Coverage Report

Created: 2025-06-13 06:58

/src/openssl31/crypto/bn/bn_gcd.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 1995-2023 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
#include "internal/cryptlib.h"
11
#include "bn_local.h"
12
13
/*
14
 * bn_mod_inverse_no_branch is a special version of BN_mod_inverse. It does
15
 * not contain branches that may leak sensitive information.
16
 *
17
 * This is a static function, we ensure all callers in this file pass valid
18
 * arguments: all passed pointers here are non-NULL.
19
 */
20
static ossl_inline
21
BIGNUM *bn_mod_inverse_no_branch(BIGNUM *in,
22
                                 const BIGNUM *a, const BIGNUM *n,
23
                                 BN_CTX *ctx, int *pnoinv)
24
27.4k
{
25
27.4k
    BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL;
26
27.4k
    BIGNUM *ret = NULL;
27
27.4k
    int sign;
28
29
27.4k
    bn_check_top(a);
30
27.4k
    bn_check_top(n);
31
32
27.4k
    BN_CTX_start(ctx);
33
27.4k
    A = BN_CTX_get(ctx);
34
27.4k
    B = BN_CTX_get(ctx);
35
27.4k
    X = BN_CTX_get(ctx);
36
27.4k
    D = BN_CTX_get(ctx);
37
27.4k
    M = BN_CTX_get(ctx);
38
27.4k
    Y = BN_CTX_get(ctx);
39
27.4k
    T = BN_CTX_get(ctx);
40
27.4k
    if (T == NULL)
41
0
        goto err;
42
43
27.4k
    if (in == NULL)
44
0
        R = BN_new();
45
27.4k
    else
46
27.4k
        R = in;
47
27.4k
    if (R == NULL)
48
0
        goto err;
49
50
27.4k
    if (!BN_one(X))
51
0
        goto err;
52
27.4k
    BN_zero(Y);
53
27.4k
    if (BN_copy(B, a) == NULL)
54
0
        goto err;
55
27.4k
    if (BN_copy(A, n) == NULL)
56
0
        goto err;
57
27.4k
    A->neg = 0;
58
59
27.4k
    if (B->neg || (BN_ucmp(B, A) >= 0)) {
60
        /*
61
         * Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked,
62
         * BN_div_no_branch will be called eventually.
63
         */
64
18.3k
         {
65
18.3k
            BIGNUM local_B;
66
18.3k
            bn_init(&local_B);
67
18.3k
            BN_with_flags(&local_B, B, BN_FLG_CONSTTIME);
68
18.3k
            if (!BN_nnmod(B, &local_B, A, ctx))
69
0
                goto err;
70
            /* Ensure local_B goes out of scope before any further use of B */
71
18.3k
        }
72
18.3k
    }
73
27.4k
    sign = -1;
74
    /*-
75
     * From  B = a mod |n|,  A = |n|  it follows that
76
     *
77
     *      0 <= B < A,
78
     *     -sign*X*a  ==  B   (mod |n|),
79
     *      sign*Y*a  ==  A   (mod |n|).
80
     */
81
82
10.9M
    while (!BN_is_zero(B)) {
83
10.8M
        BIGNUM *tmp;
84
85
        /*-
86
         *      0 < B < A,
87
         * (*) -sign*X*a  ==  B   (mod |n|),
88
         *      sign*Y*a  ==  A   (mod |n|)
89
         */
90
91
        /*
92
         * Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked,
93
         * BN_div_no_branch will be called eventually.
94
         */
95
10.8M
        {
96
10.8M
            BIGNUM local_A;
97
10.8M
            bn_init(&local_A);
98
10.8M
            BN_with_flags(&local_A, A, BN_FLG_CONSTTIME);
99
100
            /* (D, M) := (A/B, A%B) ... */
101
10.8M
            if (!BN_div(D, M, &local_A, B, ctx))
102
0
                goto err;
103
            /* Ensure local_A goes out of scope before any further use of A */
104
10.8M
        }
105
106
        /*-
107
         * Now
108
         *      A = D*B + M;
109
         * thus we have
110
         * (**)  sign*Y*a  ==  D*B + M   (mod |n|).
111
         */
112
113
10.8M
        tmp = A;                /* keep the BIGNUM object, the value does not
114
                                 * matter */
115
116
        /* (A, B) := (B, A mod B) ... */
117
10.8M
        A = B;
118
10.8M
        B = M;
119
        /* ... so we have  0 <= B < A  again */
120
121
        /*-
122
         * Since the former  M  is now  B  and the former  B  is now  A,
123
         * (**) translates into
124
         *       sign*Y*a  ==  D*A + B    (mod |n|),
125
         * i.e.
126
         *       sign*Y*a - D*A  ==  B    (mod |n|).
127
         * Similarly, (*) translates into
128
         *      -sign*X*a  ==  A          (mod |n|).
129
         *
130
         * Thus,
131
         *   sign*Y*a + D*sign*X*a  ==  B  (mod |n|),
132
         * i.e.
133
         *        sign*(Y + D*X)*a  ==  B  (mod |n|).
134
         *
135
         * So if we set  (X, Y, sign) := (Y + D*X, X, -sign), we arrive back at
136
         *      -sign*X*a  ==  B   (mod |n|),
137
         *       sign*Y*a  ==  A   (mod |n|).
138
         * Note that  X  and  Y  stay non-negative all the time.
139
         */
140
141
10.8M
        if (!BN_mul(tmp, D, X, ctx))
142
0
            goto err;
143
10.8M
        if (!BN_add(tmp, tmp, Y))
144
0
            goto err;
145
146
10.8M
        M = Y;                  /* keep the BIGNUM object, the value does not
147
                                 * matter */
148
10.8M
        Y = X;
149
10.8M
        X = tmp;
150
10.8M
        sign = -sign;
151
10.8M
    }
152
153
    /*-
154
     * The while loop (Euclid's algorithm) ends when
155
     *      A == gcd(a,n);
156
     * we have
157
     *       sign*Y*a  ==  A  (mod |n|),
158
     * where  Y  is non-negative.
159
     */
160
161
27.4k
    if (sign < 0) {
162
14.4k
        if (!BN_sub(Y, n, Y))
163
0
            goto err;
164
14.4k
    }
165
    /* Now  Y*a  ==  A  (mod |n|).  */
166
167
27.4k
    if (BN_is_one(A)) {
168
        /* Y*a == 1  (mod |n|) */
169
27.3k
        if (!Y->neg && BN_ucmp(Y, n) < 0) {
170
27.3k
            if (!BN_copy(R, Y))
171
0
                goto err;
172
27.3k
        } else {
173
0
            if (!BN_nnmod(R, Y, n, ctx))
174
0
                goto err;
175
0
        }
176
27.3k
    } else {
177
191
        *pnoinv = 1;
178
        /* caller sets the BN_R_NO_INVERSE error */
179
191
        goto err;
180
191
    }
181
182
27.3k
    ret = R;
183
27.3k
    *pnoinv = 0;
184
185
27.4k
 err:
186
27.4k
    if ((ret == NULL) && (in == NULL))
187
0
        BN_free(R);
188
27.4k
    BN_CTX_end(ctx);
189
27.4k
    bn_check_top(ret);
190
27.4k
    return ret;
191
27.3k
}
192
193
/*
194
 * This is an internal function, we assume all callers pass valid arguments:
195
 * all pointers passed here are assumed non-NULL.
196
 */
197
BIGNUM *int_bn_mod_inverse(BIGNUM *in,
198
                           const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx,
199
                           int *pnoinv)
200
757k
{
201
757k
    BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL;
202
757k
    BIGNUM *ret = NULL;
203
757k
    int sign;
204
205
    /* This is invalid input so we don't worry about constant time here */
206
757k
    if (BN_abs_is_word(n, 1) || BN_is_zero(n)) {
207
473
        *pnoinv = 1;
208
473
        return NULL;
209
473
    }
210
211
757k
    *pnoinv = 0;
212
213
757k
    if ((BN_get_flags(a, BN_FLG_CONSTTIME) != 0)
214
757k
        || (BN_get_flags(n, BN_FLG_CONSTTIME) != 0)) {
215
27.4k
        return bn_mod_inverse_no_branch(in, a, n, ctx, pnoinv);
216
27.4k
    }
217
218
729k
    bn_check_top(a);
219
729k
    bn_check_top(n);
220
221
729k
    BN_CTX_start(ctx);
222
729k
    A = BN_CTX_get(ctx);
223
729k
    B = BN_CTX_get(ctx);
224
729k
    X = BN_CTX_get(ctx);
225
729k
    D = BN_CTX_get(ctx);
226
729k
    M = BN_CTX_get(ctx);
227
729k
    Y = BN_CTX_get(ctx);
228
729k
    T = BN_CTX_get(ctx);
229
729k
    if (T == NULL)
230
0
        goto err;
231
232
729k
    if (in == NULL)
233
0
        R = BN_new();
234
729k
    else
235
729k
        R = in;
236
729k
    if (R == NULL)
237
0
        goto err;
238
239
729k
    if (!BN_one(X))
240
0
        goto err;
241
729k
    BN_zero(Y);
242
729k
    if (BN_copy(B, a) == NULL)
243
0
        goto err;
244
729k
    if (BN_copy(A, n) == NULL)
245
0
        goto err;
246
729k
    A->neg = 0;
247
729k
    if (B->neg || (BN_ucmp(B, A) >= 0)) {
248
728k
        if (!BN_nnmod(B, B, A, ctx))
249
0
            goto err;
250
728k
    }
251
729k
    sign = -1;
252
    /*-
253
     * From  B = a mod |n|,  A = |n|  it follows that
254
     *
255
     *      0 <= B < A,
256
     *     -sign*X*a  ==  B   (mod |n|),
257
     *      sign*Y*a  ==  A   (mod |n|).
258
     */
259
260
729k
    if (BN_is_odd(n) && (BN_num_bits(n) <= 2048)) {
261
        /*
262
         * Binary inversion algorithm; requires odd modulus. This is faster
263
         * than the general algorithm if the modulus is sufficiently small
264
         * (about 400 .. 500 bits on 32-bit systems, but much more on 64-bit
265
         * systems)
266
         */
267
724k
        int shift;
268
269
44.5M
        while (!BN_is_zero(B)) {
270
            /*-
271
             *      0 < B < |n|,
272
             *      0 < A <= |n|,
273
             * (1) -sign*X*a  ==  B   (mod |n|),
274
             * (2)  sign*Y*a  ==  A   (mod |n|)
275
             */
276
277
            /*
278
             * Now divide B by the maximum possible power of two in the
279
             * integers, and divide X by the same value mod |n|. When we're
280
             * done, (1) still holds.
281
             */
282
43.8M
            shift = 0;
283
60.0M
            while (!BN_is_bit_set(B, shift)) { /* note that 0 < B */
284
16.1M
                shift++;
285
286
16.1M
                if (BN_is_odd(X)) {
287
8.16M
                    if (!BN_uadd(X, X, n))
288
0
                        goto err;
289
8.16M
                }
290
                /*
291
                 * now X is even, so we can easily divide it by two
292
                 */
293
16.1M
                if (!BN_rshift1(X, X))
294
0
                    goto err;
295
16.1M
            }
296
43.8M
            if (shift > 0) {
297
15.1M
                if (!BN_rshift(B, B, shift))
298
0
                    goto err;
299
15.1M
            }
300
301
            /*
302
             * Same for A and Y.  Afterwards, (2) still holds.
303
             */
304
43.8M
            shift = 0;
305
72.5M
            while (!BN_is_bit_set(A, shift)) { /* note that 0 < A */
306
28.7M
                shift++;
307
308
28.7M
                if (BN_is_odd(Y)) {
309
18.8M
                    if (!BN_uadd(Y, Y, n))
310
0
                        goto err;
311
18.8M
                }
312
                /* now Y is even */
313
28.7M
                if (!BN_rshift1(Y, Y))
314
0
                    goto err;
315
28.7M
            }
316
43.8M
            if (shift > 0) {
317
28.1M
                if (!BN_rshift(A, A, shift))
318
0
                    goto err;
319
28.1M
            }
320
321
            /*-
322
             * We still have (1) and (2).
323
             * Both  A  and  B  are odd.
324
             * The following computations ensure that
325
             *
326
             *     0 <= B < |n|,
327
             *      0 < A < |n|,
328
             * (1) -sign*X*a  ==  B   (mod |n|),
329
             * (2)  sign*Y*a  ==  A   (mod |n|),
330
             *
331
             * and that either  A  or  B  is even in the next iteration.
332
             */
333
43.8M
            if (BN_ucmp(B, A) >= 0) {
334
                /* -sign*(X + Y)*a == B - A  (mod |n|) */
335
15.6M
                if (!BN_uadd(X, X, Y))
336
0
                    goto err;
337
                /*
338
                 * NB: we could use BN_mod_add_quick(X, X, Y, n), but that
339
                 * actually makes the algorithm slower
340
                 */
341
15.6M
                if (!BN_usub(B, B, A))
342
0
                    goto err;
343
28.1M
            } else {
344
                /*  sign*(X + Y)*a == A - B  (mod |n|) */
345
28.1M
                if (!BN_uadd(Y, Y, X))
346
0
                    goto err;
347
                /*
348
                 * as above, BN_mod_add_quick(Y, Y, X, n) would slow things down
349
                 */
350
28.1M
                if (!BN_usub(A, A, B))
351
0
                    goto err;
352
28.1M
            }
353
43.8M
        }
354
724k
    } else {
355
        /* general inversion algorithm */
356
357
174k
        while (!BN_is_zero(B)) {
358
169k
            BIGNUM *tmp;
359
360
            /*-
361
             *      0 < B < A,
362
             * (*) -sign*X*a  ==  B   (mod |n|),
363
             *      sign*Y*a  ==  A   (mod |n|)
364
             */
365
366
            /* (D, M) := (A/B, A%B) ... */
367
169k
            if (BN_num_bits(A) == BN_num_bits(B)) {
368
35.0k
                if (!BN_one(D))
369
0
                    goto err;
370
35.0k
                if (!BN_sub(M, A, B))
371
0
                    goto err;
372
134k
            } else if (BN_num_bits(A) == BN_num_bits(B) + 1) {
373
                /* A/B is 1, 2, or 3 */
374
63.2k
                if (!BN_lshift1(T, B))
375
0
                    goto err;
376
63.2k
                if (BN_ucmp(A, T) < 0) {
377
                    /* A < 2*B, so D=1 */
378
35.9k
                    if (!BN_one(D))
379
0
                        goto err;
380
35.9k
                    if (!BN_sub(M, A, B))
381
0
                        goto err;
382
35.9k
                } else {
383
                    /* A >= 2*B, so D=2 or D=3 */
384
27.2k
                    if (!BN_sub(M, A, T))
385
0
                        goto err;
386
27.2k
                    if (!BN_add(D, T, B))
387
0
                        goto err; /* use D (:= 3*B) as temp */
388
27.2k
                    if (BN_ucmp(A, D) < 0) {
389
                        /* A < 3*B, so D=2 */
390
21.7k
                        if (!BN_set_word(D, 2))
391
0
                            goto err;
392
                        /*
393
                         * M (= A - 2*B) already has the correct value
394
                         */
395
21.7k
                    } else {
396
                        /* only D=3 remains */
397
5.52k
                        if (!BN_set_word(D, 3))
398
0
                            goto err;
399
                        /*
400
                         * currently M = A - 2*B, but we need M = A - 3*B
401
                         */
402
5.52k
                        if (!BN_sub(M, M, B))
403
0
                            goto err;
404
5.52k
                    }
405
27.2k
                }
406
70.9k
            } else {
407
70.9k
                if (!BN_div(D, M, A, B, ctx))
408
0
                    goto err;
409
70.9k
            }
410
411
            /*-
412
             * Now
413
             *      A = D*B + M;
414
             * thus we have
415
             * (**)  sign*Y*a  ==  D*B + M   (mod |n|).
416
             */
417
418
169k
            tmp = A;    /* keep the BIGNUM object, the value does not matter */
419
420
            /* (A, B) := (B, A mod B) ... */
421
169k
            A = B;
422
169k
            B = M;
423
            /* ... so we have  0 <= B < A  again */
424
425
            /*-
426
             * Since the former  M  is now  B  and the former  B  is now  A,
427
             * (**) translates into
428
             *       sign*Y*a  ==  D*A + B    (mod |n|),
429
             * i.e.
430
             *       sign*Y*a - D*A  ==  B    (mod |n|).
431
             * Similarly, (*) translates into
432
             *      -sign*X*a  ==  A          (mod |n|).
433
             *
434
             * Thus,
435
             *   sign*Y*a + D*sign*X*a  ==  B  (mod |n|),
436
             * i.e.
437
             *        sign*(Y + D*X)*a  ==  B  (mod |n|).
438
             *
439
             * So if we set  (X, Y, sign) := (Y + D*X, X, -sign), we arrive back at
440
             *      -sign*X*a  ==  B   (mod |n|),
441
             *       sign*Y*a  ==  A   (mod |n|).
442
             * Note that  X  and  Y  stay non-negative all the time.
443
             */
444
445
            /*
446
             * most of the time D is very small, so we can optimize tmp := D*X+Y
447
             */
448
169k
            if (BN_is_one(D)) {
449
70.9k
                if (!BN_add(tmp, X, Y))
450
0
                    goto err;
451
98.2k
            } else {
452
98.2k
                if (BN_is_word(D, 2)) {
453
30.5k
                    if (!BN_lshift1(tmp, X))
454
0
                        goto err;
455
67.7k
                } else if (BN_is_word(D, 4)) {
456
10.0k
                    if (!BN_lshift(tmp, X, 2))
457
0
                        goto err;
458
57.6k
                } else if (D->top == 1) {
459
57.6k
                    if (!BN_copy(tmp, X))
460
0
                        goto err;
461
57.6k
                    if (!BN_mul_word(tmp, D->d[0]))
462
0
                        goto err;
463
57.6k
                } else {
464
71
                    if (!BN_mul(tmp, D, X, ctx))
465
0
                        goto err;
466
71
                }
467
98.2k
                if (!BN_add(tmp, tmp, Y))
468
0
                    goto err;
469
98.2k
            }
470
471
169k
            M = Y;      /* keep the BIGNUM object, the value does not matter */
472
169k
            Y = X;
473
169k
            X = tmp;
474
169k
            sign = -sign;
475
169k
        }
476
5.26k
    }
477
478
    /*-
479
     * The while loop (Euclid's algorithm) ends when
480
     *      A == gcd(a,n);
481
     * we have
482
     *       sign*Y*a  ==  A  (mod |n|),
483
     * where  Y  is non-negative.
484
     */
485
486
729k
    if (sign < 0) {
487
726k
        if (!BN_sub(Y, n, Y))
488
0
            goto err;
489
726k
    }
490
    /* Now  Y*a  ==  A  (mod |n|).  */
491
492
729k
    if (BN_is_one(A)) {
493
        /* Y*a == 1  (mod |n|) */
494
724k
        if (!Y->neg && BN_ucmp(Y, n) < 0) {
495
193k
            if (!BN_copy(R, Y))
496
0
                goto err;
497
531k
        } else {
498
531k
            if (!BN_nnmod(R, Y, n, ctx))
499
0
                goto err;
500
531k
        }
501
724k
    } else {
502
4.66k
        *pnoinv = 1;
503
4.66k
        goto err;
504
4.66k
    }
505
724k
    ret = R;
506
729k
 err:
507
729k
    if ((ret == NULL) && (in == NULL))
508
0
        BN_free(R);
509
729k
    BN_CTX_end(ctx);
510
729k
    bn_check_top(ret);
511
729k
    return ret;
512
724k
}
513
514
/* solves ax == 1 (mod n) */
515
BIGNUM *BN_mod_inverse(BIGNUM *in,
516
                       const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx)
517
748k
{
518
748k
    BN_CTX *new_ctx = NULL;
519
748k
    BIGNUM *rv;
520
748k
    int noinv = 0;
521
522
748k
    if (ctx == NULL) {
523
0
        ctx = new_ctx = BN_CTX_new_ex(NULL);
524
0
        if (ctx == NULL) {
525
0
            ERR_raise(ERR_LIB_BN, ERR_R_MALLOC_FAILURE);
526
0
            return NULL;
527
0
        }
528
0
    }
529
530
748k
    rv = int_bn_mod_inverse(in, a, n, ctx, &noinv);
531
748k
    if (noinv)
532
748k
        ERR_raise(ERR_LIB_BN, BN_R_NO_INVERSE);
533
748k
    BN_CTX_free(new_ctx);
534
748k
    return rv;
535
748k
}
536
537
/*
538
 * The numbers a and b are coprime if the only positive integer that is a
539
 * divisor of both of them is 1.
540
 * i.e. gcd(a,b) = 1.
541
 *
542
 * Coprimes have the property: b has a multiplicative inverse modulo a
543
 * i.e there is some value x such that bx = 1 (mod a).
544
 *
545
 * Testing the modulo inverse is currently much faster than the constant
546
 * time version of BN_gcd().
547
 */
548
int BN_are_coprime(BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
549
0
{
550
0
    int ret = 0;
551
0
    BIGNUM *tmp;
552
553
0
    BN_CTX_start(ctx);
554
0
    tmp = BN_CTX_get(ctx);
555
0
    if (tmp == NULL)
556
0
        goto end;
557
558
0
    ERR_set_mark();
559
0
    BN_set_flags(a, BN_FLG_CONSTTIME);
560
0
    ret = (BN_mod_inverse(tmp, a, b, ctx) != NULL);
561
    /* Clear any errors (an error is returned if there is no inverse) */
562
0
    ERR_pop_to_mark();
563
0
end:
564
0
    BN_CTX_end(ctx);
565
0
    return ret;
566
0
}
567
568
/*-
569
 * This function is based on the constant-time GCD work by Bernstein and Yang:
570
 * https://eprint.iacr.org/2019/266
571
 * Generalized fast GCD function to allow even inputs.
572
 * The algorithm first finds the shared powers of 2 between
573
 * the inputs, and removes them, reducing at least one of the
574
 * inputs to an odd value. Then it proceeds to calculate the GCD.
575
 * Before returning the resulting GCD, we take care of adding
576
 * back the powers of two removed at the beginning.
577
 * Note 1: we assume the bit length of both inputs is public information,
578
 * since access to top potentially leaks this information.
579
 */
580
int BN_gcd(BIGNUM *r, const BIGNUM *in_a, const BIGNUM *in_b, BN_CTX *ctx)
581
1.04k
{
582
1.04k
    BIGNUM *g, *temp = NULL;
583
1.04k
    BN_ULONG mask = 0;
584
1.04k
    int i, j, top, rlen, glen, m, bit = 1, delta = 1, cond = 0, shifts = 0, ret = 0;
585
586
    /* Note 2: zero input corner cases are not constant-time since they are
587
     * handled immediately. An attacker can run an attack under this
588
     * assumption without the need of side-channel information. */
589
1.04k
    if (BN_is_zero(in_b)) {
590
4
        ret = BN_copy(r, in_a) != NULL;
591
4
        r->neg = 0;
592
4
        return ret;
593
4
    }
594
1.03k
    if (BN_is_zero(in_a)) {
595
7
        ret = BN_copy(r, in_b) != NULL;
596
7
        r->neg = 0;
597
7
        return ret;
598
7
    }
599
600
1.03k
    bn_check_top(in_a);
601
1.03k
    bn_check_top(in_b);
602
603
1.03k
    BN_CTX_start(ctx);
604
1.03k
    temp = BN_CTX_get(ctx);
605
1.03k
    g = BN_CTX_get(ctx);
606
607
    /* make r != 0, g != 0 even, so BN_rshift is not a potential nop */
608
1.03k
    if (g == NULL
609
1.03k
        || !BN_lshift1(g, in_b)
610
1.03k
        || !BN_lshift1(r, in_a))
611
0
        goto err;
612
613
    /* find shared powers of two, i.e. "shifts" >= 1 */
614
35.5k
    for (i = 0; i < r->dmax && i < g->dmax; i++) {
615
34.5k
        mask = ~(r->d[i] | g->d[i]);
616
2.24M
        for (j = 0; j < BN_BITS2; j++) {
617
2.21M
            bit &= mask;
618
2.21M
            shifts += bit;
619
2.21M
            mask >>= 1;
620
2.21M
        }
621
34.5k
    }
622
623
    /* subtract shared powers of two; shifts >= 1 */
624
1.03k
    if (!BN_rshift(r, r, shifts)
625
1.03k
        || !BN_rshift(g, g, shifts))
626
0
        goto err;
627
628
    /* expand to biggest nword, with room for a possible extra word */
629
1.03k
    top = 1 + ((r->top >= g->top) ? r->top : g->top);
630
1.03k
    if (bn_wexpand(r, top) == NULL
631
1.03k
        || bn_wexpand(g, top) == NULL
632
1.03k
        || bn_wexpand(temp, top) == NULL)
633
0
        goto err;
634
635
    /* re arrange inputs s.t. r is odd */
636
1.03k
    BN_consttime_swap((~r->d[0]) & 1, r, g, top);
637
638
    /* compute the number of iterations */
639
1.03k
    rlen = BN_num_bits(r);
640
1.03k
    glen = BN_num_bits(g);
641
1.03k
    m = 4 + 3 * ((rlen >= glen) ? rlen : glen);
642
643
10.7M
    for (i = 0; i < m; i++) {
644
        /* conditionally flip signs if delta is positive and g is odd */
645
10.7M
        cond = ((unsigned int)-delta >> (8 * sizeof(delta) - 1)) & g->d[0] & 1
646
            /* make sure g->top > 0 (i.e. if top == 0 then g == 0 always) */
647
10.7M
            & (~((unsigned int)(g->top - 1) >> (sizeof(g->top) * 8 - 1)));
648
10.7M
        delta = (-cond & -delta) | ((cond - 1) & delta);
649
10.7M
        r->neg ^= cond;
650
        /* swap */
651
10.7M
        BN_consttime_swap(cond, r, g, top);
652
653
        /* elimination step */
654
10.7M
        delta++;
655
10.7M
        if (!BN_add(temp, g, r))
656
0
            goto err;
657
10.7M
        BN_consttime_swap(g->d[0] & 1 /* g is odd */
658
                /* make sure g->top > 0 (i.e. if top == 0 then g == 0 always) */
659
10.7M
                & (~((unsigned int)(g->top - 1) >> (sizeof(g->top) * 8 - 1))),
660
10.7M
                g, temp, top);
661
10.7M
        if (!BN_rshift1(g, g))
662
0
            goto err;
663
10.7M
    }
664
665
    /* remove possible negative sign */
666
1.03k
    r->neg = 0;
667
    /* add powers of 2 removed, then correct the artificial shift */
668
1.03k
    if (!BN_lshift(r, r, shifts)
669
1.03k
        || !BN_rshift1(r, r))
670
0
        goto err;
671
672
1.03k
    ret = 1;
673
674
1.03k
 err:
675
1.03k
    BN_CTX_end(ctx);
676
1.03k
    bn_check_top(r);
677
1.03k
    return ret;
678
1.03k
}