/src/openssl30/crypto/modes/ctr128.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright 2008-2021 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * |
4 | | * Licensed under the Apache License 2.0 (the "License"). You may not use |
5 | | * this file except in compliance with the License. You can obtain a copy |
6 | | * in the file LICENSE in the source distribution or at |
7 | | * https://www.openssl.org/source/license.html |
8 | | */ |
9 | | |
10 | | #include <string.h> |
11 | | #include <openssl/crypto.h> |
12 | | #include "internal/endian.h" |
13 | | #include "crypto/modes.h" |
14 | | |
15 | | #if defined(__GNUC__) && !defined(STRICT_ALIGNMENT) |
16 | | typedef size_t size_t_aX __attribute((__aligned__(1))); |
17 | | #else |
18 | | typedef size_t size_t_aX; |
19 | | #endif |
20 | | |
21 | | /* |
22 | | * NOTE: the IV/counter CTR mode is big-endian. The code itself is |
23 | | * endian-neutral. |
24 | | */ |
25 | | |
26 | | /* increment counter (128-bit int) by 1 */ |
27 | | static void ctr128_inc(unsigned char *counter) |
28 | 0 | { |
29 | 0 | u32 n = 16, c = 1; |
30 | |
|
31 | 0 | do { |
32 | 0 | --n; |
33 | 0 | c += counter[n]; |
34 | 0 | counter[n] = (u8)c; |
35 | 0 | c >>= 8; |
36 | 0 | } while (n); |
37 | 0 | } |
38 | | |
39 | | #if !defined(OPENSSL_SMALL_FOOTPRINT) |
40 | | static void ctr128_inc_aligned(unsigned char *counter) |
41 | 0 | { |
42 | 0 | size_t *data, c, d, n; |
43 | 0 | DECLARE_IS_ENDIAN; |
44 | |
|
45 | 0 | if (IS_LITTLE_ENDIAN || ((size_t)counter % sizeof(size_t)) != 0) { |
46 | 0 | ctr128_inc(counter); |
47 | 0 | return; |
48 | 0 | } |
49 | | |
50 | 0 | data = (size_t *)counter; |
51 | 0 | c = 1; |
52 | 0 | n = 16 / sizeof(size_t); |
53 | 0 | do { |
54 | 0 | --n; |
55 | 0 | d = data[n] += c; |
56 | | /* did addition carry? */ |
57 | 0 | c = ((d - c) & ~d) >> (sizeof(size_t) * 8 - 1); |
58 | 0 | } while (n); |
59 | 0 | } |
60 | | #endif |
61 | | |
62 | | /* |
63 | | * The input encrypted as though 128bit counter mode is being used. The |
64 | | * extra state information to record how much of the 128bit block we have |
65 | | * used is contained in *num, and the encrypted counter is kept in |
66 | | * ecount_buf. Both *num and ecount_buf must be initialised with zeros |
67 | | * before the first call to CRYPTO_ctr128_encrypt(). This algorithm assumes |
68 | | * that the counter is in the x lower bits of the IV (ivec), and that the |
69 | | * application has full control over overflow and the rest of the IV. This |
70 | | * implementation takes NO responsibility for checking that the counter |
71 | | * doesn't overflow into the rest of the IV when incremented. |
72 | | */ |
73 | | void CRYPTO_ctr128_encrypt(const unsigned char *in, unsigned char *out, |
74 | | size_t len, const void *key, |
75 | | unsigned char ivec[16], |
76 | | unsigned char ecount_buf[16], unsigned int *num, |
77 | | block128_f block) |
78 | 0 | { |
79 | 0 | unsigned int n; |
80 | 0 | size_t l = 0; |
81 | |
|
82 | 0 | n = *num; |
83 | |
|
84 | 0 | #if !defined(OPENSSL_SMALL_FOOTPRINT) |
85 | 0 | if (16 % sizeof(size_t) == 0) { /* always true actually */ |
86 | 0 | do { |
87 | 0 | while (n && len) { |
88 | 0 | *(out++) = *(in++) ^ ecount_buf[n]; |
89 | 0 | --len; |
90 | 0 | n = (n + 1) % 16; |
91 | 0 | } |
92 | |
|
93 | 0 | # if defined(STRICT_ALIGNMENT) |
94 | 0 | if (((size_t)in | (size_t)out | (size_t)ecount_buf) |
95 | 0 | % sizeof(size_t) != 0) |
96 | 0 | break; |
97 | 0 | # endif |
98 | 0 | while (len >= 16) { |
99 | 0 | (*block) (ivec, ecount_buf, key); |
100 | 0 | ctr128_inc_aligned(ivec); |
101 | 0 | for (n = 0; n < 16; n += sizeof(size_t)) |
102 | 0 | *(size_t_aX *)(out + n) = |
103 | 0 | *(size_t_aX *)(in + n) |
104 | 0 | ^ *(size_t_aX *)(ecount_buf + n); |
105 | 0 | len -= 16; |
106 | 0 | out += 16; |
107 | 0 | in += 16; |
108 | 0 | n = 0; |
109 | 0 | } |
110 | 0 | if (len) { |
111 | 0 | (*block) (ivec, ecount_buf, key); |
112 | 0 | ctr128_inc_aligned(ivec); |
113 | 0 | while (len--) { |
114 | 0 | out[n] = in[n] ^ ecount_buf[n]; |
115 | 0 | ++n; |
116 | 0 | } |
117 | 0 | } |
118 | 0 | *num = n; |
119 | 0 | return; |
120 | 0 | } while (0); |
121 | 0 | } |
122 | | /* the rest would be commonly eliminated by x86* compiler */ |
123 | 0 | #endif |
124 | 0 | while (l < len) { |
125 | 0 | if (n == 0) { |
126 | 0 | (*block) (ivec, ecount_buf, key); |
127 | 0 | ctr128_inc(ivec); |
128 | 0 | } |
129 | 0 | out[l] = in[l] ^ ecount_buf[n]; |
130 | 0 | ++l; |
131 | 0 | n = (n + 1) % 16; |
132 | 0 | } |
133 | |
|
134 | 0 | *num = n; |
135 | 0 | } |
136 | | |
137 | | /* increment upper 96 bits of 128-bit counter by 1 */ |
138 | | static void ctr96_inc(unsigned char *counter) |
139 | 0 | { |
140 | 0 | u32 n = 12, c = 1; |
141 | |
|
142 | 0 | do { |
143 | 0 | --n; |
144 | 0 | c += counter[n]; |
145 | 0 | counter[n] = (u8)c; |
146 | 0 | c >>= 8; |
147 | 0 | } while (n); |
148 | 0 | } |
149 | | |
150 | | void CRYPTO_ctr128_encrypt_ctr32(const unsigned char *in, unsigned char *out, |
151 | | size_t len, const void *key, |
152 | | unsigned char ivec[16], |
153 | | unsigned char ecount_buf[16], |
154 | | unsigned int *num, ctr128_f func) |
155 | 81.6k | { |
156 | 81.6k | unsigned int n, ctr32; |
157 | | |
158 | 81.6k | n = *num; |
159 | | |
160 | 81.6k | while (n && len) { |
161 | 0 | *(out++) = *(in++) ^ ecount_buf[n]; |
162 | 0 | --len; |
163 | 0 | n = (n + 1) % 16; |
164 | 0 | } |
165 | | |
166 | 81.6k | ctr32 = GETU32(ivec + 12); |
167 | 154k | while (len >= 16) { |
168 | 73.0k | size_t blocks = len / 16; |
169 | | /* |
170 | | * 1<<28 is just a not-so-small yet not-so-large number... |
171 | | * Below condition is practically never met, but it has to |
172 | | * be checked for code correctness. |
173 | | */ |
174 | 73.0k | if (sizeof(size_t) > sizeof(unsigned int) && blocks > (1U << 28)) |
175 | 0 | blocks = (1U << 28); |
176 | | /* |
177 | | * As (*func) operates on 32-bit counter, caller |
178 | | * has to handle overflow. 'if' below detects the |
179 | | * overflow, which is then handled by limiting the |
180 | | * amount of blocks to the exact overflow point... |
181 | | */ |
182 | 73.0k | ctr32 += (u32)blocks; |
183 | 73.0k | if (ctr32 < blocks) { |
184 | 0 | blocks -= ctr32; |
185 | 0 | ctr32 = 0; |
186 | 0 | } |
187 | 73.0k | (*func) (in, out, blocks, key, ivec); |
188 | | /* (*ctr) does not update ivec, caller does: */ |
189 | 73.0k | PUTU32(ivec + 12, ctr32); |
190 | | /* ... overflow was detected, propagate carry. */ |
191 | 73.0k | if (ctr32 == 0) |
192 | 0 | ctr96_inc(ivec); |
193 | 73.0k | blocks *= 16; |
194 | 73.0k | len -= blocks; |
195 | 73.0k | out += blocks; |
196 | 73.0k | in += blocks; |
197 | 73.0k | } |
198 | 81.6k | if (len) { |
199 | 79.5k | memset(ecount_buf, 0, 16); |
200 | 79.5k | (*func) (ecount_buf, ecount_buf, 1, key, ivec); |
201 | 79.5k | ++ctr32; |
202 | 79.5k | PUTU32(ivec + 12, ctr32); |
203 | 79.5k | if (ctr32 == 0) |
204 | 0 | ctr96_inc(ivec); |
205 | 831k | while (len--) { |
206 | 752k | out[n] = in[n] ^ ecount_buf[n]; |
207 | 752k | ++n; |
208 | 752k | } |
209 | 79.5k | } |
210 | | |
211 | 81.6k | *num = n; |
212 | 81.6k | } |