Coverage Report

Created: 2025-06-13 06:58

/src/openssl30/providers/implementations/kem/rsa_kem.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 2020-2022 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
/*
11
 * RSA low level APIs are deprecated for public use, but still ok for
12
 * internal use.
13
 */
14
#include "internal/deprecated.h"
15
#include "internal/nelem.h"
16
17
#include <openssl/crypto.h>
18
#include <openssl/evp.h>
19
#include <openssl/core_dispatch.h>
20
#include <openssl/core_names.h>
21
#include <openssl/rsa.h>
22
#include <openssl/params.h>
23
#include <openssl/err.h>
24
#include "crypto/rsa.h"
25
#include <openssl/proverr.h>
26
#include "prov/provider_ctx.h"
27
#include "prov/implementations.h"
28
#include "prov/securitycheck.h"
29
30
static OSSL_FUNC_kem_newctx_fn rsakem_newctx;
31
static OSSL_FUNC_kem_encapsulate_init_fn rsakem_encapsulate_init;
32
static OSSL_FUNC_kem_encapsulate_fn rsakem_generate;
33
static OSSL_FUNC_kem_decapsulate_init_fn rsakem_decapsulate_init;
34
static OSSL_FUNC_kem_decapsulate_fn rsakem_recover;
35
static OSSL_FUNC_kem_freectx_fn rsakem_freectx;
36
static OSSL_FUNC_kem_dupctx_fn rsakem_dupctx;
37
static OSSL_FUNC_kem_get_ctx_params_fn rsakem_get_ctx_params;
38
static OSSL_FUNC_kem_gettable_ctx_params_fn rsakem_gettable_ctx_params;
39
static OSSL_FUNC_kem_set_ctx_params_fn rsakem_set_ctx_params;
40
static OSSL_FUNC_kem_settable_ctx_params_fn rsakem_settable_ctx_params;
41
42
/*
43
 * Only the KEM for RSASVE as defined in SP800-56b r2 is implemented
44
 * currently.
45
 */
46
0
#define KEM_OP_UNDEFINED   -1
47
0
#define KEM_OP_RSASVE       0
48
49
/*
50
 * What's passed as an actual key is defined by the KEYMGMT interface.
51
 * We happen to know that our KEYMGMT simply passes RSA structures, so
52
 * we use that here too.
53
 */
54
typedef struct {
55
    OSSL_LIB_CTX *libctx;
56
    RSA *rsa;
57
    int op;
58
} PROV_RSA_CTX;
59
60
static const OSSL_ITEM rsakem_opname_id_map[] = {
61
    { KEM_OP_RSASVE, OSSL_KEM_PARAM_OPERATION_RSASVE },
62
};
63
64
static int name2id(const char *name, const OSSL_ITEM *map, size_t sz)
65
0
{
66
0
    size_t i;
67
68
0
    if (name == NULL)
69
0
        return -1;
70
71
0
    for (i = 0; i < sz; ++i) {
72
0
        if (OPENSSL_strcasecmp(map[i].ptr, name) == 0)
73
0
            return map[i].id;
74
0
    }
75
0
    return -1;
76
0
}
77
78
static int rsakem_opname2id(const char *name)
79
0
{
80
0
    return name2id(name, rsakem_opname_id_map, OSSL_NELEM(rsakem_opname_id_map));
81
0
}
82
83
static void *rsakem_newctx(void *provctx)
84
0
{
85
0
    PROV_RSA_CTX *prsactx =  OPENSSL_zalloc(sizeof(PROV_RSA_CTX));
86
87
0
    if (prsactx == NULL)
88
0
        return NULL;
89
0
    prsactx->libctx = PROV_LIBCTX_OF(provctx);
90
0
    prsactx->op = KEM_OP_UNDEFINED;
91
92
0
    return prsactx;
93
0
}
94
95
static void rsakem_freectx(void *vprsactx)
96
0
{
97
0
    PROV_RSA_CTX *prsactx = (PROV_RSA_CTX *)vprsactx;
98
99
0
    RSA_free(prsactx->rsa);
100
0
    OPENSSL_free(prsactx);
101
0
}
102
103
static void *rsakem_dupctx(void *vprsactx)
104
0
{
105
0
    PROV_RSA_CTX *srcctx = (PROV_RSA_CTX *)vprsactx;
106
0
    PROV_RSA_CTX *dstctx;
107
108
0
    dstctx = OPENSSL_zalloc(sizeof(*srcctx));
109
0
    if (dstctx == NULL)
110
0
        return NULL;
111
112
0
    *dstctx = *srcctx;
113
0
    if (dstctx->rsa != NULL && !RSA_up_ref(dstctx->rsa)) {
114
0
        OPENSSL_free(dstctx);
115
0
        return NULL;
116
0
    }
117
0
    return dstctx;
118
0
}
119
120
static int rsakem_init(void *vprsactx, void *vrsa,
121
                       const OSSL_PARAM params[], int operation)
122
0
{
123
0
    PROV_RSA_CTX *prsactx = (PROV_RSA_CTX *)vprsactx;
124
125
0
    if (prsactx == NULL || vrsa == NULL)
126
0
        return 0;
127
128
0
    if (!ossl_rsa_check_key(prsactx->libctx, vrsa, operation))
129
0
        return 0;
130
131
0
    if (!RSA_up_ref(vrsa))
132
0
        return 0;
133
0
    RSA_free(prsactx->rsa);
134
0
    prsactx->rsa = vrsa;
135
136
0
    return rsakem_set_ctx_params(prsactx, params);
137
0
}
138
139
static int rsakem_encapsulate_init(void *vprsactx, void *vrsa,
140
                                   const OSSL_PARAM params[])
141
0
{
142
0
    return rsakem_init(vprsactx, vrsa, params, EVP_PKEY_OP_ENCAPSULATE);
143
0
}
144
145
static int rsakem_decapsulate_init(void *vprsactx, void *vrsa,
146
                                   const OSSL_PARAM params[])
147
0
{
148
0
    return rsakem_init(vprsactx, vrsa, params, EVP_PKEY_OP_DECAPSULATE);
149
0
}
150
151
static int rsakem_get_ctx_params(void *vprsactx, OSSL_PARAM *params)
152
0
{
153
0
    PROV_RSA_CTX *ctx = (PROV_RSA_CTX *)vprsactx;
154
155
0
    return ctx != NULL;
156
0
}
157
158
static const OSSL_PARAM known_gettable_rsakem_ctx_params[] = {
159
    OSSL_PARAM_END
160
};
161
162
static const OSSL_PARAM *rsakem_gettable_ctx_params(ossl_unused void *vprsactx,
163
                                                    ossl_unused void *provctx)
164
0
{
165
0
    return known_gettable_rsakem_ctx_params;
166
0
}
167
168
static int rsakem_set_ctx_params(void *vprsactx, const OSSL_PARAM params[])
169
0
{
170
0
    PROV_RSA_CTX *prsactx = (PROV_RSA_CTX *)vprsactx;
171
0
    const OSSL_PARAM *p;
172
0
    int op;
173
174
0
    if (prsactx == NULL)
175
0
        return 0;
176
0
    if (params == NULL)
177
0
        return 1;
178
179
180
0
    p = OSSL_PARAM_locate_const(params, OSSL_KEM_PARAM_OPERATION);
181
0
    if (p != NULL) {
182
0
        if (p->data_type != OSSL_PARAM_UTF8_STRING)
183
0
            return 0;
184
0
        op = rsakem_opname2id(p->data);
185
0
        if (op < 0)
186
0
            return 0;
187
0
        prsactx->op = op;
188
0
    }
189
0
    return 1;
190
0
}
191
192
static const OSSL_PARAM known_settable_rsakem_ctx_params[] = {
193
    OSSL_PARAM_utf8_string(OSSL_KEM_PARAM_OPERATION, NULL, 0),
194
    OSSL_PARAM_END
195
};
196
197
static const OSSL_PARAM *rsakem_settable_ctx_params(ossl_unused void *vprsactx,
198
                                                    ossl_unused void *provctx)
199
5
{
200
5
    return known_settable_rsakem_ctx_params;
201
5
}
202
203
/*
204
 * NIST.SP.800-56Br2
205
 * 7.2.1.2 RSASVE Generate Operation (RSASVE.GENERATE).
206
 *
207
 * Generate a random in the range 1 < z < (n – 1)
208
 */
209
static int rsasve_gen_rand_bytes(RSA *rsa_pub,
210
                                 unsigned char *out, int outlen)
211
0
{
212
0
    int ret = 0;
213
0
    BN_CTX *bnctx;
214
0
    BIGNUM *z, *nminus3;
215
216
0
    bnctx = BN_CTX_secure_new_ex(ossl_rsa_get0_libctx(rsa_pub));
217
0
    if (bnctx == NULL)
218
0
        return 0;
219
220
    /*
221
     * Generate a random in the range 1 < z < (n – 1).
222
     * Since BN_priv_rand_range_ex() returns a value in range 0 <= r < max
223
     * We can achieve this by adding 2.. but then we need to subtract 3 from
224
     * the upper bound i.e: 2 + (0 <= r < (n - 3))
225
     */
226
0
    BN_CTX_start(bnctx);
227
0
    nminus3 = BN_CTX_get(bnctx);
228
0
    z = BN_CTX_get(bnctx);
229
0
    ret = (z != NULL
230
0
           && (BN_copy(nminus3, RSA_get0_n(rsa_pub)) != NULL)
231
0
           && BN_sub_word(nminus3, 3)
232
0
           && BN_priv_rand_range_ex(z, nminus3, 0, bnctx)
233
0
           && BN_add_word(z, 2)
234
0
           && (BN_bn2binpad(z, out, outlen) == outlen));
235
0
    BN_CTX_end(bnctx);
236
0
    BN_CTX_free(bnctx);
237
0
    return ret;
238
0
}
239
240
/*
241
 * NIST.SP.800-56Br2
242
 * 7.2.1.2 RSASVE Generate Operation (RSASVE.GENERATE).
243
 */
244
static int rsasve_generate(PROV_RSA_CTX *prsactx,
245
                           unsigned char *out, size_t *outlen,
246
                           unsigned char *secret, size_t *secretlen)
247
0
{
248
0
    int ret;
249
0
    size_t nlen;
250
251
    /* Step (1): nlen = Ceil(len(n)/8) */
252
0
    nlen = RSA_size(prsactx->rsa);
253
254
0
    if (out == NULL) {
255
0
        if (nlen == 0) {
256
0
            ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_KEY);
257
0
            return 0;
258
0
        }
259
0
        if (outlen == NULL && secretlen == NULL)
260
0
            return 0;
261
0
        if (outlen != NULL)
262
0
            *outlen = nlen;
263
0
        if (secretlen != NULL)
264
0
            *secretlen = nlen;
265
0
        return 1;
266
0
    }
267
268
    /*
269
     * If outlen is specified, then it must report the length
270
     * of the out buffer on input so that we can confirm
271
     * its size is sufficent for encapsulation
272
     */
273
0
    if (outlen != NULL && *outlen < nlen) {
274
0
        ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_OUTPUT_LENGTH);
275
0
        return 0;
276
0
    }
277
278
    /*
279
     * Step (2): Generate a random byte string z of nlen bytes where
280
     *            1 < z < n - 1
281
     */
282
0
    if (!rsasve_gen_rand_bytes(prsactx->rsa, secret, nlen))
283
0
        return 0;
284
285
    /* Step(3): out = RSAEP((n,e), z) */
286
0
    ret = RSA_public_encrypt(nlen, secret, out, prsactx->rsa, RSA_NO_PADDING);
287
0
    if (ret) {
288
0
        ret = 1;
289
0
        if (outlen != NULL)
290
0
            *outlen = nlen;
291
0
        if (secretlen != NULL)
292
0
            *secretlen = nlen;
293
0
    } else {
294
0
        OPENSSL_cleanse(secret, nlen);
295
0
    }
296
0
    return ret;
297
0
}
298
299
/**
300
 * rsasve_recover - Recovers a secret value from ciphertext using an RSA
301
 * private key.  Once, recovered, the secret value is considered to be a
302
 * shared secret.  Algorithm is preformed as per
303
 * NIST SP 800-56B Rev 2
304
 * 7.2.1.3 RSASVE Recovery Operation (RSASVE.RECOVER).
305
 *
306
 * This function performs RSA decryption using the private key from the
307
 * provided RSA context (`prsactx`). It takes the input ciphertext, decrypts
308
 * it, and writes the decrypted message to the output buffer.
309
 *
310
 * @prsactx:      The RSA context containing the private key.
311
 * @out:          The output buffer to store the decrypted message.
312
 * @outlen:       On input, the size of the output buffer. On successful
313
 *                completion, the actual length of the decrypted message.
314
 * @in:           The input buffer containing the ciphertext to be decrypted.
315
 * @inlen:        The length of the input ciphertext in bytes.
316
 *
317
 * Returns 1 on success, or 0 on error. In case of error, appropriate
318
 * error messages are raised using the ERR_raise function.
319
 */
320
static int rsasve_recover(PROV_RSA_CTX *prsactx,
321
                          unsigned char *out, size_t *outlen,
322
                          const unsigned char *in, size_t inlen)
323
0
{
324
0
    size_t nlen;
325
0
    int ret;
326
327
    /* Step (1): get the byte length of n */
328
0
    nlen = RSA_size(prsactx->rsa);
329
330
0
    if (out == NULL) {
331
0
        if (nlen == 0) {
332
0
            ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_KEY);
333
0
            return 0;
334
0
        }
335
0
        *outlen = nlen;
336
0
        return 1;
337
0
    }
338
339
    /*
340
     * Step (2): check the input ciphertext 'inlen' matches the nlen
341
     * and that outlen is at least nlen bytes
342
     */
343
0
    if (inlen != nlen) {
344
0
        ERR_raise(ERR_LIB_PROV, PROV_R_BAD_LENGTH);
345
0
        return 0;
346
0
    }
347
348
    /*
349
     * If outlen is specified, then it must report the length
350
     * of the out buffer, so that we can confirm that it is of
351
     * sufficient size to hold the output of decapsulation
352
     */
353
0
    if (outlen != NULL && *outlen < nlen) {
354
0
        ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_OUTPUT_LENGTH);
355
0
        return 0;
356
0
    }
357
358
    /* Step (3): out = RSADP((n,d), in) */
359
0
    ret = RSA_private_decrypt(inlen, in, out, prsactx->rsa, RSA_NO_PADDING);
360
0
    if (ret > 0 && outlen != NULL)
361
0
        *outlen = ret;
362
0
    return ret > 0;
363
0
}
364
365
static int rsakem_generate(void *vprsactx, unsigned char *out, size_t *outlen,
366
                           unsigned char *secret, size_t *secretlen)
367
0
{
368
0
    PROV_RSA_CTX *prsactx = (PROV_RSA_CTX *)vprsactx;
369
370
0
    switch (prsactx->op) {
371
0
        case KEM_OP_RSASVE:
372
0
            return rsasve_generate(prsactx, out, outlen, secret, secretlen);
373
0
        default:
374
0
            return -2;
375
0
    }
376
0
}
377
378
static int rsakem_recover(void *vprsactx, unsigned char *out, size_t *outlen,
379
                          const unsigned char *in, size_t inlen)
380
0
{
381
0
    PROV_RSA_CTX *prsactx = (PROV_RSA_CTX *)vprsactx;
382
383
0
    switch (prsactx->op) {
384
0
        case KEM_OP_RSASVE:
385
0
            return rsasve_recover(prsactx, out, outlen, in, inlen);
386
0
        default:
387
0
            return -2;
388
0
    }
389
0
}
390
391
const OSSL_DISPATCH ossl_rsa_asym_kem_functions[] = {
392
    { OSSL_FUNC_KEM_NEWCTX, (void (*)(void))rsakem_newctx },
393
    { OSSL_FUNC_KEM_ENCAPSULATE_INIT,
394
      (void (*)(void))rsakem_encapsulate_init },
395
    { OSSL_FUNC_KEM_ENCAPSULATE, (void (*)(void))rsakem_generate },
396
    { OSSL_FUNC_KEM_DECAPSULATE_INIT,
397
      (void (*)(void))rsakem_decapsulate_init },
398
    { OSSL_FUNC_KEM_DECAPSULATE, (void (*)(void))rsakem_recover },
399
    { OSSL_FUNC_KEM_FREECTX, (void (*)(void))rsakem_freectx },
400
    { OSSL_FUNC_KEM_DUPCTX, (void (*)(void))rsakem_dupctx },
401
    { OSSL_FUNC_KEM_GET_CTX_PARAMS,
402
      (void (*)(void))rsakem_get_ctx_params },
403
    { OSSL_FUNC_KEM_GETTABLE_CTX_PARAMS,
404
      (void (*)(void))rsakem_gettable_ctx_params },
405
    { OSSL_FUNC_KEM_SET_CTX_PARAMS,
406
      (void (*)(void))rsakem_set_ctx_params },
407
    { OSSL_FUNC_KEM_SETTABLE_CTX_PARAMS,
408
      (void (*)(void))rsakem_settable_ctx_params },
409
    { 0, NULL }
410
};