/src/openssl30/ssl/t1_lib.c
Line  | Count  | Source (jump to first uncovered line)  | 
1  |  | /*  | 
2  |  |  * Copyright 1995-2024 The OpenSSL Project Authors. All Rights Reserved.  | 
3  |  |  *  | 
4  |  |  * Licensed under the Apache License 2.0 (the "License").  You may not use  | 
5  |  |  * this file except in compliance with the License.  You can obtain a copy  | 
6  |  |  * in the file LICENSE in the source distribution or at  | 
7  |  |  * https://www.openssl.org/source/license.html  | 
8  |  |  */  | 
9  |  |  | 
10  |  | #include <stdio.h>  | 
11  |  | #include <stdlib.h>  | 
12  |  | #include <openssl/objects.h>  | 
13  |  | #include <openssl/evp.h>  | 
14  |  | #include <openssl/hmac.h>  | 
15  |  | #include <openssl/core_names.h>  | 
16  |  | #include <openssl/ocsp.h>  | 
17  |  | #include <openssl/conf.h>  | 
18  |  | #include <openssl/x509v3.h>  | 
19  |  | #include <openssl/dh.h>  | 
20  |  | #include <openssl/bn.h>  | 
21  |  | #include <openssl/provider.h>  | 
22  |  | #include <openssl/param_build.h>  | 
23  |  | #include "internal/nelem.h"  | 
24  |  | #include "internal/sizes.h"  | 
25  |  | #include "internal/tlsgroups.h"  | 
26  |  | #include "internal/cryptlib.h"  | 
27  |  | #include "ssl_local.h"  | 
28  |  | #include <openssl/ct.h>  | 
29  |  |  | 
30  |  | static const SIGALG_LOOKUP *find_sig_alg(SSL *s, X509 *x, EVP_PKEY *pkey);  | 
31  |  | static int tls12_sigalg_allowed(const SSL *s, int op, const SIGALG_LOOKUP *lu);  | 
32  |  |  | 
33  |  | SSL3_ENC_METHOD const TLSv1_enc_data = { | 
34  |  |     tls1_enc,  | 
35  |  |     tls1_mac,  | 
36  |  |     tls1_setup_key_block,  | 
37  |  |     tls1_generate_master_secret,  | 
38  |  |     tls1_change_cipher_state,  | 
39  |  |     tls1_final_finish_mac,  | 
40  |  |     TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,  | 
41  |  |     TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,  | 
42  |  |     tls1_alert_code,  | 
43  |  |     tls1_export_keying_material,  | 
44  |  |     0,  | 
45  |  |     ssl3_set_handshake_header,  | 
46  |  |     tls_close_construct_packet,  | 
47  |  |     ssl3_handshake_write  | 
48  |  | };  | 
49  |  |  | 
50  |  | SSL3_ENC_METHOD const TLSv1_1_enc_data = { | 
51  |  |     tls1_enc,  | 
52  |  |     tls1_mac,  | 
53  |  |     tls1_setup_key_block,  | 
54  |  |     tls1_generate_master_secret,  | 
55  |  |     tls1_change_cipher_state,  | 
56  |  |     tls1_final_finish_mac,  | 
57  |  |     TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,  | 
58  |  |     TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,  | 
59  |  |     tls1_alert_code,  | 
60  |  |     tls1_export_keying_material,  | 
61  |  |     SSL_ENC_FLAG_EXPLICIT_IV,  | 
62  |  |     ssl3_set_handshake_header,  | 
63  |  |     tls_close_construct_packet,  | 
64  |  |     ssl3_handshake_write  | 
65  |  | };  | 
66  |  |  | 
67  |  | SSL3_ENC_METHOD const TLSv1_2_enc_data = { | 
68  |  |     tls1_enc,  | 
69  |  |     tls1_mac,  | 
70  |  |     tls1_setup_key_block,  | 
71  |  |     tls1_generate_master_secret,  | 
72  |  |     tls1_change_cipher_state,  | 
73  |  |     tls1_final_finish_mac,  | 
74  |  |     TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,  | 
75  |  |     TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,  | 
76  |  |     tls1_alert_code,  | 
77  |  |     tls1_export_keying_material,  | 
78  |  |     SSL_ENC_FLAG_EXPLICIT_IV | SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF  | 
79  |  |         | SSL_ENC_FLAG_TLS1_2_CIPHERS,  | 
80  |  |     ssl3_set_handshake_header,  | 
81  |  |     tls_close_construct_packet,  | 
82  |  |     ssl3_handshake_write  | 
83  |  | };  | 
84  |  |  | 
85  |  | SSL3_ENC_METHOD const TLSv1_3_enc_data = { | 
86  |  |     tls13_enc,  | 
87  |  |     tls1_mac,  | 
88  |  |     tls13_setup_key_block,  | 
89  |  |     tls13_generate_master_secret,  | 
90  |  |     tls13_change_cipher_state,  | 
91  |  |     tls13_final_finish_mac,  | 
92  |  |     TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,  | 
93  |  |     TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,  | 
94  |  |     tls13_alert_code,  | 
95  |  |     tls13_export_keying_material,  | 
96  |  |     SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF,  | 
97  |  |     ssl3_set_handshake_header,  | 
98  |  |     tls_close_construct_packet,  | 
99  |  |     ssl3_handshake_write  | 
100  |  | };  | 
101  |  |  | 
102  |  | long tls1_default_timeout(void)  | 
103  | 71.9k  | { | 
104  |  |     /*  | 
105  |  |      * 2 hours, the 24 hours mentioned in the TLSv1 spec is way too long for  | 
106  |  |      * http, the cache would over fill  | 
107  |  |      */  | 
108  | 71.9k  |     return (60 * 60 * 2);  | 
109  | 71.9k  | }  | 
110  |  |  | 
111  |  | int tls1_new(SSL *s)  | 
112  | 71.8k  | { | 
113  | 71.8k  |     if (!ssl3_new(s))  | 
114  | 0  |         return 0;  | 
115  | 71.8k  |     if (!s->method->ssl_clear(s))  | 
116  | 0  |         return 0;  | 
117  |  |  | 
118  | 71.8k  |     return 1;  | 
119  | 71.8k  | }  | 
120  |  |  | 
121  |  | void tls1_free(SSL *s)  | 
122  | 20.0k  | { | 
123  | 20.0k  |     OPENSSL_free(s->ext.session_ticket);  | 
124  | 20.0k  |     ssl3_free(s);  | 
125  | 20.0k  | }  | 
126  |  |  | 
127  |  | int tls1_clear(SSL *s)  | 
128  | 97.8k  | { | 
129  | 97.8k  |     if (!ssl3_clear(s))  | 
130  | 0  |         return 0;  | 
131  |  |  | 
132  | 97.8k  |     if (s->method->version == TLS_ANY_VERSION)  | 
133  | 97.8k  |         s->version = TLS_MAX_VERSION_INTERNAL;  | 
134  | 0  |     else  | 
135  | 0  |         s->version = s->method->version;  | 
136  |  |  | 
137  | 97.8k  |     return 1;  | 
138  | 97.8k  | }  | 
139  |  |  | 
140  |  | /* Legacy NID to group_id mapping. Only works for groups we know about */  | 
141  |  | static struct { | 
142  |  |     int nid;  | 
143  |  |     uint16_t group_id;  | 
144  |  | } nid_to_group[] = { | 
145  |  |     {NID_sect163k1, OSSL_TLS_GROUP_ID_sect163k1}, | 
146  |  |     {NID_sect163r1, OSSL_TLS_GROUP_ID_sect163r1}, | 
147  |  |     {NID_sect163r2, OSSL_TLS_GROUP_ID_sect163r2}, | 
148  |  |     {NID_sect193r1, OSSL_TLS_GROUP_ID_sect193r1}, | 
149  |  |     {NID_sect193r2, OSSL_TLS_GROUP_ID_sect193r2}, | 
150  |  |     {NID_sect233k1, OSSL_TLS_GROUP_ID_sect233k1}, | 
151  |  |     {NID_sect233r1, OSSL_TLS_GROUP_ID_sect233r1}, | 
152  |  |     {NID_sect239k1, OSSL_TLS_GROUP_ID_sect239k1}, | 
153  |  |     {NID_sect283k1, OSSL_TLS_GROUP_ID_sect283k1}, | 
154  |  |     {NID_sect283r1, OSSL_TLS_GROUP_ID_sect283r1}, | 
155  |  |     {NID_sect409k1, OSSL_TLS_GROUP_ID_sect409k1}, | 
156  |  |     {NID_sect409r1, OSSL_TLS_GROUP_ID_sect409r1}, | 
157  |  |     {NID_sect571k1, OSSL_TLS_GROUP_ID_sect571k1}, | 
158  |  |     {NID_sect571r1, OSSL_TLS_GROUP_ID_sect571r1}, | 
159  |  |     {NID_secp160k1, OSSL_TLS_GROUP_ID_secp160k1}, | 
160  |  |     {NID_secp160r1, OSSL_TLS_GROUP_ID_secp160r1}, | 
161  |  |     {NID_secp160r2, OSSL_TLS_GROUP_ID_secp160r2}, | 
162  |  |     {NID_secp192k1, OSSL_TLS_GROUP_ID_secp192k1}, | 
163  |  |     {NID_X9_62_prime192v1, OSSL_TLS_GROUP_ID_secp192r1}, | 
164  |  |     {NID_secp224k1, OSSL_TLS_GROUP_ID_secp224k1}, | 
165  |  |     {NID_secp224r1, OSSL_TLS_GROUP_ID_secp224r1}, | 
166  |  |     {NID_secp256k1, OSSL_TLS_GROUP_ID_secp256k1}, | 
167  |  |     {NID_X9_62_prime256v1, OSSL_TLS_GROUP_ID_secp256r1}, | 
168  |  |     {NID_secp384r1, OSSL_TLS_GROUP_ID_secp384r1}, | 
169  |  |     {NID_secp521r1, OSSL_TLS_GROUP_ID_secp521r1}, | 
170  |  |     {NID_brainpoolP256r1, OSSL_TLS_GROUP_ID_brainpoolP256r1}, | 
171  |  |     {NID_brainpoolP384r1, OSSL_TLS_GROUP_ID_brainpoolP384r1}, | 
172  |  |     {NID_brainpoolP512r1, OSSL_TLS_GROUP_ID_brainpoolP512r1}, | 
173  |  |     {EVP_PKEY_X25519, OSSL_TLS_GROUP_ID_x25519}, | 
174  |  |     {EVP_PKEY_X448, OSSL_TLS_GROUP_ID_x448}, | 
175  |  |     {NID_id_tc26_gost_3410_2012_256_paramSetA, 0x0022}, | 
176  |  |     {NID_id_tc26_gost_3410_2012_256_paramSetB, 0x0023}, | 
177  |  |     {NID_id_tc26_gost_3410_2012_256_paramSetC, 0x0024}, | 
178  |  |     {NID_id_tc26_gost_3410_2012_256_paramSetD, 0x0025}, | 
179  |  |     {NID_id_tc26_gost_3410_2012_512_paramSetA, 0x0026}, | 
180  |  |     {NID_id_tc26_gost_3410_2012_512_paramSetB, 0x0027}, | 
181  |  |     {NID_id_tc26_gost_3410_2012_512_paramSetC, 0x0028}, | 
182  |  |     {NID_ffdhe2048, OSSL_TLS_GROUP_ID_ffdhe2048}, | 
183  |  |     {NID_ffdhe3072, OSSL_TLS_GROUP_ID_ffdhe3072}, | 
184  |  |     {NID_ffdhe4096, OSSL_TLS_GROUP_ID_ffdhe4096}, | 
185  |  |     {NID_ffdhe6144, OSSL_TLS_GROUP_ID_ffdhe6144}, | 
186  |  |     {NID_ffdhe8192, OSSL_TLS_GROUP_ID_ffdhe8192} | 
187  |  | };  | 
188  |  |  | 
189  |  | static const unsigned char ecformats_default[] = { | 
190  |  |     TLSEXT_ECPOINTFORMAT_uncompressed,  | 
191  |  |     TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime,  | 
192  |  |     TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2  | 
193  |  | };  | 
194  |  |  | 
195  |  | /* The default curves */  | 
196  |  | static const uint16_t supported_groups_default[] = { | 
197  |  |     29,                      /* X25519 (29) */  | 
198  |  |     23,                      /* secp256r1 (23) */  | 
199  |  |     30,                      /* X448 (30) */  | 
200  |  |     25,                      /* secp521r1 (25) */  | 
201  |  |     24,                      /* secp384r1 (24) */  | 
202  |  |     34,                      /* GC256A (34) */  | 
203  |  |     35,                      /* GC256B (35) */  | 
204  |  |     36,                      /* GC256C (36) */  | 
205  |  |     37,                      /* GC256D (37) */  | 
206  |  |     38,                      /* GC512A (38) */  | 
207  |  |     39,                      /* GC512B (39) */  | 
208  |  |     40,                      /* GC512C (40) */  | 
209  |  |     0x100,                   /* ffdhe2048 (0x100) */  | 
210  |  |     0x101,                   /* ffdhe3072 (0x101) */  | 
211  |  |     0x102,                   /* ffdhe4096 (0x102) */  | 
212  |  |     0x103,                   /* ffdhe6144 (0x103) */  | 
213  |  |     0x104,                   /* ffdhe8192 (0x104) */  | 
214  |  | };  | 
215  |  |  | 
216  |  | static const uint16_t suiteb_curves[] = { | 
217  |  |     TLSEXT_curve_P_256,  | 
218  |  |     TLSEXT_curve_P_384  | 
219  |  | };  | 
220  |  |  | 
221  |  | struct provider_group_data_st { | 
222  |  |     SSL_CTX *ctx;  | 
223  |  |     OSSL_PROVIDER *provider;  | 
224  |  | };  | 
225  |  |  | 
226  | 530k  | #define TLS_GROUP_LIST_MALLOC_BLOCK_SIZE        10  | 
227  |  | static OSSL_CALLBACK add_provider_groups;  | 
228  |  | static int add_provider_groups(const OSSL_PARAM params[], void *data)  | 
229  | 2.48M  | { | 
230  | 2.48M  |     struct provider_group_data_st *pgd = data;  | 
231  | 2.48M  |     SSL_CTX *ctx = pgd->ctx;  | 
232  | 2.48M  |     OSSL_PROVIDER *provider = pgd->provider;  | 
233  | 2.48M  |     const OSSL_PARAM *p;  | 
234  | 2.48M  |     TLS_GROUP_INFO *ginf = NULL;  | 
235  | 2.48M  |     EVP_KEYMGMT *keymgmt;  | 
236  | 2.48M  |     unsigned int gid;  | 
237  | 2.48M  |     unsigned int is_kem = 0;  | 
238  | 2.48M  |     int ret = 0;  | 
239  |  |  | 
240  | 2.48M  |     if (ctx->group_list_max_len == ctx->group_list_len) { | 
241  | 265k  |         TLS_GROUP_INFO *tmp = NULL;  | 
242  |  |  | 
243  | 265k  |         if (ctx->group_list_max_len == 0)  | 
244  | 48.2k  |             tmp = OPENSSL_malloc(sizeof(TLS_GROUP_INFO)  | 
245  | 265k  |                                  * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);  | 
246  | 216k  |         else  | 
247  | 216k  |             tmp = OPENSSL_realloc(ctx->group_list,  | 
248  | 265k  |                                   (ctx->group_list_max_len  | 
249  | 265k  |                                    + TLS_GROUP_LIST_MALLOC_BLOCK_SIZE)  | 
250  | 265k  |                                   * sizeof(TLS_GROUP_INFO));  | 
251  | 265k  |         if (tmp == NULL) { | 
252  | 0  |             ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);  | 
253  | 0  |             return 0;  | 
254  | 0  |         }  | 
255  | 265k  |         ctx->group_list = tmp;  | 
256  | 265k  |         memset(tmp + ctx->group_list_max_len,  | 
257  | 265k  |                0,  | 
258  | 265k  |                sizeof(TLS_GROUP_INFO) * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);  | 
259  | 265k  |         ctx->group_list_max_len += TLS_GROUP_LIST_MALLOC_BLOCK_SIZE;  | 
260  | 265k  |     }  | 
261  |  |  | 
262  | 2.48M  |     ginf = &ctx->group_list[ctx->group_list_len];  | 
263  |  |  | 
264  | 2.48M  |     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME);  | 
265  | 2.48M  |     if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) { | 
266  | 0  |         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);  | 
267  | 0  |         goto err;  | 
268  | 0  |     }  | 
269  | 2.48M  |     ginf->tlsname = OPENSSL_strdup(p->data);  | 
270  | 2.48M  |     if (ginf->tlsname == NULL) { | 
271  | 0  |         ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);  | 
272  | 0  |         goto err;  | 
273  | 0  |     }  | 
274  |  |  | 
275  | 2.48M  |     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME_INTERNAL);  | 
276  | 2.48M  |     if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) { | 
277  | 0  |         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);  | 
278  | 0  |         goto err;  | 
279  | 0  |     }  | 
280  | 2.48M  |     ginf->realname = OPENSSL_strdup(p->data);  | 
281  | 2.48M  |     if (ginf->realname == NULL) { | 
282  | 0  |         ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);  | 
283  | 0  |         goto err;  | 
284  | 0  |     }  | 
285  |  |  | 
286  | 2.48M  |     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ID);  | 
287  | 2.48M  |     if (p == NULL || !OSSL_PARAM_get_uint(p, &gid) || gid > UINT16_MAX) { | 
288  | 0  |         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);  | 
289  | 0  |         goto err;  | 
290  | 0  |     }  | 
291  | 2.48M  |     ginf->group_id = (uint16_t)gid;  | 
292  |  |  | 
293  | 2.48M  |     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ALG);  | 
294  | 2.48M  |     if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) { | 
295  | 0  |         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);  | 
296  | 0  |         goto err;  | 
297  | 0  |     }  | 
298  | 2.48M  |     ginf->algorithm = OPENSSL_strdup(p->data);  | 
299  | 2.48M  |     if (ginf->algorithm == NULL) { | 
300  | 0  |         ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);  | 
301  | 0  |         goto err;  | 
302  | 0  |     }  | 
303  |  |  | 
304  | 2.48M  |     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_SECURITY_BITS);  | 
305  | 2.48M  |     if (p == NULL || !OSSL_PARAM_get_uint(p, &ginf->secbits)) { | 
306  | 0  |         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);  | 
307  | 0  |         goto err;  | 
308  | 0  |     }  | 
309  |  |  | 
310  | 2.48M  |     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_IS_KEM);  | 
311  | 2.48M  |     if (p != NULL && (!OSSL_PARAM_get_uint(p, &is_kem) || is_kem > 1)) { | 
312  | 0  |         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);  | 
313  | 0  |         goto err;  | 
314  | 0  |     }  | 
315  | 2.48M  |     ginf->is_kem = 1 & is_kem;  | 
316  |  |  | 
317  | 2.48M  |     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_TLS);  | 
318  | 2.48M  |     if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mintls)) { | 
319  | 0  |         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);  | 
320  | 0  |         goto err;  | 
321  | 0  |     }  | 
322  |  |  | 
323  | 2.48M  |     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_TLS);  | 
324  | 2.48M  |     if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxtls)) { | 
325  | 0  |         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);  | 
326  | 0  |         goto err;  | 
327  | 0  |     }  | 
328  |  |  | 
329  | 2.48M  |     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_DTLS);  | 
330  | 2.48M  |     if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mindtls)) { | 
331  | 0  |         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);  | 
332  | 0  |         goto err;  | 
333  | 0  |     }  | 
334  |  |  | 
335  | 2.48M  |     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_DTLS);  | 
336  | 2.48M  |     if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxdtls)) { | 
337  | 0  |         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);  | 
338  | 0  |         goto err;  | 
339  | 0  |     }  | 
340  |  |     /*  | 
341  |  |      * Now check that the algorithm is actually usable for our property query  | 
342  |  |      * string. Regardless of the result we still return success because we have  | 
343  |  |      * successfully processed this group, even though we may decide not to use  | 
344  |  |      * it.  | 
345  |  |      */  | 
346  | 2.48M  |     ret = 1;  | 
347  | 2.48M  |     ERR_set_mark();  | 
348  | 2.48M  |     keymgmt = EVP_KEYMGMT_fetch(ctx->libctx, ginf->algorithm, ctx->propq);  | 
349  | 2.48M  |     if (keymgmt != NULL) { | 
350  |  |         /*  | 
351  |  |          * We have successfully fetched the algorithm - however if the provider  | 
352  |  |          * doesn't match this one then we ignore it.  | 
353  |  |          *  | 
354  |  |          * Note: We're cheating a little here. Technically if the same algorithm  | 
355  |  |          * is available from more than one provider then it is undefined which  | 
356  |  |          * implementation you will get back. Theoretically this could be  | 
357  |  |          * different every time...we assume here that you'll always get the  | 
358  |  |          * same one back if you repeat the exact same fetch. Is this a reasonable  | 
359  |  |          * assumption to make (in which case perhaps we should document this  | 
360  |  |          * behaviour)?  | 
361  |  |          */  | 
362  | 2.48M  |         if (EVP_KEYMGMT_get0_provider(keymgmt) == provider) { | 
363  |  |             /* We have a match - so we will use this group */  | 
364  | 2.48M  |             ctx->group_list_len++;  | 
365  | 2.48M  |             ginf = NULL;  | 
366  | 2.48M  |         }  | 
367  | 2.48M  |         EVP_KEYMGMT_free(keymgmt);  | 
368  | 2.48M  |     }  | 
369  | 2.48M  |     ERR_pop_to_mark();  | 
370  | 2.48M  |  err:  | 
371  | 2.48M  |     if (ginf != NULL) { | 
372  | 0  |         OPENSSL_free(ginf->tlsname);  | 
373  | 0  |         OPENSSL_free(ginf->realname);  | 
374  | 0  |         OPENSSL_free(ginf->algorithm);  | 
375  | 0  |         ginf->algorithm = ginf->tlsname = ginf->realname = NULL;  | 
376  | 0  |     }  | 
377  | 2.48M  |     return ret;  | 
378  | 2.48M  | }  | 
379  |  |  | 
380  |  | static int discover_provider_groups(OSSL_PROVIDER *provider, void *vctx)  | 
381  | 158k  | { | 
382  | 158k  |     struct provider_group_data_st pgd;  | 
383  |  |  | 
384  | 158k  |     pgd.ctx = vctx;  | 
385  | 158k  |     pgd.provider = provider;  | 
386  | 158k  |     return OSSL_PROVIDER_get_capabilities(provider, "TLS-GROUP",  | 
387  | 158k  |                                           add_provider_groups, &pgd);  | 
388  | 158k  | }  | 
389  |  |  | 
390  |  | int ssl_load_groups(SSL_CTX *ctx)  | 
391  | 48.2k  | { | 
392  | 48.2k  |     size_t i, j, num_deflt_grps = 0;  | 
393  | 48.2k  |     uint16_t tmp_supp_groups[OSSL_NELEM(supported_groups_default)];  | 
394  |  |  | 
395  | 48.2k  |     if (!OSSL_PROVIDER_do_all(ctx->libctx, discover_provider_groups, ctx))  | 
396  | 0  |         return 0;  | 
397  |  |  | 
398  | 868k  |     for (i = 0; i < OSSL_NELEM(supported_groups_default); i++) { | 
399  | 39.3M  |         for (j = 0; j < ctx->group_list_len; j++) { | 
400  | 38.9M  |             if (ctx->group_list[j].group_id == supported_groups_default[i]) { | 
401  | 482k  |                 tmp_supp_groups[num_deflt_grps++] = ctx->group_list[j].group_id;  | 
402  | 482k  |                 break;  | 
403  | 482k  |             }  | 
404  | 38.9M  |         }  | 
405  | 820k  |     }  | 
406  |  |  | 
407  | 48.2k  |     if (num_deflt_grps == 0)  | 
408  | 0  |         return 1;  | 
409  |  |  | 
410  | 48.2k  |     ctx->ext.supported_groups_default  | 
411  | 48.2k  |         = OPENSSL_malloc(sizeof(uint16_t) * num_deflt_grps);  | 
412  |  |  | 
413  | 48.2k  |     if (ctx->ext.supported_groups_default == NULL) { | 
414  | 0  |         ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);  | 
415  | 0  |         return 0;  | 
416  | 0  |     }  | 
417  |  |  | 
418  | 48.2k  |     memcpy(ctx->ext.supported_groups_default,  | 
419  | 48.2k  |            tmp_supp_groups,  | 
420  | 48.2k  |            num_deflt_grps * sizeof(tmp_supp_groups[0]));  | 
421  | 48.2k  |     ctx->ext.supported_groups_default_len = num_deflt_grps;  | 
422  |  |  | 
423  | 48.2k  |     return 1;  | 
424  | 48.2k  | }  | 
425  |  |  | 
426  |  | static uint16_t tls1_group_name2id(SSL_CTX *ctx, const char *name)  | 
427  | 248k  | { | 
428  | 248k  |     size_t i;  | 
429  |  |  | 
430  | 1.39M  |     for (i = 0; i < ctx->group_list_len; i++) { | 
431  | 1.39M  |         if (strcmp(ctx->group_list[i].tlsname, name) == 0  | 
432  | 1.39M  |                 || strcmp(ctx->group_list[i].realname, name) == 0)  | 
433  | 248k  |             return ctx->group_list[i].group_id;  | 
434  | 1.39M  |     }  | 
435  |  |  | 
436  | 0  |     return 0;  | 
437  | 248k  | }  | 
438  |  |  | 
439  |  | const TLS_GROUP_INFO *tls1_group_id_lookup(SSL_CTX *ctx, uint16_t group_id)  | 
440  | 1.57M  | { | 
441  | 1.57M  |     size_t i;  | 
442  |  |  | 
443  | 44.7M  |     for (i = 0; i < ctx->group_list_len; i++) { | 
444  | 44.7M  |         if (ctx->group_list[i].group_id == group_id)  | 
445  | 1.57M  |             return &ctx->group_list[i];  | 
446  | 44.7M  |     }  | 
447  |  |  | 
448  | 0  |     return NULL;  | 
449  | 1.57M  | }  | 
450  |  |  | 
451  |  | int tls1_group_id2nid(uint16_t group_id, int include_unknown)  | 
452  | 724k  | { | 
453  | 724k  |     size_t i;  | 
454  |  |  | 
455  | 724k  |     if (group_id == 0)  | 
456  | 0  |         return NID_undef;  | 
457  |  |  | 
458  |  |     /*  | 
459  |  |      * Return well known Group NIDs - for backwards compatibility. This won't  | 
460  |  |      * work for groups we don't know about.  | 
461  |  |      */  | 
462  | 23.3M  |     for (i = 0; i < OSSL_NELEM(nid_to_group); i++)  | 
463  | 23.3M  |     { | 
464  | 23.3M  |         if (nid_to_group[i].group_id == group_id)  | 
465  | 686k  |             return nid_to_group[i].nid;  | 
466  | 23.3M  |     }  | 
467  | 37.2k  |     if (!include_unknown)  | 
468  | 37.2k  |         return NID_undef;  | 
469  | 0  |     return TLSEXT_nid_unknown | (int)group_id;  | 
470  | 37.2k  | }  | 
471  |  |  | 
472  |  | uint16_t tls1_nid2group_id(int nid)  | 
473  | 13.7k  | { | 
474  | 13.7k  |     size_t i;  | 
475  |  |  | 
476  |  |     /*  | 
477  |  |      * Return well known Group ids - for backwards compatibility. This won't  | 
478  |  |      * work for groups we don't know about.  | 
479  |  |      */  | 
480  | 317k  |     for (i = 0; i < OSSL_NELEM(nid_to_group); i++)  | 
481  | 317k  |     { | 
482  | 317k  |         if (nid_to_group[i].nid == nid)  | 
483  | 13.7k  |             return nid_to_group[i].group_id;  | 
484  | 317k  |     }  | 
485  |  |  | 
486  | 4  |     return 0;  | 
487  | 13.7k  | }  | 
488  |  |  | 
489  |  | /*  | 
490  |  |  * Set *pgroups to the supported groups list and *pgroupslen to  | 
491  |  |  * the number of groups supported.  | 
492  |  |  */  | 
493  |  | void tls1_get_supported_groups(SSL *s, const uint16_t **pgroups,  | 
494  |  |                                size_t *pgroupslen)  | 
495  | 230k  | { | 
496  |  |     /* For Suite B mode only include P-256, P-384 */  | 
497  | 230k  |     switch (tls1_suiteb(s)) { | 
498  | 0  |     case SSL_CERT_FLAG_SUITEB_128_LOS:  | 
499  | 0  |         *pgroups = suiteb_curves;  | 
500  | 0  |         *pgroupslen = OSSL_NELEM(suiteb_curves);  | 
501  | 0  |         break;  | 
502  |  |  | 
503  | 0  |     case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:  | 
504  | 0  |         *pgroups = suiteb_curves;  | 
505  | 0  |         *pgroupslen = 1;  | 
506  | 0  |         break;  | 
507  |  |  | 
508  | 0  |     case SSL_CERT_FLAG_SUITEB_192_LOS:  | 
509  | 0  |         *pgroups = suiteb_curves + 1;  | 
510  | 0  |         *pgroupslen = 1;  | 
511  | 0  |         break;  | 
512  |  |  | 
513  | 230k  |     default:  | 
514  | 230k  |         if (s->ext.supportedgroups == NULL) { | 
515  | 154k  |             *pgroups = s->ctx->ext.supported_groups_default;  | 
516  | 154k  |             *pgroupslen = s->ctx->ext.supported_groups_default_len;  | 
517  | 154k  |         } else { | 
518  | 75.8k  |             *pgroups = s->ext.supportedgroups;  | 
519  | 75.8k  |             *pgroupslen = s->ext.supportedgroups_len;  | 
520  | 75.8k  |         }  | 
521  | 230k  |         break;  | 
522  | 230k  |     }  | 
523  | 230k  | }  | 
524  |  |  | 
525  |  | int tls_valid_group(SSL *s, uint16_t group_id, int minversion, int maxversion,  | 
526  |  |                     int isec, int *okfortls13)  | 
527  | 435k  | { | 
528  | 435k  |     const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(s->ctx, group_id);  | 
529  | 435k  |     int ret;  | 
530  |  |  | 
531  | 435k  |     if (okfortls13 != NULL)  | 
532  | 332k  |         *okfortls13 = 0;  | 
533  |  |  | 
534  | 435k  |     if (ginfo == NULL)  | 
535  | 0  |         return 0;  | 
536  |  |  | 
537  | 435k  |     if (SSL_IS_DTLS(s)) { | 
538  | 0  |         if (ginfo->mindtls < 0 || ginfo->maxdtls < 0)  | 
539  | 0  |             return 0;  | 
540  | 0  |         if (ginfo->maxdtls == 0)  | 
541  | 0  |             ret = 1;  | 
542  | 0  |         else  | 
543  | 0  |             ret = DTLS_VERSION_LE(minversion, ginfo->maxdtls);  | 
544  | 0  |         if (ginfo->mindtls > 0)  | 
545  | 0  |             ret &= DTLS_VERSION_GE(maxversion, ginfo->mindtls);  | 
546  | 435k  |     } else { | 
547  | 435k  |         if (ginfo->mintls < 0 || ginfo->maxtls < 0)  | 
548  | 0  |             return 0;  | 
549  | 435k  |         if (ginfo->maxtls == 0)  | 
550  | 435k  |             ret = 1;  | 
551  | 0  |         else  | 
552  | 0  |             ret = (minversion <= ginfo->maxtls);  | 
553  | 435k  |         if (ginfo->mintls > 0)  | 
554  | 435k  |             ret &= (maxversion >= ginfo->mintls);  | 
555  | 435k  |         if (ret && okfortls13 != NULL && maxversion == TLS1_3_VERSION)  | 
556  | 330k  |             *okfortls13 = (ginfo->maxtls == 0)  | 
557  | 330k  |                           || (ginfo->maxtls >= TLS1_3_VERSION);  | 
558  | 435k  |     }  | 
559  | 435k  |     ret &= !isec  | 
560  | 435k  |            || strcmp(ginfo->algorithm, "EC") == 0  | 
561  | 435k  |            || strcmp(ginfo->algorithm, "X25519") == 0  | 
562  | 435k  |            || strcmp(ginfo->algorithm, "X448") == 0;  | 
563  |  |  | 
564  | 435k  |     return ret;  | 
565  | 435k  | }  | 
566  |  |  | 
567  |  | /* See if group is allowed by security callback */  | 
568  |  | int tls_group_allowed(SSL *s, uint16_t group, int op)  | 
569  | 724k  | { | 
570  | 724k  |     const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(s->ctx, group);  | 
571  | 724k  |     unsigned char gtmp[2];  | 
572  |  |  | 
573  | 724k  |     if (ginfo == NULL)  | 
574  | 0  |         return 0;  | 
575  |  |  | 
576  | 724k  |     gtmp[0] = group >> 8;  | 
577  | 724k  |     gtmp[1] = group & 0xff;  | 
578  | 724k  |     return ssl_security(s, op, ginfo->secbits,  | 
579  | 724k  |                         tls1_group_id2nid(ginfo->group_id, 0), (void *)gtmp);  | 
580  | 724k  | }  | 
581  |  |  | 
582  |  | /* Return 1 if "id" is in "list" */  | 
583  |  | static int tls1_in_list(uint16_t id, const uint16_t *list, size_t listlen)  | 
584  | 47.7k  | { | 
585  | 47.7k  |     size_t i;  | 
586  | 307k  |     for (i = 0; i < listlen; i++)  | 
587  | 284k  |         if (list[i] == id)  | 
588  | 23.8k  |             return 1;  | 
589  | 23.8k  |     return 0;  | 
590  | 47.7k  | }  | 
591  |  |  | 
592  |  | /*-  | 
593  |  |  * For nmatch >= 0, return the id of the |nmatch|th shared group or 0  | 
594  |  |  * if there is no match.  | 
595  |  |  * For nmatch == -1, return number of matches  | 
596  |  |  * For nmatch == -2, return the id of the group to use for  | 
597  |  |  * a tmp key, or 0 if there is no match.  | 
598  |  |  */  | 
599  |  | uint16_t tls1_shared_group(SSL *s, int nmatch)  | 
600  | 12.3k  | { | 
601  | 12.3k  |     const uint16_t *pref, *supp;  | 
602  | 12.3k  |     size_t num_pref, num_supp, i;  | 
603  | 12.3k  |     int k;  | 
604  | 12.3k  |     SSL_CTX *ctx = s->ctx;  | 
605  |  |  | 
606  |  |     /* Can't do anything on client side */  | 
607  | 12.3k  |     if (s->server == 0)  | 
608  | 0  |         return 0;  | 
609  | 12.3k  |     if (nmatch == -2) { | 
610  | 2.87k  |         if (tls1_suiteb(s)) { | 
611  |  |             /*  | 
612  |  |              * For Suite B ciphersuite determines curve: we already know  | 
613  |  |              * these are acceptable due to previous checks.  | 
614  |  |              */  | 
615  | 0  |             unsigned long cid = s->s3.tmp.new_cipher->id;  | 
616  |  | 
  | 
617  | 0  |             if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)  | 
618  | 0  |                 return TLSEXT_curve_P_256;  | 
619  | 0  |             if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)  | 
620  | 0  |                 return TLSEXT_curve_P_384;  | 
621  |  |             /* Should never happen */  | 
622  | 0  |             return 0;  | 
623  | 0  |         }  | 
624  |  |         /* If not Suite B just return first preference shared curve */  | 
625  | 2.87k  |         nmatch = 0;  | 
626  | 2.87k  |     }  | 
627  |  |     /*  | 
628  |  |      * If server preference set, our groups are the preference order  | 
629  |  |      * otherwise peer decides.  | 
630  |  |      */  | 
631  | 12.3k  |     if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) { | 
632  | 0  |         tls1_get_supported_groups(s, &pref, &num_pref);  | 
633  | 0  |         tls1_get_peer_groups(s, &supp, &num_supp);  | 
634  | 12.3k  |     } else { | 
635  | 12.3k  |         tls1_get_peer_groups(s, &pref, &num_pref);  | 
636  | 12.3k  |         tls1_get_supported_groups(s, &supp, &num_supp);  | 
637  | 12.3k  |     }  | 
638  |  |  | 
639  | 27.5k  |     for (k = 0, i = 0; i < num_pref; i++) { | 
640  | 21.2k  |         uint16_t id = pref[i];  | 
641  | 21.2k  |         const TLS_GROUP_INFO *inf;  | 
642  |  |  | 
643  | 21.2k  |         if (!tls1_in_list(id, supp, num_supp)  | 
644  | 21.2k  |                 || !tls_group_allowed(s, id, SSL_SECOP_CURVE_SHARED))  | 
645  | 13.0k  |             continue;  | 
646  | 8.21k  |         inf = tls1_group_id_lookup(ctx, id);  | 
647  | 8.21k  |         if (!ossl_assert(inf != NULL))  | 
648  | 0  |             return 0;  | 
649  | 8.21k  |         if (SSL_IS_DTLS(s)) { | 
650  | 0  |             if (inf->maxdtls == -1)  | 
651  | 0  |                 continue;  | 
652  | 0  |             if ((inf->mindtls != 0 && DTLS_VERSION_LT(s->version, inf->mindtls))  | 
653  | 0  |                     || (inf->maxdtls != 0  | 
654  | 0  |                         && DTLS_VERSION_GT(s->version, inf->maxdtls)))  | 
655  | 0  |                 continue;  | 
656  | 8.21k  |         } else { | 
657  | 8.21k  |             if (inf->maxtls == -1)  | 
658  | 0  |                 continue;  | 
659  | 8.21k  |             if ((inf->mintls != 0 && s->version < inf->mintls)  | 
660  | 8.21k  |                     || (inf->maxtls != 0 && s->version > inf->maxtls))  | 
661  | 2.23k  |                 continue;  | 
662  | 8.21k  |         }  | 
663  |  |  | 
664  | 5.98k  |         if (nmatch == k)  | 
665  | 5.98k  |             return id;  | 
666  | 0  |          k++;  | 
667  | 0  |     }  | 
668  | 6.32k  |     if (nmatch == -1)  | 
669  | 0  |         return k;  | 
670  |  |     /* Out of range (nmatch > k). */  | 
671  | 6.32k  |     return 0;  | 
672  | 6.32k  | }  | 
673  |  |  | 
674  |  | int tls1_set_groups(uint16_t **pext, size_t *pextlen,  | 
675  |  |                     int *groups, size_t ngroups)  | 
676  | 0  | { | 
677  | 0  |     uint16_t *glist;  | 
678  | 0  |     size_t i;  | 
679  |  |     /*  | 
680  |  |      * Bitmap of groups included to detect duplicates: two variables are added  | 
681  |  |      * to detect duplicates as some values are more than 32.  | 
682  |  |      */  | 
683  | 0  |     unsigned long *dup_list = NULL;  | 
684  | 0  |     unsigned long dup_list_egrp = 0;  | 
685  | 0  |     unsigned long dup_list_dhgrp = 0;  | 
686  |  | 
  | 
687  | 0  |     if (ngroups == 0) { | 
688  | 0  |         ERR_raise(ERR_LIB_SSL, SSL_R_BAD_LENGTH);  | 
689  | 0  |         return 0;  | 
690  | 0  |     }  | 
691  | 0  |     if ((glist = OPENSSL_malloc(ngroups * sizeof(*glist))) == NULL) { | 
692  | 0  |         ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);  | 
693  | 0  |         return 0;  | 
694  | 0  |     }  | 
695  | 0  |     for (i = 0; i < ngroups; i++) { | 
696  | 0  |         unsigned long idmask;  | 
697  | 0  |         uint16_t id;  | 
698  | 0  |         id = tls1_nid2group_id(groups[i]);  | 
699  | 0  |         if ((id & 0x00FF) >= (sizeof(unsigned long) * 8))  | 
700  | 0  |             goto err;  | 
701  | 0  |         idmask = 1L << (id & 0x00FF);  | 
702  | 0  |         dup_list = (id < 0x100) ? &dup_list_egrp : &dup_list_dhgrp;  | 
703  | 0  |         if (!id || ((*dup_list) & idmask))  | 
704  | 0  |             goto err;  | 
705  | 0  |         *dup_list |= idmask;  | 
706  | 0  |         glist[i] = id;  | 
707  | 0  |     }  | 
708  | 0  |     OPENSSL_free(*pext);  | 
709  | 0  |     *pext = glist;  | 
710  | 0  |     *pextlen = ngroups;  | 
711  | 0  |     return 1;  | 
712  | 0  | err:  | 
713  | 0  |     OPENSSL_free(glist);  | 
714  | 0  |     return 0;  | 
715  | 0  | }  | 
716  |  |  | 
717  |  | # define GROUPLIST_INCREMENT   40  | 
718  |  | # define GROUP_NAME_BUFFER_LENGTH 64  | 
719  |  | typedef struct { | 
720  |  |     SSL_CTX *ctx;  | 
721  |  |     size_t gidcnt;  | 
722  |  |     size_t gidmax;  | 
723  |  |     uint16_t *gid_arr;  | 
724  |  | } gid_cb_st;  | 
725  |  |  | 
726  |  | static int gid_cb(const char *elem, int len, void *arg)  | 
727  |  | { | 
728  |  |     gid_cb_st *garg = arg;  | 
729  |  |     size_t i;  | 
730  |  |     uint16_t gid = 0;  | 
731  |  |     char etmp[GROUP_NAME_BUFFER_LENGTH];  | 
732  |  |  | 
733  |  |     if (elem == NULL)  | 
734  |  |         return 0;  | 
735  |  |     if (garg->gidcnt == garg->gidmax) { | 
736  |  |         uint16_t *tmp =  | 
737  |  |             OPENSSL_realloc(garg->gid_arr,  | 
738  |  |                             (garg->gidmax + GROUPLIST_INCREMENT) * sizeof(*garg->gid_arr));  | 
739  |  |         if (tmp == NULL)  | 
740  |  |             return 0;  | 
741  |  |         garg->gidmax += GROUPLIST_INCREMENT;  | 
742  |  |         garg->gid_arr = tmp;  | 
743  |  |     }  | 
744  |  |     if (len > (int)(sizeof(etmp) - 1))  | 
745  |  |         return 0;  | 
746  |  |     memcpy(etmp, elem, len);  | 
747  |  |     etmp[len] = 0;  | 
748  |  |  | 
749  |  |     gid = tls1_group_name2id(garg->ctx, etmp);  | 
750  |  |     if (gid == 0) { | 
751  |  |         ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT,  | 
752  |  |                        "group '%s' cannot be set", etmp);  | 
753  |  |         return 0;  | 
754  |  |     }  | 
755  |  |     for (i = 0; i < garg->gidcnt; i++)  | 
756  |  |         if (garg->gid_arr[i] == gid)  | 
757  |  |             return 0;  | 
758  |  |     garg->gid_arr[garg->gidcnt++] = gid;  | 
759  |  |     return 1;  | 
760  |  | }  | 
761  |  |  | 
762  |  | /* Set groups based on a colon separated list */  | 
763  |  | int tls1_set_groups_list(SSL_CTX *ctx, uint16_t **pext, size_t *pextlen,  | 
764  |  |                          const char *str)  | 
765  |  | { | 
766  |  |     gid_cb_st gcb;  | 
767  |  |     uint16_t *tmparr;  | 
768  |  |     int ret = 0;  | 
769  |  |  | 
770  |  |     gcb.gidcnt = 0;  | 
771  |  |     gcb.gidmax = GROUPLIST_INCREMENT;  | 
772  |  |     gcb.gid_arr = OPENSSL_malloc(gcb.gidmax * sizeof(*gcb.gid_arr));  | 
773  |  |     if (gcb.gid_arr == NULL)  | 
774  |  |         return 0;  | 
775  |  |     gcb.ctx = ctx;  | 
776  |  |     if (!CONF_parse_list(str, ':', 1, gid_cb, &gcb))  | 
777  |  |         goto end;  | 
778  |  |     if (pext == NULL) { | 
779  |  |         ret = 1;  | 
780  |  |         goto end;  | 
781  |  |     }  | 
782  |  |  | 
783  |  |     /*  | 
784  |  |      * gid_cb ensurse there are no duplicates so we can just go ahead and set  | 
785  |  |      * the result  | 
786  |  |      */  | 
787  |  |     tmparr = OPENSSL_memdup(gcb.gid_arr, gcb.gidcnt * sizeof(*tmparr));  | 
788  |  |     if (tmparr == NULL)  | 
789  |  |         goto end;  | 
790  |  |     OPENSSL_free(*pext);  | 
791  |  |     *pext = tmparr;  | 
792  |  |     *pextlen = gcb.gidcnt;  | 
793  |  |     ret = 1;  | 
794  |  |  end:  | 
795  |  |     OPENSSL_free(gcb.gid_arr);  | 
796  |  |     return ret;  | 
797  |  | }  | 
798  |  |  | 
799  |  | /* Check a group id matches preferences */  | 
800  |  | int tls1_check_group_id(SSL *s, uint16_t group_id, int check_own_groups)  | 
801  | 20.5k  |     { | 
802  | 20.5k  |     const uint16_t *groups;  | 
803  | 20.5k  |     size_t groups_len;  | 
804  |  |  | 
805  | 20.5k  |     if (group_id == 0)  | 
806  | 9  |         return 0;  | 
807  |  |  | 
808  |  |     /* Check for Suite B compliance */  | 
809  | 20.5k  |     if (tls1_suiteb(s) && s->s3.tmp.new_cipher != NULL) { | 
810  | 0  |         unsigned long cid = s->s3.tmp.new_cipher->id;  | 
811  |  | 
  | 
812  | 0  |         if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) { | 
813  | 0  |             if (group_id != TLSEXT_curve_P_256)  | 
814  | 0  |                 return 0;  | 
815  | 0  |         } else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) { | 
816  | 0  |             if (group_id != TLSEXT_curve_P_384)  | 
817  | 0  |                 return 0;  | 
818  | 0  |         } else { | 
819  |  |             /* Should never happen */  | 
820  | 0  |             return 0;  | 
821  | 0  |         }  | 
822  | 0  |     }  | 
823  |  |  | 
824  | 20.5k  |     if (check_own_groups) { | 
825  |  |         /* Check group is one of our preferences */  | 
826  | 7.13k  |         tls1_get_supported_groups(s, &groups, &groups_len);  | 
827  | 7.13k  |         if (!tls1_in_list(group_id, groups, groups_len))  | 
828  | 62  |             return 0;  | 
829  | 7.13k  |     }  | 
830  |  |  | 
831  | 20.5k  |     if (!tls_group_allowed(s, group_id, SSL_SECOP_CURVE_CHECK))  | 
832  | 0  |         return 0;  | 
833  |  |  | 
834  |  |     /* For clients, nothing more to check */  | 
835  | 20.5k  |     if (!s->server)  | 
836  | 7.06k  |         return 1;  | 
837  |  |  | 
838  |  |     /* Check group is one of peers preferences */  | 
839  | 13.4k  |     tls1_get_peer_groups(s, &groups, &groups_len);  | 
840  |  |  | 
841  |  |     /*  | 
842  |  |      * RFC 4492 does not require the supported elliptic curves extension  | 
843  |  |      * so if it is not sent we can just choose any curve.  | 
844  |  |      * It is invalid to send an empty list in the supported groups  | 
845  |  |      * extension, so groups_len == 0 always means no extension.  | 
846  |  |      */  | 
847  | 13.4k  |     if (groups_len == 0)  | 
848  | 7.97k  |             return 1;  | 
849  | 5.47k  |     return tls1_in_list(group_id, groups, groups_len);  | 
850  | 13.4k  | }  | 
851  |  |  | 
852  |  | void tls1_get_formatlist(SSL *s, const unsigned char **pformats,  | 
853  |  |                          size_t *num_formats)  | 
854  | 33.8k  | { | 
855  |  |     /*  | 
856  |  |      * If we have a custom point format list use it otherwise use default  | 
857  |  |      */  | 
858  | 33.8k  |     if (s->ext.ecpointformats) { | 
859  | 0  |         *pformats = s->ext.ecpointformats;  | 
860  | 0  |         *num_formats = s->ext.ecpointformats_len;  | 
861  | 33.8k  |     } else { | 
862  | 33.8k  |         *pformats = ecformats_default;  | 
863  |  |         /* For Suite B we don't support char2 fields */  | 
864  | 33.8k  |         if (tls1_suiteb(s))  | 
865  | 0  |             *num_formats = sizeof(ecformats_default) - 1;  | 
866  | 33.8k  |         else  | 
867  | 33.8k  |             *num_formats = sizeof(ecformats_default);  | 
868  | 33.8k  |     }  | 
869  | 33.8k  | }  | 
870  |  |  | 
871  |  | /* Check a key is compatible with compression extension */  | 
872  |  | static int tls1_check_pkey_comp(SSL *s, EVP_PKEY *pkey)  | 
873  | 14.0k  | { | 
874  | 14.0k  |     unsigned char comp_id;  | 
875  | 14.0k  |     size_t i;  | 
876  | 14.0k  |     int point_conv;  | 
877  |  |  | 
878  |  |     /* If not an EC key nothing to check */  | 
879  | 14.0k  |     if (!EVP_PKEY_is_a(pkey, "EC"))  | 
880  | 0  |         return 1;  | 
881  |  |  | 
882  |  |  | 
883  |  |     /* Get required compression id */  | 
884  | 14.0k  |     point_conv = EVP_PKEY_get_ec_point_conv_form(pkey);  | 
885  | 14.0k  |     if (point_conv == 0)  | 
886  | 0  |         return 0;  | 
887  | 14.0k  |     if (point_conv == POINT_CONVERSION_UNCOMPRESSED) { | 
888  | 14.0k  |             comp_id = TLSEXT_ECPOINTFORMAT_uncompressed;  | 
889  | 14.0k  |     } else if (SSL_IS_TLS13(s)) { | 
890  |  |         /*  | 
891  |  |          * ec_point_formats extension is not used in TLSv1.3 so we ignore  | 
892  |  |          * this check.  | 
893  |  |          */  | 
894  | 0  |         return 1;  | 
895  | 58  |     } else { | 
896  | 58  |         int field_type = EVP_PKEY_get_field_type(pkey);  | 
897  |  |  | 
898  | 58  |         if (field_type == NID_X9_62_prime_field)  | 
899  | 54  |             comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime;  | 
900  | 4  |         else if (field_type == NID_X9_62_characteristic_two_field)  | 
901  | 0  |             comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2;  | 
902  | 4  |         else  | 
903  | 4  |             return 0;  | 
904  | 58  |     }  | 
905  |  |     /*  | 
906  |  |      * If point formats extension present check it, otherwise everything is  | 
907  |  |      * supported (see RFC4492).  | 
908  |  |      */  | 
909  | 14.0k  |     if (s->ext.peer_ecpointformats == NULL)  | 
910  | 12.2k  |         return 1;  | 
911  |  |  | 
912  | 3.50k  |     for (i = 0; i < s->ext.peer_ecpointformats_len; i++) { | 
913  | 3.18k  |         if (s->ext.peer_ecpointformats[i] == comp_id)  | 
914  | 1.52k  |             return 1;  | 
915  | 3.18k  |     }  | 
916  | 321  |     return 0;  | 
917  | 1.84k  | }  | 
918  |  |  | 
919  |  | /* Return group id of a key */  | 
920  |  | static uint16_t tls1_get_group_id(EVP_PKEY *pkey)  | 
921  | 13.7k  | { | 
922  | 13.7k  |     int curve_nid = ssl_get_EC_curve_nid(pkey);  | 
923  |  |  | 
924  | 13.7k  |     if (curve_nid == NID_undef)  | 
925  | 0  |         return 0;  | 
926  | 13.7k  |     return tls1_nid2group_id(curve_nid);  | 
927  | 13.7k  | }  | 
928  |  |  | 
929  |  | /*  | 
930  |  |  * Check cert parameters compatible with extensions: currently just checks EC  | 
931  |  |  * certificates have compatible curves and compression.  | 
932  |  |  */  | 
933  |  | static int tls1_check_cert_param(SSL *s, X509 *x, int check_ee_md)  | 
934  | 41.2k  | { | 
935  | 41.2k  |     uint16_t group_id;  | 
936  | 41.2k  |     EVP_PKEY *pkey;  | 
937  | 41.2k  |     pkey = X509_get0_pubkey(x);  | 
938  | 41.2k  |     if (pkey == NULL)  | 
939  | 0  |         return 0;  | 
940  |  |     /* If not EC nothing to do */  | 
941  | 41.2k  |     if (!EVP_PKEY_is_a(pkey, "EC"))  | 
942  | 27.5k  |         return 1;  | 
943  |  |     /* Check compression */  | 
944  | 13.7k  |     if (!tls1_check_pkey_comp(s, pkey))  | 
945  | 305  |         return 0;  | 
946  | 13.4k  |     group_id = tls1_get_group_id(pkey);  | 
947  |  |     /*  | 
948  |  |      * For a server we allow the certificate to not be in our list of supported  | 
949  |  |      * groups.  | 
950  |  |      */  | 
951  | 13.4k  |     if (!tls1_check_group_id(s, group_id, !s->server))  | 
952  | 2.75k  |         return 0;  | 
953  |  |     /*  | 
954  |  |      * Special case for suite B. We *MUST* sign using SHA256+P-256 or  | 
955  |  |      * SHA384+P-384.  | 
956  |  |      */  | 
957  | 10.6k  |     if (check_ee_md && tls1_suiteb(s)) { | 
958  | 0  |         int check_md;  | 
959  | 0  |         size_t i;  | 
960  |  |  | 
961  |  |         /* Check to see we have necessary signing algorithm */  | 
962  | 0  |         if (group_id == TLSEXT_curve_P_256)  | 
963  | 0  |             check_md = NID_ecdsa_with_SHA256;  | 
964  | 0  |         else if (group_id == TLSEXT_curve_P_384)  | 
965  | 0  |             check_md = NID_ecdsa_with_SHA384;  | 
966  | 0  |         else  | 
967  | 0  |             return 0;           /* Should never happen */  | 
968  | 0  |         for (i = 0; i < s->shared_sigalgslen; i++) { | 
969  | 0  |             if (check_md == s->shared_sigalgs[i]->sigandhash)  | 
970  | 0  |                 return 1;;  | 
971  | 0  |         }  | 
972  | 0  |         return 0;  | 
973  | 0  |     }  | 
974  | 10.6k  |     return 1;  | 
975  | 10.6k  | }  | 
976  |  |  | 
977  |  | /*  | 
978  |  |  * tls1_check_ec_tmp_key - Check EC temporary key compatibility  | 
979  |  |  * @s: SSL connection  | 
980  |  |  * @cid: Cipher ID we're considering using  | 
981  |  |  *  | 
982  |  |  * Checks that the kECDHE cipher suite we're considering using  | 
983  |  |  * is compatible with the client extensions.  | 
984  |  |  *  | 
985  |  |  * Returns 0 when the cipher can't be used or 1 when it can.  | 
986  |  |  */  | 
987  |  | int tls1_check_ec_tmp_key(SSL *s, unsigned long cid)  | 
988  | 13.4k  | { | 
989  |  |     /* If not Suite B just need a shared group */  | 
990  | 13.4k  |     if (!tls1_suiteb(s))  | 
991  | 13.4k  |         return tls1_shared_group(s, 0) != 0;  | 
992  |  |     /*  | 
993  |  |      * If Suite B, AES128 MUST use P-256 and AES256 MUST use P-384, no other  | 
994  |  |      * curves permitted.  | 
995  |  |      */  | 
996  | 0  |     if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)  | 
997  | 0  |         return tls1_check_group_id(s, TLSEXT_curve_P_256, 1);  | 
998  | 0  |     if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)  | 
999  | 0  |         return tls1_check_group_id(s, TLSEXT_curve_P_384, 1);  | 
1000  |  |  | 
1001  | 0  |     return 0;  | 
1002  | 0  | }  | 
1003  |  |  | 
1004  |  | /* Default sigalg schemes */  | 
1005  |  | static const uint16_t tls12_sigalgs[] = { | 
1006  |  |     TLSEXT_SIGALG_ecdsa_secp256r1_sha256,  | 
1007  |  |     TLSEXT_SIGALG_ecdsa_secp384r1_sha384,  | 
1008  |  |     TLSEXT_SIGALG_ecdsa_secp521r1_sha512,  | 
1009  |  |     TLSEXT_SIGALG_ed25519,  | 
1010  |  |     TLSEXT_SIGALG_ed448,  | 
1011  |  |  | 
1012  |  |     TLSEXT_SIGALG_rsa_pss_pss_sha256,  | 
1013  |  |     TLSEXT_SIGALG_rsa_pss_pss_sha384,  | 
1014  |  |     TLSEXT_SIGALG_rsa_pss_pss_sha512,  | 
1015  |  |     TLSEXT_SIGALG_rsa_pss_rsae_sha256,  | 
1016  |  |     TLSEXT_SIGALG_rsa_pss_rsae_sha384,  | 
1017  |  |     TLSEXT_SIGALG_rsa_pss_rsae_sha512,  | 
1018  |  |  | 
1019  |  |     TLSEXT_SIGALG_rsa_pkcs1_sha256,  | 
1020  |  |     TLSEXT_SIGALG_rsa_pkcs1_sha384,  | 
1021  |  |     TLSEXT_SIGALG_rsa_pkcs1_sha512,  | 
1022  |  |  | 
1023  |  |     TLSEXT_SIGALG_ecdsa_sha224,  | 
1024  |  |     TLSEXT_SIGALG_ecdsa_sha1,  | 
1025  |  |  | 
1026  |  |     TLSEXT_SIGALG_rsa_pkcs1_sha224,  | 
1027  |  |     TLSEXT_SIGALG_rsa_pkcs1_sha1,  | 
1028  |  |  | 
1029  |  |     TLSEXT_SIGALG_dsa_sha224,  | 
1030  |  |     TLSEXT_SIGALG_dsa_sha1,  | 
1031  |  |  | 
1032  |  |     TLSEXT_SIGALG_dsa_sha256,  | 
1033  |  |     TLSEXT_SIGALG_dsa_sha384,  | 
1034  |  |     TLSEXT_SIGALG_dsa_sha512,  | 
1035  |  |  | 
1036  |  | #ifndef OPENSSL_NO_GOST  | 
1037  |  |     TLSEXT_SIGALG_gostr34102012_256_intrinsic,  | 
1038  |  |     TLSEXT_SIGALG_gostr34102012_512_intrinsic,  | 
1039  |  |     TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,  | 
1040  |  |     TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,  | 
1041  |  |     TLSEXT_SIGALG_gostr34102001_gostr3411,  | 
1042  |  | #endif  | 
1043  |  | };  | 
1044  |  |  | 
1045  |  |  | 
1046  |  | static const uint16_t suiteb_sigalgs[] = { | 
1047  |  |     TLSEXT_SIGALG_ecdsa_secp256r1_sha256,  | 
1048  |  |     TLSEXT_SIGALG_ecdsa_secp384r1_sha384  | 
1049  |  | };  | 
1050  |  |  | 
1051  |  | static const SIGALG_LOOKUP sigalg_lookup_tbl[] = { | 
1052  |  |     {"ecdsa_secp256r1_sha256", TLSEXT_SIGALG_ecdsa_secp256r1_sha256, | 
1053  |  |      NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,  | 
1054  |  |      NID_ecdsa_with_SHA256, NID_X9_62_prime256v1, 1},  | 
1055  |  |     {"ecdsa_secp384r1_sha384", TLSEXT_SIGALG_ecdsa_secp384r1_sha384, | 
1056  |  |      NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,  | 
1057  |  |      NID_ecdsa_with_SHA384, NID_secp384r1, 1},  | 
1058  |  |     {"ecdsa_secp521r1_sha512", TLSEXT_SIGALG_ecdsa_secp521r1_sha512, | 
1059  |  |      NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,  | 
1060  |  |      NID_ecdsa_with_SHA512, NID_secp521r1, 1},  | 
1061  |  |     {"ed25519", TLSEXT_SIGALG_ed25519, | 
1062  |  |      NID_undef, -1, EVP_PKEY_ED25519, SSL_PKEY_ED25519,  | 
1063  |  |      NID_undef, NID_undef, 1},  | 
1064  |  |     {"ed448", TLSEXT_SIGALG_ed448, | 
1065  |  |      NID_undef, -1, EVP_PKEY_ED448, SSL_PKEY_ED448,  | 
1066  |  |      NID_undef, NID_undef, 1},  | 
1067  |  |     {NULL, TLSEXT_SIGALG_ecdsa_sha224, | 
1068  |  |      NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,  | 
1069  |  |      NID_ecdsa_with_SHA224, NID_undef, 1},  | 
1070  |  |     {NULL, TLSEXT_SIGALG_ecdsa_sha1, | 
1071  |  |      NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,  | 
1072  |  |      NID_ecdsa_with_SHA1, NID_undef, 1},  | 
1073  |  |     {"rsa_pss_rsae_sha256", TLSEXT_SIGALG_rsa_pss_rsae_sha256, | 
1074  |  |      NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,  | 
1075  |  |      NID_undef, NID_undef, 1},  | 
1076  |  |     {"rsa_pss_rsae_sha384", TLSEXT_SIGALG_rsa_pss_rsae_sha384, | 
1077  |  |      NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,  | 
1078  |  |      NID_undef, NID_undef, 1},  | 
1079  |  |     {"rsa_pss_rsae_sha512", TLSEXT_SIGALG_rsa_pss_rsae_sha512, | 
1080  |  |      NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,  | 
1081  |  |      NID_undef, NID_undef, 1},  | 
1082  |  |     {"rsa_pss_pss_sha256", TLSEXT_SIGALG_rsa_pss_pss_sha256, | 
1083  |  |      NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,  | 
1084  |  |      NID_undef, NID_undef, 1},  | 
1085  |  |     {"rsa_pss_pss_sha384", TLSEXT_SIGALG_rsa_pss_pss_sha384, | 
1086  |  |      NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,  | 
1087  |  |      NID_undef, NID_undef, 1},  | 
1088  |  |     {"rsa_pss_pss_sha512", TLSEXT_SIGALG_rsa_pss_pss_sha512, | 
1089  |  |      NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,  | 
1090  |  |      NID_undef, NID_undef, 1},  | 
1091  |  |     {"rsa_pkcs1_sha256", TLSEXT_SIGALG_rsa_pkcs1_sha256, | 
1092  |  |      NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,  | 
1093  |  |      NID_sha256WithRSAEncryption, NID_undef, 1},  | 
1094  |  |     {"rsa_pkcs1_sha384", TLSEXT_SIGALG_rsa_pkcs1_sha384, | 
1095  |  |      NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,  | 
1096  |  |      NID_sha384WithRSAEncryption, NID_undef, 1},  | 
1097  |  |     {"rsa_pkcs1_sha512", TLSEXT_SIGALG_rsa_pkcs1_sha512, | 
1098  |  |      NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,  | 
1099  |  |      NID_sha512WithRSAEncryption, NID_undef, 1},  | 
1100  |  |     {"rsa_pkcs1_sha224", TLSEXT_SIGALG_rsa_pkcs1_sha224, | 
1101  |  |      NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,  | 
1102  |  |      NID_sha224WithRSAEncryption, NID_undef, 1},  | 
1103  |  |     {"rsa_pkcs1_sha1", TLSEXT_SIGALG_rsa_pkcs1_sha1, | 
1104  |  |      NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,  | 
1105  |  |      NID_sha1WithRSAEncryption, NID_undef, 1},  | 
1106  |  |     {NULL, TLSEXT_SIGALG_dsa_sha256, | 
1107  |  |      NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,  | 
1108  |  |      NID_dsa_with_SHA256, NID_undef, 1},  | 
1109  |  |     {NULL, TLSEXT_SIGALG_dsa_sha384, | 
1110  |  |      NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,  | 
1111  |  |      NID_undef, NID_undef, 1},  | 
1112  |  |     {NULL, TLSEXT_SIGALG_dsa_sha512, | 
1113  |  |      NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,  | 
1114  |  |      NID_undef, NID_undef, 1},  | 
1115  |  |     {NULL, TLSEXT_SIGALG_dsa_sha224, | 
1116  |  |      NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,  | 
1117  |  |      NID_undef, NID_undef, 1},  | 
1118  |  |     {NULL, TLSEXT_SIGALG_dsa_sha1, | 
1119  |  |      NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,  | 
1120  |  |      NID_dsaWithSHA1, NID_undef, 1},  | 
1121  |  | #ifndef OPENSSL_NO_GOST  | 
1122  |  |     {NULL, TLSEXT_SIGALG_gostr34102012_256_intrinsic, | 
1123  |  |      NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,  | 
1124  |  |      NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,  | 
1125  |  |      NID_undef, NID_undef, 1},  | 
1126  |  |     {NULL, TLSEXT_SIGALG_gostr34102012_512_intrinsic, | 
1127  |  |      NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,  | 
1128  |  |      NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,  | 
1129  |  |      NID_undef, NID_undef, 1},  | 
1130  |  |     {NULL, TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256, | 
1131  |  |      NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,  | 
1132  |  |      NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,  | 
1133  |  |      NID_undef, NID_undef, 1},  | 
1134  |  |     {NULL, TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512, | 
1135  |  |      NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,  | 
1136  |  |      NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,  | 
1137  |  |      NID_undef, NID_undef, 1},  | 
1138  |  |     {NULL, TLSEXT_SIGALG_gostr34102001_gostr3411, | 
1139  |  |      NID_id_GostR3411_94, SSL_MD_GOST94_IDX,  | 
1140  |  |      NID_id_GostR3410_2001, SSL_PKEY_GOST01,  | 
1141  |  |      NID_undef, NID_undef, 1}  | 
1142  |  | #endif  | 
1143  |  | };  | 
1144  |  | /* Legacy sigalgs for TLS < 1.2 RSA TLS signatures */  | 
1145  |  | static const SIGALG_LOOKUP legacy_rsa_sigalg = { | 
1146  |  |     "rsa_pkcs1_md5_sha1", 0,  | 
1147  |  |      NID_md5_sha1, SSL_MD_MD5_SHA1_IDX,  | 
1148  |  |      EVP_PKEY_RSA, SSL_PKEY_RSA,  | 
1149  |  |      NID_undef, NID_undef, 1  | 
1150  |  | };  | 
1151  |  |  | 
1152  |  | /*  | 
1153  |  |  * Default signature algorithm values used if signature algorithms not present.  | 
1154  |  |  * From RFC5246. Note: order must match certificate index order.  | 
1155  |  |  */  | 
1156  |  | static const uint16_t tls_default_sigalg[] = { | 
1157  |  |     TLSEXT_SIGALG_rsa_pkcs1_sha1, /* SSL_PKEY_RSA */  | 
1158  |  |     0, /* SSL_PKEY_RSA_PSS_SIGN */  | 
1159  |  |     TLSEXT_SIGALG_dsa_sha1, /* SSL_PKEY_DSA_SIGN */  | 
1160  |  |     TLSEXT_SIGALG_ecdsa_sha1, /* SSL_PKEY_ECC */  | 
1161  |  |     TLSEXT_SIGALG_gostr34102001_gostr3411, /* SSL_PKEY_GOST01 */  | 
1162  |  |     TLSEXT_SIGALG_gostr34102012_256_intrinsic, /* SSL_PKEY_GOST12_256 */  | 
1163  |  |     TLSEXT_SIGALG_gostr34102012_512_intrinsic, /* SSL_PKEY_GOST12_512 */  | 
1164  |  |     0, /* SSL_PKEY_ED25519 */  | 
1165  |  |     0, /* SSL_PKEY_ED448 */  | 
1166  |  | };  | 
1167  |  |  | 
1168  |  | int ssl_setup_sig_algs(SSL_CTX *ctx)  | 
1169  | 24.4k  | { | 
1170  | 24.4k  |     size_t i;  | 
1171  | 24.4k  |     const SIGALG_LOOKUP *lu;  | 
1172  | 24.4k  |     SIGALG_LOOKUP *cache  | 
1173  | 24.4k  |         = OPENSSL_malloc(sizeof(*lu) * OSSL_NELEM(sigalg_lookup_tbl));  | 
1174  | 24.4k  |     EVP_PKEY *tmpkey = EVP_PKEY_new();  | 
1175  | 24.4k  |     int ret = 0;  | 
1176  |  |  | 
1177  | 24.4k  |     if (cache == NULL || tmpkey == NULL)  | 
1178  | 0  |         goto err;  | 
1179  |  |  | 
1180  | 24.4k  |     ERR_set_mark();  | 
1181  | 24.4k  |     for (i = 0, lu = sigalg_lookup_tbl;  | 
1182  | 709k  |          i < OSSL_NELEM(sigalg_lookup_tbl); lu++, i++) { | 
1183  | 684k  |         EVP_PKEY_CTX *pctx;  | 
1184  |  |  | 
1185  | 684k  |         cache[i] = *lu;  | 
1186  |  |  | 
1187  |  |         /*  | 
1188  |  |          * Check hash is available.  | 
1189  |  |          * This test is not perfect. A provider could have support  | 
1190  |  |          * for a signature scheme, but not a particular hash. However the hash  | 
1191  |  |          * could be available from some other loaded provider. In that case it  | 
1192  |  |          * could be that the signature is available, and the hash is available  | 
1193  |  |          * independently - but not as a combination. We ignore this for now.  | 
1194  |  |          */  | 
1195  | 684k  |         if (lu->hash != NID_undef  | 
1196  | 684k  |                 && ctx->ssl_digest_methods[lu->hash_idx] == NULL) { | 
1197  | 122k  |             cache[i].enabled = 0;  | 
1198  | 122k  |             continue;  | 
1199  | 122k  |         }  | 
1200  |  |  | 
1201  | 562k  |         if (!EVP_PKEY_set_type(tmpkey, lu->sig)) { | 
1202  | 0  |             cache[i].enabled = 0;  | 
1203  | 0  |             continue;  | 
1204  | 0  |         }  | 
1205  | 562k  |         pctx = EVP_PKEY_CTX_new_from_pkey(ctx->libctx, tmpkey, ctx->propq);  | 
1206  |  |         /* If unable to create pctx we assume the sig algorithm is unavailable */  | 
1207  | 562k  |         if (pctx == NULL)  | 
1208  | 0  |             cache[i].enabled = 0;  | 
1209  | 562k  |         EVP_PKEY_CTX_free(pctx);  | 
1210  | 562k  |     }  | 
1211  | 24.4k  |     ERR_pop_to_mark();  | 
1212  | 24.4k  |     ctx->sigalg_lookup_cache = cache;  | 
1213  | 24.4k  |     cache = NULL;  | 
1214  |  |  | 
1215  | 24.4k  |     ret = 1;  | 
1216  | 24.4k  |  err:  | 
1217  | 24.4k  |     OPENSSL_free(cache);  | 
1218  | 24.4k  |     EVP_PKEY_free(tmpkey);  | 
1219  | 24.4k  |     return ret;  | 
1220  | 24.4k  | }  | 
1221  |  |  | 
1222  |  | /* Lookup TLS signature algorithm */  | 
1223  |  | static const SIGALG_LOOKUP *tls1_lookup_sigalg(const SSL *s, uint16_t sigalg)  | 
1224  | 6.97M  | { | 
1225  | 6.97M  |     size_t i;  | 
1226  | 6.97M  |     const SIGALG_LOOKUP *lu;  | 
1227  |  |  | 
1228  | 6.97M  |     for (i = 0, lu = s->ctx->sigalg_lookup_cache;  | 
1229  |  |          /* cache should have the same number of elements as sigalg_lookup_tbl */  | 
1230  | 111M  |          i < OSSL_NELEM(sigalg_lookup_tbl);  | 
1231  | 110M  |          lu++, i++) { | 
1232  | 110M  |         if (lu->sigalg == sigalg) { | 
1233  | 6.73M  |             if (!lu->enabled)  | 
1234  | 712k  |                 return NULL;  | 
1235  | 6.01M  |             return lu;  | 
1236  | 6.73M  |         }  | 
1237  | 110M  |     }  | 
1238  | 244k  |     return NULL;  | 
1239  | 6.97M  | }  | 
1240  |  | /* Lookup hash: return 0 if invalid or not enabled */  | 
1241  |  | int tls1_lookup_md(SSL_CTX *ctx, const SIGALG_LOOKUP *lu, const EVP_MD **pmd)  | 
1242  | 1.96M  | { | 
1243  | 1.96M  |     const EVP_MD *md;  | 
1244  | 1.96M  |     if (lu == NULL)  | 
1245  | 0  |         return 0;  | 
1246  |  |     /* lu->hash == NID_undef means no associated digest */  | 
1247  | 1.96M  |     if (lu->hash == NID_undef) { | 
1248  | 176k  |         md = NULL;  | 
1249  | 1.78M  |     } else { | 
1250  | 1.78M  |         md = ssl_md(ctx, lu->hash_idx);  | 
1251  | 1.78M  |         if (md == NULL)  | 
1252  | 0  |             return 0;  | 
1253  | 1.78M  |     }  | 
1254  | 1.96M  |     if (pmd)  | 
1255  | 1.91M  |         *pmd = md;  | 
1256  | 1.96M  |     return 1;  | 
1257  | 1.96M  | }  | 
1258  |  |  | 
1259  |  | /*  | 
1260  |  |  * Check if key is large enough to generate RSA-PSS signature.  | 
1261  |  |  *  | 
1262  |  |  * The key must greater than or equal to 2 * hash length + 2.  | 
1263  |  |  * SHA512 has a hash length of 64 bytes, which is incompatible  | 
1264  |  |  * with a 128 byte (1024 bit) key.  | 
1265  |  |  */  | 
1266  | 484  | #define RSA_PSS_MINIMUM_KEY_SIZE(md) (2 * EVP_MD_get_size(md) + 2)  | 
1267  |  | static int rsa_pss_check_min_key_size(SSL_CTX *ctx, const EVP_PKEY *pkey,  | 
1268  |  |                                       const SIGALG_LOOKUP *lu)  | 
1269  | 484  | { | 
1270  | 484  |     const EVP_MD *md;  | 
1271  |  |  | 
1272  | 484  |     if (pkey == NULL)  | 
1273  | 0  |         return 0;  | 
1274  | 484  |     if (!tls1_lookup_md(ctx, lu, &md) || md == NULL)  | 
1275  | 0  |         return 0;  | 
1276  | 484  |     if (EVP_PKEY_get_size(pkey) < RSA_PSS_MINIMUM_KEY_SIZE(md))  | 
1277  | 0  |         return 0;  | 
1278  | 484  |     return 1;  | 
1279  | 484  | }  | 
1280  |  |  | 
1281  |  | /*  | 
1282  |  |  * Returns a signature algorithm when the peer did not send a list of supported  | 
1283  |  |  * signature algorithms. The signature algorithm is fixed for the certificate  | 
1284  |  |  * type. |idx| is a certificate type index (SSL_PKEY_*). When |idx| is -1 the  | 
1285  |  |  * certificate type from |s| will be used.  | 
1286  |  |  * Returns the signature algorithm to use, or NULL on error.  | 
1287  |  |  */  | 
1288  |  | static const SIGALG_LOOKUP *tls1_get_legacy_sigalg(const SSL *s, int idx)  | 
1289  | 129k  | { | 
1290  | 129k  |     if (idx == -1) { | 
1291  | 10.0k  |         if (s->server) { | 
1292  | 10.0k  |             size_t i;  | 
1293  |  |  | 
1294  |  |             /* Work out index corresponding to ciphersuite */  | 
1295  | 13.2k  |             for (i = 0; i < SSL_PKEY_NUM; i++) { | 
1296  | 13.2k  |                 const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(i);  | 
1297  |  |  | 
1298  | 13.2k  |                 if (clu == NULL)  | 
1299  | 0  |                     continue;  | 
1300  | 13.2k  |                 if (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) { | 
1301  | 10.0k  |                     idx = i;  | 
1302  | 10.0k  |                     break;  | 
1303  | 10.0k  |                 }  | 
1304  | 13.2k  |             }  | 
1305  |  |  | 
1306  |  |             /*  | 
1307  |  |              * Some GOST ciphersuites allow more than one signature algorithms  | 
1308  |  |              * */  | 
1309  | 10.0k  |             if (idx == SSL_PKEY_GOST01 && s->s3.tmp.new_cipher->algorithm_auth != SSL_aGOST01) { | 
1310  | 0  |                 int real_idx;  | 
1311  |  | 
  | 
1312  | 0  |                 for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST01;  | 
1313  | 0  |                      real_idx--) { | 
1314  | 0  |                     if (s->cert->pkeys[real_idx].privatekey != NULL) { | 
1315  | 0  |                         idx = real_idx;  | 
1316  | 0  |                         break;  | 
1317  | 0  |                     }  | 
1318  | 0  |                 }  | 
1319  | 0  |             }  | 
1320  |  |             /*  | 
1321  |  |              * As both SSL_PKEY_GOST12_512 and SSL_PKEY_GOST12_256 indices can be used  | 
1322  |  |              * with new (aGOST12-only) ciphersuites, we should find out which one is available really.  | 
1323  |  |              */  | 
1324  | 10.0k  |             else if (idx == SSL_PKEY_GOST12_256) { | 
1325  | 0  |                 int real_idx;  | 
1326  |  | 
  | 
1327  | 0  |                 for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST12_256;  | 
1328  | 0  |                      real_idx--) { | 
1329  | 0  |                      if (s->cert->pkeys[real_idx].privatekey != NULL) { | 
1330  | 0  |                          idx = real_idx;  | 
1331  | 0  |                          break;  | 
1332  | 0  |                      }  | 
1333  | 0  |                 }  | 
1334  | 0  |             }  | 
1335  | 10.0k  |         } else { | 
1336  | 0  |             idx = s->cert->key - s->cert->pkeys;  | 
1337  | 0  |         }  | 
1338  | 10.0k  |     }  | 
1339  | 129k  |     if (idx < 0 || idx >= (int)OSSL_NELEM(tls_default_sigalg))  | 
1340  | 14.0k  |         return NULL;  | 
1341  | 115k  |     if (SSL_USE_SIGALGS(s) || idx != SSL_PKEY_RSA) { | 
1342  | 106k  |         const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, tls_default_sigalg[idx]);  | 
1343  |  |  | 
1344  | 106k  |         if (lu == NULL)  | 
1345  | 69.3k  |             return NULL;  | 
1346  | 36.9k  |         if (!tls1_lookup_md(s->ctx, lu, NULL))  | 
1347  | 0  |             return NULL;  | 
1348  | 36.9k  |         if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))  | 
1349  | 0  |             return NULL;  | 
1350  | 36.9k  |         return lu;  | 
1351  | 36.9k  |     }  | 
1352  | 8.85k  |     if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, &legacy_rsa_sigalg))  | 
1353  | 0  |         return NULL;  | 
1354  | 8.85k  |     return &legacy_rsa_sigalg;  | 
1355  | 8.85k  | }  | 
1356  |  | /* Set peer sigalg based key type */  | 
1357  |  | int tls1_set_peer_legacy_sigalg(SSL *s, const EVP_PKEY *pkey)  | 
1358  | 1.14k  | { | 
1359  | 1.14k  |     size_t idx;  | 
1360  | 1.14k  |     const SIGALG_LOOKUP *lu;  | 
1361  |  |  | 
1362  | 1.14k  |     if (ssl_cert_lookup_by_pkey(pkey, &idx) == NULL)  | 
1363  | 0  |         return 0;  | 
1364  | 1.14k  |     lu = tls1_get_legacy_sigalg(s, idx);  | 
1365  | 1.14k  |     if (lu == NULL)  | 
1366  | 7  |         return 0;  | 
1367  | 1.14k  |     s->s3.tmp.peer_sigalg = lu;  | 
1368  | 1.14k  |     return 1;  | 
1369  | 1.14k  | }  | 
1370  |  |  | 
1371  |  | size_t tls12_get_psigalgs(SSL *s, int sent, const uint16_t **psigs)  | 
1372  | 252k  | { | 
1373  |  |     /*  | 
1374  |  |      * If Suite B mode use Suite B sigalgs only, ignore any other  | 
1375  |  |      * preferences.  | 
1376  |  |      */  | 
1377  | 252k  |     switch (tls1_suiteb(s)) { | 
1378  | 0  |     case SSL_CERT_FLAG_SUITEB_128_LOS:  | 
1379  | 0  |         *psigs = suiteb_sigalgs;  | 
1380  | 0  |         return OSSL_NELEM(suiteb_sigalgs);  | 
1381  |  |  | 
1382  | 0  |     case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:  | 
1383  | 0  |         *psigs = suiteb_sigalgs;  | 
1384  | 0  |         return 1;  | 
1385  |  |  | 
1386  | 0  |     case SSL_CERT_FLAG_SUITEB_192_LOS:  | 
1387  | 0  |         *psigs = suiteb_sigalgs + 1;  | 
1388  | 0  |         return 1;  | 
1389  | 252k  |     }  | 
1390  |  |     /*  | 
1391  |  |      *  We use client_sigalgs (if not NULL) if we're a server  | 
1392  |  |      *  and sending a certificate request or if we're a client and  | 
1393  |  |      *  determining which shared algorithm to use.  | 
1394  |  |      */  | 
1395  | 252k  |     if ((s->server == sent) && s->cert->client_sigalgs != NULL) { | 
1396  | 0  |         *psigs = s->cert->client_sigalgs;  | 
1397  | 0  |         return s->cert->client_sigalgslen;  | 
1398  | 252k  |     } else if (s->cert->conf_sigalgs) { | 
1399  | 0  |         *psigs = s->cert->conf_sigalgs;  | 
1400  | 0  |         return s->cert->conf_sigalgslen;  | 
1401  | 252k  |     } else { | 
1402  | 252k  |         *psigs = tls12_sigalgs;  | 
1403  | 252k  |         return OSSL_NELEM(tls12_sigalgs);  | 
1404  | 252k  |     }  | 
1405  | 252k  | }  | 
1406  |  |  | 
1407  |  | /*  | 
1408  |  |  * Called by servers only. Checks that we have a sig alg that supports the  | 
1409  |  |  * specified EC curve.  | 
1410  |  |  */  | 
1411  |  | int tls_check_sigalg_curve(const SSL *s, int curve)  | 
1412  | 0  | { | 
1413  | 0  |    const uint16_t *sigs;  | 
1414  | 0  |    size_t siglen, i;  | 
1415  |  | 
  | 
1416  | 0  |     if (s->cert->conf_sigalgs) { | 
1417  | 0  |         sigs = s->cert->conf_sigalgs;  | 
1418  | 0  |         siglen = s->cert->conf_sigalgslen;  | 
1419  | 0  |     } else { | 
1420  | 0  |         sigs = tls12_sigalgs;  | 
1421  | 0  |         siglen = OSSL_NELEM(tls12_sigalgs);  | 
1422  | 0  |     }  | 
1423  |  | 
  | 
1424  | 0  |     for (i = 0; i < siglen; i++) { | 
1425  | 0  |         const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, sigs[i]);  | 
1426  |  | 
  | 
1427  | 0  |         if (lu == NULL)  | 
1428  | 0  |             continue;  | 
1429  | 0  |         if (lu->sig == EVP_PKEY_EC  | 
1430  | 0  |                 && lu->curve != NID_undef  | 
1431  | 0  |                 && curve == lu->curve)  | 
1432  | 0  |             return 1;  | 
1433  | 0  |     }  | 
1434  |  |  | 
1435  | 0  |     return 0;  | 
1436  | 0  | }  | 
1437  |  |  | 
1438  |  | /*  | 
1439  |  |  * Return the number of security bits for the signature algorithm, or 0 on  | 
1440  |  |  * error.  | 
1441  |  |  */  | 
1442  |  | static int sigalg_security_bits(SSL_CTX *ctx, const SIGALG_LOOKUP *lu)  | 
1443  | 549k  | { | 
1444  | 549k  |     const EVP_MD *md = NULL;  | 
1445  | 549k  |     int secbits = 0;  | 
1446  |  |  | 
1447  | 549k  |     if (!tls1_lookup_md(ctx, lu, &md))  | 
1448  | 0  |         return 0;  | 
1449  | 549k  |     if (md != NULL)  | 
1450  | 515k  |     { | 
1451  | 515k  |         int md_type = EVP_MD_get_type(md);  | 
1452  |  |  | 
1453  |  |         /* Security bits: half digest bits */  | 
1454  | 515k  |         secbits = EVP_MD_get_size(md) * 4;  | 
1455  |  |         /*  | 
1456  |  |          * SHA1 and MD5 are known to be broken. Reduce security bits so that  | 
1457  |  |          * they're no longer accepted at security level 1. The real values don't  | 
1458  |  |          * really matter as long as they're lower than 80, which is our  | 
1459  |  |          * security level 1.  | 
1460  |  |          * https://eprint.iacr.org/2020/014 puts a chosen-prefix attack for  | 
1461  |  |          * SHA1 at 2^63.4 and MD5+SHA1 at 2^67.2  | 
1462  |  |          * https://documents.epfl.ch/users/l/le/lenstra/public/papers/lat.pdf  | 
1463  |  |          * puts a chosen-prefix attack for MD5 at 2^39.  | 
1464  |  |          */  | 
1465  | 515k  |         if (md_type == NID_sha1)  | 
1466  | 65.4k  |             secbits = 64;  | 
1467  | 449k  |         else if (md_type == NID_md5_sha1)  | 
1468  | 4.08k  |             secbits = 67;  | 
1469  | 445k  |         else if (md_type == NID_md5)  | 
1470  | 0  |             secbits = 39;  | 
1471  | 515k  |     } else { | 
1472  |  |         /* Values from https://tools.ietf.org/html/rfc8032#section-8.5 */  | 
1473  | 34.6k  |         if (lu->sigalg == TLSEXT_SIGALG_ed25519)  | 
1474  | 15.4k  |             secbits = 128;  | 
1475  | 19.2k  |         else if (lu->sigalg == TLSEXT_SIGALG_ed448)  | 
1476  | 19.2k  |             secbits = 224;  | 
1477  | 34.6k  |     }  | 
1478  | 549k  |     return secbits;  | 
1479  | 549k  | }  | 
1480  |  |  | 
1481  |  | /*  | 
1482  |  |  * Check signature algorithm is consistent with sent supported signature  | 
1483  |  |  * algorithms and if so set relevant digest and signature scheme in  | 
1484  |  |  * s.  | 
1485  |  |  */  | 
1486  |  | int tls12_check_peer_sigalg(SSL *s, uint16_t sig, EVP_PKEY *pkey)  | 
1487  | 820  | { | 
1488  | 820  |     const uint16_t *sent_sigs;  | 
1489  | 820  |     const EVP_MD *md = NULL;  | 
1490  | 820  |     char sigalgstr[2];  | 
1491  | 820  |     size_t sent_sigslen, i, cidx;  | 
1492  | 820  |     int pkeyid = -1;  | 
1493  | 820  |     const SIGALG_LOOKUP *lu;  | 
1494  | 820  |     int secbits = 0;  | 
1495  |  |  | 
1496  | 820  |     pkeyid = EVP_PKEY_get_id(pkey);  | 
1497  |  |     /* Should never happen */  | 
1498  | 820  |     if (pkeyid == -1)  | 
1499  | 0  |         return -1;  | 
1500  | 820  |     if (SSL_IS_TLS13(s)) { | 
1501  |  |         /* Disallow DSA for TLS 1.3 */  | 
1502  | 0  |         if (pkeyid == EVP_PKEY_DSA) { | 
1503  | 0  |             SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);  | 
1504  | 0  |             return 0;  | 
1505  | 0  |         }  | 
1506  |  |         /* Only allow PSS for TLS 1.3 */  | 
1507  | 0  |         if (pkeyid == EVP_PKEY_RSA)  | 
1508  | 0  |             pkeyid = EVP_PKEY_RSA_PSS;  | 
1509  | 0  |     }  | 
1510  | 820  |     lu = tls1_lookup_sigalg(s, sig);  | 
1511  |  |     /*  | 
1512  |  |      * Check sigalgs is known. Disallow SHA1/SHA224 with TLS 1.3. Check key type  | 
1513  |  |      * is consistent with signature: RSA keys can be used for RSA-PSS  | 
1514  |  |      */  | 
1515  | 820  |     if (lu == NULL  | 
1516  | 820  |         || (SSL_IS_TLS13(s) && (lu->hash == NID_sha1 || lu->hash == NID_sha224))  | 
1517  | 820  |         || (pkeyid != lu->sig  | 
1518  | 791  |         && (lu->sig != EVP_PKEY_RSA_PSS || pkeyid != EVP_PKEY_RSA))) { | 
1519  | 40  |         SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);  | 
1520  | 40  |         return 0;  | 
1521  | 40  |     }  | 
1522  |  |     /* Check the sigalg is consistent with the key OID */  | 
1523  | 780  |     if (!ssl_cert_lookup_by_nid(EVP_PKEY_get_id(pkey), &cidx)  | 
1524  | 780  |             || lu->sig_idx != (int)cidx) { | 
1525  | 2  |         SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);  | 
1526  | 2  |         return 0;  | 
1527  | 2  |     }  | 
1528  |  |  | 
1529  | 778  |     if (pkeyid == EVP_PKEY_EC) { | 
1530  |  |  | 
1531  |  |         /* Check point compression is permitted */  | 
1532  | 275  |         if (!tls1_check_pkey_comp(s, pkey)) { | 
1533  | 12  |             SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,  | 
1534  | 12  |                      SSL_R_ILLEGAL_POINT_COMPRESSION);  | 
1535  | 12  |             return 0;  | 
1536  | 12  |         }  | 
1537  |  |  | 
1538  |  |         /* For TLS 1.3 or Suite B check curve matches signature algorithm */  | 
1539  | 263  |         if (SSL_IS_TLS13(s) || tls1_suiteb(s)) { | 
1540  | 0  |             int curve = ssl_get_EC_curve_nid(pkey);  | 
1541  |  | 
  | 
1542  | 0  |             if (lu->curve != NID_undef && curve != lu->curve) { | 
1543  | 0  |                 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);  | 
1544  | 0  |                 return 0;  | 
1545  | 0  |             }  | 
1546  | 0  |         }  | 
1547  | 263  |         if (!SSL_IS_TLS13(s)) { | 
1548  |  |             /* Check curve matches extensions */  | 
1549  | 263  |             if (!tls1_check_group_id(s, tls1_get_group_id(pkey), 1)) { | 
1550  | 2  |                 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);  | 
1551  | 2  |                 return 0;  | 
1552  | 2  |             }  | 
1553  | 261  |             if (tls1_suiteb(s)) { | 
1554  |  |                 /* Check sigalg matches a permissible Suite B value */  | 
1555  | 0  |                 if (sig != TLSEXT_SIGALG_ecdsa_secp256r1_sha256  | 
1556  | 0  |                     && sig != TLSEXT_SIGALG_ecdsa_secp384r1_sha384) { | 
1557  | 0  |                     SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,  | 
1558  | 0  |                              SSL_R_WRONG_SIGNATURE_TYPE);  | 
1559  | 0  |                     return 0;  | 
1560  | 0  |                 }  | 
1561  | 0  |             }  | 
1562  | 261  |         }  | 
1563  | 503  |     } else if (tls1_suiteb(s)) { | 
1564  | 0  |         SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);  | 
1565  | 0  |         return 0;  | 
1566  | 0  |     }  | 
1567  |  |  | 
1568  |  |     /* Check signature matches a type we sent */  | 
1569  | 764  |     sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);  | 
1570  | 9.99k  |     for (i = 0; i < sent_sigslen; i++, sent_sigs++) { | 
1571  | 9.99k  |         if (sig == *sent_sigs)  | 
1572  | 764  |             break;  | 
1573  | 9.99k  |     }  | 
1574  |  |     /* Allow fallback to SHA1 if not strict mode */  | 
1575  | 764  |     if (i == sent_sigslen && (lu->hash != NID_sha1  | 
1576  | 0  |         || s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)) { | 
1577  | 0  |         SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);  | 
1578  | 0  |         return 0;  | 
1579  | 0  |     }  | 
1580  | 764  |     if (!tls1_lookup_md(s->ctx, lu, &md)) { | 
1581  | 0  |         SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_UNKNOWN_DIGEST);  | 
1582  | 0  |         return 0;  | 
1583  | 0  |     }  | 
1584  |  |     /*  | 
1585  |  |      * Make sure security callback allows algorithm. For historical  | 
1586  |  |      * reasons we have to pass the sigalg as a two byte char array.  | 
1587  |  |      */  | 
1588  | 764  |     sigalgstr[0] = (sig >> 8) & 0xff;  | 
1589  | 764  |     sigalgstr[1] = sig & 0xff;  | 
1590  | 764  |     secbits = sigalg_security_bits(s->ctx, lu);  | 
1591  | 764  |     if (secbits == 0 ||  | 
1592  | 764  |         !ssl_security(s, SSL_SECOP_SIGALG_CHECK, secbits,  | 
1593  | 764  |                       md != NULL ? EVP_MD_get_type(md) : NID_undef,  | 
1594  | 764  |                       (void *)sigalgstr)) { | 
1595  | 0  |         SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);  | 
1596  | 0  |         return 0;  | 
1597  | 0  |     }  | 
1598  |  |     /* Store the sigalg the peer uses */  | 
1599  | 764  |     s->s3.tmp.peer_sigalg = lu;  | 
1600  | 764  |     return 1;  | 
1601  | 764  | }  | 
1602  |  |  | 
1603  |  | int SSL_get_peer_signature_type_nid(const SSL *s, int *pnid)  | 
1604  | 0  | { | 
1605  | 0  |     if (s->s3.tmp.peer_sigalg == NULL)  | 
1606  | 0  |         return 0;  | 
1607  | 0  |     *pnid = s->s3.tmp.peer_sigalg->sig;  | 
1608  | 0  |     return 1;  | 
1609  | 0  | }  | 
1610  |  |  | 
1611  |  | int SSL_get_signature_type_nid(const SSL *s, int *pnid)  | 
1612  | 0  | { | 
1613  | 0  |     if (s->s3.tmp.sigalg == NULL)  | 
1614  | 0  |         return 0;  | 
1615  | 0  |     *pnid = s->s3.tmp.sigalg->sig;  | 
1616  | 0  |     return 1;  | 
1617  | 0  | }  | 
1618  |  |  | 
1619  |  | /*  | 
1620  |  |  * Set a mask of disabled algorithms: an algorithm is disabled if it isn't  | 
1621  |  |  * supported, doesn't appear in supported signature algorithms, isn't supported  | 
1622  |  |  * by the enabled protocol versions or by the security level.  | 
1623  |  |  *  | 
1624  |  |  * This function should only be used for checking which ciphers are supported  | 
1625  |  |  * by the client.  | 
1626  |  |  *  | 
1627  |  |  * Call ssl_cipher_disabled() to check that it's enabled or not.  | 
1628  |  |  */  | 
1629  |  | int ssl_set_client_disabled(SSL *s)  | 
1630  | 166k  | { | 
1631  | 166k  |     s->s3.tmp.mask_a = 0;  | 
1632  | 166k  |     s->s3.tmp.mask_k = 0;  | 
1633  | 166k  |     ssl_set_sig_mask(&s->s3.tmp.mask_a, s, SSL_SECOP_SIGALG_MASK);  | 
1634  | 166k  |     if (ssl_get_min_max_version(s, &s->s3.tmp.min_ver,  | 
1635  | 166k  |                                 &s->s3.tmp.max_ver, NULL) != 0)  | 
1636  | 0  |         return 0;  | 
1637  | 166k  | #ifndef OPENSSL_NO_PSK  | 
1638  |  |     /* with PSK there must be client callback set */  | 
1639  | 166k  |     if (!s->psk_client_callback) { | 
1640  | 166k  |         s->s3.tmp.mask_a |= SSL_aPSK;  | 
1641  | 166k  |         s->s3.tmp.mask_k |= SSL_PSK;  | 
1642  | 166k  |     }  | 
1643  | 166k  | #endif                          /* OPENSSL_NO_PSK */  | 
1644  | 166k  | #ifndef OPENSSL_NO_SRP  | 
1645  | 166k  |     if (!(s->srp_ctx.srp_Mask & SSL_kSRP)) { | 
1646  | 166k  |         s->s3.tmp.mask_a |= SSL_aSRP;  | 
1647  | 166k  |         s->s3.tmp.mask_k |= SSL_kSRP;  | 
1648  | 166k  |     }  | 
1649  | 166k  | #endif  | 
1650  | 166k  |     return 1;  | 
1651  | 166k  | }  | 
1652  |  |  | 
1653  |  | /*  | 
1654  |  |  * ssl_cipher_disabled - check that a cipher is disabled or not  | 
1655  |  |  * @s: SSL connection that you want to use the cipher on  | 
1656  |  |  * @c: cipher to check  | 
1657  |  |  * @op: Security check that you want to do  | 
1658  |  |  * @ecdhe: If set to 1 then TLSv1 ECDHE ciphers are also allowed in SSLv3  | 
1659  |  |  *  | 
1660  |  |  * Returns 1 when it's disabled, 0 when enabled.  | 
1661  |  |  */  | 
1662  |  | int ssl_cipher_disabled(const SSL *s, const SSL_CIPHER *c, int op, int ecdhe)  | 
1663  | 7.50M  | { | 
1664  | 7.50M  |     if (c->algorithm_mkey & s->s3.tmp.mask_k  | 
1665  | 7.50M  |         || c->algorithm_auth & s->s3.tmp.mask_a)  | 
1666  | 3.18M  |         return 1;  | 
1667  | 4.32M  |     if (s->s3.tmp.max_ver == 0)  | 
1668  | 0  |         return 1;  | 
1669  | 4.32M  |     if (!SSL_IS_DTLS(s)) { | 
1670  | 4.32M  |         int min_tls = c->min_tls;  | 
1671  |  |  | 
1672  |  |         /*  | 
1673  |  |          * For historical reasons we will allow ECHDE to be selected by a server  | 
1674  |  |          * in SSLv3 if we are a client  | 
1675  |  |          */  | 
1676  | 4.32M  |         if (min_tls == TLS1_VERSION && ecdhe  | 
1677  | 4.32M  |                 && (c->algorithm_mkey & (SSL_kECDHE | SSL_kECDHEPSK)) != 0)  | 
1678  | 3.20k  |             min_tls = SSL3_VERSION;  | 
1679  |  |  | 
1680  | 4.32M  |         if ((min_tls > s->s3.tmp.max_ver) || (c->max_tls < s->s3.tmp.min_ver))  | 
1681  | 19  |             return 1;  | 
1682  | 4.32M  |     }  | 
1683  | 4.32M  |     if (SSL_IS_DTLS(s) && (DTLS_VERSION_GT(c->min_dtls, s->s3.tmp.max_ver)  | 
1684  | 0  |                            || DTLS_VERSION_LT(c->max_dtls, s->s3.tmp.min_ver)))  | 
1685  | 0  |         return 1;  | 
1686  |  |  | 
1687  | 4.32M  |     return !ssl_security(s, op, c->strength_bits, 0, (void *)c);  | 
1688  | 4.32M  | }  | 
1689  |  |  | 
1690  |  | int tls_use_ticket(SSL *s)  | 
1691  | 74.5k  | { | 
1692  | 74.5k  |     if ((s->options & SSL_OP_NO_TICKET))  | 
1693  | 0  |         return 0;  | 
1694  | 74.5k  |     return ssl_security(s, SSL_SECOP_TICKET, 0, 0, NULL);  | 
1695  | 74.5k  | }  | 
1696  |  |  | 
1697  |  | int tls1_set_server_sigalgs(SSL *s)  | 
1698  | 6.38k  | { | 
1699  | 6.38k  |     size_t i;  | 
1700  |  |  | 
1701  |  |     /* Clear any shared signature algorithms */  | 
1702  | 6.38k  |     OPENSSL_free(s->shared_sigalgs);  | 
1703  | 6.38k  |     s->shared_sigalgs = NULL;  | 
1704  | 6.38k  |     s->shared_sigalgslen = 0;  | 
1705  |  |     /* Clear certificate validity flags */  | 
1706  | 63.8k  |     for (i = 0; i < SSL_PKEY_NUM; i++)  | 
1707  | 57.4k  |         s->s3.tmp.valid_flags[i] = 0;  | 
1708  |  |     /*  | 
1709  |  |      * If peer sent no signature algorithms check to see if we support  | 
1710  |  |      * the default algorithm for each certificate type  | 
1711  |  |      */  | 
1712  | 6.38k  |     if (s->s3.tmp.peer_cert_sigalgs == NULL  | 
1713  | 6.38k  |             && s->s3.tmp.peer_sigalgs == NULL) { | 
1714  | 4.27k  |         const uint16_t *sent_sigs;  | 
1715  | 4.27k  |         size_t sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);  | 
1716  |  |  | 
1717  | 42.7k  |         for (i = 0; i < SSL_PKEY_NUM; i++) { | 
1718  | 38.5k  |             const SIGALG_LOOKUP *lu = tls1_get_legacy_sigalg(s, i);  | 
1719  | 38.5k  |             size_t j;  | 
1720  |  |  | 
1721  | 38.5k  |             if (lu == NULL)  | 
1722  | 25.6k  |                 continue;  | 
1723  |  |             /* Check default matches a type we sent */  | 
1724  | 254k  |             for (j = 0; j < sent_sigslen; j++) { | 
1725  | 252k  |                 if (lu->sigalg == sent_sigs[j]) { | 
1726  | 10.7k  |                         s->s3.tmp.valid_flags[i] = CERT_PKEY_SIGN;  | 
1727  | 10.7k  |                         break;  | 
1728  | 10.7k  |                 }  | 
1729  | 252k  |             }  | 
1730  | 12.8k  |         }  | 
1731  | 4.27k  |         return 1;  | 
1732  | 4.27k  |     }  | 
1733  |  |  | 
1734  | 2.10k  |     if (!tls1_process_sigalgs(s)) { | 
1735  | 0  |         SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);  | 
1736  | 0  |         return 0;  | 
1737  | 0  |     }  | 
1738  | 2.10k  |     if (s->shared_sigalgs != NULL)  | 
1739  | 2.07k  |         return 1;  | 
1740  |  |  | 
1741  |  |     /* Fatal error if no shared signature algorithms */  | 
1742  | 2.10k  |     SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,  | 
1743  | 32  |              SSL_R_NO_SHARED_SIGNATURE_ALGORITHMS);  | 
1744  | 32  |     return 0;  | 
1745  | 2.10k  | }  | 
1746  |  |  | 
1747  |  | /*-  | 
1748  |  |  * Gets the ticket information supplied by the client if any.  | 
1749  |  |  *  | 
1750  |  |  *   hello: The parsed ClientHello data  | 
1751  |  |  *   ret: (output) on return, if a ticket was decrypted, then this is set to  | 
1752  |  |  *       point to the resulting session.  | 
1753  |  |  */  | 
1754  |  | SSL_TICKET_STATUS tls_get_ticket_from_client(SSL *s, CLIENTHELLO_MSG *hello,  | 
1755  |  |                                              SSL_SESSION **ret)  | 
1756  | 12.0k  | { | 
1757  | 12.0k  |     size_t size;  | 
1758  | 12.0k  |     RAW_EXTENSION *ticketext;  | 
1759  |  |  | 
1760  | 12.0k  |     *ret = NULL;  | 
1761  | 12.0k  |     s->ext.ticket_expected = 0;  | 
1762  |  |  | 
1763  |  |     /*  | 
1764  |  |      * If tickets disabled or not supported by the protocol version  | 
1765  |  |      * (e.g. TLSv1.3) behave as if no ticket present to permit stateful  | 
1766  |  |      * resumption.  | 
1767  |  |      */  | 
1768  | 12.0k  |     if (s->version <= SSL3_VERSION || !tls_use_ticket(s))  | 
1769  | 81  |         return SSL_TICKET_NONE;  | 
1770  |  |  | 
1771  | 11.9k  |     ticketext = &hello->pre_proc_exts[TLSEXT_IDX_session_ticket];  | 
1772  | 11.9k  |     if (!ticketext->present)  | 
1773  | 10.3k  |         return SSL_TICKET_NONE;  | 
1774  |  |  | 
1775  | 1.60k  |     size = PACKET_remaining(&ticketext->data);  | 
1776  |  |  | 
1777  | 1.60k  |     return tls_decrypt_ticket(s, PACKET_data(&ticketext->data), size,  | 
1778  | 1.60k  |                               hello->session_id, hello->session_id_len, ret);  | 
1779  | 11.9k  | }  | 
1780  |  |  | 
1781  |  | /*-  | 
1782  |  |  * tls_decrypt_ticket attempts to decrypt a session ticket.  | 
1783  |  |  *  | 
1784  |  |  * If s->tls_session_secret_cb is set and we're not doing TLSv1.3 then we are  | 
1785  |  |  * expecting a pre-shared key ciphersuite, in which case we have no use for  | 
1786  |  |  * session tickets and one will never be decrypted, nor will  | 
1787  |  |  * s->ext.ticket_expected be set to 1.  | 
1788  |  |  *  | 
1789  |  |  * Side effects:  | 
1790  |  |  *   Sets s->ext.ticket_expected to 1 if the server will have to issue  | 
1791  |  |  *   a new session ticket to the client because the client indicated support  | 
1792  |  |  *   (and s->tls_session_secret_cb is NULL) but the client either doesn't have  | 
1793  |  |  *   a session ticket or we couldn't use the one it gave us, or if  | 
1794  |  |  *   s->ctx->ext.ticket_key_cb asked to renew the client's ticket.  | 
1795  |  |  *   Otherwise, s->ext.ticket_expected is set to 0.  | 
1796  |  |  *  | 
1797  |  |  *   etick: points to the body of the session ticket extension.  | 
1798  |  |  *   eticklen: the length of the session tickets extension.  | 
1799  |  |  *   sess_id: points at the session ID.  | 
1800  |  |  *   sesslen: the length of the session ID.  | 
1801  |  |  *   psess: (output) on return, if a ticket was decrypted, then this is set to  | 
1802  |  |  *       point to the resulting session.  | 
1803  |  |  */  | 
1804  |  | SSL_TICKET_STATUS tls_decrypt_ticket(SSL *s, const unsigned char *etick,  | 
1805  |  |                                      size_t eticklen, const unsigned char *sess_id,  | 
1806  |  |                                      size_t sesslen, SSL_SESSION **psess)  | 
1807  | 2.28k  | { | 
1808  | 2.28k  |     SSL_SESSION *sess = NULL;  | 
1809  | 2.28k  |     unsigned char *sdec;  | 
1810  | 2.28k  |     const unsigned char *p;  | 
1811  | 2.28k  |     int slen, ivlen, renew_ticket = 0, declen;  | 
1812  | 2.28k  |     SSL_TICKET_STATUS ret = SSL_TICKET_FATAL_ERR_OTHER;  | 
1813  | 2.28k  |     size_t mlen;  | 
1814  | 2.28k  |     unsigned char tick_hmac[EVP_MAX_MD_SIZE];  | 
1815  | 2.28k  |     SSL_HMAC *hctx = NULL;  | 
1816  | 2.28k  |     EVP_CIPHER_CTX *ctx = NULL;  | 
1817  | 2.28k  |     SSL_CTX *tctx = s->session_ctx;  | 
1818  |  |  | 
1819  | 2.28k  |     if (eticklen == 0) { | 
1820  |  |         /*  | 
1821  |  |          * The client will accept a ticket but doesn't currently have  | 
1822  |  |          * one (TLSv1.2 and below), or treated as a fatal error in TLSv1.3  | 
1823  |  |          */  | 
1824  | 682  |         ret = SSL_TICKET_EMPTY;  | 
1825  | 682  |         goto end;  | 
1826  | 682  |     }  | 
1827  | 1.59k  |     if (!SSL_IS_TLS13(s) && s->ext.session_secret_cb) { | 
1828  |  |         /*  | 
1829  |  |          * Indicate that the ticket couldn't be decrypted rather than  | 
1830  |  |          * generating the session from ticket now, trigger  | 
1831  |  |          * abbreviated handshake based on external mechanism to  | 
1832  |  |          * calculate the master secret later.  | 
1833  |  |          */  | 
1834  | 0  |         ret = SSL_TICKET_NO_DECRYPT;  | 
1835  | 0  |         goto end;  | 
1836  | 0  |     }  | 
1837  |  |  | 
1838  |  |     /* Need at least keyname + iv */  | 
1839  | 1.59k  |     if (eticklen < TLSEXT_KEYNAME_LENGTH + EVP_MAX_IV_LENGTH) { | 
1840  | 487  |         ret = SSL_TICKET_NO_DECRYPT;  | 
1841  | 487  |         goto end;  | 
1842  | 487  |     }  | 
1843  |  |  | 
1844  |  |     /* Initialize session ticket encryption and HMAC contexts */  | 
1845  | 1.11k  |     hctx = ssl_hmac_new(tctx);  | 
1846  | 1.11k  |     if (hctx == NULL) { | 
1847  | 0  |         ret = SSL_TICKET_FATAL_ERR_MALLOC;  | 
1848  | 0  |         goto end;  | 
1849  | 0  |     }  | 
1850  | 1.11k  |     ctx = EVP_CIPHER_CTX_new();  | 
1851  | 1.11k  |     if (ctx == NULL) { | 
1852  | 0  |         ret = SSL_TICKET_FATAL_ERR_MALLOC;  | 
1853  | 0  |         goto end;  | 
1854  | 0  |     }  | 
1855  | 1.11k  | #ifndef OPENSSL_NO_DEPRECATED_3_0  | 
1856  | 1.11k  |     if (tctx->ext.ticket_key_evp_cb != NULL || tctx->ext.ticket_key_cb != NULL)  | 
1857  |  | #else  | 
1858  |  |     if (tctx->ext.ticket_key_evp_cb != NULL)  | 
1859  |  | #endif  | 
1860  | 0  |     { | 
1861  | 0  |         unsigned char *nctick = (unsigned char *)etick;  | 
1862  | 0  |         int rv = 0;  | 
1863  |  | 
  | 
1864  | 0  |         if (tctx->ext.ticket_key_evp_cb != NULL)  | 
1865  | 0  |             rv = tctx->ext.ticket_key_evp_cb(s, nctick,  | 
1866  | 0  |                                              nctick + TLSEXT_KEYNAME_LENGTH,  | 
1867  | 0  |                                              ctx,  | 
1868  | 0  |                                              ssl_hmac_get0_EVP_MAC_CTX(hctx),  | 
1869  | 0  |                                              0);  | 
1870  | 0  | #ifndef OPENSSL_NO_DEPRECATED_3_0  | 
1871  | 0  |         else if (tctx->ext.ticket_key_cb != NULL)  | 
1872  |  |             /* if 0 is returned, write an empty ticket */  | 
1873  | 0  |             rv = tctx->ext.ticket_key_cb(s, nctick,  | 
1874  | 0  |                                          nctick + TLSEXT_KEYNAME_LENGTH,  | 
1875  | 0  |                                          ctx, ssl_hmac_get0_HMAC_CTX(hctx), 0);  | 
1876  | 0  | #endif  | 
1877  | 0  |         if (rv < 0) { | 
1878  | 0  |             ret = SSL_TICKET_FATAL_ERR_OTHER;  | 
1879  | 0  |             goto end;  | 
1880  | 0  |         }  | 
1881  | 0  |         if (rv == 0) { | 
1882  | 0  |             ret = SSL_TICKET_NO_DECRYPT;  | 
1883  | 0  |             goto end;  | 
1884  | 0  |         }  | 
1885  | 0  |         if (rv == 2)  | 
1886  | 0  |             renew_ticket = 1;  | 
1887  | 1.11k  |     } else { | 
1888  | 1.11k  |         EVP_CIPHER *aes256cbc = NULL;  | 
1889  |  |  | 
1890  |  |         /* Check key name matches */  | 
1891  | 1.11k  |         if (memcmp(etick, tctx->ext.tick_key_name,  | 
1892  | 1.11k  |                    TLSEXT_KEYNAME_LENGTH) != 0) { | 
1893  | 225  |             ret = SSL_TICKET_NO_DECRYPT;  | 
1894  | 225  |             goto end;  | 
1895  | 225  |         }  | 
1896  |  |  | 
1897  | 887  |         aes256cbc = EVP_CIPHER_fetch(s->ctx->libctx, "AES-256-CBC",  | 
1898  | 887  |                                      s->ctx->propq);  | 
1899  | 887  |         if (aes256cbc == NULL  | 
1900  | 887  |             || ssl_hmac_init(hctx, tctx->ext.secure->tick_hmac_key,  | 
1901  | 887  |                              sizeof(tctx->ext.secure->tick_hmac_key),  | 
1902  | 887  |                              "SHA256") <= 0  | 
1903  | 887  |             || EVP_DecryptInit_ex(ctx, aes256cbc, NULL,  | 
1904  | 887  |                                   tctx->ext.secure->tick_aes_key,  | 
1905  | 887  |                                   etick + TLSEXT_KEYNAME_LENGTH) <= 0) { | 
1906  | 0  |             EVP_CIPHER_free(aes256cbc);  | 
1907  | 0  |             ret = SSL_TICKET_FATAL_ERR_OTHER;  | 
1908  | 0  |             goto end;  | 
1909  | 0  |         }  | 
1910  | 887  |         EVP_CIPHER_free(aes256cbc);  | 
1911  | 887  |         if (SSL_IS_TLS13(s))  | 
1912  | 432  |             renew_ticket = 1;  | 
1913  | 887  |     }  | 
1914  |  |     /*  | 
1915  |  |      * Attempt to process session ticket, first conduct sanity and integrity  | 
1916  |  |      * checks on ticket.  | 
1917  |  |      */  | 
1918  | 887  |     mlen = ssl_hmac_size(hctx);  | 
1919  | 887  |     if (mlen == 0) { | 
1920  | 0  |         ret = SSL_TICKET_FATAL_ERR_OTHER;  | 
1921  | 0  |         goto end;  | 
1922  | 0  |     }  | 
1923  |  |  | 
1924  | 887  |     ivlen = EVP_CIPHER_CTX_get_iv_length(ctx);  | 
1925  | 887  |     if (ivlen < 0) { | 
1926  | 0  |         ret = SSL_TICKET_FATAL_ERR_OTHER;  | 
1927  | 0  |         goto end;  | 
1928  | 0  |     }  | 
1929  |  |  | 
1930  |  |     /* Sanity check ticket length: must exceed keyname + IV + HMAC */  | 
1931  | 887  |     if (eticklen <= TLSEXT_KEYNAME_LENGTH + ivlen + mlen) { | 
1932  | 74  |         ret = SSL_TICKET_NO_DECRYPT;  | 
1933  | 74  |         goto end;  | 
1934  | 74  |     }  | 
1935  | 813  |     eticklen -= mlen;  | 
1936  |  |     /* Check HMAC of encrypted ticket */  | 
1937  | 813  |     if (ssl_hmac_update(hctx, etick, eticklen) <= 0  | 
1938  | 813  |         || ssl_hmac_final(hctx, tick_hmac, NULL, sizeof(tick_hmac)) <= 0) { | 
1939  | 0  |         ret = SSL_TICKET_FATAL_ERR_OTHER;  | 
1940  | 0  |         goto end;  | 
1941  | 0  |     }  | 
1942  |  |  | 
1943  | 813  |     if (CRYPTO_memcmp(tick_hmac, etick + eticklen, mlen)) { | 
1944  | 99  |         ret = SSL_TICKET_NO_DECRYPT;  | 
1945  | 99  |         goto end;  | 
1946  | 99  |     }  | 
1947  |  |     /* Attempt to decrypt session data */  | 
1948  |  |     /* Move p after IV to start of encrypted ticket, update length */  | 
1949  | 714  |     p = etick + TLSEXT_KEYNAME_LENGTH + ivlen;  | 
1950  | 714  |     eticklen -= TLSEXT_KEYNAME_LENGTH + ivlen;  | 
1951  | 714  |     sdec = OPENSSL_malloc(eticklen);  | 
1952  | 714  |     if (sdec == NULL || EVP_DecryptUpdate(ctx, sdec, &slen, p,  | 
1953  | 714  |                                           (int)eticklen) <= 0) { | 
1954  | 0  |         OPENSSL_free(sdec);  | 
1955  | 0  |         ret = SSL_TICKET_FATAL_ERR_OTHER;  | 
1956  | 0  |         goto end;  | 
1957  | 0  |     }  | 
1958  | 714  |     if (EVP_DecryptFinal(ctx, sdec + slen, &declen) <= 0) { | 
1959  | 54  |         OPENSSL_free(sdec);  | 
1960  | 54  |         ret = SSL_TICKET_NO_DECRYPT;  | 
1961  | 54  |         goto end;  | 
1962  | 54  |     }  | 
1963  | 660  |     slen += declen;  | 
1964  | 660  |     p = sdec;  | 
1965  |  |  | 
1966  | 660  |     sess = d2i_SSL_SESSION(NULL, &p, slen);  | 
1967  | 660  |     slen -= p - sdec;  | 
1968  | 660  |     OPENSSL_free(sdec);  | 
1969  | 660  |     if (sess) { | 
1970  |  |         /* Some additional consistency checks */  | 
1971  | 526  |         if (slen != 0) { | 
1972  | 8  |             SSL_SESSION_free(sess);  | 
1973  | 8  |             sess = NULL;  | 
1974  | 8  |             ret = SSL_TICKET_NO_DECRYPT;  | 
1975  | 8  |             goto end;  | 
1976  | 8  |         }  | 
1977  |  |         /*  | 
1978  |  |          * The session ID, if non-empty, is used by some clients to detect  | 
1979  |  |          * that the ticket has been accepted. So we copy it to the session  | 
1980  |  |          * structure. If it is empty set length to zero as required by  | 
1981  |  |          * standard.  | 
1982  |  |          */  | 
1983  | 518  |         if (sesslen) { | 
1984  | 206  |             memcpy(sess->session_id, sess_id, sesslen);  | 
1985  | 206  |             sess->session_id_length = sesslen;  | 
1986  | 206  |         }  | 
1987  | 518  |         if (renew_ticket)  | 
1988  | 299  |             ret = SSL_TICKET_SUCCESS_RENEW;  | 
1989  | 219  |         else  | 
1990  | 219  |             ret = SSL_TICKET_SUCCESS;  | 
1991  | 518  |         goto end;  | 
1992  | 526  |     }  | 
1993  | 134  |     ERR_clear_error();  | 
1994  |  |     /*  | 
1995  |  |      * For session parse failure, indicate that we need to send a new ticket.  | 
1996  |  |      */  | 
1997  | 134  |     ret = SSL_TICKET_NO_DECRYPT;  | 
1998  |  |  | 
1999  | 2.28k  |  end:  | 
2000  | 2.28k  |     EVP_CIPHER_CTX_free(ctx);  | 
2001  | 2.28k  |     ssl_hmac_free(hctx);  | 
2002  |  |  | 
2003  |  |     /*  | 
2004  |  |      * If set, the decrypt_ticket_cb() is called unless a fatal error was  | 
2005  |  |      * detected above. The callback is responsible for checking |ret| before it  | 
2006  |  |      * performs any action  | 
2007  |  |      */  | 
2008  | 2.28k  |     if (s->session_ctx->decrypt_ticket_cb != NULL  | 
2009  | 2.28k  |             && (ret == SSL_TICKET_EMPTY  | 
2010  | 0  |                 || ret == SSL_TICKET_NO_DECRYPT  | 
2011  | 0  |                 || ret == SSL_TICKET_SUCCESS  | 
2012  | 0  |                 || ret == SSL_TICKET_SUCCESS_RENEW)) { | 
2013  | 0  |         size_t keyname_len = eticklen;  | 
2014  | 0  |         int retcb;  | 
2015  |  | 
  | 
2016  | 0  |         if (keyname_len > TLSEXT_KEYNAME_LENGTH)  | 
2017  | 0  |             keyname_len = TLSEXT_KEYNAME_LENGTH;  | 
2018  | 0  |         retcb = s->session_ctx->decrypt_ticket_cb(s, sess, etick, keyname_len,  | 
2019  | 0  |                                                   ret,  | 
2020  | 0  |                                                   s->session_ctx->ticket_cb_data);  | 
2021  | 0  |         switch (retcb) { | 
2022  | 0  |         case SSL_TICKET_RETURN_ABORT:  | 
2023  | 0  |             ret = SSL_TICKET_FATAL_ERR_OTHER;  | 
2024  | 0  |             break;  | 
2025  |  |  | 
2026  | 0  |         case SSL_TICKET_RETURN_IGNORE:  | 
2027  | 0  |             ret = SSL_TICKET_NONE;  | 
2028  | 0  |             SSL_SESSION_free(sess);  | 
2029  | 0  |             sess = NULL;  | 
2030  | 0  |             break;  | 
2031  |  |  | 
2032  | 0  |         case SSL_TICKET_RETURN_IGNORE_RENEW:  | 
2033  | 0  |             if (ret != SSL_TICKET_EMPTY && ret != SSL_TICKET_NO_DECRYPT)  | 
2034  | 0  |                 ret = SSL_TICKET_NO_DECRYPT;  | 
2035  |  |             /* else the value of |ret| will already do the right thing */  | 
2036  | 0  |             SSL_SESSION_free(sess);  | 
2037  | 0  |             sess = NULL;  | 
2038  | 0  |             break;  | 
2039  |  |  | 
2040  | 0  |         case SSL_TICKET_RETURN_USE:  | 
2041  | 0  |         case SSL_TICKET_RETURN_USE_RENEW:  | 
2042  | 0  |             if (ret != SSL_TICKET_SUCCESS  | 
2043  | 0  |                     && ret != SSL_TICKET_SUCCESS_RENEW)  | 
2044  | 0  |                 ret = SSL_TICKET_FATAL_ERR_OTHER;  | 
2045  | 0  |             else if (retcb == SSL_TICKET_RETURN_USE)  | 
2046  | 0  |                 ret = SSL_TICKET_SUCCESS;  | 
2047  | 0  |             else  | 
2048  | 0  |                 ret = SSL_TICKET_SUCCESS_RENEW;  | 
2049  | 0  |             break;  | 
2050  |  |  | 
2051  | 0  |         default:  | 
2052  | 0  |             ret = SSL_TICKET_FATAL_ERR_OTHER;  | 
2053  | 0  |         }  | 
2054  | 0  |     }  | 
2055  |  |  | 
2056  | 2.28k  |     if (s->ext.session_secret_cb == NULL || SSL_IS_TLS13(s)) { | 
2057  | 2.28k  |         switch (ret) { | 
2058  | 1.08k  |         case SSL_TICKET_NO_DECRYPT:  | 
2059  | 1.38k  |         case SSL_TICKET_SUCCESS_RENEW:  | 
2060  | 2.06k  |         case SSL_TICKET_EMPTY:  | 
2061  | 2.06k  |             s->ext.ticket_expected = 1;  | 
2062  | 2.28k  |         }  | 
2063  | 2.28k  |     }  | 
2064  |  |  | 
2065  | 2.28k  |     *psess = sess;  | 
2066  |  |  | 
2067  | 2.28k  |     return ret;  | 
2068  | 2.28k  | }  | 
2069  |  |  | 
2070  |  | /* Check to see if a signature algorithm is allowed */  | 
2071  |  | static int tls12_sigalg_allowed(const SSL *s, int op, const SIGALG_LOOKUP *lu)  | 
2072  | 2.20M  | { | 
2073  | 2.20M  |     unsigned char sigalgstr[2];  | 
2074  | 2.20M  |     int secbits;  | 
2075  |  |  | 
2076  | 2.20M  |     if (lu == NULL || !lu->enabled)  | 
2077  | 0  |         return 0;  | 
2078  |  |     /* DSA is not allowed in TLS 1.3 */  | 
2079  | 2.20M  |     if (SSL_IS_TLS13(s) && lu->sig == EVP_PKEY_DSA)  | 
2080  | 2.71k  |         return 0;  | 
2081  |  |     /*  | 
2082  |  |      * At some point we should fully axe DSA/etc. in ClientHello as per TLS 1.3  | 
2083  |  |      * spec  | 
2084  |  |      */  | 
2085  | 2.20M  |     if (!s->server && !SSL_IS_DTLS(s) && s->s3.tmp.min_ver >= TLS1_3_VERSION  | 
2086  | 2.20M  |         && (lu->sig == EVP_PKEY_DSA || lu->hash_idx == SSL_MD_SHA1_IDX  | 
2087  | 823k  |             || lu->hash_idx == SSL_MD_MD5_IDX  | 
2088  | 823k  |             || lu->hash_idx == SSL_MD_SHA224_IDX))  | 
2089  | 322k  |         return 0;  | 
2090  |  |  | 
2091  |  |     /* See if public key algorithm allowed */  | 
2092  | 1.88M  |     if (ssl_cert_is_disabled(s->ctx, lu->sig_idx))  | 
2093  | 0  |         return 0;  | 
2094  |  |  | 
2095  | 1.88M  |     if (lu->sig == NID_id_GostR3410_2012_256  | 
2096  | 1.88M  |             || lu->sig == NID_id_GostR3410_2012_512  | 
2097  | 1.88M  |             || lu->sig == NID_id_GostR3410_2001) { | 
2098  |  |         /* We never allow GOST sig algs on the server with TLSv1.3 */  | 
2099  | 0  |         if (s->server && SSL_IS_TLS13(s))  | 
2100  | 0  |             return 0;  | 
2101  | 0  |         if (!s->server  | 
2102  | 0  |                 && s->method->version == TLS_ANY_VERSION  | 
2103  | 0  |                 && s->s3.tmp.max_ver >= TLS1_3_VERSION) { | 
2104  | 0  |             int i, num;  | 
2105  | 0  |             STACK_OF(SSL_CIPHER) *sk;  | 
2106  |  |  | 
2107  |  |             /*  | 
2108  |  |              * We're a client that could negotiate TLSv1.3. We only allow GOST  | 
2109  |  |              * sig algs if we could negotiate TLSv1.2 or below and we have GOST  | 
2110  |  |              * ciphersuites enabled.  | 
2111  |  |              */  | 
2112  |  | 
  | 
2113  | 0  |             if (s->s3.tmp.min_ver >= TLS1_3_VERSION)  | 
2114  | 0  |                 return 0;  | 
2115  |  |  | 
2116  | 0  |             sk = SSL_get_ciphers(s);  | 
2117  | 0  |             num = sk != NULL ? sk_SSL_CIPHER_num(sk) : 0;  | 
2118  | 0  |             for (i = 0; i < num; i++) { | 
2119  | 0  |                 const SSL_CIPHER *c;  | 
2120  |  | 
  | 
2121  | 0  |                 c = sk_SSL_CIPHER_value(sk, i);  | 
2122  |  |                 /* Skip disabled ciphers */  | 
2123  | 0  |                 if (ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0))  | 
2124  | 0  |                     continue;  | 
2125  |  |  | 
2126  | 0  |                 if ((c->algorithm_mkey & (SSL_kGOST | SSL_kGOST18)) != 0)  | 
2127  | 0  |                     break;  | 
2128  | 0  |             }  | 
2129  | 0  |             if (i == num)  | 
2130  | 0  |                 return 0;  | 
2131  | 0  |         }  | 
2132  | 0  |     }  | 
2133  |  |  | 
2134  |  |     /* Finally see if security callback allows it */  | 
2135  | 1.88M  |     secbits = sigalg_security_bits(s->ctx, lu);  | 
2136  | 1.88M  |     sigalgstr[0] = (lu->sigalg >> 8) & 0xff;  | 
2137  | 1.88M  |     sigalgstr[1] = lu->sigalg & 0xff;  | 
2138  | 1.88M  |     return ssl_security(s, op, secbits, lu->hash, (void *)sigalgstr);  | 
2139  | 1.88M  | }  | 
2140  |  |  | 
2141  |  | /*  | 
2142  |  |  * Get a mask of disabled public key algorithms based on supported signature  | 
2143  |  |  * algorithms. For example if no signature algorithm supports RSA then RSA is  | 
2144  |  |  * disabled.  | 
2145  |  |  */  | 
2146  |  |  | 
2147  |  | void ssl_set_sig_mask(uint32_t *pmask_a, SSL *s, int op)  | 
2148  | 166k  | { | 
2149  | 166k  |     const uint16_t *sigalgs;  | 
2150  | 166k  |     size_t i, sigalgslen;  | 
2151  | 166k  |     uint32_t disabled_mask = SSL_aRSA | SSL_aDSS | SSL_aECDSA;  | 
2152  |  |     /*  | 
2153  |  |      * Go through all signature algorithms seeing if we support any  | 
2154  |  |      * in disabled_mask.  | 
2155  |  |      */  | 
2156  | 166k  |     sigalgslen = tls12_get_psigalgs(s, 1, &sigalgs);  | 
2157  | 5.02M  |     for (i = 0; i < sigalgslen; i++, sigalgs++) { | 
2158  | 4.85M  |         const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *sigalgs);  | 
2159  | 4.85M  |         const SSL_CERT_LOOKUP *clu;  | 
2160  |  |  | 
2161  | 4.85M  |         if (lu == NULL)  | 
2162  | 499k  |             continue;  | 
2163  |  |  | 
2164  | 4.36M  |         clu = ssl_cert_lookup_by_idx(lu->sig_idx);  | 
2165  | 4.36M  |         if (clu == NULL)  | 
2166  | 0  |                 continue;  | 
2167  |  |  | 
2168  |  |         /* If algorithm is disabled see if we can enable it */  | 
2169  | 4.36M  |         if ((clu->amask & disabled_mask) != 0  | 
2170  | 4.36M  |                 && tls12_sigalg_allowed(s, op, lu))  | 
2171  | 454k  |             disabled_mask &= ~clu->amask;  | 
2172  | 4.36M  |     }  | 
2173  | 166k  |     *pmask_a |= disabled_mask;  | 
2174  | 166k  | }  | 
2175  |  |  | 
2176  |  | int tls12_copy_sigalgs(SSL *s, WPACKET *pkt,  | 
2177  |  |                        const uint16_t *psig, size_t psiglen)  | 
2178  | 55.0k  | { | 
2179  | 55.0k  |     size_t i;  | 
2180  | 55.0k  |     int rv = 0;  | 
2181  |  |  | 
2182  | 1.66M  |     for (i = 0; i < psiglen; i++, psig++) { | 
2183  | 1.60M  |         const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *psig);  | 
2184  |  |  | 
2185  | 1.60M  |         if (lu == NULL  | 
2186  | 1.60M  |                 || !tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))  | 
2187  | 376k  |             continue;  | 
2188  | 1.23M  |         if (!WPACKET_put_bytes_u16(pkt, *psig))  | 
2189  | 0  |             return 0;  | 
2190  |  |         /*  | 
2191  |  |          * If TLS 1.3 must have at least one valid TLS 1.3 message  | 
2192  |  |          * signing algorithm: i.e. neither RSA nor SHA1/SHA224  | 
2193  |  |          */  | 
2194  | 1.23M  |         if (rv == 0 && (!SSL_IS_TLS13(s)  | 
2195  | 55.0k  |             || (lu->sig != EVP_PKEY_RSA  | 
2196  | 0  |                 && lu->hash != NID_sha1  | 
2197  | 0  |                 && lu->hash != NID_sha224)))  | 
2198  | 55.0k  |             rv = 1;  | 
2199  | 1.23M  |     }  | 
2200  | 55.0k  |     if (rv == 0)  | 
2201  | 55.0k  |         ERR_raise(ERR_LIB_SSL, SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);  | 
2202  | 55.0k  |     return rv;  | 
2203  | 55.0k  | }  | 
2204  |  |  | 
2205  |  | /* Given preference and allowed sigalgs set shared sigalgs */  | 
2206  |  | static size_t tls12_shared_sigalgs(SSL *s, const SIGALG_LOOKUP **shsig,  | 
2207  |  |                                    const uint16_t *pref, size_t preflen,  | 
2208  |  |                                    const uint16_t *allow, size_t allowlen)  | 
2209  | 10.3k  | { | 
2210  | 10.3k  |     const uint16_t *ptmp, *atmp;  | 
2211  | 10.3k  |     size_t i, j, nmatch = 0;  | 
2212  | 298k  |     for (i = 0, ptmp = pref; i < preflen; i++, ptmp++) { | 
2213  | 288k  |         const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *ptmp);  | 
2214  |  |  | 
2215  |  |         /* Skip disabled hashes or signature algorithms */  | 
2216  | 288k  |         if (lu == NULL  | 
2217  | 288k  |                 || !tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SHARED, lu))  | 
2218  | 152k  |             continue;  | 
2219  | 1.91M  |         for (j = 0, atmp = allow; j < allowlen; j++, atmp++) { | 
2220  | 1.91M  |             if (*ptmp == *atmp) { | 
2221  | 135k  |                 nmatch++;  | 
2222  | 135k  |                 if (shsig)  | 
2223  | 67.8k  |                     *shsig++ = lu;  | 
2224  | 135k  |                 break;  | 
2225  | 135k  |             }  | 
2226  | 1.91M  |         }  | 
2227  | 135k  |     }  | 
2228  | 10.3k  |     return nmatch;  | 
2229  | 10.3k  | }  | 
2230  |  |  | 
2231  |  | /* Set shared signature algorithms for SSL structures */  | 
2232  |  | static int tls1_set_shared_sigalgs(SSL *s)  | 
2233  | 5.21k  | { | 
2234  | 5.21k  |     const uint16_t *pref, *allow, *conf;  | 
2235  | 5.21k  |     size_t preflen, allowlen, conflen;  | 
2236  | 5.21k  |     size_t nmatch;  | 
2237  | 5.21k  |     const SIGALG_LOOKUP **salgs = NULL;  | 
2238  | 5.21k  |     CERT *c = s->cert;  | 
2239  | 5.21k  |     unsigned int is_suiteb = tls1_suiteb(s);  | 
2240  |  |  | 
2241  | 5.21k  |     OPENSSL_free(s->shared_sigalgs);  | 
2242  | 5.21k  |     s->shared_sigalgs = NULL;  | 
2243  | 5.21k  |     s->shared_sigalgslen = 0;  | 
2244  |  |     /* If client use client signature algorithms if not NULL */  | 
2245  | 5.21k  |     if (!s->server && c->client_sigalgs && !is_suiteb) { | 
2246  | 0  |         conf = c->client_sigalgs;  | 
2247  | 0  |         conflen = c->client_sigalgslen;  | 
2248  | 5.21k  |     } else if (c->conf_sigalgs && !is_suiteb) { | 
2249  | 0  |         conf = c->conf_sigalgs;  | 
2250  | 0  |         conflen = c->conf_sigalgslen;  | 
2251  | 0  |     } else  | 
2252  | 5.21k  |         conflen = tls12_get_psigalgs(s, 0, &conf);  | 
2253  | 5.21k  |     if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE || is_suiteb) { | 
2254  | 0  |         pref = conf;  | 
2255  | 0  |         preflen = conflen;  | 
2256  | 0  |         allow = s->s3.tmp.peer_sigalgs;  | 
2257  | 0  |         allowlen = s->s3.tmp.peer_sigalgslen;  | 
2258  | 5.21k  |     } else { | 
2259  | 5.21k  |         allow = conf;  | 
2260  | 5.21k  |         allowlen = conflen;  | 
2261  | 5.21k  |         pref = s->s3.tmp.peer_sigalgs;  | 
2262  | 5.21k  |         preflen = s->s3.tmp.peer_sigalgslen;  | 
2263  | 5.21k  |     }  | 
2264  | 5.21k  |     nmatch = tls12_shared_sigalgs(s, NULL, pref, preflen, allow, allowlen);  | 
2265  | 5.21k  |     if (nmatch) { | 
2266  | 5.10k  |         if ((salgs = OPENSSL_malloc(nmatch * sizeof(*salgs))) == NULL) { | 
2267  | 0  |             ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);  | 
2268  | 0  |             return 0;  | 
2269  | 0  |         }  | 
2270  | 5.10k  |         nmatch = tls12_shared_sigalgs(s, salgs, pref, preflen, allow, allowlen);  | 
2271  | 5.10k  |     } else { | 
2272  | 114  |         salgs = NULL;  | 
2273  | 114  |     }  | 
2274  | 5.21k  |     s->shared_sigalgs = salgs;  | 
2275  | 5.21k  |     s->shared_sigalgslen = nmatch;  | 
2276  | 5.21k  |     return 1;  | 
2277  | 5.21k  | }  | 
2278  |  |  | 
2279  |  | int tls1_save_u16(PACKET *pkt, uint16_t **pdest, size_t *pdestlen)  | 
2280  | 15.2k  | { | 
2281  | 15.2k  |     unsigned int stmp;  | 
2282  | 15.2k  |     size_t size, i;  | 
2283  | 15.2k  |     uint16_t *buf;  | 
2284  |  |  | 
2285  | 15.2k  |     size = PACKET_remaining(pkt);  | 
2286  |  |  | 
2287  |  |     /* Invalid data length */  | 
2288  | 15.2k  |     if (size == 0 || (size & 1) != 0)  | 
2289  | 28  |         return 0;  | 
2290  |  |  | 
2291  | 15.2k  |     size >>= 1;  | 
2292  |  |  | 
2293  | 15.2k  |     if ((buf = OPENSSL_malloc(size * sizeof(*buf))) == NULL)  { | 
2294  | 0  |         ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);  | 
2295  | 0  |         return 0;  | 
2296  | 0  |     }  | 
2297  | 191k  |     for (i = 0; i < size && PACKET_get_net_2(pkt, &stmp); i++)  | 
2298  | 175k  |         buf[i] = stmp;  | 
2299  |  |  | 
2300  | 15.2k  |     if (i != size) { | 
2301  | 0  |         OPENSSL_free(buf);  | 
2302  | 0  |         return 0;  | 
2303  | 0  |     }  | 
2304  |  |  | 
2305  | 15.2k  |     OPENSSL_free(*pdest);  | 
2306  | 15.2k  |     *pdest = buf;  | 
2307  | 15.2k  |     *pdestlen = size;  | 
2308  |  |  | 
2309  | 15.2k  |     return 1;  | 
2310  | 15.2k  | }  | 
2311  |  |  | 
2312  |  | int tls1_save_sigalgs(SSL *s, PACKET *pkt, int cert)  | 
2313  | 6.54k  | { | 
2314  |  |     /* Extension ignored for inappropriate versions */  | 
2315  | 6.54k  |     if (!SSL_USE_SIGALGS(s))  | 
2316  | 131  |         return 1;  | 
2317  |  |     /* Should never happen */  | 
2318  | 6.41k  |     if (s->cert == NULL)  | 
2319  | 0  |         return 0;  | 
2320  |  |  | 
2321  | 6.41k  |     if (cert)  | 
2322  | 763  |         return tls1_save_u16(pkt, &s->s3.tmp.peer_cert_sigalgs,  | 
2323  | 763  |                              &s->s3.tmp.peer_cert_sigalgslen);  | 
2324  | 5.65k  |     else  | 
2325  | 5.65k  |         return tls1_save_u16(pkt, &s->s3.tmp.peer_sigalgs,  | 
2326  | 5.65k  |                              &s->s3.tmp.peer_sigalgslen);  | 
2327  |  |  | 
2328  | 6.41k  | }  | 
2329  |  |  | 
2330  |  | /* Set preferred digest for each key type */  | 
2331  |  |  | 
2332  |  | int tls1_process_sigalgs(SSL *s)  | 
2333  | 5.21k  | { | 
2334  | 5.21k  |     size_t i;  | 
2335  | 5.21k  |     uint32_t *pvalid = s->s3.tmp.valid_flags;  | 
2336  |  |  | 
2337  | 5.21k  |     if (!tls1_set_shared_sigalgs(s))  | 
2338  | 0  |         return 0;  | 
2339  |  |  | 
2340  | 57.8k  |     for (i = 0; i < SSL_PKEY_NUM; i++)  | 
2341  | 52.6k  |         pvalid[i] = 0;  | 
2342  |  |  | 
2343  | 73.0k  |     for (i = 0; i < s->shared_sigalgslen; i++) { | 
2344  | 67.8k  |         const SIGALG_LOOKUP *sigptr = s->shared_sigalgs[i];  | 
2345  | 67.8k  |         int idx = sigptr->sig_idx;  | 
2346  |  |  | 
2347  |  |         /* Ignore PKCS1 based sig algs in TLSv1.3 */  | 
2348  | 67.8k  |         if (SSL_IS_TLS13(s) && sigptr->sig == EVP_PKEY_RSA)  | 
2349  | 1.12k  |             continue;  | 
2350  |  |         /* If not disabled indicate we can explicitly sign */  | 
2351  | 66.7k  |         if (pvalid[idx] == 0 && !ssl_cert_is_disabled(s->ctx, idx))  | 
2352  | 8.86k  |             pvalid[idx] = CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;  | 
2353  | 66.7k  |     }  | 
2354  | 5.21k  |     return 1;  | 
2355  | 5.21k  | }  | 
2356  |  |  | 
2357  |  | int SSL_get_sigalgs(SSL *s, int idx,  | 
2358  |  |                     int *psign, int *phash, int *psignhash,  | 
2359  |  |                     unsigned char *rsig, unsigned char *rhash)  | 
2360  | 0  | { | 
2361  | 0  |     uint16_t *psig = s->s3.tmp.peer_sigalgs;  | 
2362  | 0  |     size_t numsigalgs = s->s3.tmp.peer_sigalgslen;  | 
2363  | 0  |     if (psig == NULL || numsigalgs > INT_MAX)  | 
2364  | 0  |         return 0;  | 
2365  | 0  |     if (idx >= 0) { | 
2366  | 0  |         const SIGALG_LOOKUP *lu;  | 
2367  |  | 
  | 
2368  | 0  |         if (idx >= (int)numsigalgs)  | 
2369  | 0  |             return 0;  | 
2370  | 0  |         psig += idx;  | 
2371  | 0  |         if (rhash != NULL)  | 
2372  | 0  |             *rhash = (unsigned char)((*psig >> 8) & 0xff);  | 
2373  | 0  |         if (rsig != NULL)  | 
2374  | 0  |             *rsig = (unsigned char)(*psig & 0xff);  | 
2375  | 0  |         lu = tls1_lookup_sigalg(s, *psig);  | 
2376  | 0  |         if (psign != NULL)  | 
2377  | 0  |             *psign = lu != NULL ? lu->sig : NID_undef;  | 
2378  | 0  |         if (phash != NULL)  | 
2379  | 0  |             *phash = lu != NULL ? lu->hash : NID_undef;  | 
2380  | 0  |         if (psignhash != NULL)  | 
2381  | 0  |             *psignhash = lu != NULL ? lu->sigandhash : NID_undef;  | 
2382  | 0  |     }  | 
2383  | 0  |     return (int)numsigalgs;  | 
2384  | 0  | }  | 
2385  |  |  | 
2386  |  | int SSL_get_shared_sigalgs(SSL *s, int idx,  | 
2387  |  |                            int *psign, int *phash, int *psignhash,  | 
2388  |  |                            unsigned char *rsig, unsigned char *rhash)  | 
2389  | 0  | { | 
2390  | 0  |     const SIGALG_LOOKUP *shsigalgs;  | 
2391  | 0  |     if (s->shared_sigalgs == NULL  | 
2392  | 0  |         || idx < 0  | 
2393  | 0  |         || idx >= (int)s->shared_sigalgslen  | 
2394  | 0  |         || s->shared_sigalgslen > INT_MAX)  | 
2395  | 0  |         return 0;  | 
2396  | 0  |     shsigalgs = s->shared_sigalgs[idx];  | 
2397  | 0  |     if (phash != NULL)  | 
2398  | 0  |         *phash = shsigalgs->hash;  | 
2399  | 0  |     if (psign != NULL)  | 
2400  | 0  |         *psign = shsigalgs->sig;  | 
2401  | 0  |     if (psignhash != NULL)  | 
2402  | 0  |         *psignhash = shsigalgs->sigandhash;  | 
2403  | 0  |     if (rsig != NULL)  | 
2404  | 0  |         *rsig = (unsigned char)(shsigalgs->sigalg & 0xff);  | 
2405  | 0  |     if (rhash != NULL)  | 
2406  | 0  |         *rhash = (unsigned char)((shsigalgs->sigalg >> 8) & 0xff);  | 
2407  | 0  |     return (int)s->shared_sigalgslen;  | 
2408  | 0  | }  | 
2409  |  |  | 
2410  |  | /* Maximum possible number of unique entries in sigalgs array */  | 
2411  | 0  | #define TLS_MAX_SIGALGCNT (OSSL_NELEM(sigalg_lookup_tbl) * 2)  | 
2412  |  |  | 
2413  |  | typedef struct { | 
2414  |  |     size_t sigalgcnt;  | 
2415  |  |     /* TLSEXT_SIGALG_XXX values */  | 
2416  |  |     uint16_t sigalgs[TLS_MAX_SIGALGCNT];  | 
2417  |  | } sig_cb_st;  | 
2418  |  |  | 
2419  |  | static void get_sigorhash(int *psig, int *phash, const char *str)  | 
2420  | 0  | { | 
2421  | 0  |     if (strcmp(str, "RSA") == 0) { | 
2422  | 0  |         *psig = EVP_PKEY_RSA;  | 
2423  | 0  |     } else if (strcmp(str, "RSA-PSS") == 0 || strcmp(str, "PSS") == 0) { | 
2424  | 0  |         *psig = EVP_PKEY_RSA_PSS;  | 
2425  | 0  |     } else if (strcmp(str, "DSA") == 0) { | 
2426  | 0  |         *psig = EVP_PKEY_DSA;  | 
2427  | 0  |     } else if (strcmp(str, "ECDSA") == 0) { | 
2428  | 0  |         *psig = EVP_PKEY_EC;  | 
2429  | 0  |     } else { | 
2430  | 0  |         *phash = OBJ_sn2nid(str);  | 
2431  | 0  |         if (*phash == NID_undef)  | 
2432  | 0  |             *phash = OBJ_ln2nid(str);  | 
2433  | 0  |     }  | 
2434  | 0  | }  | 
2435  |  | /* Maximum length of a signature algorithm string component */  | 
2436  |  | #define TLS_MAX_SIGSTRING_LEN   40  | 
2437  |  |  | 
2438  |  | static int sig_cb(const char *elem, int len, void *arg)  | 
2439  | 0  | { | 
2440  | 0  |     sig_cb_st *sarg = arg;  | 
2441  | 0  |     size_t i;  | 
2442  | 0  |     const SIGALG_LOOKUP *s;  | 
2443  | 0  |     char etmp[TLS_MAX_SIGSTRING_LEN], *p;  | 
2444  | 0  |     int sig_alg = NID_undef, hash_alg = NID_undef;  | 
2445  | 0  |     if (elem == NULL)  | 
2446  | 0  |         return 0;  | 
2447  | 0  |     if (sarg->sigalgcnt == TLS_MAX_SIGALGCNT)  | 
2448  | 0  |         return 0;  | 
2449  | 0  |     if (len > (int)(sizeof(etmp) - 1))  | 
2450  | 0  |         return 0;  | 
2451  | 0  |     memcpy(etmp, elem, len);  | 
2452  | 0  |     etmp[len] = 0;  | 
2453  | 0  |     p = strchr(etmp, '+');  | 
2454  |  |     /*  | 
2455  |  |      * We only allow SignatureSchemes listed in the sigalg_lookup_tbl;  | 
2456  |  |      * if there's no '+' in the provided name, look for the new-style combined  | 
2457  |  |      * name.  If not, match both sig+hash to find the needed SIGALG_LOOKUP.  | 
2458  |  |      * Just sig+hash is not unique since TLS 1.3 adds rsa_pss_pss_* and  | 
2459  |  |      * rsa_pss_rsae_* that differ only by public key OID; in such cases  | 
2460  |  |      * we will pick the _rsae_ variant, by virtue of them appearing earlier  | 
2461  |  |      * in the table.  | 
2462  |  |      */  | 
2463  | 0  |     if (p == NULL) { | 
2464  | 0  |         for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);  | 
2465  | 0  |              i++, s++) { | 
2466  | 0  |             if (s->name != NULL && strcmp(etmp, s->name) == 0) { | 
2467  | 0  |                 sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;  | 
2468  | 0  |                 break;  | 
2469  | 0  |             }  | 
2470  | 0  |         }  | 
2471  | 0  |         if (i == OSSL_NELEM(sigalg_lookup_tbl))  | 
2472  | 0  |             return 0;  | 
2473  | 0  |     } else { | 
2474  | 0  |         *p = 0;  | 
2475  | 0  |         p++;  | 
2476  | 0  |         if (*p == 0)  | 
2477  | 0  |             return 0;  | 
2478  | 0  |         get_sigorhash(&sig_alg, &hash_alg, etmp);  | 
2479  | 0  |         get_sigorhash(&sig_alg, &hash_alg, p);  | 
2480  | 0  |         if (sig_alg == NID_undef || hash_alg == NID_undef)  | 
2481  | 0  |             return 0;  | 
2482  | 0  |         for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);  | 
2483  | 0  |              i++, s++) { | 
2484  | 0  |             if (s->hash == hash_alg && s->sig == sig_alg) { | 
2485  | 0  |                 sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;  | 
2486  | 0  |                 break;  | 
2487  | 0  |             }  | 
2488  | 0  |         }  | 
2489  | 0  |         if (i == OSSL_NELEM(sigalg_lookup_tbl))  | 
2490  | 0  |             return 0;  | 
2491  | 0  |     }  | 
2492  |  |  | 
2493  |  |     /* Reject duplicates */  | 
2494  | 0  |     for (i = 0; i < sarg->sigalgcnt - 1; i++) { | 
2495  | 0  |         if (sarg->sigalgs[i] == sarg->sigalgs[sarg->sigalgcnt - 1]) { | 
2496  | 0  |             sarg->sigalgcnt--;  | 
2497  | 0  |             return 0;  | 
2498  | 0  |         }  | 
2499  | 0  |     }  | 
2500  | 0  |     return 1;  | 
2501  | 0  | }  | 
2502  |  |  | 
2503  |  | /*  | 
2504  |  |  * Set supported signature algorithms based on a colon separated list of the  | 
2505  |  |  * form sig+hash e.g. RSA+SHA512:DSA+SHA512  | 
2506  |  |  */  | 
2507  |  | int tls1_set_sigalgs_list(CERT *c, const char *str, int client)  | 
2508  | 0  | { | 
2509  | 0  |     sig_cb_st sig;  | 
2510  | 0  |     sig.sigalgcnt = 0;  | 
2511  | 0  |     if (!CONF_parse_list(str, ':', 1, sig_cb, &sig))  | 
2512  | 0  |         return 0;  | 
2513  | 0  |     if (c == NULL)  | 
2514  | 0  |         return 1;  | 
2515  | 0  |     return tls1_set_raw_sigalgs(c, sig.sigalgs, sig.sigalgcnt, client);  | 
2516  | 0  | }  | 
2517  |  |  | 
2518  |  | int tls1_set_raw_sigalgs(CERT *c, const uint16_t *psigs, size_t salglen,  | 
2519  |  |                      int client)  | 
2520  | 0  | { | 
2521  | 0  |     uint16_t *sigalgs;  | 
2522  |  | 
  | 
2523  | 0  |     if ((sigalgs = OPENSSL_malloc(salglen * sizeof(*sigalgs))) == NULL) { | 
2524  | 0  |         ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);  | 
2525  | 0  |         return 0;  | 
2526  | 0  |     }  | 
2527  | 0  |     memcpy(sigalgs, psigs, salglen * sizeof(*sigalgs));  | 
2528  |  | 
  | 
2529  | 0  |     if (client) { | 
2530  | 0  |         OPENSSL_free(c->client_sigalgs);  | 
2531  | 0  |         c->client_sigalgs = sigalgs;  | 
2532  | 0  |         c->client_sigalgslen = salglen;  | 
2533  | 0  |     } else { | 
2534  | 0  |         OPENSSL_free(c->conf_sigalgs);  | 
2535  | 0  |         c->conf_sigalgs = sigalgs;  | 
2536  | 0  |         c->conf_sigalgslen = salglen;  | 
2537  | 0  |     }  | 
2538  |  | 
  | 
2539  | 0  |     return 1;  | 
2540  | 0  | }  | 
2541  |  |  | 
2542  |  | int tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen, int client)  | 
2543  | 0  | { | 
2544  | 0  |     uint16_t *sigalgs, *sptr;  | 
2545  | 0  |     size_t i;  | 
2546  |  | 
  | 
2547  | 0  |     if (salglen & 1)  | 
2548  | 0  |         return 0;  | 
2549  | 0  |     if ((sigalgs = OPENSSL_malloc((salglen / 2) * sizeof(*sigalgs))) == NULL) { | 
2550  | 0  |         ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);  | 
2551  | 0  |         return 0;  | 
2552  | 0  |     }  | 
2553  | 0  |     for (i = 0, sptr = sigalgs; i < salglen; i += 2) { | 
2554  | 0  |         size_t j;  | 
2555  | 0  |         const SIGALG_LOOKUP *curr;  | 
2556  | 0  |         int md_id = *psig_nids++;  | 
2557  | 0  |         int sig_id = *psig_nids++;  | 
2558  |  | 
  | 
2559  | 0  |         for (j = 0, curr = sigalg_lookup_tbl; j < OSSL_NELEM(sigalg_lookup_tbl);  | 
2560  | 0  |              j++, curr++) { | 
2561  | 0  |             if (curr->hash == md_id && curr->sig == sig_id) { | 
2562  | 0  |                 *sptr++ = curr->sigalg;  | 
2563  | 0  |                 break;  | 
2564  | 0  |             }  | 
2565  | 0  |         }  | 
2566  |  | 
  | 
2567  | 0  |         if (j == OSSL_NELEM(sigalg_lookup_tbl))  | 
2568  | 0  |             goto err;  | 
2569  | 0  |     }  | 
2570  |  |  | 
2571  | 0  |     if (client) { | 
2572  | 0  |         OPENSSL_free(c->client_sigalgs);  | 
2573  | 0  |         c->client_sigalgs = sigalgs;  | 
2574  | 0  |         c->client_sigalgslen = salglen / 2;  | 
2575  | 0  |     } else { | 
2576  | 0  |         OPENSSL_free(c->conf_sigalgs);  | 
2577  | 0  |         c->conf_sigalgs = sigalgs;  | 
2578  | 0  |         c->conf_sigalgslen = salglen / 2;  | 
2579  | 0  |     }  | 
2580  |  | 
  | 
2581  | 0  |     return 1;  | 
2582  |  |  | 
2583  | 0  |  err:  | 
2584  | 0  |     OPENSSL_free(sigalgs);  | 
2585  | 0  |     return 0;  | 
2586  | 0  | }  | 
2587  |  |  | 
2588  |  | static int tls1_check_sig_alg(SSL *s, X509 *x, int default_nid)  | 
2589  | 0  | { | 
2590  | 0  |     int sig_nid, use_pc_sigalgs = 0;  | 
2591  | 0  |     size_t i;  | 
2592  | 0  |     const SIGALG_LOOKUP *sigalg;  | 
2593  | 0  |     size_t sigalgslen;  | 
2594  | 0  |     if (default_nid == -1)  | 
2595  | 0  |         return 1;  | 
2596  | 0  |     sig_nid = X509_get_signature_nid(x);  | 
2597  | 0  |     if (default_nid)  | 
2598  | 0  |         return sig_nid == default_nid ? 1 : 0;  | 
2599  |  |  | 
2600  | 0  |     if (SSL_IS_TLS13(s) && s->s3.tmp.peer_cert_sigalgs != NULL) { | 
2601  |  |         /*  | 
2602  |  |          * If we're in TLSv1.3 then we only get here if we're checking the  | 
2603  |  |          * chain. If the peer has specified peer_cert_sigalgs then we use them  | 
2604  |  |          * otherwise we default to normal sigalgs.  | 
2605  |  |          */  | 
2606  | 0  |         sigalgslen = s->s3.tmp.peer_cert_sigalgslen;  | 
2607  | 0  |         use_pc_sigalgs = 1;  | 
2608  | 0  |     } else { | 
2609  | 0  |         sigalgslen = s->shared_sigalgslen;  | 
2610  | 0  |     }  | 
2611  | 0  |     for (i = 0; i < sigalgslen; i++) { | 
2612  | 0  |         sigalg = use_pc_sigalgs  | 
2613  | 0  |                  ? tls1_lookup_sigalg(s, s->s3.tmp.peer_cert_sigalgs[i])  | 
2614  | 0  |                  : s->shared_sigalgs[i];  | 
2615  | 0  |         if (sigalg != NULL && sig_nid == sigalg->sigandhash)  | 
2616  | 0  |             return 1;  | 
2617  | 0  |     }  | 
2618  | 0  |     return 0;  | 
2619  | 0  | }  | 
2620  |  |  | 
2621  |  | /* Check to see if a certificate issuer name matches list of CA names */  | 
2622  |  | static int ssl_check_ca_name(STACK_OF(X509_NAME) *names, X509 *x)  | 
2623  | 0  | { | 
2624  | 0  |     const X509_NAME *nm;  | 
2625  | 0  |     int i;  | 
2626  | 0  |     nm = X509_get_issuer_name(x);  | 
2627  | 0  |     for (i = 0; i < sk_X509_NAME_num(names); i++) { | 
2628  | 0  |         if (!X509_NAME_cmp(nm, sk_X509_NAME_value(names, i)))  | 
2629  | 0  |             return 1;  | 
2630  | 0  |     }  | 
2631  | 0  |     return 0;  | 
2632  | 0  | }  | 
2633  |  |  | 
2634  |  | /*  | 
2635  |  |  * Check certificate chain is consistent with TLS extensions and is usable by  | 
2636  |  |  * server. This servers two purposes: it allows users to check chains before  | 
2637  |  |  * passing them to the server and it allows the server to check chains before  | 
2638  |  |  * attempting to use them.  | 
2639  |  |  */  | 
2640  |  |  | 
2641  |  | /* Flags which need to be set for a certificate when strict mode not set */  | 
2642  |  |  | 
2643  |  | #define CERT_PKEY_VALID_FLAGS \  | 
2644  | 0  |         (CERT_PKEY_EE_SIGNATURE|CERT_PKEY_EE_PARAM)  | 
2645  |  | /* Strict mode flags */  | 
2646  |  | #define CERT_PKEY_STRICT_FLAGS \  | 
2647  | 0  |          (CERT_PKEY_VALID_FLAGS|CERT_PKEY_CA_SIGNATURE|CERT_PKEY_CA_PARAM \  | 
2648  | 0  |          | CERT_PKEY_ISSUER_NAME|CERT_PKEY_CERT_TYPE)  | 
2649  |  |  | 
2650  |  | int tls1_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain,  | 
2651  |  |                      int idx)  | 
2652  | 46.0k  | { | 
2653  | 46.0k  |     int i;  | 
2654  | 46.0k  |     int rv = 0;  | 
2655  | 46.0k  |     int check_flags = 0, strict_mode;  | 
2656  | 46.0k  |     CERT_PKEY *cpk = NULL;  | 
2657  | 46.0k  |     CERT *c = s->cert;  | 
2658  | 46.0k  |     uint32_t *pvalid;  | 
2659  | 46.0k  |     unsigned int suiteb_flags = tls1_suiteb(s);  | 
2660  |  |     /* idx == -1 means checking server chains */  | 
2661  | 46.0k  |     if (idx != -1) { | 
2662  |  |         /* idx == -2 means checking client certificate chains */  | 
2663  | 46.0k  |         if (idx == -2) { | 
2664  | 0  |             cpk = c->key;  | 
2665  | 0  |             idx = (int)(cpk - c->pkeys);  | 
2666  | 0  |         } else  | 
2667  | 46.0k  |             cpk = c->pkeys + idx;  | 
2668  | 46.0k  |         pvalid = s->s3.tmp.valid_flags + idx;  | 
2669  | 46.0k  |         x = cpk->x509;  | 
2670  | 46.0k  |         pk = cpk->privatekey;  | 
2671  | 46.0k  |         chain = cpk->chain;  | 
2672  | 46.0k  |         strict_mode = c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT;  | 
2673  |  |         /* If no cert or key, forget it */  | 
2674  | 46.0k  |         if (!x || !pk)  | 
2675  | 30.6k  |             goto end;  | 
2676  | 46.0k  |     } else { | 
2677  | 0  |         size_t certidx;  | 
2678  |  | 
  | 
2679  | 0  |         if (!x || !pk)  | 
2680  | 0  |             return 0;  | 
2681  |  |  | 
2682  | 0  |         if (ssl_cert_lookup_by_pkey(pk, &certidx) == NULL)  | 
2683  | 0  |             return 0;  | 
2684  | 0  |         idx = certidx;  | 
2685  | 0  |         pvalid = s->s3.tmp.valid_flags + idx;  | 
2686  |  | 
  | 
2687  | 0  |         if (c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)  | 
2688  | 0  |             check_flags = CERT_PKEY_STRICT_FLAGS;  | 
2689  | 0  |         else  | 
2690  | 0  |             check_flags = CERT_PKEY_VALID_FLAGS;  | 
2691  | 0  |         strict_mode = 1;  | 
2692  | 0  |     }  | 
2693  |  |  | 
2694  | 15.3k  |     if (suiteb_flags) { | 
2695  | 0  |         int ok;  | 
2696  | 0  |         if (check_flags)  | 
2697  | 0  |             check_flags |= CERT_PKEY_SUITEB;  | 
2698  | 0  |         ok = X509_chain_check_suiteb(NULL, x, chain, suiteb_flags);  | 
2699  | 0  |         if (ok == X509_V_OK)  | 
2700  | 0  |             rv |= CERT_PKEY_SUITEB;  | 
2701  | 0  |         else if (!check_flags)  | 
2702  | 0  |             goto end;  | 
2703  | 0  |     }  | 
2704  |  |  | 
2705  |  |     /*  | 
2706  |  |      * Check all signature algorithms are consistent with signature  | 
2707  |  |      * algorithms extension if TLS 1.2 or later and strict mode.  | 
2708  |  |      */  | 
2709  | 15.3k  |     if (TLS1_get_version(s) >= TLS1_2_VERSION && strict_mode) { | 
2710  | 0  |         int default_nid;  | 
2711  | 0  |         int rsign = 0;  | 
2712  | 0  |         if (s->s3.tmp.peer_cert_sigalgs != NULL  | 
2713  | 0  |                 || s->s3.tmp.peer_sigalgs != NULL) { | 
2714  | 0  |             default_nid = 0;  | 
2715  |  |         /* If no sigalgs extension use defaults from RFC5246 */  | 
2716  | 0  |         } else { | 
2717  | 0  |             switch (idx) { | 
2718  | 0  |             case SSL_PKEY_RSA:  | 
2719  | 0  |                 rsign = EVP_PKEY_RSA;  | 
2720  | 0  |                 default_nid = NID_sha1WithRSAEncryption;  | 
2721  | 0  |                 break;  | 
2722  |  |  | 
2723  | 0  |             case SSL_PKEY_DSA_SIGN:  | 
2724  | 0  |                 rsign = EVP_PKEY_DSA;  | 
2725  | 0  |                 default_nid = NID_dsaWithSHA1;  | 
2726  | 0  |                 break;  | 
2727  |  |  | 
2728  | 0  |             case SSL_PKEY_ECC:  | 
2729  | 0  |                 rsign = EVP_PKEY_EC;  | 
2730  | 0  |                 default_nid = NID_ecdsa_with_SHA1;  | 
2731  | 0  |                 break;  | 
2732  |  |  | 
2733  | 0  |             case SSL_PKEY_GOST01:  | 
2734  | 0  |                 rsign = NID_id_GostR3410_2001;  | 
2735  | 0  |                 default_nid = NID_id_GostR3411_94_with_GostR3410_2001;  | 
2736  | 0  |                 break;  | 
2737  |  |  | 
2738  | 0  |             case SSL_PKEY_GOST12_256:  | 
2739  | 0  |                 rsign = NID_id_GostR3410_2012_256;  | 
2740  | 0  |                 default_nid = NID_id_tc26_signwithdigest_gost3410_2012_256;  | 
2741  | 0  |                 break;  | 
2742  |  |  | 
2743  | 0  |             case SSL_PKEY_GOST12_512:  | 
2744  | 0  |                 rsign = NID_id_GostR3410_2012_512;  | 
2745  | 0  |                 default_nid = NID_id_tc26_signwithdigest_gost3410_2012_512;  | 
2746  | 0  |                 break;  | 
2747  |  |  | 
2748  | 0  |             default:  | 
2749  | 0  |                 default_nid = -1;  | 
2750  | 0  |                 break;  | 
2751  | 0  |             }  | 
2752  | 0  |         }  | 
2753  |  |         /*  | 
2754  |  |          * If peer sent no signature algorithms extension and we have set  | 
2755  |  |          * preferred signature algorithms check we support sha1.  | 
2756  |  |          */  | 
2757  | 0  |         if (default_nid > 0 && c->conf_sigalgs) { | 
2758  | 0  |             size_t j;  | 
2759  | 0  |             const uint16_t *p = c->conf_sigalgs;  | 
2760  | 0  |             for (j = 0; j < c->conf_sigalgslen; j++, p++) { | 
2761  | 0  |                 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *p);  | 
2762  |  | 
  | 
2763  | 0  |                 if (lu != NULL && lu->hash == NID_sha1 && lu->sig == rsign)  | 
2764  | 0  |                     break;  | 
2765  | 0  |             }  | 
2766  | 0  |             if (j == c->conf_sigalgslen) { | 
2767  | 0  |                 if (check_flags)  | 
2768  | 0  |                     goto skip_sigs;  | 
2769  | 0  |                 else  | 
2770  | 0  |                     goto end;  | 
2771  | 0  |             }  | 
2772  | 0  |         }  | 
2773  |  |         /* Check signature algorithm of each cert in chain */  | 
2774  | 0  |         if (SSL_IS_TLS13(s)) { | 
2775  |  |             /*  | 
2776  |  |              * We only get here if the application has called SSL_check_chain(),  | 
2777  |  |              * so check_flags is always set.  | 
2778  |  |              */  | 
2779  | 0  |             if (find_sig_alg(s, x, pk) != NULL)  | 
2780  | 0  |                 rv |= CERT_PKEY_EE_SIGNATURE;  | 
2781  | 0  |         } else if (!tls1_check_sig_alg(s, x, default_nid)) { | 
2782  | 0  |             if (!check_flags)  | 
2783  | 0  |                 goto end;  | 
2784  | 0  |         } else  | 
2785  | 0  |             rv |= CERT_PKEY_EE_SIGNATURE;  | 
2786  | 0  |         rv |= CERT_PKEY_CA_SIGNATURE;  | 
2787  | 0  |         for (i = 0; i < sk_X509_num(chain); i++) { | 
2788  | 0  |             if (!tls1_check_sig_alg(s, sk_X509_value(chain, i), default_nid)) { | 
2789  | 0  |                 if (check_flags) { | 
2790  | 0  |                     rv &= ~CERT_PKEY_CA_SIGNATURE;  | 
2791  | 0  |                     break;  | 
2792  | 0  |                 } else  | 
2793  | 0  |                     goto end;  | 
2794  | 0  |             }  | 
2795  | 0  |         }  | 
2796  | 0  |     }  | 
2797  |  |     /* Else not TLS 1.2, so mark EE and CA signing algorithms OK */  | 
2798  | 15.3k  |     else if (check_flags)  | 
2799  | 0  |         rv |= CERT_PKEY_EE_SIGNATURE | CERT_PKEY_CA_SIGNATURE;  | 
2800  | 15.3k  |  skip_sigs:  | 
2801  |  |     /* Check cert parameters are consistent */  | 
2802  | 15.3k  |     if (tls1_check_cert_param(s, x, 1))  | 
2803  | 14.1k  |         rv |= CERT_PKEY_EE_PARAM;  | 
2804  | 1.14k  |     else if (!check_flags)  | 
2805  | 1.14k  |         goto end;  | 
2806  | 14.1k  |     if (!s->server)  | 
2807  | 0  |         rv |= CERT_PKEY_CA_PARAM;  | 
2808  |  |     /* In strict mode check rest of chain too */  | 
2809  | 14.1k  |     else if (strict_mode) { | 
2810  | 0  |         rv |= CERT_PKEY_CA_PARAM;  | 
2811  | 0  |         for (i = 0; i < sk_X509_num(chain); i++) { | 
2812  | 0  |             X509 *ca = sk_X509_value(chain, i);  | 
2813  | 0  |             if (!tls1_check_cert_param(s, ca, 0)) { | 
2814  | 0  |                 if (check_flags) { | 
2815  | 0  |                     rv &= ~CERT_PKEY_CA_PARAM;  | 
2816  | 0  |                     break;  | 
2817  | 0  |                 } else  | 
2818  | 0  |                     goto end;  | 
2819  | 0  |             }  | 
2820  | 0  |         }  | 
2821  | 0  |     }  | 
2822  | 14.1k  |     if (!s->server && strict_mode) { | 
2823  | 0  |         STACK_OF(X509_NAME) *ca_dn;  | 
2824  | 0  |         int check_type = 0;  | 
2825  |  | 
  | 
2826  | 0  |         if (EVP_PKEY_is_a(pk, "RSA"))  | 
2827  | 0  |             check_type = TLS_CT_RSA_SIGN;  | 
2828  | 0  |         else if (EVP_PKEY_is_a(pk, "DSA"))  | 
2829  | 0  |             check_type = TLS_CT_DSS_SIGN;  | 
2830  | 0  |         else if (EVP_PKEY_is_a(pk, "EC"))  | 
2831  | 0  |             check_type = TLS_CT_ECDSA_SIGN;  | 
2832  |  | 
  | 
2833  | 0  |         if (check_type) { | 
2834  | 0  |             const uint8_t *ctypes = s->s3.tmp.ctype;  | 
2835  | 0  |             size_t j;  | 
2836  |  | 
  | 
2837  | 0  |             for (j = 0; j < s->s3.tmp.ctype_len; j++, ctypes++) { | 
2838  | 0  |                 if (*ctypes == check_type) { | 
2839  | 0  |                     rv |= CERT_PKEY_CERT_TYPE;  | 
2840  | 0  |                     break;  | 
2841  | 0  |                 }  | 
2842  | 0  |             }  | 
2843  | 0  |             if (!(rv & CERT_PKEY_CERT_TYPE) && !check_flags)  | 
2844  | 0  |                 goto end;  | 
2845  | 0  |         } else { | 
2846  | 0  |             rv |= CERT_PKEY_CERT_TYPE;  | 
2847  | 0  |         }  | 
2848  |  |  | 
2849  | 0  |         ca_dn = s->s3.tmp.peer_ca_names;  | 
2850  |  | 
  | 
2851  | 0  |         if (ca_dn == NULL  | 
2852  | 0  |             || sk_X509_NAME_num(ca_dn) == 0  | 
2853  | 0  |             || ssl_check_ca_name(ca_dn, x))  | 
2854  | 0  |             rv |= CERT_PKEY_ISSUER_NAME;  | 
2855  | 0  |         else  | 
2856  | 0  |             for (i = 0; i < sk_X509_num(chain); i++) { | 
2857  | 0  |                 X509 *xtmp = sk_X509_value(chain, i);  | 
2858  |  | 
  | 
2859  | 0  |                 if (ssl_check_ca_name(ca_dn, xtmp)) { | 
2860  | 0  |                     rv |= CERT_PKEY_ISSUER_NAME;  | 
2861  | 0  |                     break;  | 
2862  | 0  |                 }  | 
2863  | 0  |             }  | 
2864  |  | 
  | 
2865  | 0  |         if (!check_flags && !(rv & CERT_PKEY_ISSUER_NAME))  | 
2866  | 0  |             goto end;  | 
2867  | 0  |     } else  | 
2868  | 14.1k  |         rv |= CERT_PKEY_ISSUER_NAME | CERT_PKEY_CERT_TYPE;  | 
2869  |  |  | 
2870  | 14.1k  |     if (!check_flags || (rv & check_flags) == check_flags)  | 
2871  | 14.1k  |         rv |= CERT_PKEY_VALID;  | 
2872  |  |  | 
2873  | 46.0k  |  end:  | 
2874  |  |  | 
2875  | 46.0k  |     if (TLS1_get_version(s) >= TLS1_2_VERSION)  | 
2876  | 27.1k  |         rv |= *pvalid & (CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN);  | 
2877  | 18.9k  |     else  | 
2878  | 18.9k  |         rv |= CERT_PKEY_SIGN | CERT_PKEY_EXPLICIT_SIGN;  | 
2879  |  |  | 
2880  |  |     /*  | 
2881  |  |      * When checking a CERT_PKEY structure all flags are irrelevant if the  | 
2882  |  |      * chain is invalid.  | 
2883  |  |      */  | 
2884  | 46.0k  |     if (!check_flags) { | 
2885  | 46.0k  |         if (rv & CERT_PKEY_VALID) { | 
2886  | 14.1k  |             *pvalid = rv;  | 
2887  | 31.8k  |         } else { | 
2888  |  |             /* Preserve sign and explicit sign flag, clear rest */  | 
2889  | 31.8k  |             *pvalid &= CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;  | 
2890  | 31.8k  |             return 0;  | 
2891  | 31.8k  |         }  | 
2892  | 46.0k  |     }  | 
2893  | 14.1k  |     return rv;  | 
2894  | 46.0k  | }  | 
2895  |  |  | 
2896  |  | /* Set validity of certificates in an SSL structure */  | 
2897  |  | void tls1_set_cert_validity(SSL *s)  | 
2898  | 13.7k  | { | 
2899  | 13.7k  |     tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA);  | 
2900  | 13.7k  |     tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_PSS_SIGN);  | 
2901  | 13.7k  |     tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DSA_SIGN);  | 
2902  | 13.7k  |     tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ECC);  | 
2903  | 13.7k  |     tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST01);  | 
2904  | 13.7k  |     tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_256);  | 
2905  | 13.7k  |     tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_512);  | 
2906  | 13.7k  |     tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED25519);  | 
2907  | 13.7k  |     tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED448);  | 
2908  | 13.7k  | }  | 
2909  |  |  | 
2910  |  | /* User level utility function to check a chain is suitable */  | 
2911  |  | int SSL_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain)  | 
2912  | 0  | { | 
2913  | 0  |     return tls1_check_chain(s, x, pk, chain, -1);  | 
2914  | 0  | }  | 
2915  |  |  | 
2916  |  | EVP_PKEY *ssl_get_auto_dh(SSL *s)  | 
2917  | 0  | { | 
2918  | 0  |     EVP_PKEY *dhp = NULL;  | 
2919  | 0  |     BIGNUM *p;  | 
2920  | 0  |     int dh_secbits = 80, sec_level_bits;  | 
2921  | 0  |     EVP_PKEY_CTX *pctx = NULL;  | 
2922  | 0  |     OSSL_PARAM_BLD *tmpl = NULL;  | 
2923  | 0  |     OSSL_PARAM *params = NULL;  | 
2924  |  | 
  | 
2925  | 0  |     if (s->cert->dh_tmp_auto != 2) { | 
2926  | 0  |         if (s->s3.tmp.new_cipher->algorithm_auth & (SSL_aNULL | SSL_aPSK)) { | 
2927  | 0  |             if (s->s3.tmp.new_cipher->strength_bits == 256)  | 
2928  | 0  |                 dh_secbits = 128;  | 
2929  | 0  |             else  | 
2930  | 0  |                 dh_secbits = 80;  | 
2931  | 0  |         } else { | 
2932  | 0  |             if (s->s3.tmp.cert == NULL)  | 
2933  | 0  |                 return NULL;  | 
2934  | 0  |             dh_secbits = EVP_PKEY_get_security_bits(s->s3.tmp.cert->privatekey);  | 
2935  | 0  |         }  | 
2936  | 0  |     }  | 
2937  |  |  | 
2938  |  |     /* Do not pick a prime that is too weak for the current security level */  | 
2939  | 0  |     sec_level_bits = ssl_get_security_level_bits(s, NULL, NULL);  | 
2940  | 0  |     if (dh_secbits < sec_level_bits)  | 
2941  | 0  |         dh_secbits = sec_level_bits;  | 
2942  |  | 
  | 
2943  | 0  |     if (dh_secbits >= 192)  | 
2944  | 0  |         p = BN_get_rfc3526_prime_8192(NULL);  | 
2945  | 0  |     else if (dh_secbits >= 152)  | 
2946  | 0  |         p = BN_get_rfc3526_prime_4096(NULL);  | 
2947  | 0  |     else if (dh_secbits >= 128)  | 
2948  | 0  |         p = BN_get_rfc3526_prime_3072(NULL);  | 
2949  | 0  |     else if (dh_secbits >= 112)  | 
2950  | 0  |         p = BN_get_rfc3526_prime_2048(NULL);  | 
2951  | 0  |     else  | 
2952  | 0  |         p = BN_get_rfc2409_prime_1024(NULL);  | 
2953  | 0  |     if (p == NULL)  | 
2954  | 0  |         goto err;  | 
2955  |  |  | 
2956  | 0  |     pctx = EVP_PKEY_CTX_new_from_name(s->ctx->libctx, "DH", s->ctx->propq);  | 
2957  | 0  |     if (pctx == NULL  | 
2958  | 0  |             || EVP_PKEY_fromdata_init(pctx) != 1)  | 
2959  | 0  |         goto err;  | 
2960  |  |  | 
2961  | 0  |     tmpl = OSSL_PARAM_BLD_new();  | 
2962  | 0  |     if (tmpl == NULL  | 
2963  | 0  |             || !OSSL_PARAM_BLD_push_BN(tmpl, OSSL_PKEY_PARAM_FFC_P, p)  | 
2964  | 0  |             || !OSSL_PARAM_BLD_push_uint(tmpl, OSSL_PKEY_PARAM_FFC_G, 2))  | 
2965  | 0  |         goto err;  | 
2966  |  |  | 
2967  | 0  |     params = OSSL_PARAM_BLD_to_param(tmpl);  | 
2968  | 0  |     if (params == NULL  | 
2969  | 0  |             || EVP_PKEY_fromdata(pctx, &dhp, EVP_PKEY_KEY_PARAMETERS, params) != 1)  | 
2970  | 0  |         goto err;  | 
2971  |  |  | 
2972  | 0  | err:  | 
2973  | 0  |     OSSL_PARAM_free(params);  | 
2974  | 0  |     OSSL_PARAM_BLD_free(tmpl);  | 
2975  | 0  |     EVP_PKEY_CTX_free(pctx);  | 
2976  | 0  |     BN_free(p);  | 
2977  | 0  |     return dhp;  | 
2978  | 0  | }  | 
2979  |  |  | 
2980  |  | static int ssl_security_cert_key(SSL *s, SSL_CTX *ctx, X509 *x, int op)  | 
2981  | 35.1k  | { | 
2982  | 35.1k  |     int secbits = -1;  | 
2983  | 35.1k  |     EVP_PKEY *pkey = X509_get0_pubkey(x);  | 
2984  | 35.1k  |     if (pkey) { | 
2985  |  |         /*  | 
2986  |  |          * If no parameters this will return -1 and fail using the default  | 
2987  |  |          * security callback for any non-zero security level. This will  | 
2988  |  |          * reject keys which omit parameters but this only affects DSA and  | 
2989  |  |          * omission of parameters is never (?) done in practice.  | 
2990  |  |          */  | 
2991  | 35.1k  |         secbits = EVP_PKEY_get_security_bits(pkey);  | 
2992  | 35.1k  |     }  | 
2993  | 35.1k  |     if (s)  | 
2994  | 4.84k  |         return ssl_security(s, op, secbits, 0, x);  | 
2995  | 30.2k  |     else  | 
2996  | 30.2k  |         return ssl_ctx_security(ctx, op, secbits, 0, x);  | 
2997  | 35.1k  | }  | 
2998  |  |  | 
2999  |  | static int ssl_security_cert_sig(SSL *s, SSL_CTX *ctx, X509 *x, int op)  | 
3000  | 35.1k  | { | 
3001  |  |     /* Lookup signature algorithm digest */  | 
3002  | 35.1k  |     int secbits, nid, pknid;  | 
3003  |  |     /* Don't check signature if self signed */  | 
3004  | 35.1k  |     if ((X509_get_extension_flags(x) & EXFLAG_SS) != 0)  | 
3005  | 35.1k  |         return 1;  | 
3006  | 0  |     if (!X509_get_signature_info(x, &nid, &pknid, &secbits, NULL))  | 
3007  | 0  |         secbits = -1;  | 
3008  |  |     /* If digest NID not defined use signature NID */  | 
3009  | 0  |     if (nid == NID_undef)  | 
3010  | 0  |         nid = pknid;  | 
3011  | 0  |     if (s)  | 
3012  | 0  |         return ssl_security(s, op, secbits, nid, x);  | 
3013  | 0  |     else  | 
3014  | 0  |         return ssl_ctx_security(ctx, op, secbits, nid, x);  | 
3015  | 0  | }  | 
3016  |  |  | 
3017  |  | int ssl_security_cert(SSL *s, SSL_CTX *ctx, X509 *x, int vfy, int is_ee)  | 
3018  | 89.5k  | { | 
3019  | 89.5k  |     if (vfy)  | 
3020  | 0  |         vfy = SSL_SECOP_PEER;  | 
3021  | 89.5k  |     if (is_ee) { | 
3022  | 89.5k  |         if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_EE_KEY | vfy))  | 
3023  | 0  |             return SSL_R_EE_KEY_TOO_SMALL;  | 
3024  | 89.5k  |     } else { | 
3025  | 0  |         if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_CA_KEY | vfy))  | 
3026  | 0  |             return SSL_R_CA_KEY_TOO_SMALL;  | 
3027  | 0  |     }  | 
3028  | 89.5k  |     if (!ssl_security_cert_sig(s, ctx, x, SSL_SECOP_CA_MD | vfy))  | 
3029  | 0  |         return SSL_R_CA_MD_TOO_WEAK;  | 
3030  | 89.5k  |     return 1;  | 
3031  | 89.5k  | }  | 
3032  |  |  | 
3033  |  | /*  | 
3034  |  |  * Check security of a chain, if |sk| includes the end entity certificate then  | 
3035  |  |  * |x| is NULL. If |vfy| is 1 then we are verifying a peer chain and not sending  | 
3036  |  |  * one to the peer. Return values: 1 if ok otherwise error code to use  | 
3037  |  |  */  | 
3038  |  |  | 
3039  |  | int ssl_security_cert_chain(SSL *s, STACK_OF(X509) *sk, X509 *x, int vfy)  | 
3040  | 13.2k  | { | 
3041  | 13.2k  |     int rv, start_idx, i;  | 
3042  | 13.2k  |     if (x == NULL) { | 
3043  | 13.2k  |         x = sk_X509_value(sk, 0);  | 
3044  | 13.2k  |         if (x == NULL)  | 
3045  | 0  |             return ERR_R_INTERNAL_ERROR;  | 
3046  | 13.2k  |         start_idx = 1;  | 
3047  | 13.2k  |     } else  | 
3048  | 0  |         start_idx = 0;  | 
3049  |  |  | 
3050  | 13.2k  |     rv = ssl_security_cert(s, NULL, x, vfy, 1);  | 
3051  | 13.2k  |     if (rv != 1)  | 
3052  | 0  |         return rv;  | 
3053  |  |  | 
3054  | 13.2k  |     for (i = start_idx; i < sk_X509_num(sk); i++) { | 
3055  | 0  |         x = sk_X509_value(sk, i);  | 
3056  | 0  |         rv = ssl_security_cert(s, NULL, x, vfy, 0);  | 
3057  | 0  |         if (rv != 1)  | 
3058  | 0  |             return rv;  | 
3059  | 0  |     }  | 
3060  | 13.2k  |     return 1;  | 
3061  | 13.2k  | }  | 
3062  |  |  | 
3063  |  | /*  | 
3064  |  |  * For TLS 1.2 servers check if we have a certificate which can be used  | 
3065  |  |  * with the signature algorithm "lu" and return index of certificate.  | 
3066  |  |  */  | 
3067  |  |  | 
3068  |  | static int tls12_get_cert_sigalg_idx(const SSL *s, const SIGALG_LOOKUP *lu)  | 
3069  | 19.2k  | { | 
3070  | 19.2k  |     int sig_idx = lu->sig_idx;  | 
3071  | 19.2k  |     const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(sig_idx);  | 
3072  |  |  | 
3073  |  |     /* If not recognised or not supported by cipher mask it is not suitable */  | 
3074  | 19.2k  |     if (clu == NULL  | 
3075  | 19.2k  |             || (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) == 0  | 
3076  | 19.2k  |             || (clu->nid == EVP_PKEY_RSA_PSS  | 
3077  | 17.2k  |                 && (s->s3.tmp.new_cipher->algorithm_mkey & SSL_kRSA) != 0))  | 
3078  | 2.43k  |         return -1;  | 
3079  |  |  | 
3080  | 16.8k  |     return s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_VALID ? sig_idx : -1;  | 
3081  | 19.2k  | }  | 
3082  |  |  | 
3083  |  | /*  | 
3084  |  |  * Checks the given cert against signature_algorithm_cert restrictions sent by  | 
3085  |  |  * the peer (if any) as well as whether the hash from the sigalg is usable with  | 
3086  |  |  * the key.  | 
3087  |  |  * Returns true if the cert is usable and false otherwise.  | 
3088  |  |  */  | 
3089  |  | static int check_cert_usable(SSL *s, const SIGALG_LOOKUP *sig, X509 *x,  | 
3090  |  |                              EVP_PKEY *pkey)  | 
3091  | 39.8k  | { | 
3092  | 39.8k  |     const SIGALG_LOOKUP *lu;  | 
3093  | 39.8k  |     int mdnid, pknid, supported;  | 
3094  | 39.8k  |     size_t i;  | 
3095  | 39.8k  |     const char *mdname = NULL;  | 
3096  |  |  | 
3097  |  |     /*  | 
3098  |  |      * If the given EVP_PKEY cannot support signing with this digest,  | 
3099  |  |      * the answer is simply 'no'.  | 
3100  |  |      */  | 
3101  | 39.8k  |     if (sig->hash != NID_undef)  | 
3102  | 39.8k  |         mdname = OBJ_nid2sn(sig->hash);  | 
3103  | 39.8k  |     supported = EVP_PKEY_digestsign_supports_digest(pkey, s->ctx->libctx,  | 
3104  | 39.8k  |                                                     mdname,  | 
3105  | 39.8k  |                                                     s->ctx->propq);  | 
3106  | 39.8k  |     if (supported <= 0)  | 
3107  | 0  |         return 0;  | 
3108  |  |  | 
3109  |  |     /*  | 
3110  |  |      * The TLS 1.3 signature_algorithms_cert extension places restrictions  | 
3111  |  |      * on the sigalg with which the certificate was signed (by its issuer).  | 
3112  |  |      */  | 
3113  | 39.8k  |     if (s->s3.tmp.peer_cert_sigalgs != NULL) { | 
3114  | 27.1k  |         if (!X509_get_signature_info(x, &mdnid, &pknid, NULL, NULL))  | 
3115  | 0  |             return 0;  | 
3116  | 131k  |         for (i = 0; i < s->s3.tmp.peer_cert_sigalgslen; i++) { | 
3117  | 104k  |             lu = tls1_lookup_sigalg(s, s->s3.tmp.peer_cert_sigalgs[i]);  | 
3118  | 104k  |             if (lu == NULL)  | 
3119  | 71.8k  |                 continue;  | 
3120  |  |  | 
3121  |  |             /*  | 
3122  |  |              * This does not differentiate between the  | 
3123  |  |              * rsa_pss_pss_* and rsa_pss_rsae_* schemes since we do not  | 
3124  |  |              * have a chain here that lets us look at the key OID in the  | 
3125  |  |              * signing certificate.  | 
3126  |  |              */  | 
3127  | 32.7k  |             if (mdnid == lu->hash && pknid == lu->sig)  | 
3128  | 27  |                 return 1;  | 
3129  | 32.7k  |         }  | 
3130  | 27.0k  |         return 0;  | 
3131  | 27.1k  |     }  | 
3132  |  |  | 
3133  |  |     /*  | 
3134  |  |      * Without signat_algorithms_cert, any certificate for which we have  | 
3135  |  |      * a viable public key is permitted.  | 
3136  |  |      */  | 
3137  | 12.7k  |     return 1;  | 
3138  | 39.8k  | }  | 
3139  |  |  | 
3140  |  | /*  | 
3141  |  |  * Returns true if |s| has a usable certificate configured for use  | 
3142  |  |  * with signature scheme |sig|.  | 
3143  |  |  * "Usable" includes a check for presence as well as applying  | 
3144  |  |  * the signature_algorithm_cert restrictions sent by the peer (if any).  | 
3145  |  |  * Returns false if no usable certificate is found.  | 
3146  |  |  */  | 
3147  |  | static int has_usable_cert(SSL *s, const SIGALG_LOOKUP *sig, int idx)  | 
3148  | 40.0k  | { | 
3149  |  |     /* TLS 1.2 callers can override sig->sig_idx, but not TLS 1.3 callers. */  | 
3150  | 40.0k  |     if (idx == -1)  | 
3151  | 6.02k  |         idx = sig->sig_idx;  | 
3152  | 40.0k  |     if (!ssl_has_cert(s, idx))  | 
3153  | 186  |         return 0;  | 
3154  |  |  | 
3155  | 39.8k  |     return check_cert_usable(s, sig, s->cert->pkeys[idx].x509,  | 
3156  | 39.8k  |                              s->cert->pkeys[idx].privatekey);  | 
3157  | 40.0k  | }  | 
3158  |  |  | 
3159  |  | /*  | 
3160  |  |  * Returns true if the supplied cert |x| and key |pkey| is usable with the  | 
3161  |  |  * specified signature scheme |sig|, or false otherwise.  | 
3162  |  |  */  | 
3163  |  | static int is_cert_usable(SSL *s, const SIGALG_LOOKUP *sig, X509 *x,  | 
3164  |  |                           EVP_PKEY *pkey)  | 
3165  | 0  | { | 
3166  | 0  |     size_t idx;  | 
3167  |  | 
  | 
3168  | 0  |     if (ssl_cert_lookup_by_pkey(pkey, &idx) == NULL)  | 
3169  | 0  |         return 0;  | 
3170  |  |  | 
3171  |  |     /* Check the key is consistent with the sig alg */  | 
3172  | 0  |     if ((int)idx != sig->sig_idx)  | 
3173  | 0  |         return 0;  | 
3174  |  |  | 
3175  | 0  |     return check_cert_usable(s, sig, x, pkey);  | 
3176  | 0  | }  | 
3177  |  |  | 
3178  |  | /*  | 
3179  |  |  * Find a signature scheme that works with the supplied certificate |x| and key  | 
3180  |  |  * |pkey|. |x| and |pkey| may be NULL in which case we additionally look at our  | 
3181  |  |  * available certs/keys to find one that works.  | 
3182  |  |  */  | 
3183  |  | static const SIGALG_LOOKUP *find_sig_alg(SSL *s, X509 *x, EVP_PKEY *pkey)  | 
3184  | 1.84k  | { | 
3185  | 1.84k  |     const SIGALG_LOOKUP *lu = NULL;  | 
3186  | 1.84k  |     size_t i;  | 
3187  | 1.84k  |     int curve = -1;  | 
3188  | 1.84k  |     EVP_PKEY *tmppkey;  | 
3189  |  |  | 
3190  |  |     /* Look for a shared sigalgs matching possible certificates */  | 
3191  | 5.61k  |     for (i = 0; i < s->shared_sigalgslen; i++) { | 
3192  | 5.51k  |         lu = s->shared_sigalgs[i];  | 
3193  |  |  | 
3194  |  |         /* Skip SHA1, SHA224, DSA and RSA if not PSS */  | 
3195  | 5.51k  |         if (lu->hash == NID_sha1  | 
3196  | 5.51k  |             || lu->hash == NID_sha224  | 
3197  | 5.51k  |             || lu->sig == EVP_PKEY_DSA  | 
3198  | 5.51k  |             || lu->sig == EVP_PKEY_RSA)  | 
3199  | 1.23k  |             continue;  | 
3200  |  |         /* Check that we have a cert, and signature_algorithms_cert */  | 
3201  | 4.27k  |         if (!tls1_lookup_md(s->ctx, lu, NULL))  | 
3202  | 0  |             continue;  | 
3203  | 4.27k  |         if ((pkey == NULL && !has_usable_cert(s, lu, -1))  | 
3204  | 4.27k  |                 || (pkey != NULL && !is_cert_usable(s, lu, x, pkey)))  | 
3205  | 177  |             continue;  | 
3206  |  |  | 
3207  | 4.10k  |         tmppkey = (pkey != NULL) ? pkey  | 
3208  | 4.10k  |                                  : s->cert->pkeys[lu->sig_idx].privatekey;  | 
3209  |  |  | 
3210  | 4.10k  |         if (lu->sig == EVP_PKEY_EC) { | 
3211  | 3.77k  |             if (curve == -1)  | 
3212  | 1.56k  |                 curve = ssl_get_EC_curve_nid(tmppkey);  | 
3213  | 3.77k  |             if (lu->curve != NID_undef && curve != lu->curve)  | 
3214  | 2.36k  |                 continue;  | 
3215  | 3.77k  |         } else if (lu->sig == EVP_PKEY_RSA_PSS) { | 
3216  |  |             /* validate that key is large enough for the signature algorithm */  | 
3217  | 327  |             if (!rsa_pss_check_min_key_size(s->ctx, tmppkey, lu))  | 
3218  | 0  |                 continue;  | 
3219  | 327  |         }  | 
3220  | 1.73k  |         break;  | 
3221  | 4.10k  |     }  | 
3222  |  |  | 
3223  | 1.84k  |     if (i == s->shared_sigalgslen)  | 
3224  | 103  |         return NULL;  | 
3225  |  |  | 
3226  | 1.73k  |     return lu;  | 
3227  | 1.84k  | }  | 
3228  |  |  | 
3229  |  | /*  | 
3230  |  |  * Choose an appropriate signature algorithm based on available certificates  | 
3231  |  |  * Sets chosen certificate and signature algorithm.  | 
3232  |  |  *  | 
3233  |  |  * For servers if we fail to find a required certificate it is a fatal error,  | 
3234  |  |  * an appropriate error code is set and a TLS alert is sent.  | 
3235  |  |  *  | 
3236  |  |  * For clients fatalerrs is set to 0. If a certificate is not suitable it is not  | 
3237  |  |  * a fatal error: we will either try another certificate or not present one  | 
3238  |  |  * to the server. In this case no error is set.  | 
3239  |  |  */  | 
3240  |  | int tls_choose_sigalg(SSL *s, int fatalerrs)  | 
3241  | 6.00k  | { | 
3242  | 6.00k  |     const SIGALG_LOOKUP *lu = NULL;  | 
3243  | 6.00k  |     int sig_idx = -1;  | 
3244  |  |  | 
3245  | 6.00k  |     s->s3.tmp.cert = NULL;  | 
3246  | 6.00k  |     s->s3.tmp.sigalg = NULL;  | 
3247  |  |  | 
3248  | 6.00k  |     if (SSL_IS_TLS13(s)) { | 
3249  | 1.24k  |         lu = find_sig_alg(s, NULL, NULL);  | 
3250  | 1.24k  |         if (lu == NULL) { | 
3251  | 62  |             if (!fatalerrs)  | 
3252  | 0  |                 return 1;  | 
3253  | 62  |             SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,  | 
3254  | 62  |                      SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);  | 
3255  | 62  |             return 0;  | 
3256  | 62  |         }  | 
3257  | 4.76k  |     } else { | 
3258  |  |         /* If ciphersuite doesn't require a cert nothing to do */  | 
3259  | 4.76k  |         if (!(s->s3.tmp.new_cipher->algorithm_auth & SSL_aCERT))  | 
3260  | 373  |             return 1;  | 
3261  | 4.39k  |         if (!s->server && !ssl_has_cert(s, s->cert->key - s->cert->pkeys))  | 
3262  | 16  |                 return 1;  | 
3263  |  |  | 
3264  | 4.37k  |         if (SSL_USE_SIGALGS(s)) { | 
3265  | 2.42k  |             size_t i;  | 
3266  | 2.42k  |             if (s->s3.tmp.peer_sigalgs != NULL) { | 
3267  | 783  |                 int curve = -1;  | 
3268  |  |  | 
3269  |  |                 /* For Suite B need to match signature algorithm to curve */  | 
3270  | 783  |                 if (tls1_suiteb(s))  | 
3271  | 0  |                     curve = ssl_get_EC_curve_nid(s->cert->pkeys[SSL_PKEY_ECC]  | 
3272  | 0  |                                                  .privatekey);  | 
3273  |  |  | 
3274  |  |                 /*  | 
3275  |  |                  * Find highest preference signature algorithm matching  | 
3276  |  |                  * cert type  | 
3277  |  |                  */  | 
3278  | 19.6k  |                 for (i = 0; i < s->shared_sigalgslen; i++) { | 
3279  | 19.2k  |                     lu = s->shared_sigalgs[i];  | 
3280  |  |  | 
3281  | 19.2k  |                     if (s->server) { | 
3282  | 19.2k  |                         if ((sig_idx = tls12_get_cert_sigalg_idx(s, lu)) == -1)  | 
3283  | 2.98k  |                             continue;  | 
3284  | 19.2k  |                     } else { | 
3285  | 0  |                         int cc_idx = s->cert->key - s->cert->pkeys;  | 
3286  |  | 
  | 
3287  | 0  |                         sig_idx = lu->sig_idx;  | 
3288  | 0  |                         if (cc_idx != sig_idx)  | 
3289  | 0  |                             continue;  | 
3290  | 0  |                     }  | 
3291  |  |                     /* Check that we have a cert, and sig_algs_cert */  | 
3292  | 16.2k  |                     if (!has_usable_cert(s, lu, sig_idx))  | 
3293  | 15.9k  |                         continue;  | 
3294  | 357  |                     if (lu->sig == EVP_PKEY_RSA_PSS) { | 
3295  |  |                         /* validate that key is large enough for the signature algorithm */  | 
3296  | 112  |                         EVP_PKEY *pkey = s->cert->pkeys[sig_idx].privatekey;  | 
3297  |  |  | 
3298  | 112  |                         if (!rsa_pss_check_min_key_size(s->ctx, pkey, lu))  | 
3299  | 0  |                             continue;  | 
3300  | 112  |                     }  | 
3301  | 357  |                     if (curve == -1 || lu->curve == curve)  | 
3302  | 357  |                         break;  | 
3303  | 357  |                 }  | 
3304  | 783  | #ifndef OPENSSL_NO_GOST  | 
3305  |  |                 /*  | 
3306  |  |                  * Some Windows-based implementations do not send GOST algorithms indication  | 
3307  |  |                  * in supported_algorithms extension, so when we have GOST-based ciphersuite,  | 
3308  |  |                  * we have to assume GOST support.  | 
3309  |  |                  */  | 
3310  | 783  |                 if (i == s->shared_sigalgslen && s->s3.tmp.new_cipher->algorithm_auth & (SSL_aGOST01 | SSL_aGOST12)) { | 
3311  | 0  |                   if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) { | 
3312  | 0  |                     if (!fatalerrs)  | 
3313  | 0  |                       return 1;  | 
3314  | 0  |                     SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,  | 
3315  | 0  |                              SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);  | 
3316  | 0  |                     return 0;  | 
3317  | 0  |                   } else { | 
3318  | 0  |                     i = 0;  | 
3319  | 0  |                     sig_idx = lu->sig_idx;  | 
3320  | 0  |                   }  | 
3321  | 0  |                 }  | 
3322  | 783  | #endif  | 
3323  | 783  |                 if (i == s->shared_sigalgslen) { | 
3324  | 426  |                     if (!fatalerrs)  | 
3325  | 0  |                         return 1;  | 
3326  | 426  |                     SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,  | 
3327  | 426  |                              SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);  | 
3328  | 426  |                     return 0;  | 
3329  | 426  |                 }  | 
3330  | 1.64k  |             } else { | 
3331  |  |                 /*  | 
3332  |  |                  * If we have no sigalg use defaults  | 
3333  |  |                  */  | 
3334  | 1.64k  |                 const uint16_t *sent_sigs;  | 
3335  | 1.64k  |                 size_t sent_sigslen;  | 
3336  |  |  | 
3337  | 1.64k  |                 if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) { | 
3338  | 0  |                     if (!fatalerrs)  | 
3339  | 0  |                         return 1;  | 
3340  | 0  |                     SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,  | 
3341  | 0  |                              SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);  | 
3342  | 0  |                     return 0;  | 
3343  | 0  |                 }  | 
3344  |  |  | 
3345  |  |                 /* Check signature matches a type we sent */  | 
3346  | 1.64k  |                 sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);  | 
3347  | 28.9k  |                 for (i = 0; i < sent_sigslen; i++, sent_sigs++) { | 
3348  | 28.9k  |                     if (lu->sigalg == *sent_sigs  | 
3349  | 28.9k  |                             && has_usable_cert(s, lu, lu->sig_idx))  | 
3350  | 1.64k  |                         break;  | 
3351  | 28.9k  |                 }  | 
3352  | 1.64k  |                 if (i == sent_sigslen) { | 
3353  | 0  |                     if (!fatalerrs)  | 
3354  | 0  |                         return 1;  | 
3355  | 0  |                     SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,  | 
3356  | 0  |                              SSL_R_WRONG_SIGNATURE_TYPE);  | 
3357  | 0  |                     return 0;  | 
3358  | 0  |                 }  | 
3359  | 1.64k  |             }  | 
3360  | 2.42k  |         } else { | 
3361  | 1.94k  |             if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) { | 
3362  | 0  |                 if (!fatalerrs)  | 
3363  | 0  |                     return 1;  | 
3364  | 0  |                 SSLfatal(s, SSL_AD_INTERNAL_ERROR,  | 
3365  | 0  |                          SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);  | 
3366  | 0  |                 return 0;  | 
3367  | 0  |             }  | 
3368  | 1.94k  |         }  | 
3369  | 4.37k  |     }  | 
3370  | 5.12k  |     if (sig_idx == -1)  | 
3371  | 4.77k  |         sig_idx = lu->sig_idx;  | 
3372  | 5.12k  |     s->s3.tmp.cert = &s->cert->pkeys[sig_idx];  | 
3373  | 5.12k  |     s->cert->key = s->s3.tmp.cert;  | 
3374  | 5.12k  |     s->s3.tmp.sigalg = lu;  | 
3375  | 5.12k  |     return 1;  | 
3376  | 6.00k  | }  | 
3377  |  |  | 
3378  |  | int SSL_CTX_set_tlsext_max_fragment_length(SSL_CTX *ctx, uint8_t mode)  | 
3379  | 0  | { | 
3380  | 0  |     if (mode != TLSEXT_max_fragment_length_DISABLED  | 
3381  | 0  |             && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) { | 
3382  | 0  |         ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);  | 
3383  | 0  |         return 0;  | 
3384  | 0  |     }  | 
3385  |  |  | 
3386  | 0  |     ctx->ext.max_fragment_len_mode = mode;  | 
3387  | 0  |     return 1;  | 
3388  | 0  | }  | 
3389  |  |  | 
3390  |  | int SSL_set_tlsext_max_fragment_length(SSL *ssl, uint8_t mode)  | 
3391  | 0  | { | 
3392  | 0  |     if (mode != TLSEXT_max_fragment_length_DISABLED  | 
3393  | 0  |             && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) { | 
3394  | 0  |         ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);  | 
3395  | 0  |         return 0;  | 
3396  | 0  |     }  | 
3397  |  |  | 
3398  | 0  |     ssl->ext.max_fragment_len_mode = mode;  | 
3399  | 0  |     return 1;  | 
3400  | 0  | }  | 
3401  |  |  | 
3402  |  | uint8_t SSL_SESSION_get_max_fragment_length(const SSL_SESSION *session)  | 
3403  | 0  | { | 
3404  | 0  |     if (session->ext.max_fragment_len_mode == TLSEXT_max_fragment_length_UNSPECIFIED)  | 
3405  | 0  |         return TLSEXT_max_fragment_length_DISABLED;  | 
3406  | 0  |     return session->ext.max_fragment_len_mode;  | 
3407  | 0  | }  | 
3408  |  |  | 
3409  |  | /*  | 
3410  |  |  * Helper functions for HMAC access with legacy support included.  | 
3411  |  |  */  | 
3412  |  | SSL_HMAC *ssl_hmac_new(const SSL_CTX *ctx)  | 
3413  | 1.20k  | { | 
3414  | 1.20k  |     SSL_HMAC *ret = OPENSSL_zalloc(sizeof(*ret));  | 
3415  | 1.20k  |     EVP_MAC *mac = NULL;  | 
3416  |  |  | 
3417  | 1.20k  |     if (ret == NULL)  | 
3418  | 0  |         return NULL;  | 
3419  | 1.20k  | #ifndef OPENSSL_NO_DEPRECATED_3_0  | 
3420  | 1.20k  |     if (ctx->ext.ticket_key_evp_cb == NULL  | 
3421  | 1.20k  |             && ctx->ext.ticket_key_cb != NULL) { | 
3422  | 0  |         if (!ssl_hmac_old_new(ret))  | 
3423  | 0  |             goto err;  | 
3424  | 0  |         return ret;  | 
3425  | 0  |     }  | 
3426  | 1.20k  | #endif  | 
3427  | 1.20k  |     mac = EVP_MAC_fetch(ctx->libctx, "HMAC", ctx->propq);  | 
3428  | 1.20k  |     if (mac == NULL || (ret->ctx = EVP_MAC_CTX_new(mac)) == NULL)  | 
3429  | 0  |         goto err;  | 
3430  | 1.20k  |     EVP_MAC_free(mac);  | 
3431  | 1.20k  |     return ret;  | 
3432  | 0  |  err:  | 
3433  | 0  |     EVP_MAC_CTX_free(ret->ctx);  | 
3434  | 0  |     EVP_MAC_free(mac);  | 
3435  | 0  |     OPENSSL_free(ret);  | 
3436  | 0  |     return NULL;  | 
3437  | 1.20k  | }  | 
3438  |  |  | 
3439  |  | void ssl_hmac_free(SSL_HMAC *ctx)  | 
3440  | 2.37k  | { | 
3441  | 2.37k  |     if (ctx != NULL) { | 
3442  | 1.20k  |         EVP_MAC_CTX_free(ctx->ctx);  | 
3443  | 1.20k  | #ifndef OPENSSL_NO_DEPRECATED_3_0  | 
3444  | 1.20k  |         ssl_hmac_old_free(ctx);  | 
3445  | 1.20k  | #endif  | 
3446  | 1.20k  |         OPENSSL_free(ctx);  | 
3447  | 1.20k  |     }  | 
3448  | 2.37k  | }  | 
3449  |  |  | 
3450  |  | EVP_MAC_CTX *ssl_hmac_get0_EVP_MAC_CTX(SSL_HMAC *ctx)  | 
3451  | 0  | { | 
3452  | 0  |     return ctx->ctx;  | 
3453  | 0  | }  | 
3454  |  |  | 
3455  |  | int ssl_hmac_init(SSL_HMAC *ctx, void *key, size_t len, char *md)  | 
3456  | 983  | { | 
3457  | 983  |     OSSL_PARAM params[2], *p = params;  | 
3458  |  |  | 
3459  | 983  |     if (ctx->ctx != NULL) { | 
3460  | 983  |         *p++ = OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_DIGEST, md, 0);  | 
3461  | 983  |         *p = OSSL_PARAM_construct_end();  | 
3462  | 983  |         if (EVP_MAC_init(ctx->ctx, key, len, params))  | 
3463  | 983  |             return 1;  | 
3464  | 983  |     }  | 
3465  | 0  | #ifndef OPENSSL_NO_DEPRECATED_3_0  | 
3466  | 0  |     if (ctx->old_ctx != NULL)  | 
3467  | 0  |         return ssl_hmac_old_init(ctx, key, len, md);  | 
3468  | 0  | #endif  | 
3469  | 0  |     return 0;  | 
3470  | 0  | }  | 
3471  |  |  | 
3472  |  | int ssl_hmac_update(SSL_HMAC *ctx, const unsigned char *data, size_t len)  | 
3473  | 909  | { | 
3474  | 909  |     if (ctx->ctx != NULL)  | 
3475  | 909  |         return EVP_MAC_update(ctx->ctx, data, len);  | 
3476  | 0  | #ifndef OPENSSL_NO_DEPRECATED_3_0  | 
3477  | 0  |     if (ctx->old_ctx != NULL)  | 
3478  | 0  |         return ssl_hmac_old_update(ctx, data, len);  | 
3479  | 0  | #endif  | 
3480  | 0  |     return 0;  | 
3481  | 0  | }  | 
3482  |  |  | 
3483  |  | int ssl_hmac_final(SSL_HMAC *ctx, unsigned char *md, size_t *len,  | 
3484  |  |                    size_t max_size)  | 
3485  | 909  | { | 
3486  | 909  |     if (ctx->ctx != NULL)  | 
3487  | 909  |         return EVP_MAC_final(ctx->ctx, md, len, max_size);  | 
3488  | 0  | #ifndef OPENSSL_NO_DEPRECATED_3_0  | 
3489  | 0  |     if (ctx->old_ctx != NULL)  | 
3490  | 0  |         return ssl_hmac_old_final(ctx, md, len);  | 
3491  | 0  | #endif  | 
3492  | 0  |     return 0;  | 
3493  | 0  | }  | 
3494  |  |  | 
3495  |  | size_t ssl_hmac_size(const SSL_HMAC *ctx)  | 
3496  | 887  | { | 
3497  | 887  |     if (ctx->ctx != NULL)  | 
3498  | 887  |         return EVP_MAC_CTX_get_mac_size(ctx->ctx);  | 
3499  | 0  | #ifndef OPENSSL_NO_DEPRECATED_3_0  | 
3500  | 0  |     if (ctx->old_ctx != NULL)  | 
3501  | 0  |         return ssl_hmac_old_size(ctx);  | 
3502  | 0  | #endif  | 
3503  | 0  |     return 0;  | 
3504  | 0  | }  | 
3505  |  |  | 
3506  |  | int ssl_get_EC_curve_nid(const EVP_PKEY *pkey)  | 
3507  | 15.7k  | { | 
3508  | 15.7k  |     char gname[OSSL_MAX_NAME_SIZE];  | 
3509  |  |  | 
3510  | 15.7k  |     if (EVP_PKEY_get_group_name(pkey, gname, sizeof(gname), NULL) > 0)  | 
3511  | 15.7k  |         return OBJ_txt2nid(gname);  | 
3512  |  |  | 
3513  | 0  |     return NID_undef;  | 
3514  | 15.7k  | }  | 
3515  |  |  | 
3516  |  | __owur int tls13_set_encoded_pub_key(EVP_PKEY *pkey,  | 
3517  |  |                                      const unsigned char *enckey,  | 
3518  |  |                                      size_t enckeylen)  | 
3519  | 13.5k  | { | 
3520  | 13.5k  |     if (EVP_PKEY_is_a(pkey, "DH")) { | 
3521  | 188  |         int bits = EVP_PKEY_get_bits(pkey);  | 
3522  |  |  | 
3523  | 188  |         if (bits <= 0 || enckeylen != (size_t)bits / 8)  | 
3524  |  |             /* the encoded key must be padded to the length of the p */  | 
3525  | 9  |             return 0;  | 
3526  | 13.3k  |     } else if (EVP_PKEY_is_a(pkey, "EC")) { | 
3527  | 128  |         if (enckeylen < 3 /* point format and at least 1 byte for x and y */  | 
3528  | 128  |             || enckey[0] != 0x04)  | 
3529  | 28  |             return 0;  | 
3530  | 128  |     }  | 
3531  |  |  | 
3532  | 13.5k  |     return EVP_PKEY_set1_encoded_public_key(pkey, enckey, enckeylen);  | 
3533  | 13.5k  | }  |