GFp_mont_group_init,  | 
1476  | 114k  |         ossl_ec_GFp_mont_group_finish,  | 
1477  | 114k  |         ossl_ec_GFp_mont_group_clear_finish,  | 
1478  | 114k  |         ossl_ec_GFp_mont_group_copy,  | 
1479  | 114k  |         ossl_ec_GFp_mont_group_set_curve,  | 
1480  | 114k  |         ossl_ec_GFp_simple_group_get_curve,  | 
1481  | 114k  |         ossl_ec_GFp_simple_group_get_degree,  | 
1482  | 114k  |         ossl_ec_group_simple_order_bits,  | 
1483  | 114k  |         ossl_ec_GFp_simple_group_check_discriminant,  | 
1484  | 114k  |         ossl_ec_GFp_simple_point_init,  | 
1485  | 114k  |         ossl_ec_GFp_simple_point_finish,  | 
1486  | 114k  |         ossl_ec_GFp_simple_point_clear_finish,  | 
1487  | 114k  |         ossl_ec_GFp_simple_point_copy,  | 
1488  | 114k  |         ossl_ec_GFp_simple_point_set_to_infinity,  | 
1489  | 114k  |         ossl_ec_GFp_simple_point_set_affine_coordinates,  | 
1490  | 114k  |         ecp_nistz256_get_affine,  | 
1491  | 114k  |         0, 0, 0,  | 
1492  | 114k  |         ossl_ec_GFp_simple_add,  | 
1493  | 114k  |         ossl_ec_GFp_simple_dbl,  | 
1494  | 114k  |         ossl_ec_GFp_simple_invert,  | 
1495  | 114k  |         ossl_ec_GFp_simple_is_at_infinity,  | 
1496  | 114k  |         ossl_ec_GFp_simple_is_on_curve,  | 
1497  | 114k  |         ossl_ec_GFp_simple_cmp,  | 
1498  | 114k  |         ossl_ec_GFp_simple_make_affine,  | 
1499  | 114k  |         ossl_ec_GFp_simple_points_make_affine,  | 
1500  | 114k  |         ecp_nistz256_points_mul,                    /* mul */  | 
1501  | 114k  |         ecp_nistz256_mult_precompute,               /* precompute_mult */  | 
1502  | 114k  |         ecp_nistz256_window_have_precompute_mult,   /* have_precompute_mult */  | 
1503  | 114k  |         ossl_ec_GFp_mont_field_mul,  | 
1504  | 114k  |         ossl_ec_GFp_mont_field_sqr,  | 
1505  | 114k  |         0,                                          /* field_div */  | 
1506  | 114k  |         ossl_ec_GFp_mont_field_inv,  | 
1507  | 114k  |         ossl_ec_GFp_mont_field_encode,  | 
1508  | 114k  |         ossl_ec_GFp_mont_field_decode,  | 
1509  | 114k  |         ossl_ec_GFp_mont_field_set_to_one,  | 
1510  | 114k  |         ossl_ec_key_simple_priv2oct,  | 
1511  | 114k  |         ossl_ec_key_simple_oct2priv,  | 
1512  | 114k  |         0, /* set private */  | 
1513  | 114k  |         ossl_ec_key_simple_generate_key,  | 
1514  | 114k  |         ossl_ec_key_simple_check_key,  | 
1515  | 114k  |         ossl_ec_key_simple_generate_public_key,  | 
1516  | 114k  |         0, /* keycopy */  | 
1517  | 114k  |         0, /* keyfinish */  | 
1518  | 114k  |         ossl_ecdh_simple_compute_key,  | 
1519  | 114k  |         ossl_ecdsa_simple_sign_setup,  | 
1520  | 114k  |         ossl_ecdsa_simple_sign_sig,  | 
1521  | 114k  |         ossl_ecdsa_simple_verify_sig,  | 
1522  | 114k  |         ecp_nistz256_inv_mod_ord,                   /* can be #define-d NULL */  | 
1523  | 114k  |         0,                                          /* blind_coordinates */  | 
1524  | 114k  |         0,                                          /* ladder_pre */  | 
1525  | 114k  |         0,                                          /* ladder_step */  | 
1526  | 114k  |         0                                           /* ladder_post */  | 
1527  | 114k  |     };  | 
1528  |  |  | 
1529  | 114k  |     return &ret;  | 
1530  | 114k  | }  |