/src/openssl30/crypto/rsa/rsa_pk1.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright 1995-2021 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * |
4 | | * Licensed under the Apache License 2.0 (the "License"). You may not use |
5 | | * this file except in compliance with the License. You can obtain a copy |
6 | | * in the file LICENSE in the source distribution or at |
7 | | * https://www.openssl.org/source/license.html |
8 | | */ |
9 | | |
10 | | /* |
11 | | * RSA low level APIs are deprecated for public use, but still ok for |
12 | | * internal use. |
13 | | */ |
14 | | #include "internal/deprecated.h" |
15 | | |
16 | | #include "internal/constant_time.h" |
17 | | |
18 | | #include <stdio.h> |
19 | | #include <openssl/bn.h> |
20 | | #include <openssl/rsa.h> |
21 | | #include <openssl/rand.h> |
22 | | /* Just for the SSL_MAX_MASTER_KEY_LENGTH value */ |
23 | | #include <openssl/prov_ssl.h> |
24 | | #include "internal/cryptlib.h" |
25 | | #include "crypto/rsa.h" |
26 | | #include "rsa_local.h" |
27 | | |
28 | | int RSA_padding_add_PKCS1_type_1(unsigned char *to, int tlen, |
29 | | const unsigned char *from, int flen) |
30 | 2.37k | { |
31 | 2.37k | int j; |
32 | 2.37k | unsigned char *p; |
33 | | |
34 | 2.37k | if (flen > (tlen - RSA_PKCS1_PADDING_SIZE)) { |
35 | 0 | ERR_raise(ERR_LIB_RSA, RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE); |
36 | 0 | return 0; |
37 | 0 | } |
38 | | |
39 | 2.37k | p = (unsigned char *)to; |
40 | | |
41 | 2.37k | *(p++) = 0; |
42 | 2.37k | *(p++) = 1; /* Private Key BT (Block Type) */ |
43 | | |
44 | | /* pad out with 0xff data */ |
45 | 2.37k | j = tlen - 3 - flen; |
46 | 2.37k | memset(p, 0xff, j); |
47 | 2.37k | p += j; |
48 | 2.37k | *(p++) = '\0'; |
49 | 2.37k | memcpy(p, from, (unsigned int)flen); |
50 | 2.37k | return 1; |
51 | 2.37k | } |
52 | | |
53 | | int RSA_padding_check_PKCS1_type_1(unsigned char *to, int tlen, |
54 | | const unsigned char *from, int flen, |
55 | | int num) |
56 | 2.29k | { |
57 | 2.29k | int i, j; |
58 | 2.29k | const unsigned char *p; |
59 | | |
60 | 2.29k | p = from; |
61 | | |
62 | | /* |
63 | | * The format is |
64 | | * 00 || 01 || PS || 00 || D |
65 | | * PS - padding string, at least 8 bytes of FF |
66 | | * D - data. |
67 | | */ |
68 | | |
69 | 2.29k | if (num < RSA_PKCS1_PADDING_SIZE) |
70 | 11 | return -1; |
71 | | |
72 | | /* Accept inputs with and without the leading 0-byte. */ |
73 | 2.28k | if (num == flen) { |
74 | 2.28k | if ((*p++) != 0x00) { |
75 | 1.22k | ERR_raise(ERR_LIB_RSA, RSA_R_INVALID_PADDING); |
76 | 1.22k | return -1; |
77 | 1.22k | } |
78 | 1.06k | flen--; |
79 | 1.06k | } |
80 | | |
81 | 1.06k | if ((num != (flen + 1)) || (*(p++) != 0x01)) { |
82 | 232 | ERR_raise(ERR_LIB_RSA, RSA_R_BLOCK_TYPE_IS_NOT_01); |
83 | 232 | return -1; |
84 | 232 | } |
85 | | |
86 | | /* scan over padding data */ |
87 | 835 | j = flen - 1; /* one for type. */ |
88 | 119k | for (i = 0; i < j; i++) { |
89 | 119k | if (*p != 0xff) { /* should decrypt to 0xff */ |
90 | 823 | if (*p == 0) { |
91 | 723 | p++; |
92 | 723 | break; |
93 | 723 | } else { |
94 | 100 | ERR_raise(ERR_LIB_RSA, RSA_R_BAD_FIXED_HEADER_DECRYPT); |
95 | 100 | return -1; |
96 | 100 | } |
97 | 823 | } |
98 | 118k | p++; |
99 | 118k | } |
100 | | |
101 | 735 | if (i == j) { |
102 | 12 | ERR_raise(ERR_LIB_RSA, RSA_R_NULL_BEFORE_BLOCK_MISSING); |
103 | 12 | return -1; |
104 | 12 | } |
105 | | |
106 | 723 | if (i < 8) { |
107 | 40 | ERR_raise(ERR_LIB_RSA, RSA_R_BAD_PAD_BYTE_COUNT); |
108 | 40 | return -1; |
109 | 40 | } |
110 | 683 | i++; /* Skip over the '\0' */ |
111 | 683 | j -= i; |
112 | 683 | if (j > tlen) { |
113 | 0 | ERR_raise(ERR_LIB_RSA, RSA_R_DATA_TOO_LARGE); |
114 | 0 | return -1; |
115 | 0 | } |
116 | 683 | memcpy(to, p, (unsigned int)j); |
117 | | |
118 | 683 | return j; |
119 | 683 | } |
120 | | |
121 | | int ossl_rsa_padding_add_PKCS1_type_2_ex(OSSL_LIB_CTX *libctx, unsigned char *to, |
122 | | int tlen, const unsigned char *from, |
123 | | int flen) |
124 | 1.35k | { |
125 | 1.35k | int i, j; |
126 | 1.35k | unsigned char *p; |
127 | | |
128 | 1.35k | if (flen > (tlen - RSA_PKCS1_PADDING_SIZE)) { |
129 | 15 | ERR_raise(ERR_LIB_RSA, RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE); |
130 | 15 | return 0; |
131 | 1.33k | } else if (flen < 0) { |
132 | 0 | ERR_raise(ERR_LIB_RSA, RSA_R_INVALID_LENGTH); |
133 | 0 | return 0; |
134 | 0 | } |
135 | | |
136 | 1.33k | p = (unsigned char *)to; |
137 | | |
138 | 1.33k | *(p++) = 0; |
139 | 1.33k | *(p++) = 2; /* Public Key BT (Block Type) */ |
140 | | |
141 | | /* pad out with non-zero random data */ |
142 | 1.33k | j = tlen - 3 - flen; |
143 | | |
144 | 1.33k | if (RAND_bytes_ex(libctx, p, j, 0) <= 0) |
145 | 0 | return 0; |
146 | 101k | for (i = 0; i < j; i++) { |
147 | 99.6k | if (*p == '\0') |
148 | 0 | do { |
149 | 0 | if (RAND_bytes_ex(libctx, p, 1, 0) <= 0) |
150 | 0 | return 0; |
151 | 0 | } while (*p == '\0'); |
152 | 99.6k | p++; |
153 | 99.6k | } |
154 | | |
155 | 1.33k | *(p++) = '\0'; |
156 | | |
157 | 1.33k | memcpy(p, from, (unsigned int)flen); |
158 | 1.33k | return 1; |
159 | 1.33k | } |
160 | | |
161 | | int RSA_padding_add_PKCS1_type_2(unsigned char *to, int tlen, |
162 | | const unsigned char *from, int flen) |
163 | 0 | { |
164 | 0 | return ossl_rsa_padding_add_PKCS1_type_2_ex(NULL, to, tlen, from, flen); |
165 | 0 | } |
166 | | |
167 | | int RSA_padding_check_PKCS1_type_2(unsigned char *to, int tlen, |
168 | | const unsigned char *from, int flen, |
169 | | int num) |
170 | 0 | { |
171 | 0 | int i; |
172 | | /* |em| is the encoded message, zero-padded to exactly |num| bytes */ |
173 | 0 | unsigned char *em = NULL; |
174 | 0 | unsigned int good, found_zero_byte, mask; |
175 | 0 | int zero_index = 0, msg_index, mlen = -1; |
176 | |
|
177 | 0 | if (tlen <= 0 || flen <= 0) |
178 | 0 | return -1; |
179 | | |
180 | | /* |
181 | | * PKCS#1 v1.5 decryption. See "PKCS #1 v2.2: RSA Cryptography Standard", |
182 | | * section 7.2.2. |
183 | | */ |
184 | | |
185 | 0 | if (flen > num || num < RSA_PKCS1_PADDING_SIZE) { |
186 | 0 | ERR_raise(ERR_LIB_RSA, RSA_R_PKCS_DECODING_ERROR); |
187 | 0 | return -1; |
188 | 0 | } |
189 | | |
190 | 0 | em = OPENSSL_malloc(num); |
191 | 0 | if (em == NULL) { |
192 | 0 | ERR_raise(ERR_LIB_RSA, ERR_R_MALLOC_FAILURE); |
193 | 0 | return -1; |
194 | 0 | } |
195 | | /* |
196 | | * Caller is encouraged to pass zero-padded message created with |
197 | | * BN_bn2binpad. Trouble is that since we can't read out of |from|'s |
198 | | * bounds, it's impossible to have an invariant memory access pattern |
199 | | * in case |from| was not zero-padded in advance. |
200 | | */ |
201 | 0 | for (from += flen, em += num, i = 0; i < num; i++) { |
202 | 0 | mask = ~constant_time_is_zero(flen); |
203 | 0 | flen -= 1 & mask; |
204 | 0 | from -= 1 & mask; |
205 | 0 | *--em = *from & mask; |
206 | 0 | } |
207 | |
|
208 | 0 | good = constant_time_is_zero(em[0]); |
209 | 0 | good &= constant_time_eq(em[1], 2); |
210 | | |
211 | | /* scan over padding data */ |
212 | 0 | found_zero_byte = 0; |
213 | 0 | for (i = 2; i < num; i++) { |
214 | 0 | unsigned int equals0 = constant_time_is_zero(em[i]); |
215 | |
|
216 | 0 | zero_index = constant_time_select_int(~found_zero_byte & equals0, |
217 | 0 | i, zero_index); |
218 | 0 | found_zero_byte |= equals0; |
219 | 0 | } |
220 | | |
221 | | /* |
222 | | * PS must be at least 8 bytes long, and it starts two bytes into |em|. |
223 | | * If we never found a 0-byte, then |zero_index| is 0 and the check |
224 | | * also fails. |
225 | | */ |
226 | 0 | good &= constant_time_ge(zero_index, 2 + 8); |
227 | | |
228 | | /* |
229 | | * Skip the zero byte. This is incorrect if we never found a zero-byte |
230 | | * but in this case we also do not copy the message out. |
231 | | */ |
232 | 0 | msg_index = zero_index + 1; |
233 | 0 | mlen = num - msg_index; |
234 | | |
235 | | /* |
236 | | * For good measure, do this check in constant time as well. |
237 | | */ |
238 | 0 | good &= constant_time_ge(tlen, mlen); |
239 | | |
240 | | /* |
241 | | * Move the result in-place by |num|-RSA_PKCS1_PADDING_SIZE-|mlen| bytes to the left. |
242 | | * Then if |good| move |mlen| bytes from |em|+RSA_PKCS1_PADDING_SIZE to |to|. |
243 | | * Otherwise leave |to| unchanged. |
244 | | * Copy the memory back in a way that does not reveal the size of |
245 | | * the data being copied via a timing side channel. This requires copying |
246 | | * parts of the buffer multiple times based on the bits set in the real |
247 | | * length. Clear bits do a non-copy with identical access pattern. |
248 | | * The loop below has overall complexity of O(N*log(N)). |
249 | | */ |
250 | 0 | tlen = constant_time_select_int(constant_time_lt(num - RSA_PKCS1_PADDING_SIZE, tlen), |
251 | 0 | num - RSA_PKCS1_PADDING_SIZE, tlen); |
252 | 0 | for (msg_index = 1; msg_index < num - RSA_PKCS1_PADDING_SIZE; msg_index <<= 1) { |
253 | 0 | mask = ~constant_time_eq(msg_index & (num - RSA_PKCS1_PADDING_SIZE - mlen), 0); |
254 | 0 | for (i = RSA_PKCS1_PADDING_SIZE; i < num - msg_index; i++) |
255 | 0 | em[i] = constant_time_select_8(mask, em[i + msg_index], em[i]); |
256 | 0 | } |
257 | 0 | for (i = 0; i < tlen; i++) { |
258 | 0 | mask = good & constant_time_lt(i, mlen); |
259 | 0 | to[i] = constant_time_select_8(mask, em[i + RSA_PKCS1_PADDING_SIZE], to[i]); |
260 | 0 | } |
261 | |
|
262 | 0 | OPENSSL_clear_free(em, num); |
263 | 0 | #ifndef FIPS_MODULE |
264 | | /* |
265 | | * This trick doesn't work in the FIPS provider because libcrypto manages |
266 | | * the error stack. Instead we opt not to put an error on the stack at all |
267 | | * in case of padding failure in the FIPS provider. |
268 | | */ |
269 | 0 | ERR_raise(ERR_LIB_RSA, RSA_R_PKCS_DECODING_ERROR); |
270 | 0 | err_clear_last_constant_time(1 & good); |
271 | 0 | #endif |
272 | |
|
273 | 0 | return constant_time_select_int(good, mlen, -1); |
274 | 0 | } |
275 | | |
276 | | /* |
277 | | * ossl_rsa_padding_check_PKCS1_type_2_TLS() checks and removes the PKCS1 type 2 |
278 | | * padding from a decrypted RSA message in a TLS signature. The result is stored |
279 | | * in the buffer pointed to by |to| which should be |tlen| bytes long. |tlen| |
280 | | * must be at least SSL_MAX_MASTER_KEY_LENGTH. The original decrypted message |
281 | | * should be stored in |from| which must be |flen| bytes in length and padded |
282 | | * such that |flen == RSA_size()|. The TLS protocol version that the client |
283 | | * originally requested should be passed in |client_version|. Some buggy clients |
284 | | * can exist which use the negotiated version instead of the originally |
285 | | * requested protocol version. If it is necessary to work around this bug then |
286 | | * the negotiated protocol version can be passed in |alt_version|, otherwise 0 |
287 | | * should be passed. |
288 | | * |
289 | | * If the passed message is publicly invalid or some other error that can be |
290 | | * treated in non-constant time occurs then -1 is returned. On success the |
291 | | * length of the decrypted data is returned. This will always be |
292 | | * SSL_MAX_MASTER_KEY_LENGTH. If an error occurs that should be treated in |
293 | | * constant time then this function will appear to return successfully, but the |
294 | | * decrypted data will be randomly generated (as per |
295 | | * https://tools.ietf.org/html/rfc5246#section-7.4.7.1). |
296 | | */ |
297 | | int ossl_rsa_padding_check_PKCS1_type_2_TLS(OSSL_LIB_CTX *libctx, |
298 | | unsigned char *to, size_t tlen, |
299 | | const unsigned char *from, |
300 | | size_t flen, int client_version, |
301 | | int alt_version) |
302 | 5.57k | { |
303 | 5.57k | unsigned int i, good, version_good; |
304 | 5.57k | unsigned char rand_premaster_secret[SSL_MAX_MASTER_KEY_LENGTH]; |
305 | | |
306 | | /* |
307 | | * If these checks fail then either the message in publicly invalid, or |
308 | | * we've been called incorrectly. We can fail immediately. |
309 | | */ |
310 | 5.57k | if (flen < RSA_PKCS1_PADDING_SIZE + SSL_MAX_MASTER_KEY_LENGTH |
311 | 5.57k | || tlen < SSL_MAX_MASTER_KEY_LENGTH) { |
312 | 0 | ERR_raise(ERR_LIB_RSA, RSA_R_PKCS_DECODING_ERROR); |
313 | 0 | return -1; |
314 | 0 | } |
315 | | |
316 | | /* |
317 | | * Generate a random premaster secret to use in the event that we fail |
318 | | * to decrypt. |
319 | | */ |
320 | 5.57k | if (RAND_priv_bytes_ex(libctx, rand_premaster_secret, |
321 | 5.57k | sizeof(rand_premaster_secret), 0) <= 0) { |
322 | 0 | ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR); |
323 | 0 | return -1; |
324 | 0 | } |
325 | | |
326 | 5.57k | good = constant_time_is_zero(from[0]); |
327 | 5.57k | good &= constant_time_eq(from[1], 2); |
328 | | |
329 | | /* Check we have the expected padding data */ |
330 | 1.14M | for (i = 2; i < flen - SSL_MAX_MASTER_KEY_LENGTH - 1; i++) |
331 | 1.14M | good &= ~constant_time_is_zero_8(from[i]); |
332 | 5.57k | good &= constant_time_is_zero_8(from[flen - SSL_MAX_MASTER_KEY_LENGTH - 1]); |
333 | | |
334 | | |
335 | | /* |
336 | | * If the version in the decrypted pre-master secret is correct then |
337 | | * version_good will be 0xff, otherwise it'll be zero. The |
338 | | * Klima-Pokorny-Rosa extension of Bleichenbacher's attack |
339 | | * (http://eprint.iacr.org/2003/052/) exploits the version number |
340 | | * check as a "bad version oracle". Thus version checks are done in |
341 | | * constant time and are treated like any other decryption error. |
342 | | */ |
343 | 5.57k | version_good = |
344 | 5.57k | constant_time_eq(from[flen - SSL_MAX_MASTER_KEY_LENGTH], |
345 | 5.57k | (client_version >> 8) & 0xff); |
346 | 5.57k | version_good &= |
347 | 5.57k | constant_time_eq(from[flen - SSL_MAX_MASTER_KEY_LENGTH + 1], |
348 | 5.57k | client_version & 0xff); |
349 | | |
350 | | /* |
351 | | * The premaster secret must contain the same version number as the |
352 | | * ClientHello to detect version rollback attacks (strangely, the |
353 | | * protocol does not offer such protection for DH ciphersuites). |
354 | | * However, buggy clients exist that send the negotiated protocol |
355 | | * version instead if the server does not support the requested |
356 | | * protocol version. If SSL_OP_TLS_ROLLBACK_BUG is set then we tolerate |
357 | | * such clients. In that case alt_version will be non-zero and set to |
358 | | * the negotiated version. |
359 | | */ |
360 | 5.57k | if (alt_version > 0) { |
361 | 0 | unsigned int workaround_good; |
362 | |
|
363 | 0 | workaround_good = |
364 | 0 | constant_time_eq(from[flen - SSL_MAX_MASTER_KEY_LENGTH], |
365 | 0 | (alt_version >> 8) & 0xff); |
366 | 0 | workaround_good &= |
367 | 0 | constant_time_eq(from[flen - SSL_MAX_MASTER_KEY_LENGTH + 1], |
368 | 0 | alt_version & 0xff); |
369 | 0 | version_good |= workaround_good; |
370 | 0 | } |
371 | | |
372 | 5.57k | good &= version_good; |
373 | | |
374 | | |
375 | | /* |
376 | | * Now copy the result over to the to buffer if good, or random data if |
377 | | * not good. |
378 | | */ |
379 | 273k | for (i = 0; i < SSL_MAX_MASTER_KEY_LENGTH; i++) { |
380 | 267k | to[i] = |
381 | 267k | constant_time_select_8(good, |
382 | 267k | from[flen - SSL_MAX_MASTER_KEY_LENGTH + i], |
383 | 267k | rand_premaster_secret[i]); |
384 | 267k | } |
385 | | |
386 | | /* |
387 | | * We must not leak whether a decryption failure occurs because of |
388 | | * Bleichenbacher's attack on PKCS #1 v1.5 RSA padding (see RFC 2246, |
389 | | * section 7.4.7.1). The code follows that advice of the TLS RFC and |
390 | | * generates a random premaster secret for the case that the decrypt |
391 | | * fails. See https://tools.ietf.org/html/rfc5246#section-7.4.7.1 |
392 | | * So, whether we actually succeeded or not, return success. |
393 | | */ |
394 | | |
395 | 5.57k | return SSL_MAX_MASTER_KEY_LENGTH; |
396 | 5.57k | } |