/src/openssl30/crypto/mem_sec.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright 2015-2023 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * Copyright 2004-2014, Akamai Technologies. All Rights Reserved. |
4 | | * |
5 | | * Licensed under the Apache License 2.0 (the "License"). You may not use |
6 | | * this file except in compliance with the License. You can obtain a copy |
7 | | * in the file LICENSE in the source distribution or at |
8 | | * https://www.openssl.org/source/license.html |
9 | | */ |
10 | | |
11 | | /* |
12 | | * This file is in two halves. The first half implements the public API |
13 | | * to be used by external consumers, and to be used by OpenSSL to store |
14 | | * data in a "secure arena." The second half implements the secure arena. |
15 | | * For details on that implementation, see below (look for uppercase |
16 | | * "SECURE HEAP IMPLEMENTATION"). |
17 | | */ |
18 | | #include "e_os.h" |
19 | | #include <openssl/crypto.h> |
20 | | |
21 | | #include <string.h> |
22 | | |
23 | | #ifndef OPENSSL_NO_SECURE_MEMORY |
24 | | # if defined(_WIN32) |
25 | | # include <windows.h> |
26 | | # if defined(WINAPI_FAMILY_PARTITION) |
27 | | # if !WINAPI_FAMILY_PARTITION(WINAPI_PARTITION_DESKTOP | WINAPI_PARTITION_SYSTEM) |
28 | | /* |
29 | | * While VirtualLock is available under the app partition (e.g. UWP), |
30 | | * the headers do not define the API. Define it ourselves instead. |
31 | | */ |
32 | | WINBASEAPI |
33 | | BOOL |
34 | | WINAPI |
35 | | VirtualLock( |
36 | | _In_ LPVOID lpAddress, |
37 | | _In_ SIZE_T dwSize |
38 | | ); |
39 | | # endif |
40 | | # endif |
41 | | # endif |
42 | | # include <stdlib.h> |
43 | | # include <assert.h> |
44 | | # if defined(OPENSSL_SYS_UNIX) |
45 | | # include <unistd.h> |
46 | | # endif |
47 | | # include <sys/types.h> |
48 | | # if defined(OPENSSL_SYS_UNIX) |
49 | | # include <sys/mman.h> |
50 | | # if defined(__FreeBSD__) |
51 | | # define MADV_DONTDUMP MADV_NOCORE |
52 | | # endif |
53 | | # if !defined(MAP_CONCEAL) |
54 | 0 | # define MAP_CONCEAL 0 |
55 | | # endif |
56 | | # endif |
57 | | # if defined(OPENSSL_SYS_LINUX) |
58 | | # include <sys/syscall.h> |
59 | | # if defined(SYS_mlock2) |
60 | | # include <linux/mman.h> |
61 | | # include <errno.h> |
62 | | # endif |
63 | | # include <sys/param.h> |
64 | | # endif |
65 | | # include <sys/stat.h> |
66 | | # include <fcntl.h> |
67 | | #endif |
68 | | |
69 | 0 | #define CLEAR(p, s) OPENSSL_cleanse(p, s) |
70 | | #ifndef PAGE_SIZE |
71 | 0 | # define PAGE_SIZE 4096 |
72 | | #endif |
73 | | #if !defined(MAP_ANON) && defined(MAP_ANONYMOUS) |
74 | | # define MAP_ANON MAP_ANONYMOUS |
75 | | #endif |
76 | | |
77 | | #ifndef OPENSSL_NO_SECURE_MEMORY |
78 | | static size_t secure_mem_used; |
79 | | |
80 | | static int secure_mem_initialized; |
81 | | |
82 | | static CRYPTO_RWLOCK *sec_malloc_lock = NULL; |
83 | | |
84 | | /* |
85 | | * These are the functions that must be implemented by a secure heap (sh). |
86 | | */ |
87 | | static int sh_init(size_t size, size_t minsize); |
88 | | static void *sh_malloc(size_t size); |
89 | | static void sh_free(void *ptr); |
90 | | static void sh_done(void); |
91 | | static size_t sh_actual_size(char *ptr); |
92 | | static int sh_allocated(const char *ptr); |
93 | | #endif |
94 | | |
95 | | int CRYPTO_secure_malloc_init(size_t size, size_t minsize) |
96 | 0 | { |
97 | 0 | #ifndef OPENSSL_NO_SECURE_MEMORY |
98 | 0 | int ret = 0; |
99 | |
|
100 | 0 | if (!secure_mem_initialized) { |
101 | 0 | sec_malloc_lock = CRYPTO_THREAD_lock_new(); |
102 | 0 | if (sec_malloc_lock == NULL) |
103 | 0 | return 0; |
104 | 0 | if ((ret = sh_init(size, minsize)) != 0) { |
105 | 0 | secure_mem_initialized = 1; |
106 | 0 | } else { |
107 | 0 | CRYPTO_THREAD_lock_free(sec_malloc_lock); |
108 | 0 | sec_malloc_lock = NULL; |
109 | 0 | } |
110 | 0 | } |
111 | | |
112 | 0 | return ret; |
113 | | #else |
114 | | return 0; |
115 | | #endif /* OPENSSL_NO_SECURE_MEMORY */ |
116 | 0 | } |
117 | | |
118 | | int CRYPTO_secure_malloc_done(void) |
119 | 133 | { |
120 | 133 | #ifndef OPENSSL_NO_SECURE_MEMORY |
121 | 133 | if (secure_mem_used == 0) { |
122 | 133 | sh_done(); |
123 | 133 | secure_mem_initialized = 0; |
124 | 133 | CRYPTO_THREAD_lock_free(sec_malloc_lock); |
125 | 133 | sec_malloc_lock = NULL; |
126 | 133 | return 1; |
127 | 133 | } |
128 | 0 | #endif /* OPENSSL_NO_SECURE_MEMORY */ |
129 | 0 | return 0; |
130 | 133 | } |
131 | | |
132 | | int CRYPTO_secure_malloc_initialized(void) |
133 | 0 | { |
134 | 0 | #ifndef OPENSSL_NO_SECURE_MEMORY |
135 | 0 | return secure_mem_initialized; |
136 | | #else |
137 | | return 0; |
138 | | #endif /* OPENSSL_NO_SECURE_MEMORY */ |
139 | 0 | } |
140 | | |
141 | | void *CRYPTO_secure_malloc(size_t num, const char *file, int line) |
142 | 119k | { |
143 | 119k | #ifndef OPENSSL_NO_SECURE_MEMORY |
144 | 119k | void *ret; |
145 | 119k | size_t actual_size; |
146 | | |
147 | 119k | if (!secure_mem_initialized) { |
148 | 119k | return CRYPTO_malloc(num, file, line); |
149 | 119k | } |
150 | 0 | if (!CRYPTO_THREAD_write_lock(sec_malloc_lock)) |
151 | 0 | return NULL; |
152 | 0 | ret = sh_malloc(num); |
153 | 0 | actual_size = ret ? sh_actual_size(ret) : 0; |
154 | 0 | secure_mem_used += actual_size; |
155 | 0 | CRYPTO_THREAD_unlock(sec_malloc_lock); |
156 | 0 | return ret; |
157 | | #else |
158 | | return CRYPTO_malloc(num, file, line); |
159 | | #endif /* OPENSSL_NO_SECURE_MEMORY */ |
160 | 0 | } |
161 | | |
162 | | void *CRYPTO_secure_zalloc(size_t num, const char *file, int line) |
163 | 1.37M | { |
164 | 1.37M | #ifndef OPENSSL_NO_SECURE_MEMORY |
165 | 1.37M | if (secure_mem_initialized) |
166 | | /* CRYPTO_secure_malloc() zeroes allocations when it is implemented */ |
167 | 0 | return CRYPTO_secure_malloc(num, file, line); |
168 | 1.37M | #endif |
169 | 1.37M | return CRYPTO_zalloc(num, file, line); |
170 | 1.37M | } |
171 | | |
172 | | void CRYPTO_secure_free(void *ptr, const char *file, int line) |
173 | 82.3k | { |
174 | 82.3k | #ifndef OPENSSL_NO_SECURE_MEMORY |
175 | 82.3k | size_t actual_size; |
176 | | |
177 | 82.3k | if (ptr == NULL) |
178 | 2.60k | return; |
179 | 79.7k | if (!CRYPTO_secure_allocated(ptr)) { |
180 | 79.7k | CRYPTO_free(ptr, file, line); |
181 | 79.7k | return; |
182 | 79.7k | } |
183 | 0 | if (!CRYPTO_THREAD_write_lock(sec_malloc_lock)) |
184 | 0 | return; |
185 | 0 | actual_size = sh_actual_size(ptr); |
186 | 0 | CLEAR(ptr, actual_size); |
187 | 0 | secure_mem_used -= actual_size; |
188 | 0 | sh_free(ptr); |
189 | 0 | CRYPTO_THREAD_unlock(sec_malloc_lock); |
190 | | #else |
191 | | CRYPTO_free(ptr, file, line); |
192 | | #endif /* OPENSSL_NO_SECURE_MEMORY */ |
193 | 0 | } |
194 | | |
195 | | void CRYPTO_secure_clear_free(void *ptr, size_t num, |
196 | | const char *file, int line) |
197 | 2.19M | { |
198 | 2.19M | #ifndef OPENSSL_NO_SECURE_MEMORY |
199 | 2.19M | size_t actual_size; |
200 | | |
201 | 2.19M | if (ptr == NULL) |
202 | 145k | return; |
203 | 2.04M | if (!CRYPTO_secure_allocated(ptr)) { |
204 | 2.04M | OPENSSL_cleanse(ptr, num); |
205 | 2.04M | CRYPTO_free(ptr, file, line); |
206 | 2.04M | return; |
207 | 2.04M | } |
208 | 0 | if (!CRYPTO_THREAD_write_lock(sec_malloc_lock)) |
209 | 0 | return; |
210 | 0 | actual_size = sh_actual_size(ptr); |
211 | 0 | CLEAR(ptr, actual_size); |
212 | 0 | secure_mem_used -= actual_size; |
213 | 0 | sh_free(ptr); |
214 | 0 | CRYPTO_THREAD_unlock(sec_malloc_lock); |
215 | | #else |
216 | | if (ptr == NULL) |
217 | | return; |
218 | | OPENSSL_cleanse(ptr, num); |
219 | | CRYPTO_free(ptr, file, line); |
220 | | #endif /* OPENSSL_NO_SECURE_MEMORY */ |
221 | 0 | } |
222 | | |
223 | | int CRYPTO_secure_allocated(const void *ptr) |
224 | 2.42M | { |
225 | 2.42M | #ifndef OPENSSL_NO_SECURE_MEMORY |
226 | 2.42M | if (!secure_mem_initialized) |
227 | 2.42M | return 0; |
228 | | /* |
229 | | * Only read accesses to the arena take place in sh_allocated() and this |
230 | | * is only changed by the sh_init() and sh_done() calls which are not |
231 | | * locked. Hence, it is safe to make this check without a lock too. |
232 | | */ |
233 | 0 | return sh_allocated(ptr); |
234 | | #else |
235 | | return 0; |
236 | | #endif /* OPENSSL_NO_SECURE_MEMORY */ |
237 | 2.42M | } |
238 | | |
239 | | size_t CRYPTO_secure_used(void) |
240 | 0 | { |
241 | 0 | size_t ret = 0; |
242 | |
|
243 | 0 | #ifndef OPENSSL_NO_SECURE_MEMORY |
244 | 0 | if (!CRYPTO_THREAD_read_lock(sec_malloc_lock)) |
245 | 0 | return 0; |
246 | | |
247 | 0 | ret = secure_mem_used; |
248 | |
|
249 | 0 | CRYPTO_THREAD_unlock(sec_malloc_lock); |
250 | 0 | #endif /* OPENSSL_NO_SECURE_MEMORY */ |
251 | 0 | return ret; |
252 | 0 | } |
253 | | |
254 | | size_t CRYPTO_secure_actual_size(void *ptr) |
255 | 0 | { |
256 | 0 | #ifndef OPENSSL_NO_SECURE_MEMORY |
257 | 0 | size_t actual_size; |
258 | |
|
259 | 0 | if (!CRYPTO_THREAD_write_lock(sec_malloc_lock)) |
260 | 0 | return 0; |
261 | 0 | actual_size = sh_actual_size(ptr); |
262 | 0 | CRYPTO_THREAD_unlock(sec_malloc_lock); |
263 | 0 | return actual_size; |
264 | | #else |
265 | | return 0; |
266 | | #endif |
267 | 0 | } |
268 | | |
269 | | /* |
270 | | * SECURE HEAP IMPLEMENTATION |
271 | | */ |
272 | | #ifndef OPENSSL_NO_SECURE_MEMORY |
273 | | |
274 | | |
275 | | /* |
276 | | * The implementation provided here uses a fixed-sized mmap() heap, |
277 | | * which is locked into memory, not written to core files, and protected |
278 | | * on either side by an unmapped page, which will catch pointer overruns |
279 | | * (or underruns) and an attempt to read data out of the secure heap. |
280 | | * Free'd memory is zero'd or otherwise cleansed. |
281 | | * |
282 | | * This is a pretty standard buddy allocator. We keep areas in a multiple |
283 | | * of "sh.minsize" units. The freelist and bitmaps are kept separately, |
284 | | * so all (and only) data is kept in the mmap'd heap. |
285 | | * |
286 | | * This code assumes eight-bit bytes. The numbers 3 and 7 are all over the |
287 | | * place. |
288 | | */ |
289 | | |
290 | 0 | #define ONE ((size_t)1) |
291 | | |
292 | 0 | # define TESTBIT(t, b) (t[(b) >> 3] & (ONE << ((b) & 7))) |
293 | 0 | # define SETBIT(t, b) (t[(b) >> 3] |= (ONE << ((b) & 7))) |
294 | 0 | # define CLEARBIT(t, b) (t[(b) >> 3] &= (0xFF & ~(ONE << ((b) & 7)))) |
295 | | |
296 | | #define WITHIN_ARENA(p) \ |
297 | 0 | ((char*)(p) >= sh.arena && (char*)(p) < &sh.arena[sh.arena_size]) |
298 | | #define WITHIN_FREELIST(p) \ |
299 | | ((char*)(p) >= (char*)sh.freelist && (char*)(p) < (char*)&sh.freelist[sh.freelist_size]) |
300 | | |
301 | | |
302 | | typedef struct sh_list_st |
303 | | { |
304 | | struct sh_list_st *next; |
305 | | struct sh_list_st **p_next; |
306 | | } SH_LIST; |
307 | | |
308 | | typedef struct sh_st |
309 | | { |
310 | | char* map_result; |
311 | | size_t map_size; |
312 | | char *arena; |
313 | | size_t arena_size; |
314 | | char **freelist; |
315 | | ossl_ssize_t freelist_size; |
316 | | size_t minsize; |
317 | | unsigned char *bittable; |
318 | | unsigned char *bitmalloc; |
319 | | size_t bittable_size; /* size in bits */ |
320 | | } SH; |
321 | | |
322 | | static SH sh; |
323 | | |
324 | | static size_t sh_getlist(char *ptr) |
325 | 0 | { |
326 | 0 | ossl_ssize_t list = sh.freelist_size - 1; |
327 | 0 | size_t bit = (sh.arena_size + ptr - sh.arena) / sh.minsize; |
328 | |
|
329 | 0 | for (; bit; bit >>= 1, list--) { |
330 | 0 | if (TESTBIT(sh.bittable, bit)) |
331 | 0 | break; |
332 | 0 | OPENSSL_assert((bit & 1) == 0); |
333 | 0 | } |
334 | |
|
335 | 0 | return list; |
336 | 0 | } |
337 | | |
338 | | |
339 | | static int sh_testbit(char *ptr, int list, unsigned char *table) |
340 | 0 | { |
341 | 0 | size_t bit; |
342 | |
|
343 | 0 | OPENSSL_assert(list >= 0 && list < sh.freelist_size); |
344 | 0 | OPENSSL_assert(((ptr - sh.arena) & ((sh.arena_size >> list) - 1)) == 0); |
345 | 0 | bit = (ONE << list) + ((ptr - sh.arena) / (sh.arena_size >> list)); |
346 | 0 | OPENSSL_assert(bit > 0 && bit < sh.bittable_size); |
347 | 0 | return TESTBIT(table, bit); |
348 | 0 | } |
349 | | |
350 | | static void sh_clearbit(char *ptr, int list, unsigned char *table) |
351 | 0 | { |
352 | 0 | size_t bit; |
353 | |
|
354 | 0 | OPENSSL_assert(list >= 0 && list < sh.freelist_size); |
355 | 0 | OPENSSL_assert(((ptr - sh.arena) & ((sh.arena_size >> list) - 1)) == 0); |
356 | 0 | bit = (ONE << list) + ((ptr - sh.arena) / (sh.arena_size >> list)); |
357 | 0 | OPENSSL_assert(bit > 0 && bit < sh.bittable_size); |
358 | 0 | OPENSSL_assert(TESTBIT(table, bit)); |
359 | 0 | CLEARBIT(table, bit); |
360 | 0 | } |
361 | | |
362 | | static void sh_setbit(char *ptr, int list, unsigned char *table) |
363 | 0 | { |
364 | 0 | size_t bit; |
365 | |
|
366 | 0 | OPENSSL_assert(list >= 0 && list < sh.freelist_size); |
367 | 0 | OPENSSL_assert(((ptr - sh.arena) & ((sh.arena_size >> list) - 1)) == 0); |
368 | 0 | bit = (ONE << list) + ((ptr - sh.arena) / (sh.arena_size >> list)); |
369 | 0 | OPENSSL_assert(bit > 0 && bit < sh.bittable_size); |
370 | 0 | OPENSSL_assert(!TESTBIT(table, bit)); |
371 | 0 | SETBIT(table, bit); |
372 | 0 | } |
373 | | |
374 | | static void sh_add_to_list(char **list, char *ptr) |
375 | 0 | { |
376 | 0 | SH_LIST *temp; |
377 | |
|
378 | 0 | OPENSSL_assert(WITHIN_FREELIST(list)); |
379 | 0 | OPENSSL_assert(WITHIN_ARENA(ptr)); |
380 | |
|
381 | 0 | temp = (SH_LIST *)ptr; |
382 | 0 | temp->next = *(SH_LIST **)list; |
383 | 0 | OPENSSL_assert(temp->next == NULL || WITHIN_ARENA(temp->next)); |
384 | 0 | temp->p_next = (SH_LIST **)list; |
385 | |
|
386 | 0 | if (temp->next != NULL) { |
387 | 0 | OPENSSL_assert((char **)temp->next->p_next == list); |
388 | 0 | temp->next->p_next = &(temp->next); |
389 | 0 | } |
390 | |
|
391 | 0 | *list = ptr; |
392 | 0 | } |
393 | | |
394 | | static void sh_remove_from_list(char *ptr) |
395 | 0 | { |
396 | 0 | SH_LIST *temp, *temp2; |
397 | |
|
398 | 0 | temp = (SH_LIST *)ptr; |
399 | 0 | if (temp->next != NULL) |
400 | 0 | temp->next->p_next = temp->p_next; |
401 | 0 | *temp->p_next = temp->next; |
402 | 0 | if (temp->next == NULL) |
403 | 0 | return; |
404 | | |
405 | 0 | temp2 = temp->next; |
406 | 0 | OPENSSL_assert(WITHIN_FREELIST(temp2->p_next) || WITHIN_ARENA(temp2->p_next)); |
407 | 0 | } |
408 | | |
409 | | |
410 | | static int sh_init(size_t size, size_t minsize) |
411 | 0 | { |
412 | 0 | int ret; |
413 | 0 | size_t i; |
414 | 0 | size_t pgsize; |
415 | 0 | size_t aligned; |
416 | | #if defined(_WIN32) |
417 | | DWORD flOldProtect; |
418 | | SYSTEM_INFO systemInfo; |
419 | | #endif |
420 | |
|
421 | 0 | memset(&sh, 0, sizeof(sh)); |
422 | | |
423 | | /* make sure size is a powers of 2 */ |
424 | 0 | OPENSSL_assert(size > 0); |
425 | 0 | OPENSSL_assert((size & (size - 1)) == 0); |
426 | 0 | if (size == 0 || (size & (size - 1)) != 0) |
427 | 0 | goto err; |
428 | | |
429 | 0 | if (minsize <= sizeof(SH_LIST)) { |
430 | 0 | OPENSSL_assert(sizeof(SH_LIST) <= 65536); |
431 | | /* |
432 | | * Compute the minimum possible allocation size. |
433 | | * This must be a power of 2 and at least as large as the SH_LIST |
434 | | * structure. |
435 | | */ |
436 | 0 | minsize = sizeof(SH_LIST) - 1; |
437 | 0 | minsize |= minsize >> 1; |
438 | 0 | minsize |= minsize >> 2; |
439 | 0 | if (sizeof(SH_LIST) > 16) |
440 | 0 | minsize |= minsize >> 4; |
441 | 0 | if (sizeof(SH_LIST) > 256) |
442 | 0 | minsize |= minsize >> 8; |
443 | 0 | minsize++; |
444 | 0 | } else { |
445 | | /* make sure minsize is a powers of 2 */ |
446 | 0 | OPENSSL_assert((minsize & (minsize - 1)) == 0); |
447 | 0 | if ((minsize & (minsize - 1)) != 0) |
448 | 0 | goto err; |
449 | 0 | } |
450 | | |
451 | 0 | sh.arena_size = size; |
452 | 0 | sh.minsize = minsize; |
453 | 0 | sh.bittable_size = (sh.arena_size / sh.minsize) * 2; |
454 | | |
455 | | /* Prevent allocations of size 0 later on */ |
456 | 0 | if (sh.bittable_size >> 3 == 0) |
457 | 0 | goto err; |
458 | | |
459 | 0 | sh.freelist_size = -1; |
460 | 0 | for (i = sh.bittable_size; i; i >>= 1) |
461 | 0 | sh.freelist_size++; |
462 | |
|
463 | 0 | sh.freelist = OPENSSL_zalloc(sh.freelist_size * sizeof(char *)); |
464 | 0 | OPENSSL_assert(sh.freelist != NULL); |
465 | 0 | if (sh.freelist == NULL) |
466 | 0 | goto err; |
467 | | |
468 | 0 | sh.bittable = OPENSSL_zalloc(sh.bittable_size >> 3); |
469 | 0 | OPENSSL_assert(sh.bittable != NULL); |
470 | 0 | if (sh.bittable == NULL) |
471 | 0 | goto err; |
472 | | |
473 | 0 | sh.bitmalloc = OPENSSL_zalloc(sh.bittable_size >> 3); |
474 | 0 | OPENSSL_assert(sh.bitmalloc != NULL); |
475 | 0 | if (sh.bitmalloc == NULL) |
476 | 0 | goto err; |
477 | | |
478 | | /* Allocate space for heap, and two extra pages as guards */ |
479 | 0 | #if defined(_SC_PAGE_SIZE) || defined (_SC_PAGESIZE) |
480 | 0 | { |
481 | 0 | # if defined(_SC_PAGE_SIZE) |
482 | 0 | long tmppgsize = sysconf(_SC_PAGE_SIZE); |
483 | | # else |
484 | | long tmppgsize = sysconf(_SC_PAGESIZE); |
485 | | # endif |
486 | 0 | if (tmppgsize < 1) |
487 | 0 | pgsize = PAGE_SIZE; |
488 | 0 | else |
489 | 0 | pgsize = (size_t)tmppgsize; |
490 | 0 | } |
491 | | #elif defined(_WIN32) |
492 | | GetSystemInfo(&systemInfo); |
493 | | pgsize = (size_t)systemInfo.dwPageSize; |
494 | | #else |
495 | | pgsize = PAGE_SIZE; |
496 | | #endif |
497 | 0 | sh.map_size = pgsize + sh.arena_size + pgsize; |
498 | |
|
499 | 0 | #if !defined(_WIN32) |
500 | 0 | # ifdef MAP_ANON |
501 | 0 | sh.map_result = mmap(NULL, sh.map_size, |
502 | 0 | PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE|MAP_CONCEAL, -1, 0); |
503 | | # else |
504 | | { |
505 | | int fd; |
506 | | |
507 | | sh.map_result = MAP_FAILED; |
508 | | if ((fd = open("/dev/zero", O_RDWR)) >= 0) { |
509 | | sh.map_result = mmap(NULL, sh.map_size, |
510 | | PROT_READ|PROT_WRITE, MAP_PRIVATE, fd, 0); |
511 | | close(fd); |
512 | | } |
513 | | } |
514 | | # endif |
515 | 0 | if (sh.map_result == MAP_FAILED) |
516 | 0 | goto err; |
517 | | #else |
518 | | sh.map_result = VirtualAlloc(NULL, sh.map_size, MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE); |
519 | | |
520 | | if (sh.map_result == NULL) |
521 | | goto err; |
522 | | #endif |
523 | | |
524 | 0 | sh.arena = (char *)(sh.map_result + pgsize); |
525 | 0 | sh_setbit(sh.arena, 0, sh.bittable); |
526 | 0 | sh_add_to_list(&sh.freelist[0], sh.arena); |
527 | | |
528 | | /* Now try to add guard pages and lock into memory. */ |
529 | 0 | ret = 1; |
530 | |
|
531 | 0 | #if !defined(_WIN32) |
532 | | /* Starting guard is already aligned from mmap. */ |
533 | 0 | if (mprotect(sh.map_result, pgsize, PROT_NONE) < 0) |
534 | 0 | ret = 2; |
535 | | #else |
536 | | if (VirtualProtect(sh.map_result, pgsize, PAGE_NOACCESS, &flOldProtect) == FALSE) |
537 | | ret = 2; |
538 | | #endif |
539 | | |
540 | | /* Ending guard page - need to round up to page boundary */ |
541 | 0 | aligned = (pgsize + sh.arena_size + (pgsize - 1)) & ~(pgsize - 1); |
542 | 0 | #if !defined(_WIN32) |
543 | 0 | if (mprotect(sh.map_result + aligned, pgsize, PROT_NONE) < 0) |
544 | 0 | ret = 2; |
545 | | #else |
546 | | if (VirtualProtect(sh.map_result + aligned, pgsize, PAGE_NOACCESS, &flOldProtect) == FALSE) |
547 | | ret = 2; |
548 | | #endif |
549 | |
|
550 | 0 | #if defined(OPENSSL_SYS_LINUX) && defined(MLOCK_ONFAULT) && defined(SYS_mlock2) |
551 | 0 | if (syscall(SYS_mlock2, sh.arena, sh.arena_size, MLOCK_ONFAULT) < 0) { |
552 | 0 | if (errno == ENOSYS) { |
553 | 0 | if (mlock(sh.arena, sh.arena_size) < 0) |
554 | 0 | ret = 2; |
555 | 0 | } else { |
556 | 0 | ret = 2; |
557 | 0 | } |
558 | 0 | } |
559 | | #elif defined(_WIN32) |
560 | | if (VirtualLock(sh.arena, sh.arena_size) == FALSE) |
561 | | ret = 2; |
562 | | #else |
563 | | if (mlock(sh.arena, sh.arena_size) < 0) |
564 | | ret = 2; |
565 | | #endif |
566 | 0 | #ifdef MADV_DONTDUMP |
567 | 0 | if (madvise(sh.arena, sh.arena_size, MADV_DONTDUMP) < 0) |
568 | 0 | ret = 2; |
569 | 0 | #endif |
570 | |
|
571 | 0 | return ret; |
572 | | |
573 | 0 | err: |
574 | 0 | sh_done(); |
575 | 0 | return 0; |
576 | 0 | } |
577 | | |
578 | | static void sh_done(void) |
579 | 133 | { |
580 | 133 | OPENSSL_free(sh.freelist); |
581 | 133 | OPENSSL_free(sh.bittable); |
582 | 133 | OPENSSL_free(sh.bitmalloc); |
583 | 133 | #if !defined(_WIN32) |
584 | 133 | if (sh.map_result != MAP_FAILED && sh.map_size) |
585 | 0 | munmap(sh.map_result, sh.map_size); |
586 | | #else |
587 | | if (sh.map_result != NULL && sh.map_size) |
588 | | VirtualFree(sh.map_result, 0, MEM_RELEASE); |
589 | | #endif |
590 | 133 | memset(&sh, 0, sizeof(sh)); |
591 | 133 | } |
592 | | |
593 | | static int sh_allocated(const char *ptr) |
594 | 0 | { |
595 | 0 | return WITHIN_ARENA(ptr) ? 1 : 0; |
596 | 0 | } |
597 | | |
598 | | static char *sh_find_my_buddy(char *ptr, int list) |
599 | 0 | { |
600 | 0 | size_t bit; |
601 | 0 | char *chunk = NULL; |
602 | |
|
603 | 0 | bit = (ONE << list) + (ptr - sh.arena) / (sh.arena_size >> list); |
604 | 0 | bit ^= 1; |
605 | |
|
606 | 0 | if (TESTBIT(sh.bittable, bit) && !TESTBIT(sh.bitmalloc, bit)) |
607 | 0 | chunk = sh.arena + ((bit & ((ONE << list) - 1)) * (sh.arena_size >> list)); |
608 | |
|
609 | 0 | return chunk; |
610 | 0 | } |
611 | | |
612 | | static void *sh_malloc(size_t size) |
613 | 0 | { |
614 | 0 | ossl_ssize_t list, slist; |
615 | 0 | size_t i; |
616 | 0 | char *chunk; |
617 | |
|
618 | 0 | if (size > sh.arena_size) |
619 | 0 | return NULL; |
620 | | |
621 | 0 | list = sh.freelist_size - 1; |
622 | 0 | for (i = sh.minsize; i < size; i <<= 1) |
623 | 0 | list--; |
624 | 0 | if (list < 0) |
625 | 0 | return NULL; |
626 | | |
627 | | /* try to find a larger entry to split */ |
628 | 0 | for (slist = list; slist >= 0; slist--) |
629 | 0 | if (sh.freelist[slist] != NULL) |
630 | 0 | break; |
631 | 0 | if (slist < 0) |
632 | 0 | return NULL; |
633 | | |
634 | | /* split larger entry */ |
635 | 0 | while (slist != list) { |
636 | 0 | char *temp = sh.freelist[slist]; |
637 | | |
638 | | /* remove from bigger list */ |
639 | 0 | OPENSSL_assert(!sh_testbit(temp, slist, sh.bitmalloc)); |
640 | 0 | sh_clearbit(temp, slist, sh.bittable); |
641 | 0 | sh_remove_from_list(temp); |
642 | 0 | OPENSSL_assert(temp != sh.freelist[slist]); |
643 | | |
644 | | /* done with bigger list */ |
645 | 0 | slist++; |
646 | | |
647 | | /* add to smaller list */ |
648 | 0 | OPENSSL_assert(!sh_testbit(temp, slist, sh.bitmalloc)); |
649 | 0 | sh_setbit(temp, slist, sh.bittable); |
650 | 0 | sh_add_to_list(&sh.freelist[slist], temp); |
651 | 0 | OPENSSL_assert(sh.freelist[slist] == temp); |
652 | | |
653 | | /* split in 2 */ |
654 | 0 | temp += sh.arena_size >> slist; |
655 | 0 | OPENSSL_assert(!sh_testbit(temp, slist, sh.bitmalloc)); |
656 | 0 | sh_setbit(temp, slist, sh.bittable); |
657 | 0 | sh_add_to_list(&sh.freelist[slist], temp); |
658 | 0 | OPENSSL_assert(sh.freelist[slist] == temp); |
659 | |
|
660 | 0 | OPENSSL_assert(temp-(sh.arena_size >> slist) == sh_find_my_buddy(temp, slist)); |
661 | 0 | } |
662 | | |
663 | | /* peel off memory to hand back */ |
664 | 0 | chunk = sh.freelist[list]; |
665 | 0 | OPENSSL_assert(sh_testbit(chunk, list, sh.bittable)); |
666 | 0 | sh_setbit(chunk, list, sh.bitmalloc); |
667 | 0 | sh_remove_from_list(chunk); |
668 | |
|
669 | 0 | OPENSSL_assert(WITHIN_ARENA(chunk)); |
670 | | |
671 | | /* zero the free list header as a precaution against information leakage */ |
672 | 0 | memset(chunk, 0, sizeof(SH_LIST)); |
673 | |
|
674 | 0 | return chunk; |
675 | 0 | } |
676 | | |
677 | | static void sh_free(void *ptr) |
678 | 0 | { |
679 | 0 | size_t list; |
680 | 0 | void *buddy; |
681 | |
|
682 | 0 | if (ptr == NULL) |
683 | 0 | return; |
684 | 0 | OPENSSL_assert(WITHIN_ARENA(ptr)); |
685 | 0 | if (!WITHIN_ARENA(ptr)) |
686 | 0 | return; |
687 | | |
688 | 0 | list = sh_getlist(ptr); |
689 | 0 | OPENSSL_assert(sh_testbit(ptr, list, sh.bittable)); |
690 | 0 | sh_clearbit(ptr, list, sh.bitmalloc); |
691 | 0 | sh_add_to_list(&sh.freelist[list], ptr); |
692 | | |
693 | | /* Try to coalesce two adjacent free areas. */ |
694 | 0 | while ((buddy = sh_find_my_buddy(ptr, list)) != NULL) { |
695 | 0 | OPENSSL_assert(ptr == sh_find_my_buddy(buddy, list)); |
696 | 0 | OPENSSL_assert(ptr != NULL); |
697 | 0 | OPENSSL_assert(!sh_testbit(ptr, list, sh.bitmalloc)); |
698 | 0 | sh_clearbit(ptr, list, sh.bittable); |
699 | 0 | sh_remove_from_list(ptr); |
700 | 0 | OPENSSL_assert(!sh_testbit(ptr, list, sh.bitmalloc)); |
701 | 0 | sh_clearbit(buddy, list, sh.bittable); |
702 | 0 | sh_remove_from_list(buddy); |
703 | |
|
704 | 0 | list--; |
705 | | |
706 | | /* Zero the higher addressed block's free list pointers */ |
707 | 0 | memset(ptr > buddy ? ptr : buddy, 0, sizeof(SH_LIST)); |
708 | 0 | if (ptr > buddy) |
709 | 0 | ptr = buddy; |
710 | |
|
711 | 0 | OPENSSL_assert(!sh_testbit(ptr, list, sh.bitmalloc)); |
712 | 0 | sh_setbit(ptr, list, sh.bittable); |
713 | 0 | sh_add_to_list(&sh.freelist[list], ptr); |
714 | 0 | OPENSSL_assert(sh.freelist[list] == ptr); |
715 | 0 | } |
716 | 0 | } |
717 | | |
718 | | static size_t sh_actual_size(char *ptr) |
719 | 0 | { |
720 | 0 | int list; |
721 | |
|
722 | 0 | OPENSSL_assert(WITHIN_ARENA(ptr)); |
723 | 0 | if (!WITHIN_ARENA(ptr)) |
724 | 0 | return 0; |
725 | 0 | list = sh_getlist(ptr); |
726 | 0 | OPENSSL_assert(sh_testbit(ptr, list, sh.bittable)); |
727 | 0 | return sh.arena_size / (ONE << list); |
728 | 0 | } |
729 | | #endif /* OPENSSL_NO_SECURE_MEMORY */ |