/src/openssl30/crypto/rsa/rsa_sp800_56b_check.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright 2018-2024 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * Copyright (c) 2018-2019, Oracle and/or its affiliates. All rights reserved. |
4 | | * |
5 | | * Licensed under the Apache License 2.0 (the "License"). You may not use |
6 | | * this file except in compliance with the License. You can obtain a copy |
7 | | * in the file LICENSE in the source distribution or at |
8 | | * https://www.openssl.org/source/license.html |
9 | | */ |
10 | | |
11 | | #include <openssl/err.h> |
12 | | #include <openssl/bn.h> |
13 | | #include "crypto/bn.h" |
14 | | #include "rsa_local.h" |
15 | | |
16 | | /* |
17 | | * Part of the RSA keypair test. |
18 | | * Check the Chinese Remainder Theorem components are valid. |
19 | | * |
20 | | * See SP800-5bBr1 |
21 | | * 6.4.1.2.3: rsakpv1-crt Step 7 |
22 | | * 6.4.1.3.3: rsakpv2-crt Step 7 |
23 | | */ |
24 | | int ossl_rsa_check_crt_components(const RSA *rsa, BN_CTX *ctx) |
25 | 0 | { |
26 | 0 | int ret = 0; |
27 | 0 | BIGNUM *r = NULL, *p1 = NULL, *q1 = NULL; |
28 | | |
29 | | /* check if only some of the crt components are set */ |
30 | 0 | if (rsa->dmp1 == NULL || rsa->dmq1 == NULL || rsa->iqmp == NULL) { |
31 | 0 | if (rsa->dmp1 != NULL || rsa->dmq1 != NULL || rsa->iqmp != NULL) |
32 | 0 | return 0; |
33 | 0 | return 1; /* return ok if all components are NULL */ |
34 | 0 | } |
35 | | |
36 | 0 | BN_CTX_start(ctx); |
37 | 0 | r = BN_CTX_get(ctx); |
38 | 0 | p1 = BN_CTX_get(ctx); |
39 | 0 | q1 = BN_CTX_get(ctx); |
40 | 0 | if (q1 != NULL) { |
41 | 0 | BN_set_flags(r, BN_FLG_CONSTTIME); |
42 | 0 | BN_set_flags(p1, BN_FLG_CONSTTIME); |
43 | 0 | BN_set_flags(q1, BN_FLG_CONSTTIME); |
44 | 0 | ret = 1; |
45 | 0 | } else { |
46 | 0 | ret = 0; |
47 | 0 | } |
48 | 0 | ret = ret |
49 | | /* p1 = p -1 */ |
50 | 0 | && (BN_copy(p1, rsa->p) != NULL) |
51 | 0 | && BN_sub_word(p1, 1) |
52 | | /* q1 = q - 1 */ |
53 | 0 | && (BN_copy(q1, rsa->q) != NULL) |
54 | 0 | && BN_sub_word(q1, 1) |
55 | | /* (a) 1 < dP < (p – 1). */ |
56 | 0 | && (BN_cmp(rsa->dmp1, BN_value_one()) > 0) |
57 | 0 | && (BN_cmp(rsa->dmp1, p1) < 0) |
58 | | /* (b) 1 < dQ < (q - 1). */ |
59 | 0 | && (BN_cmp(rsa->dmq1, BN_value_one()) > 0) |
60 | 0 | && (BN_cmp(rsa->dmq1, q1) < 0) |
61 | | /* (c) 1 < qInv < p */ |
62 | 0 | && (BN_cmp(rsa->iqmp, BN_value_one()) > 0) |
63 | 0 | && (BN_cmp(rsa->iqmp, rsa->p) < 0) |
64 | | /* (d) 1 = (dP . e) mod (p - 1)*/ |
65 | 0 | && BN_mod_mul(r, rsa->dmp1, rsa->e, p1, ctx) |
66 | 0 | && BN_is_one(r) |
67 | | /* (e) 1 = (dQ . e) mod (q - 1) */ |
68 | 0 | && BN_mod_mul(r, rsa->dmq1, rsa->e, q1, ctx) |
69 | 0 | && BN_is_one(r) |
70 | | /* (f) 1 = (qInv . q) mod p */ |
71 | 0 | && BN_mod_mul(r, rsa->iqmp, rsa->q, rsa->p, ctx) |
72 | 0 | && BN_is_one(r); |
73 | 0 | BN_clear(r); |
74 | 0 | BN_clear(p1); |
75 | 0 | BN_clear(q1); |
76 | 0 | BN_CTX_end(ctx); |
77 | 0 | return ret; |
78 | 0 | } |
79 | | |
80 | | /* |
81 | | * Part of the RSA keypair test. |
82 | | * Check that (√2)(2^(nbits/2 - 1) <= p <= 2^(nbits/2) - 1 |
83 | | * |
84 | | * See SP800-5bBr1 6.4.1.2.1 Part 5 (c) & (g) - used for both p and q. |
85 | | * |
86 | | * (√2)(2^(nbits/2 - 1) = (√2/2)(2^(nbits/2)) |
87 | | */ |
88 | | int ossl_rsa_check_prime_factor_range(const BIGNUM *p, int nbits, BN_CTX *ctx) |
89 | 0 | { |
90 | 0 | int ret = 0; |
91 | 0 | BIGNUM *low; |
92 | 0 | int shift; |
93 | |
|
94 | 0 | nbits >>= 1; |
95 | 0 | shift = nbits - BN_num_bits(&ossl_bn_inv_sqrt_2); |
96 | | |
97 | | /* Upper bound check */ |
98 | 0 | if (BN_num_bits(p) != nbits) |
99 | 0 | return 0; |
100 | | |
101 | 0 | BN_CTX_start(ctx); |
102 | 0 | low = BN_CTX_get(ctx); |
103 | 0 | if (low == NULL) |
104 | 0 | goto err; |
105 | | |
106 | | /* set low = (√2)(2^(nbits/2 - 1) */ |
107 | 0 | if (!BN_copy(low, &ossl_bn_inv_sqrt_2)) |
108 | 0 | goto err; |
109 | | |
110 | 0 | if (shift >= 0) { |
111 | | /* |
112 | | * We don't have all the bits. ossl_bn_inv_sqrt_2 contains a rounded up |
113 | | * value, so there is a very low probability that we'll reject a valid |
114 | | * value. |
115 | | */ |
116 | 0 | if (!BN_lshift(low, low, shift)) |
117 | 0 | goto err; |
118 | 0 | } else if (!BN_rshift(low, low, -shift)) { |
119 | 0 | goto err; |
120 | 0 | } |
121 | 0 | if (BN_cmp(p, low) <= 0) |
122 | 0 | goto err; |
123 | 0 | ret = 1; |
124 | 0 | err: |
125 | 0 | BN_CTX_end(ctx); |
126 | 0 | return ret; |
127 | 0 | } |
128 | | |
129 | | /* |
130 | | * Part of the RSA keypair test. |
131 | | * Check the prime factor (for either p or q) |
132 | | * i.e: p is prime AND GCD(p - 1, e) = 1 |
133 | | * |
134 | | * See SP800-56Br1 6.4.1.2.3 Step 5 (a to d) & (e to h). |
135 | | */ |
136 | | int ossl_rsa_check_prime_factor(BIGNUM *p, BIGNUM *e, int nbits, BN_CTX *ctx) |
137 | 0 | { |
138 | 0 | int ret = 0; |
139 | 0 | BIGNUM *p1 = NULL, *gcd = NULL; |
140 | | |
141 | | /* (Steps 5 a-b) prime test */ |
142 | 0 | if (BN_check_prime(p, ctx, NULL) != 1 |
143 | | /* (Step 5c) (√2)(2^(nbits/2 - 1) <= p <= 2^(nbits/2 - 1) */ |
144 | 0 | || ossl_rsa_check_prime_factor_range(p, nbits, ctx) != 1) |
145 | 0 | return 0; |
146 | | |
147 | 0 | BN_CTX_start(ctx); |
148 | 0 | p1 = BN_CTX_get(ctx); |
149 | 0 | gcd = BN_CTX_get(ctx); |
150 | 0 | if (gcd != NULL) { |
151 | 0 | BN_set_flags(p1, BN_FLG_CONSTTIME); |
152 | 0 | BN_set_flags(gcd, BN_FLG_CONSTTIME); |
153 | 0 | ret = 1; |
154 | 0 | } else { |
155 | 0 | ret = 0; |
156 | 0 | } |
157 | 0 | ret = ret |
158 | | /* (Step 5d) GCD(p-1, e) = 1 */ |
159 | 0 | && (BN_copy(p1, p) != NULL) |
160 | 0 | && BN_sub_word(p1, 1) |
161 | 0 | && BN_gcd(gcd, p1, e, ctx) |
162 | 0 | && BN_is_one(gcd); |
163 | |
|
164 | 0 | BN_clear(p1); |
165 | 0 | BN_CTX_end(ctx); |
166 | 0 | return ret; |
167 | 0 | } |
168 | | |
169 | | /* |
170 | | * See SP800-56Br1 6.4.1.2.3 Part 6(a-b) Check the private exponent d |
171 | | * satisfies: |
172 | | * (Step 6a) 2^(nBit/2) < d < LCM(p–1, q–1). |
173 | | * (Step 6b) 1 = (d*e) mod LCM(p–1, q–1) |
174 | | */ |
175 | | int ossl_rsa_check_private_exponent(const RSA *rsa, int nbits, BN_CTX *ctx) |
176 | 0 | { |
177 | 0 | int ret; |
178 | 0 | BIGNUM *r, *p1, *q1, *lcm, *p1q1, *gcd; |
179 | | |
180 | | /* (Step 6a) 2^(nbits/2) < d */ |
181 | 0 | if (BN_num_bits(rsa->d) <= (nbits >> 1)) |
182 | 0 | return 0; |
183 | | |
184 | 0 | BN_CTX_start(ctx); |
185 | 0 | r = BN_CTX_get(ctx); |
186 | 0 | p1 = BN_CTX_get(ctx); |
187 | 0 | q1 = BN_CTX_get(ctx); |
188 | 0 | lcm = BN_CTX_get(ctx); |
189 | 0 | p1q1 = BN_CTX_get(ctx); |
190 | 0 | gcd = BN_CTX_get(ctx); |
191 | 0 | if (gcd != NULL) { |
192 | 0 | BN_set_flags(r, BN_FLG_CONSTTIME); |
193 | 0 | BN_set_flags(p1, BN_FLG_CONSTTIME); |
194 | 0 | BN_set_flags(q1, BN_FLG_CONSTTIME); |
195 | 0 | BN_set_flags(lcm, BN_FLG_CONSTTIME); |
196 | 0 | BN_set_flags(p1q1, BN_FLG_CONSTTIME); |
197 | 0 | BN_set_flags(gcd, BN_FLG_CONSTTIME); |
198 | 0 | ret = 1; |
199 | 0 | } else { |
200 | 0 | ret = 0; |
201 | 0 | } |
202 | 0 | ret = (ret |
203 | | /* LCM(p - 1, q - 1) */ |
204 | 0 | && (ossl_rsa_get_lcm(ctx, rsa->p, rsa->q, lcm, gcd, p1, q1, |
205 | 0 | p1q1) == 1) |
206 | | /* (Step 6a) d < LCM(p - 1, q - 1) */ |
207 | 0 | && (BN_cmp(rsa->d, lcm) < 0) |
208 | | /* (Step 6b) 1 = (e . d) mod LCM(p - 1, q - 1) */ |
209 | 0 | && BN_mod_mul(r, rsa->e, rsa->d, lcm, ctx) |
210 | 0 | && BN_is_one(r)); |
211 | |
|
212 | 0 | BN_clear(r); |
213 | 0 | BN_clear(p1); |
214 | 0 | BN_clear(q1); |
215 | 0 | BN_clear(lcm); |
216 | 0 | BN_clear(gcd); |
217 | 0 | BN_CTX_end(ctx); |
218 | 0 | return ret; |
219 | 0 | } |
220 | | |
221 | | /* |
222 | | * Check exponent is odd. |
223 | | * For FIPS also check the bit length is in the range [17..256] |
224 | | */ |
225 | | int ossl_rsa_check_public_exponent(const BIGNUM *e) |
226 | 698 | { |
227 | | #ifdef FIPS_MODULE |
228 | | int bitlen; |
229 | | |
230 | | bitlen = BN_num_bits(e); |
231 | | return (BN_is_odd(e) && bitlen > 16 && bitlen < 257); |
232 | | #else |
233 | | /* Allow small exponents larger than 1 for legacy purposes */ |
234 | 698 | return BN_is_odd(e) && BN_cmp(e, BN_value_one()) > 0; |
235 | 698 | #endif /* FIPS_MODULE */ |
236 | 698 | } |
237 | | |
238 | | /* |
239 | | * SP800-56Br1 6.4.1.2.1 (Step 5i): |p - q| > 2^(nbits/2 - 100) |
240 | | * i.e- numbits(p-q-1) > (nbits/2 -100) |
241 | | */ |
242 | | int ossl_rsa_check_pminusq_diff(BIGNUM *diff, const BIGNUM *p, const BIGNUM *q, |
243 | | int nbits) |
244 | 0 | { |
245 | 0 | int bitlen = (nbits >> 1) - 100; |
246 | |
|
247 | 0 | if (!BN_sub(diff, p, q)) |
248 | 0 | return -1; |
249 | 0 | BN_set_negative(diff, 0); |
250 | |
|
251 | 0 | if (BN_is_zero(diff)) |
252 | 0 | return 0; |
253 | | |
254 | 0 | if (!BN_sub_word(diff, 1)) |
255 | 0 | return -1; |
256 | 0 | return (BN_num_bits(diff) > bitlen); |
257 | 0 | } |
258 | | |
259 | | /* |
260 | | * return LCM(p-1, q-1) |
261 | | * |
262 | | * Caller should ensure that lcm, gcd, p1, q1, p1q1 are flagged with |
263 | | * BN_FLG_CONSTTIME. |
264 | | */ |
265 | | int ossl_rsa_get_lcm(BN_CTX *ctx, const BIGNUM *p, const BIGNUM *q, |
266 | | BIGNUM *lcm, BIGNUM *gcd, BIGNUM *p1, BIGNUM *q1, |
267 | | BIGNUM *p1q1) |
268 | 0 | { |
269 | 0 | return BN_sub(p1, p, BN_value_one()) /* p-1 */ |
270 | 0 | && BN_sub(q1, q, BN_value_one()) /* q-1 */ |
271 | 0 | && BN_mul(p1q1, p1, q1, ctx) /* (p-1)(q-1) */ |
272 | 0 | && BN_gcd(gcd, p1, q1, ctx) |
273 | 0 | && BN_div(lcm, NULL, p1q1, gcd, ctx); /* LCM((p-1, q-1)) */ |
274 | 0 | } |
275 | | |
276 | | /* |
277 | | * SP800-56Br1 6.4.2.2 Partial Public Key Validation for RSA refers to |
278 | | * SP800-89 5.3.3 (Explicit) Partial Public Key Validation for RSA |
279 | | * caveat is that the modulus must be as specified in SP800-56Br1 |
280 | | */ |
281 | | int ossl_rsa_sp800_56b_check_public(const RSA *rsa) |
282 | 1.33k | { |
283 | 1.33k | int ret = 0, status; |
284 | 1.33k | int nbits; |
285 | 1.33k | BN_CTX *ctx = NULL; |
286 | 1.33k | BIGNUM *gcd = NULL; |
287 | | |
288 | 1.33k | if (rsa->n == NULL || rsa->e == NULL) |
289 | 0 | return 0; |
290 | | |
291 | 1.33k | nbits = BN_num_bits(rsa->n); |
292 | 1.33k | if (nbits > OPENSSL_RSA_MAX_MODULUS_BITS) { |
293 | 89 | ERR_raise(ERR_LIB_RSA, RSA_R_MODULUS_TOO_LARGE); |
294 | 89 | return 0; |
295 | 89 | } |
296 | | |
297 | | #ifdef FIPS_MODULE |
298 | | /* |
299 | | * (Step a): modulus must be 2048 or 3072 (caveat from SP800-56Br1) |
300 | | * NOTE: changed to allow keys >= 2048 |
301 | | */ |
302 | | if (!ossl_rsa_sp800_56b_validate_strength(nbits, -1)) { |
303 | | ERR_raise(ERR_LIB_RSA, RSA_R_INVALID_KEY_LENGTH); |
304 | | return 0; |
305 | | } |
306 | | #endif |
307 | 1.25k | if (!BN_is_odd(rsa->n)) { |
308 | 552 | ERR_raise(ERR_LIB_RSA, RSA_R_INVALID_MODULUS); |
309 | 552 | return 0; |
310 | 552 | } |
311 | | /* (Steps b-c): 2^16 < e < 2^256, n and e must be odd */ |
312 | 698 | if (!ossl_rsa_check_public_exponent(rsa->e)) { |
313 | 98 | ERR_raise(ERR_LIB_RSA, RSA_R_PUB_EXPONENT_OUT_OF_RANGE); |
314 | 98 | return 0; |
315 | 98 | } |
316 | | |
317 | 600 | ctx = BN_CTX_new_ex(rsa->libctx); |
318 | 600 | gcd = BN_new(); |
319 | 600 | if (ctx == NULL || gcd == NULL) |
320 | 0 | goto err; |
321 | | |
322 | | /* (Steps d-f): |
323 | | * The modulus is composite, but not a power of a prime. |
324 | | * The modulus has no factors smaller than 752. |
325 | | */ |
326 | 600 | if (!BN_gcd(gcd, rsa->n, ossl_bn_get0_small_factors(), ctx) |
327 | 600 | || !BN_is_one(gcd)) { |
328 | 204 | ERR_raise(ERR_LIB_RSA, RSA_R_INVALID_MODULUS); |
329 | 204 | goto err; |
330 | 204 | } |
331 | | |
332 | | /* Highest number of MR rounds from FIPS 186-5 Section B.3 Table B.1 */ |
333 | 396 | ret = ossl_bn_miller_rabin_is_prime(rsa->n, 5, ctx, NULL, 1, &status); |
334 | | #ifdef FIPS_MODULE |
335 | | if (ret != 1 || status != BN_PRIMETEST_COMPOSITE_NOT_POWER_OF_PRIME) { |
336 | | #else |
337 | 396 | if (ret != 1 || (status != BN_PRIMETEST_COMPOSITE_NOT_POWER_OF_PRIME |
338 | 392 | && (nbits >= RSA_MIN_MODULUS_BITS |
339 | 112 | || status != BN_PRIMETEST_COMPOSITE_WITH_FACTOR))) { |
340 | 106 | #endif |
341 | 106 | ERR_raise(ERR_LIB_RSA, RSA_R_INVALID_MODULUS); |
342 | 106 | ret = 0; |
343 | 106 | goto err; |
344 | 106 | } |
345 | | |
346 | 290 | ret = 1; |
347 | 600 | err: |
348 | 600 | BN_free(gcd); |
349 | 600 | BN_CTX_free(ctx); |
350 | 600 | return ret; |
351 | 290 | } |
352 | | |
353 | | /* |
354 | | * Perform validation of the RSA private key to check that 0 < D < N. |
355 | | */ |
356 | | int ossl_rsa_sp800_56b_check_private(const RSA *rsa) |
357 | 1.02k | { |
358 | 1.02k | if (rsa->d == NULL || rsa->n == NULL) |
359 | 324 | return 0; |
360 | 699 | return BN_cmp(rsa->d, BN_value_one()) >= 0 && BN_cmp(rsa->d, rsa->n) < 0; |
361 | 1.02k | } |
362 | | |
363 | | /* |
364 | | * RSA key pair validation. |
365 | | * |
366 | | * SP800-56Br1. |
367 | | * 6.4.1.2 "RSAKPV1 Family: RSA Key - Pair Validation with a Fixed Exponent" |
368 | | * 6.4.1.3 "RSAKPV2 Family: RSA Key - Pair Validation with a Random Exponent" |
369 | | * |
370 | | * It uses: |
371 | | * 6.4.1.2.3 "rsakpv1 - crt" |
372 | | * 6.4.1.3.3 "rsakpv2 - crt" |
373 | | */ |
374 | | int ossl_rsa_sp800_56b_check_keypair(const RSA *rsa, const BIGNUM *efixed, |
375 | | int strength, int nbits) |
376 | 0 | { |
377 | 0 | int ret = 0; |
378 | 0 | BN_CTX *ctx = NULL; |
379 | 0 | BIGNUM *r = NULL; |
380 | |
|
381 | 0 | if (rsa->p == NULL |
382 | 0 | || rsa->q == NULL |
383 | 0 | || rsa->e == NULL |
384 | 0 | || rsa->d == NULL |
385 | 0 | || rsa->n == NULL) { |
386 | 0 | ERR_raise(ERR_LIB_RSA, RSA_R_INVALID_REQUEST); |
387 | 0 | return 0; |
388 | 0 | } |
389 | | /* (Step 1): Check Ranges */ |
390 | 0 | if (!ossl_rsa_sp800_56b_validate_strength(nbits, strength)) |
391 | 0 | return 0; |
392 | | |
393 | | /* If the exponent is known */ |
394 | 0 | if (efixed != NULL) { |
395 | | /* (2): Check fixed exponent matches public exponent. */ |
396 | 0 | if (BN_cmp(efixed, rsa->e) != 0) { |
397 | 0 | ERR_raise(ERR_LIB_RSA, RSA_R_INVALID_REQUEST); |
398 | 0 | return 0; |
399 | 0 | } |
400 | 0 | } |
401 | | /* (Step 1.c): e is odd integer 65537 <= e < 2^256 */ |
402 | 0 | if (!ossl_rsa_check_public_exponent(rsa->e)) { |
403 | | /* exponent out of range */ |
404 | 0 | ERR_raise(ERR_LIB_RSA, RSA_R_PUB_EXPONENT_OUT_OF_RANGE); |
405 | 0 | return 0; |
406 | 0 | } |
407 | | /* (Step 3.b): check the modulus */ |
408 | 0 | if (nbits != BN_num_bits(rsa->n)) { |
409 | 0 | ERR_raise(ERR_LIB_RSA, RSA_R_INVALID_KEYPAIR); |
410 | 0 | return 0; |
411 | 0 | } |
412 | | |
413 | 0 | ctx = BN_CTX_new_ex(rsa->libctx); |
414 | 0 | if (ctx == NULL) |
415 | 0 | return 0; |
416 | | |
417 | 0 | BN_CTX_start(ctx); |
418 | 0 | r = BN_CTX_get(ctx); |
419 | 0 | if (r == NULL || !BN_mul(r, rsa->p, rsa->q, ctx)) |
420 | 0 | goto err; |
421 | | /* (Step 4.c): Check n = pq */ |
422 | 0 | if (BN_cmp(rsa->n, r) != 0) { |
423 | 0 | ERR_raise(ERR_LIB_RSA, RSA_R_INVALID_REQUEST); |
424 | 0 | goto err; |
425 | 0 | } |
426 | | |
427 | | /* (Step 5): check prime factors p & q */ |
428 | 0 | ret = ossl_rsa_check_prime_factor(rsa->p, rsa->e, nbits, ctx) |
429 | 0 | && ossl_rsa_check_prime_factor(rsa->q, rsa->e, nbits, ctx) |
430 | 0 | && (ossl_rsa_check_pminusq_diff(r, rsa->p, rsa->q, nbits) > 0) |
431 | | /* (Step 6): Check the private exponent d */ |
432 | 0 | && ossl_rsa_check_private_exponent(rsa, nbits, ctx) |
433 | | /* 6.4.1.2.3 (Step 7): Check the CRT components */ |
434 | 0 | && ossl_rsa_check_crt_components(rsa, ctx); |
435 | 0 | if (ret != 1) |
436 | 0 | ERR_raise(ERR_LIB_RSA, RSA_R_INVALID_KEYPAIR); |
437 | |
|
438 | 0 | err: |
439 | 0 | BN_clear(r); |
440 | 0 | BN_CTX_end(ctx); |
441 | 0 | BN_CTX_free(ctx); |
442 | 0 | return ret; |
443 | 0 | } |