/src/openssl31/crypto/bn/bn_exp.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright 1995-2025 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * |
4 | | * Licensed under the Apache License 2.0 (the "License"). You may not use |
5 | | * this file except in compliance with the License. You can obtain a copy |
6 | | * in the file LICENSE in the source distribution or at |
7 | | * https://www.openssl.org/source/license.html |
8 | | */ |
9 | | |
10 | | #include "internal/cryptlib.h" |
11 | | #include "internal/constant_time.h" |
12 | | #include "bn_local.h" |
13 | | |
14 | | #include <stdlib.h> |
15 | | #ifdef _WIN32 |
16 | | # include <malloc.h> |
17 | | # ifndef alloca |
18 | | # define alloca _alloca |
19 | | # endif |
20 | | #elif defined(__GNUC__) |
21 | | # ifndef alloca |
22 | | # define alloca(s) __builtin_alloca((s)) |
23 | | # endif |
24 | | #elif defined(__sun) |
25 | | # include <alloca.h> |
26 | | #endif |
27 | | |
28 | | #include "rsaz_exp.h" |
29 | | |
30 | | #undef SPARC_T4_MONT |
31 | | #if defined(OPENSSL_BN_ASM_MONT) && (defined(__sparc__) || defined(__sparc)) |
32 | | # include "crypto/sparc_arch.h" |
33 | | # define SPARC_T4_MONT |
34 | | #endif |
35 | | |
36 | | /* maximum precomputation table size for *variable* sliding windows */ |
37 | | #define TABLE_SIZE 32 |
38 | | |
39 | | /* |
40 | | * Beyond this limit the constant time code is disabled due to |
41 | | * the possible overflow in the computation of powerbufLen in |
42 | | * BN_mod_exp_mont_consttime. |
43 | | * When this limit is exceeded, the computation will be done using |
44 | | * non-constant time code, but it will take very long. |
45 | | */ |
46 | 479k | #define BN_CONSTTIME_SIZE_LIMIT (INT_MAX / BN_BYTES / 256) |
47 | | |
48 | | /* this one works - simple but works */ |
49 | | int BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) |
50 | 0 | { |
51 | 0 | int i, bits, ret = 0; |
52 | 0 | BIGNUM *v, *rr; |
53 | |
|
54 | 0 | if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0 |
55 | 0 | || BN_get_flags(a, BN_FLG_CONSTTIME) != 0) { |
56 | | /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */ |
57 | 0 | ERR_raise(ERR_LIB_BN, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
58 | 0 | return 0; |
59 | 0 | } |
60 | | |
61 | 0 | BN_CTX_start(ctx); |
62 | 0 | rr = ((r == a) || (r == p)) ? BN_CTX_get(ctx) : r; |
63 | 0 | v = BN_CTX_get(ctx); |
64 | 0 | if (rr == NULL || v == NULL) |
65 | 0 | goto err; |
66 | | |
67 | 0 | if (BN_copy(v, a) == NULL) |
68 | 0 | goto err; |
69 | 0 | bits = BN_num_bits(p); |
70 | |
|
71 | 0 | if (BN_is_odd(p)) { |
72 | 0 | if (BN_copy(rr, a) == NULL) |
73 | 0 | goto err; |
74 | 0 | } else { |
75 | 0 | if (!BN_one(rr)) |
76 | 0 | goto err; |
77 | 0 | } |
78 | | |
79 | 0 | for (i = 1; i < bits; i++) { |
80 | 0 | if (!BN_sqr(v, v, ctx)) |
81 | 0 | goto err; |
82 | 0 | if (BN_is_bit_set(p, i)) { |
83 | 0 | if (!BN_mul(rr, rr, v, ctx)) |
84 | 0 | goto err; |
85 | 0 | } |
86 | 0 | } |
87 | 0 | if (r != rr && BN_copy(r, rr) == NULL) |
88 | 0 | goto err; |
89 | | |
90 | 0 | ret = 1; |
91 | 0 | err: |
92 | 0 | BN_CTX_end(ctx); |
93 | 0 | bn_check_top(r); |
94 | 0 | return ret; |
95 | 0 | } |
96 | | |
97 | | int BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, |
98 | | BN_CTX *ctx) |
99 | 168k | { |
100 | 168k | int ret; |
101 | | |
102 | 168k | bn_check_top(a); |
103 | 168k | bn_check_top(p); |
104 | 168k | bn_check_top(m); |
105 | | |
106 | | /*- |
107 | | * For even modulus m = 2^k*m_odd, it might make sense to compute |
108 | | * a^p mod m_odd and a^p mod 2^k separately (with Montgomery |
109 | | * exponentiation for the odd part), using appropriate exponent |
110 | | * reductions, and combine the results using the CRT. |
111 | | * |
112 | | * For now, we use Montgomery only if the modulus is odd; otherwise, |
113 | | * exponentiation using the reciprocal-based quick remaindering |
114 | | * algorithm is used. |
115 | | * |
116 | | * (Timing obtained with expspeed.c [computations a^p mod m |
117 | | * where a, p, m are of the same length: 256, 512, 1024, 2048, |
118 | | * 4096, 8192 bits], compared to the running time of the |
119 | | * standard algorithm: |
120 | | * |
121 | | * BN_mod_exp_mont 33 .. 40 % [AMD K6-2, Linux, debug configuration] |
122 | | * 55 .. 77 % [UltraSparc processor, but |
123 | | * debug-solaris-sparcv8-gcc conf.] |
124 | | * |
125 | | * BN_mod_exp_recp 50 .. 70 % [AMD K6-2, Linux, debug configuration] |
126 | | * 62 .. 118 % [UltraSparc, debug-solaris-sparcv8-gcc] |
127 | | * |
128 | | * On the Sparc, BN_mod_exp_recp was faster than BN_mod_exp_mont |
129 | | * at 2048 and more bits, but at 512 and 1024 bits, it was |
130 | | * slower even than the standard algorithm! |
131 | | * |
132 | | * "Real" timings [linux-elf, solaris-sparcv9-gcc configurations] |
133 | | * should be obtained when the new Montgomery reduction code |
134 | | * has been integrated into OpenSSL.) |
135 | | */ |
136 | | |
137 | 168k | #define MONT_MUL_MOD |
138 | 168k | #define MONT_EXP_WORD |
139 | 168k | #define RECP_MUL_MOD |
140 | | |
141 | 168k | #ifdef MONT_MUL_MOD |
142 | 168k | if (BN_is_odd(m)) { |
143 | 160k | # ifdef MONT_EXP_WORD |
144 | 160k | if (a->top == 1 && !a->neg |
145 | 160k | && (BN_get_flags(p, BN_FLG_CONSTTIME) == 0) |
146 | 160k | && (BN_get_flags(a, BN_FLG_CONSTTIME) == 0) |
147 | 160k | && (BN_get_flags(m, BN_FLG_CONSTTIME) == 0)) { |
148 | 51.5k | BN_ULONG A = a->d[0]; |
149 | 51.5k | ret = BN_mod_exp_mont_word(r, A, p, m, ctx, NULL); |
150 | 51.5k | } else |
151 | 108k | # endif |
152 | 108k | ret = BN_mod_exp_mont(r, a, p, m, ctx, NULL); |
153 | 160k | } else |
154 | 8.38k | #endif |
155 | 8.38k | #ifdef RECP_MUL_MOD |
156 | 8.38k | { |
157 | 8.38k | ret = BN_mod_exp_recp(r, a, p, m, ctx); |
158 | 8.38k | } |
159 | | #else |
160 | | { |
161 | | ret = BN_mod_exp_simple(r, a, p, m, ctx); |
162 | | } |
163 | | #endif |
164 | | |
165 | 168k | bn_check_top(r); |
166 | 168k | return ret; |
167 | 168k | } |
168 | | |
169 | | int BN_mod_exp_recp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, |
170 | | const BIGNUM *m, BN_CTX *ctx) |
171 | 8.38k | { |
172 | 8.38k | int i, j, bits, ret = 0, wstart, wend, window, wvalue; |
173 | 8.38k | int start = 1; |
174 | 8.38k | BIGNUM *aa; |
175 | | /* Table of variables obtained from 'ctx' */ |
176 | 8.38k | BIGNUM *val[TABLE_SIZE]; |
177 | 8.38k | BN_RECP_CTX recp; |
178 | | |
179 | 8.38k | if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0 |
180 | 8.38k | || BN_get_flags(a, BN_FLG_CONSTTIME) != 0 |
181 | 8.38k | || BN_get_flags(m, BN_FLG_CONSTTIME) != 0) { |
182 | | /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */ |
183 | 32 | ERR_raise(ERR_LIB_BN, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
184 | 32 | return 0; |
185 | 32 | } |
186 | | |
187 | 8.35k | bits = BN_num_bits(p); |
188 | 8.35k | if (bits == 0) { |
189 | | /* x**0 mod 1, or x**0 mod -1 is still zero. */ |
190 | 291 | if (BN_abs_is_word(m, 1)) { |
191 | 0 | ret = 1; |
192 | 0 | BN_zero(r); |
193 | 291 | } else { |
194 | 291 | ret = BN_one(r); |
195 | 291 | } |
196 | 291 | return ret; |
197 | 291 | } |
198 | | |
199 | 8.06k | BN_RECP_CTX_init(&recp); |
200 | | |
201 | 8.06k | BN_CTX_start(ctx); |
202 | 8.06k | aa = BN_CTX_get(ctx); |
203 | 8.06k | val[0] = BN_CTX_get(ctx); |
204 | 8.06k | if (val[0] == NULL) |
205 | 0 | goto err; |
206 | | |
207 | 8.06k | if (m->neg) { |
208 | | /* ignore sign of 'm' */ |
209 | 2.54k | if (!BN_copy(aa, m)) |
210 | 0 | goto err; |
211 | 2.54k | aa->neg = 0; |
212 | 2.54k | if (BN_RECP_CTX_set(&recp, aa, ctx) <= 0) |
213 | 0 | goto err; |
214 | 5.52k | } else { |
215 | 5.52k | if (BN_RECP_CTX_set(&recp, m, ctx) <= 0) |
216 | 0 | goto err; |
217 | 5.52k | } |
218 | | |
219 | 8.06k | if (!BN_nnmod(val[0], a, m, ctx)) |
220 | 0 | goto err; /* 1 */ |
221 | 8.06k | if (BN_is_zero(val[0])) { |
222 | 158 | BN_zero(r); |
223 | 158 | ret = 1; |
224 | 158 | goto err; |
225 | 158 | } |
226 | | |
227 | 7.90k | window = BN_window_bits_for_exponent_size(bits); |
228 | 7.90k | if (window > 1) { |
229 | 1.52k | if (!BN_mod_mul_reciprocal(aa, val[0], val[0], &recp, ctx)) |
230 | 0 | goto err; /* 2 */ |
231 | 1.52k | j = 1 << (window - 1); |
232 | 12.4k | for (i = 1; i < j; i++) { |
233 | 10.9k | if (((val[i] = BN_CTX_get(ctx)) == NULL) || |
234 | 10.9k | !BN_mod_mul_reciprocal(val[i], val[i - 1], aa, &recp, ctx)) |
235 | 0 | goto err; |
236 | 10.9k | } |
237 | 1.52k | } |
238 | | |
239 | 7.90k | start = 1; /* This is used to avoid multiplication etc |
240 | | * when there is only the value '1' in the |
241 | | * buffer. */ |
242 | 7.90k | wvalue = 0; /* The 'value' of the window */ |
243 | 7.90k | wstart = bits - 1; /* The top bit of the window */ |
244 | 7.90k | wend = 0; /* The bottom bit of the window */ |
245 | | |
246 | 7.90k | if (r == p) { |
247 | 0 | BIGNUM *p_dup = BN_CTX_get(ctx); |
248 | |
|
249 | 0 | if (p_dup == NULL || BN_copy(p_dup, p) == NULL) |
250 | 0 | goto err; |
251 | 0 | p = p_dup; |
252 | 0 | } |
253 | | |
254 | 7.90k | if (!BN_one(r)) |
255 | 0 | goto err; |
256 | | |
257 | 241k | for (;;) { |
258 | 241k | if (BN_is_bit_set(p, wstart) == 0) { |
259 | 160k | if (!start) |
260 | 160k | if (!BN_mod_mul_reciprocal(r, r, r, &recp, ctx)) |
261 | 0 | goto err; |
262 | 160k | if (wstart == 0) |
263 | 3.06k | break; |
264 | 157k | wstart--; |
265 | 157k | continue; |
266 | 160k | } |
267 | | /* |
268 | | * We now have wstart on a 'set' bit, we now need to work out how bit |
269 | | * a window to do. To do this we need to scan forward until the last |
270 | | * set bit before the end of the window |
271 | | */ |
272 | 80.6k | wvalue = 1; |
273 | 80.6k | wend = 0; |
274 | 218k | for (i = 1; i < window; i++) { |
275 | 138k | if (wstart - i < 0) |
276 | 680 | break; |
277 | 137k | if (BN_is_bit_set(p, wstart - i)) { |
278 | 85.3k | wvalue <<= (i - wend); |
279 | 85.3k | wvalue |= 1; |
280 | 85.3k | wend = i; |
281 | 85.3k | } |
282 | 137k | } |
283 | | |
284 | | /* wend is the size of the current window */ |
285 | 80.6k | j = wend + 1; |
286 | | /* add the 'bytes above' */ |
287 | 80.6k | if (!start) |
288 | 245k | for (i = 0; i < j; i++) { |
289 | 173k | if (!BN_mod_mul_reciprocal(r, r, r, &recp, ctx)) |
290 | 0 | goto err; |
291 | 173k | } |
292 | | |
293 | | /* wvalue will be an odd number < 2^window */ |
294 | 80.6k | if (!BN_mod_mul_reciprocal(r, r, val[wvalue >> 1], &recp, ctx)) |
295 | 0 | goto err; |
296 | | |
297 | | /* move the 'window' down further */ |
298 | 80.6k | wstart -= wend + 1; |
299 | 80.6k | wvalue = 0; |
300 | 80.6k | start = 0; |
301 | 80.6k | if (wstart < 0) |
302 | 4.84k | break; |
303 | 80.6k | } |
304 | 7.90k | ret = 1; |
305 | 8.06k | err: |
306 | 8.06k | BN_CTX_end(ctx); |
307 | 8.06k | BN_RECP_CTX_free(&recp); |
308 | 8.06k | bn_check_top(r); |
309 | 8.06k | return ret; |
310 | 7.90k | } |
311 | | |
312 | | int BN_mod_exp_mont(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p, |
313 | | const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont) |
314 | 214k | { |
315 | 214k | int i, j, bits, ret = 0, wstart, wend, window, wvalue; |
316 | 214k | int start = 1; |
317 | 214k | BIGNUM *d, *r; |
318 | 214k | const BIGNUM *aa; |
319 | | /* Table of variables obtained from 'ctx' */ |
320 | 214k | BIGNUM *val[TABLE_SIZE]; |
321 | 214k | BN_MONT_CTX *mont = NULL; |
322 | | |
323 | 214k | bn_check_top(a); |
324 | 214k | bn_check_top(p); |
325 | 214k | bn_check_top(m); |
326 | | |
327 | 214k | if (!BN_is_odd(m)) { |
328 | 0 | ERR_raise(ERR_LIB_BN, BN_R_CALLED_WITH_EVEN_MODULUS); |
329 | 0 | return 0; |
330 | 0 | } |
331 | | |
332 | 214k | if (m->top <= BN_CONSTTIME_SIZE_LIMIT |
333 | 214k | && (BN_get_flags(p, BN_FLG_CONSTTIME) != 0 |
334 | 214k | || BN_get_flags(a, BN_FLG_CONSTTIME) != 0 |
335 | 214k | || BN_get_flags(m, BN_FLG_CONSTTIME) != 0)) { |
336 | 31.5k | return BN_mod_exp_mont_consttime(rr, a, p, m, ctx, in_mont); |
337 | 31.5k | } |
338 | | |
339 | 183k | bits = BN_num_bits(p); |
340 | 183k | if (bits == 0) { |
341 | | /* x**0 mod 1, or x**0 mod -1 is still zero. */ |
342 | 648 | if (BN_abs_is_word(m, 1)) { |
343 | 12 | ret = 1; |
344 | 12 | BN_zero(rr); |
345 | 636 | } else { |
346 | 636 | ret = BN_one(rr); |
347 | 636 | } |
348 | 648 | return ret; |
349 | 648 | } |
350 | | |
351 | 182k | BN_CTX_start(ctx); |
352 | 182k | d = BN_CTX_get(ctx); |
353 | 182k | r = BN_CTX_get(ctx); |
354 | 182k | val[0] = BN_CTX_get(ctx); |
355 | 182k | if (val[0] == NULL) |
356 | 0 | goto err; |
357 | | |
358 | | /* |
359 | | * If this is not done, things will break in the montgomery part |
360 | | */ |
361 | | |
362 | 182k | if (in_mont != NULL) |
363 | 76.7k | mont = in_mont; |
364 | 105k | else { |
365 | 105k | if ((mont = BN_MONT_CTX_new()) == NULL) |
366 | 0 | goto err; |
367 | 105k | if (!BN_MONT_CTX_set(mont, m, ctx)) |
368 | 0 | goto err; |
369 | 105k | } |
370 | | |
371 | 182k | if (a->neg || BN_ucmp(a, m) >= 0) { |
372 | 735 | if (!BN_nnmod(val[0], a, m, ctx)) |
373 | 0 | goto err; |
374 | 735 | aa = val[0]; |
375 | 735 | } else |
376 | 181k | aa = a; |
377 | 182k | if (!bn_to_mont_fixed_top(val[0], aa, mont, ctx)) |
378 | 0 | goto err; /* 1 */ |
379 | | |
380 | 182k | window = BN_window_bits_for_exponent_size(bits); |
381 | 182k | if (window > 1) { |
382 | 143k | if (!bn_mul_mont_fixed_top(d, val[0], val[0], mont, ctx)) |
383 | 0 | goto err; /* 2 */ |
384 | 143k | j = 1 << (window - 1); |
385 | 1.33M | for (i = 1; i < j; i++) { |
386 | 1.18M | if (((val[i] = BN_CTX_get(ctx)) == NULL) || |
387 | 1.18M | !bn_mul_mont_fixed_top(val[i], val[i - 1], d, mont, ctx)) |
388 | 0 | goto err; |
389 | 1.18M | } |
390 | 143k | } |
391 | | |
392 | 182k | start = 1; /* This is used to avoid multiplication etc |
393 | | * when there is only the value '1' in the |
394 | | * buffer. */ |
395 | 182k | wvalue = 0; /* The 'value' of the window */ |
396 | 182k | wstart = bits - 1; /* The top bit of the window */ |
397 | 182k | wend = 0; /* The bottom bit of the window */ |
398 | | |
399 | 182k | #if 1 /* by Shay Gueron's suggestion */ |
400 | 182k | j = m->top; /* borrow j */ |
401 | 182k | if (m->d[j - 1] & (((BN_ULONG)1) << (BN_BITS2 - 1))) { |
402 | 59.7k | if (bn_wexpand(r, j) == NULL) |
403 | 0 | goto err; |
404 | | /* 2^(top*BN_BITS2) - m */ |
405 | 59.7k | r->d[0] = (0 - m->d[0]) & BN_MASK2; |
406 | 617k | for (i = 1; i < j; i++) |
407 | 557k | r->d[i] = (~m->d[i]) & BN_MASK2; |
408 | 59.7k | r->top = j; |
409 | 59.7k | r->flags |= BN_FLG_FIXED_TOP; |
410 | 59.7k | } else |
411 | 122k | #endif |
412 | 122k | if (!bn_to_mont_fixed_top(r, BN_value_one(), mont, ctx)) |
413 | 0 | goto err; |
414 | 18.4M | for (;;) { |
415 | 18.4M | if (BN_is_bit_set(p, wstart) == 0) { |
416 | 13.7M | if (!start) { |
417 | 13.7M | if (!bn_mul_mont_fixed_top(r, r, r, mont, ctx)) |
418 | 0 | goto err; |
419 | 13.7M | } |
420 | 13.7M | if (wstart == 0) |
421 | 62.7k | break; |
422 | 13.7M | wstart--; |
423 | 13.7M | continue; |
424 | 13.7M | } |
425 | | /* |
426 | | * We now have wstart on a 'set' bit, we now need to work out how bit |
427 | | * a window to do. To do this we need to scan forward until the last |
428 | | * set bit before the end of the window |
429 | | */ |
430 | 4.67M | wvalue = 1; |
431 | 4.67M | wend = 0; |
432 | 19.5M | for (i = 1; i < window; i++) { |
433 | 14.9M | if (wstart - i < 0) |
434 | 77.8k | break; |
435 | 14.8M | if (BN_is_bit_set(p, wstart - i)) { |
436 | 12.3M | wvalue <<= (i - wend); |
437 | 12.3M | wvalue |= 1; |
438 | 12.3M | wend = i; |
439 | 12.3M | } |
440 | 14.8M | } |
441 | | |
442 | | /* wend is the size of the current window */ |
443 | 4.67M | j = wend + 1; |
444 | | /* add the 'bytes above' */ |
445 | 4.67M | if (!start) |
446 | 21.8M | for (i = 0; i < j; i++) { |
447 | 17.3M | if (!bn_mul_mont_fixed_top(r, r, r, mont, ctx)) |
448 | 0 | goto err; |
449 | 17.3M | } |
450 | | |
451 | | /* wvalue will be an odd number < 2^window */ |
452 | 4.67M | if (!bn_mul_mont_fixed_top(r, r, val[wvalue >> 1], mont, ctx)) |
453 | 0 | goto err; |
454 | | |
455 | | /* move the 'window' down further */ |
456 | 4.67M | wstart -= wend + 1; |
457 | 4.67M | wvalue = 0; |
458 | 4.67M | start = 0; |
459 | 4.67M | if (wstart < 0) |
460 | 119k | break; |
461 | 4.67M | } |
462 | | /* |
463 | | * Done with zero-padded intermediate BIGNUMs. Final BN_from_montgomery |
464 | | * removes padding [if any] and makes return value suitable for public |
465 | | * API consumer. |
466 | | */ |
467 | | #if defined(SPARC_T4_MONT) |
468 | | if (OPENSSL_sparcv9cap_P[0] & (SPARCV9_VIS3 | SPARCV9_PREFER_FPU)) { |
469 | | j = mont->N.top; /* borrow j */ |
470 | | val[0]->d[0] = 1; /* borrow val[0] */ |
471 | | for (i = 1; i < j; i++) |
472 | | val[0]->d[i] = 0; |
473 | | val[0]->top = j; |
474 | | if (!BN_mod_mul_montgomery(rr, r, val[0], mont, ctx)) |
475 | | goto err; |
476 | | } else |
477 | | #endif |
478 | 182k | if (!BN_from_montgomery(rr, r, mont, ctx)) |
479 | 0 | goto err; |
480 | 182k | ret = 1; |
481 | 182k | err: |
482 | 182k | if (in_mont == NULL) |
483 | 105k | BN_MONT_CTX_free(mont); |
484 | 182k | BN_CTX_end(ctx); |
485 | 182k | bn_check_top(rr); |
486 | 182k | return ret; |
487 | 182k | } |
488 | | |
489 | | static BN_ULONG bn_get_bits(const BIGNUM *a, int bitpos) |
490 | 519k | { |
491 | 519k | BN_ULONG ret = 0; |
492 | 519k | int wordpos; |
493 | | |
494 | 519k | wordpos = bitpos / BN_BITS2; |
495 | 519k | bitpos %= BN_BITS2; |
496 | 519k | if (wordpos >= 0 && wordpos < a->top) { |
497 | 519k | ret = a->d[wordpos] & BN_MASK2; |
498 | 519k | if (bitpos) { |
499 | 495k | ret >>= bitpos; |
500 | 495k | if (++wordpos < a->top) |
501 | 64.7k | ret |= a->d[wordpos] << (BN_BITS2 - bitpos); |
502 | 495k | } |
503 | 519k | } |
504 | | |
505 | 519k | return ret & BN_MASK2; |
506 | 519k | } |
507 | | |
508 | | /* |
509 | | * BN_mod_exp_mont_consttime() stores the precomputed powers in a specific |
510 | | * layout so that accessing any of these table values shows the same access |
511 | | * pattern as far as cache lines are concerned. The following functions are |
512 | | * used to transfer a BIGNUM from/to that table. |
513 | | */ |
514 | | |
515 | | static int MOD_EXP_CTIME_COPY_TO_PREBUF(const BIGNUM *b, int top, |
516 | | unsigned char *buf, int idx, |
517 | | int window) |
518 | 176k | { |
519 | 176k | int i, j; |
520 | 176k | int width = 1 << window; |
521 | 176k | BN_ULONG *table = (BN_ULONG *)buf; |
522 | | |
523 | 176k | if (top > b->top) |
524 | 0 | top = b->top; /* this works because 'buf' is explicitly |
525 | | * zeroed */ |
526 | 5.61M | for (i = 0, j = idx; i < top; i++, j += width) { |
527 | 5.43M | table[j] = b->d[i]; |
528 | 5.43M | } |
529 | | |
530 | 176k | return 1; |
531 | 176k | } |
532 | | |
533 | | static int MOD_EXP_CTIME_COPY_FROM_PREBUF(BIGNUM *b, int top, |
534 | | unsigned char *buf, int idx, |
535 | | int window) |
536 | 490k | { |
537 | 490k | int i, j; |
538 | 490k | int width = 1 << window; |
539 | | /* |
540 | | * We declare table 'volatile' in order to discourage compiler |
541 | | * from reordering loads from the table. Concern is that if |
542 | | * reordered in specific manner loads might give away the |
543 | | * information we are trying to conceal. Some would argue that |
544 | | * compiler can reorder them anyway, but it can as well be |
545 | | * argued that doing so would be violation of standard... |
546 | | */ |
547 | 490k | volatile BN_ULONG *table = (volatile BN_ULONG *)buf; |
548 | | |
549 | 490k | if (bn_wexpand(b, top) == NULL) |
550 | 0 | return 0; |
551 | | |
552 | 490k | if (window <= 3) { |
553 | 8.43M | for (i = 0; i < top; i++, table += width) { |
554 | 8.05M | BN_ULONG acc = 0; |
555 | | |
556 | 72.4M | for (j = 0; j < width; j++) { |
557 | 64.4M | acc |= table[j] & |
558 | 64.4M | ((BN_ULONG)0 - (constant_time_eq_int(j,idx)&1)); |
559 | 64.4M | } |
560 | | |
561 | 8.05M | b->d[i] = acc; |
562 | 8.05M | } |
563 | 383k | } else { |
564 | 106k | int xstride = 1 << (window - 2); |
565 | 106k | BN_ULONG y0, y1, y2, y3; |
566 | | |
567 | 106k | i = idx >> (window - 2); /* equivalent of idx / xstride */ |
568 | 106k | idx &= xstride - 1; /* equivalent of idx % xstride */ |
569 | | |
570 | 106k | y0 = (BN_ULONG)0 - (constant_time_eq_int(i,0)&1); |
571 | 106k | y1 = (BN_ULONG)0 - (constant_time_eq_int(i,1)&1); |
572 | 106k | y2 = (BN_ULONG)0 - (constant_time_eq_int(i,2)&1); |
573 | 106k | y3 = (BN_ULONG)0 - (constant_time_eq_int(i,3)&1); |
574 | | |
575 | 7.43M | for (i = 0; i < top; i++, table += width) { |
576 | 7.33M | BN_ULONG acc = 0; |
577 | | |
578 | 36.6M | for (j = 0; j < xstride; j++) { |
579 | 29.3M | acc |= ( (table[j + 0 * xstride] & y0) | |
580 | 29.3M | (table[j + 1 * xstride] & y1) | |
581 | 29.3M | (table[j + 2 * xstride] & y2) | |
582 | 29.3M | (table[j + 3 * xstride] & y3) ) |
583 | 29.3M | & ((BN_ULONG)0 - (constant_time_eq_int(j,idx)&1)); |
584 | 29.3M | } |
585 | | |
586 | 7.33M | b->d[i] = acc; |
587 | 7.33M | } |
588 | 106k | } |
589 | | |
590 | 490k | b->top = top; |
591 | 490k | b->flags |= BN_FLG_FIXED_TOP; |
592 | 490k | return 1; |
593 | 490k | } |
594 | | |
595 | | /* |
596 | | * Given a pointer value, compute the next address that is a cache line |
597 | | * multiple. |
598 | | */ |
599 | | #define MOD_EXP_CTIME_ALIGN(x_) \ |
600 | 49.3k | ((unsigned char*)(x_) + (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - (((size_t)(x_)) & (MOD_EXP_CTIME_MIN_CACHE_LINE_MASK)))) |
601 | | |
602 | | /* |
603 | | * This variant of BN_mod_exp_mont() uses fixed windows and the special |
604 | | * precomputation memory layout to limit data-dependency to a minimum to |
605 | | * protect secret exponents (cf. the hyper-threading timing attacks pointed |
606 | | * out by Colin Percival, |
607 | | * http://www.daemonology.net/hyperthreading-considered-harmful/) |
608 | | */ |
609 | | int bn_mod_exp_mont_fixed_top(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p, |
610 | | const BIGNUM *m, BN_CTX *ctx, |
611 | | BN_MONT_CTX *in_mont) |
612 | 49.7k | { |
613 | 49.7k | int i, bits, ret = 0, window, wvalue, wmask, window0; |
614 | 49.7k | int top; |
615 | 49.7k | BN_MONT_CTX *mont = NULL; |
616 | | |
617 | 49.7k | int numPowers; |
618 | 49.7k | unsigned char *powerbufFree = NULL; |
619 | 49.7k | int powerbufLen = 0; |
620 | 49.7k | unsigned char *powerbuf = NULL; |
621 | 49.7k | BIGNUM tmp, am; |
622 | | #if defined(SPARC_T4_MONT) |
623 | | unsigned int t4 = 0; |
624 | | #endif |
625 | | |
626 | 49.7k | if (!BN_is_odd(m)) { |
627 | 0 | ERR_raise(ERR_LIB_BN, BN_R_CALLED_WITH_EVEN_MODULUS); |
628 | 0 | return 0; |
629 | 0 | } |
630 | | |
631 | 49.7k | top = m->top; |
632 | | |
633 | 49.7k | if (top > BN_CONSTTIME_SIZE_LIMIT) { |
634 | | /* Prevent overflowing the powerbufLen computation below */ |
635 | 0 | return BN_mod_exp_mont(rr, a, p, m, ctx, in_mont); |
636 | 0 | } |
637 | | |
638 | | /* |
639 | | * Use all bits stored in |p|, rather than |BN_num_bits|, so we do not leak |
640 | | * whether the top bits are zero. |
641 | | */ |
642 | 49.7k | bits = p->top * BN_BITS2; |
643 | 49.7k | if (bits == 0) { |
644 | | /* x**0 mod 1, or x**0 mod -1 is still zero. */ |
645 | 30 | if (BN_abs_is_word(m, 1)) { |
646 | 6 | ret = 1; |
647 | 6 | BN_zero(rr); |
648 | 24 | } else { |
649 | 24 | ret = BN_one(rr); |
650 | 24 | } |
651 | 30 | return ret; |
652 | 30 | } |
653 | | |
654 | 49.7k | BN_CTX_start(ctx); |
655 | | |
656 | | /* |
657 | | * Allocate a montgomery context if it was not supplied by the caller. If |
658 | | * this is not done, things will break in the montgomery part. |
659 | | */ |
660 | 49.7k | if (in_mont != NULL) |
661 | 47.4k | mont = in_mont; |
662 | 2.24k | else { |
663 | 2.24k | if ((mont = BN_MONT_CTX_new()) == NULL) |
664 | 0 | goto err; |
665 | 2.24k | if (!BN_MONT_CTX_set(mont, m, ctx)) |
666 | 0 | goto err; |
667 | 2.24k | } |
668 | | |
669 | 49.7k | if (a->neg || BN_ucmp(a, m) >= 0) { |
670 | 336 | BIGNUM *reduced = BN_CTX_get(ctx); |
671 | 336 | if (reduced == NULL |
672 | 336 | || !BN_nnmod(reduced, a, m, ctx)) { |
673 | 0 | goto err; |
674 | 0 | } |
675 | 336 | a = reduced; |
676 | 336 | } |
677 | | |
678 | 49.7k | #ifdef RSAZ_ENABLED |
679 | | /* |
680 | | * If the size of the operands allow it, perform the optimized |
681 | | * RSAZ exponentiation. For further information see |
682 | | * crypto/bn/rsaz_exp.c and accompanying assembly modules. |
683 | | */ |
684 | 49.7k | if ((16 == a->top) && (16 == p->top) && (BN_num_bits(m) == 1024) |
685 | 49.7k | && rsaz_avx2_eligible()) { |
686 | 0 | if (NULL == bn_wexpand(rr, 16)) |
687 | 0 | goto err; |
688 | 0 | RSAZ_1024_mod_exp_avx2(rr->d, a->d, p->d, m->d, mont->RR.d, |
689 | 0 | mont->n0[0]); |
690 | 0 | rr->top = 16; |
691 | 0 | rr->neg = 0; |
692 | 0 | bn_correct_top(rr); |
693 | 0 | ret = 1; |
694 | 0 | goto err; |
695 | 49.7k | } else if ((8 == a->top) && (8 == p->top) && (BN_num_bits(m) == 512)) { |
696 | 395 | if (NULL == bn_wexpand(rr, 8)) |
697 | 0 | goto err; |
698 | 395 | RSAZ_512_mod_exp(rr->d, a->d, p->d, m->d, mont->n0[0], mont->RR.d); |
699 | 395 | rr->top = 8; |
700 | 395 | rr->neg = 0; |
701 | 395 | bn_correct_top(rr); |
702 | 395 | ret = 1; |
703 | 395 | goto err; |
704 | 395 | } |
705 | 49.3k | #endif |
706 | | |
707 | | /* Get the window size to use with size of p. */ |
708 | 49.3k | window = BN_window_bits_for_ctime_exponent_size(bits); |
709 | | #if defined(SPARC_T4_MONT) |
710 | | if (window >= 5 && (top & 15) == 0 && top <= 64 && |
711 | | (OPENSSL_sparcv9cap_P[1] & (CFR_MONTMUL | CFR_MONTSQR)) == |
712 | | (CFR_MONTMUL | CFR_MONTSQR) && (t4 = OPENSSL_sparcv9cap_P[0])) |
713 | | window = 5; |
714 | | else |
715 | | #endif |
716 | 49.3k | #if defined(OPENSSL_BN_ASM_MONT5) |
717 | 49.3k | if (window >= 5 && top <= BN_SOFT_LIMIT) { |
718 | 29.5k | window = 5; /* ~5% improvement for RSA2048 sign, and even |
719 | | * for RSA4096 */ |
720 | | /* reserve space for mont->N.d[] copy */ |
721 | 29.5k | powerbufLen += top * sizeof(mont->N.d[0]); |
722 | 29.5k | } |
723 | 49.3k | #endif |
724 | 49.3k | (void)0; |
725 | | |
726 | | /* |
727 | | * Allocate a buffer large enough to hold all of the pre-computed powers |
728 | | * of am, am itself and tmp. |
729 | | */ |
730 | 49.3k | numPowers = 1 << window; |
731 | 49.3k | powerbufLen += sizeof(m->d[0]) * (top * numPowers + |
732 | 49.3k | ((2 * top) > |
733 | 49.3k | numPowers ? (2 * top) : numPowers)); |
734 | 49.3k | #ifdef alloca |
735 | 49.3k | if (powerbufLen < 3072) |
736 | 21.6k | powerbufFree = |
737 | 21.6k | alloca(powerbufLen + MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH); |
738 | 27.6k | else |
739 | 27.6k | #endif |
740 | 27.6k | if ((powerbufFree = |
741 | 27.6k | OPENSSL_malloc(powerbufLen + MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH)) |
742 | 27.6k | == NULL) |
743 | 0 | goto err; |
744 | | |
745 | 49.3k | powerbuf = MOD_EXP_CTIME_ALIGN(powerbufFree); |
746 | 49.3k | memset(powerbuf, 0, powerbufLen); |
747 | | |
748 | 49.3k | #ifdef alloca |
749 | 49.3k | if (powerbufLen < 3072) |
750 | 21.6k | powerbufFree = NULL; |
751 | 49.3k | #endif |
752 | | |
753 | | /* lay down tmp and am right after powers table */ |
754 | 49.3k | tmp.d = (BN_ULONG *)(powerbuf + sizeof(m->d[0]) * top * numPowers); |
755 | 49.3k | am.d = tmp.d + top; |
756 | 49.3k | tmp.top = am.top = 0; |
757 | 49.3k | tmp.dmax = am.dmax = top; |
758 | 49.3k | tmp.neg = am.neg = 0; |
759 | 49.3k | tmp.flags = am.flags = BN_FLG_STATIC_DATA; |
760 | | |
761 | | /* prepare a^0 in Montgomery domain */ |
762 | 49.3k | #if 1 /* by Shay Gueron's suggestion */ |
763 | 49.3k | if (m->d[top - 1] & (((BN_ULONG)1) << (BN_BITS2 - 1))) { |
764 | | /* 2^(top*BN_BITS2) - m */ |
765 | 32.9k | tmp.d[0] = (0 - m->d[0]) & BN_MASK2; |
766 | 777k | for (i = 1; i < top; i++) |
767 | 744k | tmp.d[i] = (~m->d[i]) & BN_MASK2; |
768 | 32.9k | tmp.top = top; |
769 | 32.9k | } else |
770 | 16.3k | #endif |
771 | 16.3k | if (!bn_to_mont_fixed_top(&tmp, BN_value_one(), mont, ctx)) |
772 | 0 | goto err; |
773 | | |
774 | | /* prepare a^1 in Montgomery domain */ |
775 | 49.3k | if (!bn_to_mont_fixed_top(&am, a, mont, ctx)) |
776 | 0 | goto err; |
777 | | |
778 | 49.3k | if (top > BN_SOFT_LIMIT) |
779 | 115 | goto fallback; |
780 | | |
781 | | #if defined(SPARC_T4_MONT) |
782 | | if (t4) { |
783 | | typedef int (*bn_pwr5_mont_f) (BN_ULONG *tp, const BN_ULONG *np, |
784 | | const BN_ULONG *n0, const void *table, |
785 | | int power, int bits); |
786 | | int bn_pwr5_mont_t4_8(BN_ULONG *tp, const BN_ULONG *np, |
787 | | const BN_ULONG *n0, const void *table, |
788 | | int power, int bits); |
789 | | int bn_pwr5_mont_t4_16(BN_ULONG *tp, const BN_ULONG *np, |
790 | | const BN_ULONG *n0, const void *table, |
791 | | int power, int bits); |
792 | | int bn_pwr5_mont_t4_24(BN_ULONG *tp, const BN_ULONG *np, |
793 | | const BN_ULONG *n0, const void *table, |
794 | | int power, int bits); |
795 | | int bn_pwr5_mont_t4_32(BN_ULONG *tp, const BN_ULONG *np, |
796 | | const BN_ULONG *n0, const void *table, |
797 | | int power, int bits); |
798 | | static const bn_pwr5_mont_f pwr5_funcs[4] = { |
799 | | bn_pwr5_mont_t4_8, bn_pwr5_mont_t4_16, |
800 | | bn_pwr5_mont_t4_24, bn_pwr5_mont_t4_32 |
801 | | }; |
802 | | bn_pwr5_mont_f pwr5_worker = pwr5_funcs[top / 16 - 1]; |
803 | | |
804 | | typedef int (*bn_mul_mont_f) (BN_ULONG *rp, const BN_ULONG *ap, |
805 | | const void *bp, const BN_ULONG *np, |
806 | | const BN_ULONG *n0); |
807 | | int bn_mul_mont_t4_8(BN_ULONG *rp, const BN_ULONG *ap, const void *bp, |
808 | | const BN_ULONG *np, const BN_ULONG *n0); |
809 | | int bn_mul_mont_t4_16(BN_ULONG *rp, const BN_ULONG *ap, |
810 | | const void *bp, const BN_ULONG *np, |
811 | | const BN_ULONG *n0); |
812 | | int bn_mul_mont_t4_24(BN_ULONG *rp, const BN_ULONG *ap, |
813 | | const void *bp, const BN_ULONG *np, |
814 | | const BN_ULONG *n0); |
815 | | int bn_mul_mont_t4_32(BN_ULONG *rp, const BN_ULONG *ap, |
816 | | const void *bp, const BN_ULONG *np, |
817 | | const BN_ULONG *n0); |
818 | | static const bn_mul_mont_f mul_funcs[4] = { |
819 | | bn_mul_mont_t4_8, bn_mul_mont_t4_16, |
820 | | bn_mul_mont_t4_24, bn_mul_mont_t4_32 |
821 | | }; |
822 | | bn_mul_mont_f mul_worker = mul_funcs[top / 16 - 1]; |
823 | | |
824 | | void bn_mul_mont_vis3(BN_ULONG *rp, const BN_ULONG *ap, |
825 | | const void *bp, const BN_ULONG *np, |
826 | | const BN_ULONG *n0, int num); |
827 | | void bn_mul_mont_t4(BN_ULONG *rp, const BN_ULONG *ap, |
828 | | const void *bp, const BN_ULONG *np, |
829 | | const BN_ULONG *n0, int num); |
830 | | void bn_mul_mont_gather5_t4(BN_ULONG *rp, const BN_ULONG *ap, |
831 | | const void *table, const BN_ULONG *np, |
832 | | const BN_ULONG *n0, int num, int power); |
833 | | void bn_flip_n_scatter5_t4(const BN_ULONG *inp, size_t num, |
834 | | void *table, size_t power); |
835 | | void bn_gather5_t4(BN_ULONG *out, size_t num, |
836 | | void *table, size_t power); |
837 | | void bn_flip_t4(BN_ULONG *dst, BN_ULONG *src, size_t num); |
838 | | |
839 | | BN_ULONG *np = mont->N.d, *n0 = mont->n0; |
840 | | int stride = 5 * (6 - (top / 16 - 1)); /* multiple of 5, but less |
841 | | * than 32 */ |
842 | | |
843 | | /* |
844 | | * BN_to_montgomery can contaminate words above .top [in |
845 | | * BN_DEBUG build... |
846 | | */ |
847 | | for (i = am.top; i < top; i++) |
848 | | am.d[i] = 0; |
849 | | for (i = tmp.top; i < top; i++) |
850 | | tmp.d[i] = 0; |
851 | | |
852 | | bn_flip_n_scatter5_t4(tmp.d, top, powerbuf, 0); |
853 | | bn_flip_n_scatter5_t4(am.d, top, powerbuf, 1); |
854 | | if (!(*mul_worker) (tmp.d, am.d, am.d, np, n0) && |
855 | | !(*mul_worker) (tmp.d, am.d, am.d, np, n0)) |
856 | | bn_mul_mont_vis3(tmp.d, am.d, am.d, np, n0, top); |
857 | | bn_flip_n_scatter5_t4(tmp.d, top, powerbuf, 2); |
858 | | |
859 | | for (i = 3; i < 32; i++) { |
860 | | /* Calculate a^i = a^(i-1) * a */ |
861 | | if (!(*mul_worker) (tmp.d, tmp.d, am.d, np, n0) && |
862 | | !(*mul_worker) (tmp.d, tmp.d, am.d, np, n0)) |
863 | | bn_mul_mont_vis3(tmp.d, tmp.d, am.d, np, n0, top); |
864 | | bn_flip_n_scatter5_t4(tmp.d, top, powerbuf, i); |
865 | | } |
866 | | |
867 | | /* switch to 64-bit domain */ |
868 | | np = alloca(top * sizeof(BN_ULONG)); |
869 | | top /= 2; |
870 | | bn_flip_t4(np, mont->N.d, top); |
871 | | |
872 | | /* |
873 | | * The exponent may not have a whole number of fixed-size windows. |
874 | | * To simplify the main loop, the initial window has between 1 and |
875 | | * full-window-size bits such that what remains is always a whole |
876 | | * number of windows |
877 | | */ |
878 | | window0 = (bits - 1) % 5 + 1; |
879 | | wmask = (1 << window0) - 1; |
880 | | bits -= window0; |
881 | | wvalue = bn_get_bits(p, bits) & wmask; |
882 | | bn_gather5_t4(tmp.d, top, powerbuf, wvalue); |
883 | | |
884 | | /* |
885 | | * Scan the exponent one window at a time starting from the most |
886 | | * significant bits. |
887 | | */ |
888 | | while (bits > 0) { |
889 | | if (bits < stride) |
890 | | stride = bits; |
891 | | bits -= stride; |
892 | | wvalue = bn_get_bits(p, bits); |
893 | | |
894 | | if ((*pwr5_worker) (tmp.d, np, n0, powerbuf, wvalue, stride)) |
895 | | continue; |
896 | | /* retry once and fall back */ |
897 | | if ((*pwr5_worker) (tmp.d, np, n0, powerbuf, wvalue, stride)) |
898 | | continue; |
899 | | |
900 | | bits += stride - 5; |
901 | | wvalue >>= stride - 5; |
902 | | wvalue &= 31; |
903 | | bn_mul_mont_t4(tmp.d, tmp.d, tmp.d, np, n0, top); |
904 | | bn_mul_mont_t4(tmp.d, tmp.d, tmp.d, np, n0, top); |
905 | | bn_mul_mont_t4(tmp.d, tmp.d, tmp.d, np, n0, top); |
906 | | bn_mul_mont_t4(tmp.d, tmp.d, tmp.d, np, n0, top); |
907 | | bn_mul_mont_t4(tmp.d, tmp.d, tmp.d, np, n0, top); |
908 | | bn_mul_mont_gather5_t4(tmp.d, tmp.d, powerbuf, np, n0, top, |
909 | | wvalue); |
910 | | } |
911 | | |
912 | | bn_flip_t4(tmp.d, tmp.d, top); |
913 | | top *= 2; |
914 | | /* back to 32-bit domain */ |
915 | | tmp.top = top; |
916 | | bn_correct_top(&tmp); |
917 | | OPENSSL_cleanse(np, top * sizeof(BN_ULONG)); |
918 | | } else |
919 | | #endif |
920 | 49.2k | #if defined(OPENSSL_BN_ASM_MONT5) |
921 | 49.2k | if (window == 5 && top > 1) { |
922 | | /* |
923 | | * This optimization uses ideas from https://eprint.iacr.org/2011/239, |
924 | | * specifically optimization of cache-timing attack countermeasures, |
925 | | * pre-computation optimization, and Almost Montgomery Multiplication. |
926 | | * |
927 | | * The paper discusses a 4-bit window to optimize 512-bit modular |
928 | | * exponentiation, used in RSA-1024 with CRT, but RSA-1024 is no longer |
929 | | * important. |
930 | | * |
931 | | * |bn_mul_mont_gather5| and |bn_power5| implement the "almost" |
932 | | * reduction variant, so the values here may not be fully reduced. |
933 | | * They are bounded by R (i.e. they fit in |top| words), not |m|. |
934 | | * Additionally, we pass these "almost" reduced inputs into |
935 | | * |bn_mul_mont|, which implements the normal reduction variant. |
936 | | * Given those inputs, |bn_mul_mont| may not give reduced |
937 | | * output, but it will still produce "almost" reduced output. |
938 | | */ |
939 | 29.5k | void bn_mul_mont_gather5(BN_ULONG *rp, const BN_ULONG *ap, |
940 | 29.5k | const void *table, const BN_ULONG *np, |
941 | 29.5k | const BN_ULONG *n0, int num, int power); |
942 | 29.5k | void bn_scatter5(const BN_ULONG *inp, size_t num, |
943 | 29.5k | void *table, size_t power); |
944 | 29.5k | void bn_gather5(BN_ULONG *out, size_t num, void *table, size_t power); |
945 | 29.5k | void bn_power5(BN_ULONG *rp, const BN_ULONG *ap, |
946 | 29.5k | const void *table, const BN_ULONG *np, |
947 | 29.5k | const BN_ULONG *n0, int num, int power); |
948 | 29.5k | int bn_get_bits5(const BN_ULONG *ap, int off); |
949 | | |
950 | 29.5k | BN_ULONG *n0 = mont->n0, *np; |
951 | | |
952 | | /* |
953 | | * BN_to_montgomery can contaminate words above .top [in |
954 | | * BN_DEBUG build... |
955 | | */ |
956 | 29.5k | for (i = am.top; i < top; i++) |
957 | 0 | am.d[i] = 0; |
958 | 29.5k | for (i = tmp.top; i < top; i++) |
959 | 0 | tmp.d[i] = 0; |
960 | | |
961 | | /* |
962 | | * copy mont->N.d[] to improve cache locality |
963 | | */ |
964 | 635k | for (np = am.d + top, i = 0; i < top; i++) |
965 | 605k | np[i] = mont->N.d[i]; |
966 | | |
967 | 29.5k | bn_scatter5(tmp.d, top, powerbuf, 0); |
968 | 29.5k | bn_scatter5(am.d, am.top, powerbuf, 1); |
969 | 29.5k | bn_mul_mont(tmp.d, am.d, am.d, np, n0, top); |
970 | 29.5k | bn_scatter5(tmp.d, top, powerbuf, 2); |
971 | | |
972 | | # if 0 |
973 | | for (i = 3; i < 32; i++) { |
974 | | /* Calculate a^i = a^(i-1) * a */ |
975 | | bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, n0, top, i - 1); |
976 | | bn_scatter5(tmp.d, top, powerbuf, i); |
977 | | } |
978 | | # else |
979 | | /* same as above, but uses squaring for 1/2 of operations */ |
980 | 118k | for (i = 4; i < 32; i *= 2) { |
981 | 88.6k | bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); |
982 | 88.6k | bn_scatter5(tmp.d, top, powerbuf, i); |
983 | 88.6k | } |
984 | 118k | for (i = 3; i < 8; i += 2) { |
985 | 88.6k | int j; |
986 | 88.6k | bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, n0, top, i - 1); |
987 | 88.6k | bn_scatter5(tmp.d, top, powerbuf, i); |
988 | 295k | for (j = 2 * i; j < 32; j *= 2) { |
989 | 206k | bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); |
990 | 206k | bn_scatter5(tmp.d, top, powerbuf, j); |
991 | 206k | } |
992 | 88.6k | } |
993 | 147k | for (; i < 16; i += 2) { |
994 | 118k | bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, n0, top, i - 1); |
995 | 118k | bn_scatter5(tmp.d, top, powerbuf, i); |
996 | 118k | bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); |
997 | 118k | bn_scatter5(tmp.d, top, powerbuf, 2 * i); |
998 | 118k | } |
999 | 265k | for (; i < 32; i += 2) { |
1000 | 236k | bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, n0, top, i - 1); |
1001 | 236k | bn_scatter5(tmp.d, top, powerbuf, i); |
1002 | 236k | } |
1003 | 29.5k | # endif |
1004 | | /* |
1005 | | * The exponent may not have a whole number of fixed-size windows. |
1006 | | * To simplify the main loop, the initial window has between 1 and |
1007 | | * full-window-size bits such that what remains is always a whole |
1008 | | * number of windows |
1009 | | */ |
1010 | 29.5k | window0 = (bits - 1) % 5 + 1; |
1011 | 29.5k | wmask = (1 << window0) - 1; |
1012 | 29.5k | bits -= window0; |
1013 | 29.5k | wvalue = bn_get_bits(p, bits) & wmask; |
1014 | 29.5k | bn_gather5(tmp.d, top, powerbuf, wvalue); |
1015 | | |
1016 | | /* |
1017 | | * Scan the exponent one window at a time starting from the most |
1018 | | * significant bits. |
1019 | | */ |
1020 | 29.5k | if (top & 7) { |
1021 | 1.59M | while (bits > 0) { |
1022 | 1.59M | bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); |
1023 | 1.59M | bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); |
1024 | 1.59M | bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); |
1025 | 1.59M | bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); |
1026 | 1.59M | bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); |
1027 | 1.59M | bn_mul_mont_gather5(tmp.d, tmp.d, powerbuf, np, n0, top, |
1028 | 1.59M | bn_get_bits5(p->d, bits -= 5)); |
1029 | 1.59M | } |
1030 | 22.6k | } else { |
1031 | 4.69M | while (bits > 0) { |
1032 | 4.67M | bn_power5(tmp.d, tmp.d, powerbuf, np, n0, top, |
1033 | 4.67M | bn_get_bits5(p->d, bits -= 5)); |
1034 | 4.67M | } |
1035 | 22.6k | } |
1036 | | |
1037 | 29.5k | tmp.top = top; |
1038 | | /* |
1039 | | * The result is now in |tmp| in Montgomery form, but it may not be |
1040 | | * fully reduced. This is within bounds for |BN_from_montgomery| |
1041 | | * (tmp < R <= m*R) so it will, when converting from Montgomery form, |
1042 | | * produce a fully reduced result. |
1043 | | * |
1044 | | * This differs from Figure 2 of the paper, which uses AMM(h, 1) to |
1045 | | * convert from Montgomery form with unreduced output, followed by an |
1046 | | * extra reduction step. In the paper's terminology, we replace |
1047 | | * steps 9 and 10 with MM(h, 1). |
1048 | | */ |
1049 | 29.5k | } else |
1050 | 19.6k | #endif |
1051 | 19.6k | { |
1052 | 19.7k | fallback: |
1053 | 19.7k | if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&tmp, top, powerbuf, 0, window)) |
1054 | 0 | goto err; |
1055 | 19.7k | if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&am, top, powerbuf, 1, window)) |
1056 | 0 | goto err; |
1057 | | |
1058 | | /* |
1059 | | * If the window size is greater than 1, then calculate |
1060 | | * val[i=2..2^winsize-1]. Powers are computed as a*a^(i-1) (even |
1061 | | * powers could instead be computed as (a^(i/2))^2 to use the slight |
1062 | | * performance advantage of sqr over mul). |
1063 | | */ |
1064 | 19.7k | if (window > 1) { |
1065 | 19.7k | if (!bn_mul_mont_fixed_top(&tmp, &am, &am, mont, ctx)) |
1066 | 0 | goto err; |
1067 | 19.7k | if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&tmp, top, powerbuf, 2, |
1068 | 19.7k | window)) |
1069 | 0 | goto err; |
1070 | 137k | for (i = 3; i < numPowers; i++) { |
1071 | | /* Calculate a^i = a^(i-1) * a */ |
1072 | 117k | if (!bn_mul_mont_fixed_top(&tmp, &am, &tmp, mont, ctx)) |
1073 | 0 | goto err; |
1074 | 117k | if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&tmp, top, powerbuf, i, |
1075 | 117k | window)) |
1076 | 0 | goto err; |
1077 | 117k | } |
1078 | 19.7k | } |
1079 | | |
1080 | | /* |
1081 | | * The exponent may not have a whole number of fixed-size windows. |
1082 | | * To simplify the main loop, the initial window has between 1 and |
1083 | | * full-window-size bits such that what remains is always a whole |
1084 | | * number of windows |
1085 | | */ |
1086 | 19.7k | window0 = (bits - 1) % window + 1; |
1087 | 19.7k | wmask = (1 << window0) - 1; |
1088 | 19.7k | bits -= window0; |
1089 | 19.7k | wvalue = bn_get_bits(p, bits) & wmask; |
1090 | 19.7k | if (!MOD_EXP_CTIME_COPY_FROM_PREBUF(&tmp, top, powerbuf, wvalue, |
1091 | 19.7k | window)) |
1092 | 0 | goto err; |
1093 | | |
1094 | 19.7k | wmask = (1 << window) - 1; |
1095 | | /* |
1096 | | * Scan the exponent one window at a time starting from the most |
1097 | | * significant bits. |
1098 | | */ |
1099 | 490k | while (bits > 0) { |
1100 | | |
1101 | | /* Square the result window-size times */ |
1102 | 1.98M | for (i = 0; i < window; i++) |
1103 | 1.51M | if (!bn_mul_mont_fixed_top(&tmp, &tmp, &tmp, mont, ctx)) |
1104 | 0 | goto err; |
1105 | | |
1106 | | /* |
1107 | | * Get a window's worth of bits from the exponent |
1108 | | * This avoids calling BN_is_bit_set for each bit, which |
1109 | | * is not only slower but also makes each bit vulnerable to |
1110 | | * EM (and likely other) side-channel attacks like One&Done |
1111 | | * (for details see "One&Done: A Single-Decryption EM-Based |
1112 | | * Attack on OpenSSL's Constant-Time Blinded RSA" by M. Alam, |
1113 | | * H. Khan, M. Dey, N. Sinha, R. Callan, A. Zajic, and |
1114 | | * M. Prvulovic, in USENIX Security'18) |
1115 | | */ |
1116 | 470k | bits -= window; |
1117 | 470k | wvalue = bn_get_bits(p, bits) & wmask; |
1118 | | /* |
1119 | | * Fetch the appropriate pre-computed value from the pre-buf |
1120 | | */ |
1121 | 470k | if (!MOD_EXP_CTIME_COPY_FROM_PREBUF(&am, top, powerbuf, wvalue, |
1122 | 470k | window)) |
1123 | 0 | goto err; |
1124 | | |
1125 | | /* Multiply the result into the intermediate result */ |
1126 | 470k | if (!bn_mul_mont_fixed_top(&tmp, &tmp, &am, mont, ctx)) |
1127 | 0 | goto err; |
1128 | 470k | } |
1129 | 19.7k | } |
1130 | | |
1131 | | /* |
1132 | | * Done with zero-padded intermediate BIGNUMs. Final BN_from_montgomery |
1133 | | * removes padding [if any] and makes return value suitable for public |
1134 | | * API consumer. |
1135 | | */ |
1136 | | #if defined(SPARC_T4_MONT) |
1137 | | if (OPENSSL_sparcv9cap_P[0] & (SPARCV9_VIS3 | SPARCV9_PREFER_FPU)) { |
1138 | | am.d[0] = 1; /* borrow am */ |
1139 | | for (i = 1; i < top; i++) |
1140 | | am.d[i] = 0; |
1141 | | if (!BN_mod_mul_montgomery(rr, &tmp, &am, mont, ctx)) |
1142 | | goto err; |
1143 | | } else |
1144 | | #endif |
1145 | 49.3k | if (!bn_from_mont_fixed_top(rr, &tmp, mont, ctx)) |
1146 | 0 | goto err; |
1147 | 49.3k | ret = 1; |
1148 | 49.7k | err: |
1149 | 49.7k | if (in_mont == NULL) |
1150 | 2.24k | BN_MONT_CTX_free(mont); |
1151 | 49.7k | if (powerbuf != NULL) { |
1152 | 49.3k | OPENSSL_cleanse(powerbuf, powerbufLen); |
1153 | 49.3k | OPENSSL_free(powerbufFree); |
1154 | 49.3k | } |
1155 | 49.7k | BN_CTX_end(ctx); |
1156 | 49.7k | return ret; |
1157 | 49.3k | } |
1158 | | |
1159 | | int BN_mod_exp_mont_consttime(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p, |
1160 | | const BIGNUM *m, BN_CTX *ctx, |
1161 | | BN_MONT_CTX *in_mont) |
1162 | 49.2k | { |
1163 | 49.2k | bn_check_top(a); |
1164 | 49.2k | bn_check_top(p); |
1165 | 49.2k | bn_check_top(m); |
1166 | 49.2k | if (!bn_mod_exp_mont_fixed_top(rr, a, p, m, ctx, in_mont)) |
1167 | 0 | return 0; |
1168 | 49.2k | bn_correct_top(rr); |
1169 | 49.2k | return 1; |
1170 | 49.2k | } |
1171 | | |
1172 | | int BN_mod_exp_mont_word(BIGNUM *rr, BN_ULONG a, const BIGNUM *p, |
1173 | | const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont) |
1174 | 51.5k | { |
1175 | 51.5k | BN_MONT_CTX *mont = NULL; |
1176 | 51.5k | int b, bits, ret = 0; |
1177 | 51.5k | int r_is_one; |
1178 | 51.5k | BN_ULONG w, next_w; |
1179 | 51.5k | BIGNUM *r, *t; |
1180 | 51.5k | BIGNUM *swap_tmp; |
1181 | 51.5k | #define BN_MOD_MUL_WORD(r, w, m) \ |
1182 | 4.06M | (BN_mul_word(r, (w)) && \ |
1183 | 4.06M | (/* BN_ucmp(r, (m)) < 0 ? 1 :*/ \ |
1184 | 4.06M | (BN_mod(t, r, m, ctx) && (swap_tmp = r, r = t, t = swap_tmp, 1)))) |
1185 | | /* |
1186 | | * BN_MOD_MUL_WORD is only used with 'w' large, so the BN_ucmp test is |
1187 | | * probably more overhead than always using BN_mod (which uses BN_copy if |
1188 | | * a similar test returns true). |
1189 | | */ |
1190 | | /* |
1191 | | * We can use BN_mod and do not need BN_nnmod because our accumulator is |
1192 | | * never negative (the result of BN_mod does not depend on the sign of |
1193 | | * the modulus). |
1194 | | */ |
1195 | 51.5k | #define BN_TO_MONTGOMERY_WORD(r, w, mont) \ |
1196 | 51.5k | (BN_set_word(r, (w)) && BN_to_montgomery(r, r, (mont), ctx)) |
1197 | | |
1198 | 51.5k | if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0 |
1199 | 51.5k | || BN_get_flags(m, BN_FLG_CONSTTIME) != 0) { |
1200 | | /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */ |
1201 | 0 | ERR_raise(ERR_LIB_BN, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
1202 | 0 | return 0; |
1203 | 0 | } |
1204 | | |
1205 | 51.5k | bn_check_top(p); |
1206 | 51.5k | bn_check_top(m); |
1207 | | |
1208 | 51.5k | if (!BN_is_odd(m)) { |
1209 | 0 | ERR_raise(ERR_LIB_BN, BN_R_CALLED_WITH_EVEN_MODULUS); |
1210 | 0 | return 0; |
1211 | 0 | } |
1212 | 51.5k | if (m->top == 1) |
1213 | 1.85k | a %= m->d[0]; /* make sure that 'a' is reduced */ |
1214 | | |
1215 | 51.5k | bits = BN_num_bits(p); |
1216 | 51.5k | if (bits == 0) { |
1217 | | /* x**0 mod 1, or x**0 mod -1 is still zero. */ |
1218 | 53 | if (BN_abs_is_word(m, 1)) { |
1219 | 4 | ret = 1; |
1220 | 4 | BN_zero(rr); |
1221 | 49 | } else { |
1222 | 49 | ret = BN_one(rr); |
1223 | 49 | } |
1224 | 53 | return ret; |
1225 | 53 | } |
1226 | 51.5k | if (a == 0) { |
1227 | 4 | BN_zero(rr); |
1228 | 4 | ret = 1; |
1229 | 4 | return ret; |
1230 | 4 | } |
1231 | | |
1232 | 51.5k | BN_CTX_start(ctx); |
1233 | 51.5k | r = BN_CTX_get(ctx); |
1234 | 51.5k | t = BN_CTX_get(ctx); |
1235 | 51.5k | if (t == NULL) |
1236 | 0 | goto err; |
1237 | | |
1238 | 51.5k | if (in_mont != NULL) |
1239 | 0 | mont = in_mont; |
1240 | 51.5k | else { |
1241 | 51.5k | if ((mont = BN_MONT_CTX_new()) == NULL) |
1242 | 0 | goto err; |
1243 | 51.5k | if (!BN_MONT_CTX_set(mont, m, ctx)) |
1244 | 0 | goto err; |
1245 | 51.5k | } |
1246 | | |
1247 | 51.5k | r_is_one = 1; /* except for Montgomery factor */ |
1248 | | |
1249 | | /* bits-1 >= 0 */ |
1250 | | |
1251 | | /* The result is accumulated in the product r*w. */ |
1252 | 51.5k | w = a; /* bit 'bits-1' of 'p' is always set */ |
1253 | 10.5M | for (b = bits - 2; b >= 0; b--) { |
1254 | | /* First, square r*w. */ |
1255 | 10.5M | next_w = w * w; |
1256 | 10.5M | if ((next_w / w) != w) { /* overflow */ |
1257 | 3.46M | if (r_is_one) { |
1258 | 46.6k | if (!BN_TO_MONTGOMERY_WORD(r, w, mont)) |
1259 | 0 | goto err; |
1260 | 46.6k | r_is_one = 0; |
1261 | 3.41M | } else { |
1262 | 3.41M | if (!BN_MOD_MUL_WORD(r, w, m)) |
1263 | 0 | goto err; |
1264 | 3.41M | } |
1265 | 3.46M | next_w = 1; |
1266 | 3.46M | } |
1267 | 10.5M | w = next_w; |
1268 | 10.5M | if (!r_is_one) { |
1269 | 10.4M | if (!BN_mod_mul_montgomery(r, r, r, mont, ctx)) |
1270 | 0 | goto err; |
1271 | 10.4M | } |
1272 | | |
1273 | | /* Second, multiply r*w by 'a' if exponent bit is set. */ |
1274 | 10.5M | if (BN_is_bit_set(p, b)) { |
1275 | 7.93M | next_w = w * a; |
1276 | 7.93M | if ((next_w / a) != w) { /* overflow */ |
1277 | 604k | if (r_is_one) { |
1278 | 4.58k | if (!BN_TO_MONTGOMERY_WORD(r, w, mont)) |
1279 | 0 | goto err; |
1280 | 4.58k | r_is_one = 0; |
1281 | 600k | } else { |
1282 | 600k | if (!BN_MOD_MUL_WORD(r, w, m)) |
1283 | 0 | goto err; |
1284 | 600k | } |
1285 | 604k | next_w = a; |
1286 | 604k | } |
1287 | 7.93M | w = next_w; |
1288 | 7.93M | } |
1289 | 10.5M | } |
1290 | | |
1291 | | /* Finally, set r:=r*w. */ |
1292 | 51.5k | if (w != 1) { |
1293 | 47.0k | if (r_is_one) { |
1294 | 283 | if (!BN_TO_MONTGOMERY_WORD(r, w, mont)) |
1295 | 0 | goto err; |
1296 | 283 | r_is_one = 0; |
1297 | 46.7k | } else { |
1298 | 46.7k | if (!BN_MOD_MUL_WORD(r, w, m)) |
1299 | 0 | goto err; |
1300 | 46.7k | } |
1301 | 47.0k | } |
1302 | | |
1303 | 51.5k | if (r_is_one) { /* can happen only if a == 1 */ |
1304 | 30 | if (!BN_one(rr)) |
1305 | 0 | goto err; |
1306 | 51.4k | } else { |
1307 | 51.4k | if (!BN_from_montgomery(rr, r, mont, ctx)) |
1308 | 0 | goto err; |
1309 | 51.4k | } |
1310 | 51.5k | ret = 1; |
1311 | 51.5k | err: |
1312 | 51.5k | if (in_mont == NULL) |
1313 | 51.5k | BN_MONT_CTX_free(mont); |
1314 | 51.5k | BN_CTX_end(ctx); |
1315 | 51.5k | bn_check_top(rr); |
1316 | 51.5k | return ret; |
1317 | 51.5k | } |
1318 | | |
1319 | | /* The old fallback, simple version :-) */ |
1320 | | int BN_mod_exp_simple(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, |
1321 | | const BIGNUM *m, BN_CTX *ctx) |
1322 | 11.6k | { |
1323 | 11.6k | int i, j, bits, ret = 0, wstart, wend, window, wvalue; |
1324 | 11.6k | int start = 1; |
1325 | 11.6k | BIGNUM *d; |
1326 | | /* Table of variables obtained from 'ctx' */ |
1327 | 11.6k | BIGNUM *val[TABLE_SIZE]; |
1328 | | |
1329 | 11.6k | if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0 |
1330 | 11.6k | || BN_get_flags(a, BN_FLG_CONSTTIME) != 0 |
1331 | 11.6k | || BN_get_flags(m, BN_FLG_CONSTTIME) != 0) { |
1332 | | /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */ |
1333 | 0 | ERR_raise(ERR_LIB_BN, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
1334 | 0 | return 0; |
1335 | 0 | } |
1336 | | |
1337 | 11.6k | if (r == m) { |
1338 | 0 | ERR_raise(ERR_LIB_BN, ERR_R_PASSED_INVALID_ARGUMENT); |
1339 | 0 | return 0; |
1340 | 0 | } |
1341 | | |
1342 | 11.6k | bits = BN_num_bits(p); |
1343 | 11.6k | if (bits == 0) { |
1344 | | /* x**0 mod 1, or x**0 mod -1 is still zero. */ |
1345 | 695 | if (BN_abs_is_word(m, 1)) { |
1346 | 10 | ret = 1; |
1347 | 10 | BN_zero(r); |
1348 | 685 | } else { |
1349 | 685 | ret = BN_one(r); |
1350 | 685 | } |
1351 | 695 | return ret; |
1352 | 695 | } |
1353 | | |
1354 | 10.9k | BN_CTX_start(ctx); |
1355 | 10.9k | d = BN_CTX_get(ctx); |
1356 | 10.9k | val[0] = BN_CTX_get(ctx); |
1357 | 10.9k | if (val[0] == NULL) |
1358 | 0 | goto err; |
1359 | | |
1360 | 10.9k | if (!BN_nnmod(val[0], a, m, ctx)) |
1361 | 0 | goto err; /* 1 */ |
1362 | 10.9k | if (BN_is_zero(val[0])) { |
1363 | 2.85k | BN_zero(r); |
1364 | 2.85k | ret = 1; |
1365 | 2.85k | goto err; |
1366 | 2.85k | } |
1367 | | |
1368 | 8.08k | window = BN_window_bits_for_exponent_size(bits); |
1369 | 8.08k | if (window > 1) { |
1370 | 1.25k | if (!BN_mod_mul(d, val[0], val[0], m, ctx)) |
1371 | 0 | goto err; /* 2 */ |
1372 | 1.25k | j = 1 << (window - 1); |
1373 | 10.4k | for (i = 1; i < j; i++) { |
1374 | 9.16k | if (((val[i] = BN_CTX_get(ctx)) == NULL) || |
1375 | 9.16k | !BN_mod_mul(val[i], val[i - 1], d, m, ctx)) |
1376 | 0 | goto err; |
1377 | 9.16k | } |
1378 | 1.25k | } |
1379 | | |
1380 | 8.08k | start = 1; /* This is used to avoid multiplication etc |
1381 | | * when there is only the value '1' in the |
1382 | | * buffer. */ |
1383 | 8.08k | wvalue = 0; /* The 'value' of the window */ |
1384 | 8.08k | wstart = bits - 1; /* The top bit of the window */ |
1385 | 8.08k | wend = 0; /* The bottom bit of the window */ |
1386 | | |
1387 | 8.08k | if (r == p) { |
1388 | 0 | BIGNUM *p_dup = BN_CTX_get(ctx); |
1389 | |
|
1390 | 0 | if (p_dup == NULL || BN_copy(p_dup, p) == NULL) |
1391 | 0 | goto err; |
1392 | 0 | p = p_dup; |
1393 | 0 | } |
1394 | | |
1395 | 8.08k | if (!BN_one(r)) |
1396 | 0 | goto err; |
1397 | | |
1398 | 184k | for (;;) { |
1399 | 184k | if (BN_is_bit_set(p, wstart) == 0) { |
1400 | 102k | if (!start) |
1401 | 102k | if (!BN_mod_mul(r, r, r, m, ctx)) |
1402 | 0 | goto err; |
1403 | 102k | if (wstart == 0) |
1404 | 2.39k | break; |
1405 | 100k | wstart--; |
1406 | 100k | continue; |
1407 | 102k | } |
1408 | | /* |
1409 | | * We now have wstart on a 'set' bit, we now need to work out how bit |
1410 | | * a window to do. To do this we need to scan forward until the last |
1411 | | * set bit before the end of the window |
1412 | | */ |
1413 | 81.3k | wvalue = 1; |
1414 | 81.3k | wend = 0; |
1415 | 216k | for (i = 1; i < window; i++) { |
1416 | 136k | if (wstart - i < 0) |
1417 | 662 | break; |
1418 | 135k | if (BN_is_bit_set(p, wstart - i)) { |
1419 | 93.8k | wvalue <<= (i - wend); |
1420 | 93.8k | wvalue |= 1; |
1421 | 93.8k | wend = i; |
1422 | 93.8k | } |
1423 | 135k | } |
1424 | | |
1425 | | /* wend is the size of the current window */ |
1426 | 81.3k | j = wend + 1; |
1427 | | /* add the 'bytes above' */ |
1428 | 81.3k | if (!start) |
1429 | 255k | for (i = 0; i < j; i++) { |
1430 | 182k | if (!BN_mod_mul(r, r, r, m, ctx)) |
1431 | 0 | goto err; |
1432 | 182k | } |
1433 | | |
1434 | | /* wvalue will be an odd number < 2^window */ |
1435 | 81.3k | if (!BN_mod_mul(r, r, val[wvalue >> 1], m, ctx)) |
1436 | 0 | goto err; |
1437 | | |
1438 | | /* move the 'window' down further */ |
1439 | 81.3k | wstart -= wend + 1; |
1440 | 81.3k | wvalue = 0; |
1441 | 81.3k | start = 0; |
1442 | 81.3k | if (wstart < 0) |
1443 | 5.69k | break; |
1444 | 81.3k | } |
1445 | 8.08k | ret = 1; |
1446 | 10.9k | err: |
1447 | 10.9k | BN_CTX_end(ctx); |
1448 | 10.9k | bn_check_top(r); |
1449 | 10.9k | return ret; |
1450 | 8.08k | } |
1451 | | |
1452 | | /* |
1453 | | * This is a variant of modular exponentiation optimization that does |
1454 | | * parallel 2-primes exponentiation using 256-bit (AVX512VL) AVX512_IFMA ISA |
1455 | | * in 52-bit binary redundant representation. |
1456 | | * If such instructions are not available, or input data size is not supported, |
1457 | | * it falls back to two BN_mod_exp_mont_consttime() calls. |
1458 | | */ |
1459 | | int BN_mod_exp_mont_consttime_x2(BIGNUM *rr1, const BIGNUM *a1, const BIGNUM *p1, |
1460 | | const BIGNUM *m1, BN_MONT_CTX *in_mont1, |
1461 | | BIGNUM *rr2, const BIGNUM *a2, const BIGNUM *p2, |
1462 | | const BIGNUM *m2, BN_MONT_CTX *in_mont2, |
1463 | | BN_CTX *ctx) |
1464 | 3.51k | { |
1465 | 3.51k | int ret = 0; |
1466 | | |
1467 | 3.51k | #ifdef RSAZ_ENABLED |
1468 | 3.51k | BN_MONT_CTX *mont1 = NULL; |
1469 | 3.51k | BN_MONT_CTX *mont2 = NULL; |
1470 | | |
1471 | 3.51k | if (ossl_rsaz_avx512ifma_eligible() && |
1472 | 3.51k | (((a1->top == 16) && (p1->top == 16) && (BN_num_bits(m1) == 1024) && |
1473 | 0 | (a2->top == 16) && (p2->top == 16) && (BN_num_bits(m2) == 1024)) || |
1474 | 0 | ((a1->top == 24) && (p1->top == 24) && (BN_num_bits(m1) == 1536) && |
1475 | 0 | (a2->top == 24) && (p2->top == 24) && (BN_num_bits(m2) == 1536)) || |
1476 | 0 | ((a1->top == 32) && (p1->top == 32) && (BN_num_bits(m1) == 2048) && |
1477 | 0 | (a2->top == 32) && (p2->top == 32) && (BN_num_bits(m2) == 2048)))) { |
1478 | |
|
1479 | 0 | int topn = a1->top; |
1480 | | /* Modulus bits of |m1| and |m2| are equal */ |
1481 | 0 | int mod_bits = BN_num_bits(m1); |
1482 | |
|
1483 | 0 | if (bn_wexpand(rr1, topn) == NULL) |
1484 | 0 | goto err; |
1485 | 0 | if (bn_wexpand(rr2, topn) == NULL) |
1486 | 0 | goto err; |
1487 | | |
1488 | | /* Ensure that montgomery contexts are initialized */ |
1489 | 0 | if (in_mont1 != NULL) { |
1490 | 0 | mont1 = in_mont1; |
1491 | 0 | } else { |
1492 | 0 | if ((mont1 = BN_MONT_CTX_new()) == NULL) |
1493 | 0 | goto err; |
1494 | 0 | if (!BN_MONT_CTX_set(mont1, m1, ctx)) |
1495 | 0 | goto err; |
1496 | 0 | } |
1497 | 0 | if (in_mont2 != NULL) { |
1498 | 0 | mont2 = in_mont2; |
1499 | 0 | } else { |
1500 | 0 | if ((mont2 = BN_MONT_CTX_new()) == NULL) |
1501 | 0 | goto err; |
1502 | 0 | if (!BN_MONT_CTX_set(mont2, m2, ctx)) |
1503 | 0 | goto err; |
1504 | 0 | } |
1505 | | |
1506 | 0 | ret = ossl_rsaz_mod_exp_avx512_x2(rr1->d, a1->d, p1->d, m1->d, |
1507 | 0 | mont1->RR.d, mont1->n0[0], |
1508 | 0 | rr2->d, a2->d, p2->d, m2->d, |
1509 | 0 | mont2->RR.d, mont2->n0[0], |
1510 | 0 | mod_bits); |
1511 | |
|
1512 | 0 | rr1->top = topn; |
1513 | 0 | rr1->neg = 0; |
1514 | 0 | bn_correct_top(rr1); |
1515 | 0 | bn_check_top(rr1); |
1516 | |
|
1517 | 0 | rr2->top = topn; |
1518 | 0 | rr2->neg = 0; |
1519 | 0 | bn_correct_top(rr2); |
1520 | 0 | bn_check_top(rr2); |
1521 | |
|
1522 | 0 | goto err; |
1523 | 0 | } |
1524 | 3.51k | #endif |
1525 | | |
1526 | | /* rr1 = a1^p1 mod m1 */ |
1527 | 3.51k | ret = BN_mod_exp_mont_consttime(rr1, a1, p1, m1, ctx, in_mont1); |
1528 | | /* rr2 = a2^p2 mod m2 */ |
1529 | 3.51k | ret &= BN_mod_exp_mont_consttime(rr2, a2, p2, m2, ctx, in_mont2); |
1530 | | |
1531 | 3.51k | #ifdef RSAZ_ENABLED |
1532 | 3.51k | err: |
1533 | 3.51k | if (in_mont2 == NULL) |
1534 | 0 | BN_MONT_CTX_free(mont2); |
1535 | 3.51k | if (in_mont1 == NULL) |
1536 | 0 | BN_MONT_CTX_free(mont1); |
1537 | 3.51k | #endif |
1538 | | |
1539 | 3.51k | return ret; |
1540 | 3.51k | } |