/src/openssl31/crypto/bn/bn_gcd.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright 1995-2023 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * |
4 | | * Licensed under the Apache License 2.0 (the "License"). You may not use |
5 | | * this file except in compliance with the License. You can obtain a copy |
6 | | * in the file LICENSE in the source distribution or at |
7 | | * https://www.openssl.org/source/license.html |
8 | | */ |
9 | | |
10 | | #include "internal/cryptlib.h" |
11 | | #include "bn_local.h" |
12 | | |
13 | | /* |
14 | | * bn_mod_inverse_no_branch is a special version of BN_mod_inverse. It does |
15 | | * not contain branches that may leak sensitive information. |
16 | | * |
17 | | * This is a static function, we ensure all callers in this file pass valid |
18 | | * arguments: all passed pointers here are non-NULL. |
19 | | */ |
20 | | static ossl_inline |
21 | | BIGNUM *bn_mod_inverse_no_branch(BIGNUM *in, |
22 | | const BIGNUM *a, const BIGNUM *n, |
23 | | BN_CTX *ctx, int *pnoinv) |
24 | 27.4k | { |
25 | 27.4k | BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL; |
26 | 27.4k | BIGNUM *ret = NULL; |
27 | 27.4k | int sign; |
28 | | |
29 | 27.4k | bn_check_top(a); |
30 | 27.4k | bn_check_top(n); |
31 | | |
32 | 27.4k | BN_CTX_start(ctx); |
33 | 27.4k | A = BN_CTX_get(ctx); |
34 | 27.4k | B = BN_CTX_get(ctx); |
35 | 27.4k | X = BN_CTX_get(ctx); |
36 | 27.4k | D = BN_CTX_get(ctx); |
37 | 27.4k | M = BN_CTX_get(ctx); |
38 | 27.4k | Y = BN_CTX_get(ctx); |
39 | 27.4k | T = BN_CTX_get(ctx); |
40 | 27.4k | if (T == NULL) |
41 | 0 | goto err; |
42 | | |
43 | 27.4k | if (in == NULL) |
44 | 0 | R = BN_new(); |
45 | 27.4k | else |
46 | 27.4k | R = in; |
47 | 27.4k | if (R == NULL) |
48 | 0 | goto err; |
49 | | |
50 | 27.4k | if (!BN_one(X)) |
51 | 0 | goto err; |
52 | 27.4k | BN_zero(Y); |
53 | 27.4k | if (BN_copy(B, a) == NULL) |
54 | 0 | goto err; |
55 | 27.4k | if (BN_copy(A, n) == NULL) |
56 | 0 | goto err; |
57 | 27.4k | A->neg = 0; |
58 | | |
59 | 27.4k | if (B->neg || (BN_ucmp(B, A) >= 0)) { |
60 | | /* |
61 | | * Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked, |
62 | | * BN_div_no_branch will be called eventually. |
63 | | */ |
64 | 18.3k | { |
65 | 18.3k | BIGNUM local_B; |
66 | 18.3k | bn_init(&local_B); |
67 | 18.3k | BN_with_flags(&local_B, B, BN_FLG_CONSTTIME); |
68 | 18.3k | if (!BN_nnmod(B, &local_B, A, ctx)) |
69 | 0 | goto err; |
70 | | /* Ensure local_B goes out of scope before any further use of B */ |
71 | 18.3k | } |
72 | 18.3k | } |
73 | 27.4k | sign = -1; |
74 | | /*- |
75 | | * From B = a mod |n|, A = |n| it follows that |
76 | | * |
77 | | * 0 <= B < A, |
78 | | * -sign*X*a == B (mod |n|), |
79 | | * sign*Y*a == A (mod |n|). |
80 | | */ |
81 | | |
82 | 10.9M | while (!BN_is_zero(B)) { |
83 | 10.8M | BIGNUM *tmp; |
84 | | |
85 | | /*- |
86 | | * 0 < B < A, |
87 | | * (*) -sign*X*a == B (mod |n|), |
88 | | * sign*Y*a == A (mod |n|) |
89 | | */ |
90 | | |
91 | | /* |
92 | | * Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked, |
93 | | * BN_div_no_branch will be called eventually. |
94 | | */ |
95 | 10.8M | { |
96 | 10.8M | BIGNUM local_A; |
97 | 10.8M | bn_init(&local_A); |
98 | 10.8M | BN_with_flags(&local_A, A, BN_FLG_CONSTTIME); |
99 | | |
100 | | /* (D, M) := (A/B, A%B) ... */ |
101 | 10.8M | if (!BN_div(D, M, &local_A, B, ctx)) |
102 | 0 | goto err; |
103 | | /* Ensure local_A goes out of scope before any further use of A */ |
104 | 10.8M | } |
105 | | |
106 | | /*- |
107 | | * Now |
108 | | * A = D*B + M; |
109 | | * thus we have |
110 | | * (**) sign*Y*a == D*B + M (mod |n|). |
111 | | */ |
112 | | |
113 | 10.8M | tmp = A; /* keep the BIGNUM object, the value does not |
114 | | * matter */ |
115 | | |
116 | | /* (A, B) := (B, A mod B) ... */ |
117 | 10.8M | A = B; |
118 | 10.8M | B = M; |
119 | | /* ... so we have 0 <= B < A again */ |
120 | | |
121 | | /*- |
122 | | * Since the former M is now B and the former B is now A, |
123 | | * (**) translates into |
124 | | * sign*Y*a == D*A + B (mod |n|), |
125 | | * i.e. |
126 | | * sign*Y*a - D*A == B (mod |n|). |
127 | | * Similarly, (*) translates into |
128 | | * -sign*X*a == A (mod |n|). |
129 | | * |
130 | | * Thus, |
131 | | * sign*Y*a + D*sign*X*a == B (mod |n|), |
132 | | * i.e. |
133 | | * sign*(Y + D*X)*a == B (mod |n|). |
134 | | * |
135 | | * So if we set (X, Y, sign) := (Y + D*X, X, -sign), we arrive back at |
136 | | * -sign*X*a == B (mod |n|), |
137 | | * sign*Y*a == A (mod |n|). |
138 | | * Note that X and Y stay non-negative all the time. |
139 | | */ |
140 | | |
141 | 10.8M | if (!BN_mul(tmp, D, X, ctx)) |
142 | 0 | goto err; |
143 | 10.8M | if (!BN_add(tmp, tmp, Y)) |
144 | 0 | goto err; |
145 | | |
146 | 10.8M | M = Y; /* keep the BIGNUM object, the value does not |
147 | | * matter */ |
148 | 10.8M | Y = X; |
149 | 10.8M | X = tmp; |
150 | 10.8M | sign = -sign; |
151 | 10.8M | } |
152 | | |
153 | | /*- |
154 | | * The while loop (Euclid's algorithm) ends when |
155 | | * A == gcd(a,n); |
156 | | * we have |
157 | | * sign*Y*a == A (mod |n|), |
158 | | * where Y is non-negative. |
159 | | */ |
160 | | |
161 | 27.4k | if (sign < 0) { |
162 | 14.4k | if (!BN_sub(Y, n, Y)) |
163 | 0 | goto err; |
164 | 14.4k | } |
165 | | /* Now Y*a == A (mod |n|). */ |
166 | | |
167 | 27.4k | if (BN_is_one(A)) { |
168 | | /* Y*a == 1 (mod |n|) */ |
169 | 27.3k | if (!Y->neg && BN_ucmp(Y, n) < 0) { |
170 | 27.3k | if (!BN_copy(R, Y)) |
171 | 0 | goto err; |
172 | 27.3k | } else { |
173 | 0 | if (!BN_nnmod(R, Y, n, ctx)) |
174 | 0 | goto err; |
175 | 0 | } |
176 | 27.3k | } else { |
177 | 191 | *pnoinv = 1; |
178 | | /* caller sets the BN_R_NO_INVERSE error */ |
179 | 191 | goto err; |
180 | 191 | } |
181 | | |
182 | 27.3k | ret = R; |
183 | 27.3k | *pnoinv = 0; |
184 | | |
185 | 27.4k | err: |
186 | 27.4k | if ((ret == NULL) && (in == NULL)) |
187 | 0 | BN_free(R); |
188 | 27.4k | BN_CTX_end(ctx); |
189 | 27.4k | bn_check_top(ret); |
190 | 27.4k | return ret; |
191 | 27.3k | } |
192 | | |
193 | | /* |
194 | | * This is an internal function, we assume all callers pass valid arguments: |
195 | | * all pointers passed here are assumed non-NULL. |
196 | | */ |
197 | | BIGNUM *int_bn_mod_inverse(BIGNUM *in, |
198 | | const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx, |
199 | | int *pnoinv) |
200 | 757k | { |
201 | 757k | BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL; |
202 | 757k | BIGNUM *ret = NULL; |
203 | 757k | int sign; |
204 | | |
205 | | /* This is invalid input so we don't worry about constant time here */ |
206 | 757k | if (BN_abs_is_word(n, 1) || BN_is_zero(n)) { |
207 | 473 | *pnoinv = 1; |
208 | 473 | return NULL; |
209 | 473 | } |
210 | | |
211 | 757k | *pnoinv = 0; |
212 | | |
213 | 757k | if ((BN_get_flags(a, BN_FLG_CONSTTIME) != 0) |
214 | 757k | || (BN_get_flags(n, BN_FLG_CONSTTIME) != 0)) { |
215 | 27.4k | return bn_mod_inverse_no_branch(in, a, n, ctx, pnoinv); |
216 | 27.4k | } |
217 | | |
218 | 729k | bn_check_top(a); |
219 | 729k | bn_check_top(n); |
220 | | |
221 | 729k | BN_CTX_start(ctx); |
222 | 729k | A = BN_CTX_get(ctx); |
223 | 729k | B = BN_CTX_get(ctx); |
224 | 729k | X = BN_CTX_get(ctx); |
225 | 729k | D = BN_CTX_get(ctx); |
226 | 729k | M = BN_CTX_get(ctx); |
227 | 729k | Y = BN_CTX_get(ctx); |
228 | 729k | T = BN_CTX_get(ctx); |
229 | 729k | if (T == NULL) |
230 | 0 | goto err; |
231 | | |
232 | 729k | if (in == NULL) |
233 | 0 | R = BN_new(); |
234 | 729k | else |
235 | 729k | R = in; |
236 | 729k | if (R == NULL) |
237 | 0 | goto err; |
238 | | |
239 | 729k | if (!BN_one(X)) |
240 | 0 | goto err; |
241 | 729k | BN_zero(Y); |
242 | 729k | if (BN_copy(B, a) == NULL) |
243 | 0 | goto err; |
244 | 729k | if (BN_copy(A, n) == NULL) |
245 | 0 | goto err; |
246 | 729k | A->neg = 0; |
247 | 729k | if (B->neg || (BN_ucmp(B, A) >= 0)) { |
248 | 728k | if (!BN_nnmod(B, B, A, ctx)) |
249 | 0 | goto err; |
250 | 728k | } |
251 | 729k | sign = -1; |
252 | | /*- |
253 | | * From B = a mod |n|, A = |n| it follows that |
254 | | * |
255 | | * 0 <= B < A, |
256 | | * -sign*X*a == B (mod |n|), |
257 | | * sign*Y*a == A (mod |n|). |
258 | | */ |
259 | | |
260 | 729k | if (BN_is_odd(n) && (BN_num_bits(n) <= 2048)) { |
261 | | /* |
262 | | * Binary inversion algorithm; requires odd modulus. This is faster |
263 | | * than the general algorithm if the modulus is sufficiently small |
264 | | * (about 400 .. 500 bits on 32-bit systems, but much more on 64-bit |
265 | | * systems) |
266 | | */ |
267 | 724k | int shift; |
268 | | |
269 | 44.5M | while (!BN_is_zero(B)) { |
270 | | /*- |
271 | | * 0 < B < |n|, |
272 | | * 0 < A <= |n|, |
273 | | * (1) -sign*X*a == B (mod |n|), |
274 | | * (2) sign*Y*a == A (mod |n|) |
275 | | */ |
276 | | |
277 | | /* |
278 | | * Now divide B by the maximum possible power of two in the |
279 | | * integers, and divide X by the same value mod |n|. When we're |
280 | | * done, (1) still holds. |
281 | | */ |
282 | 43.8M | shift = 0; |
283 | 60.0M | while (!BN_is_bit_set(B, shift)) { /* note that 0 < B */ |
284 | 16.1M | shift++; |
285 | | |
286 | 16.1M | if (BN_is_odd(X)) { |
287 | 8.16M | if (!BN_uadd(X, X, n)) |
288 | 0 | goto err; |
289 | 8.16M | } |
290 | | /* |
291 | | * now X is even, so we can easily divide it by two |
292 | | */ |
293 | 16.1M | if (!BN_rshift1(X, X)) |
294 | 0 | goto err; |
295 | 16.1M | } |
296 | 43.8M | if (shift > 0) { |
297 | 15.1M | if (!BN_rshift(B, B, shift)) |
298 | 0 | goto err; |
299 | 15.1M | } |
300 | | |
301 | | /* |
302 | | * Same for A and Y. Afterwards, (2) still holds. |
303 | | */ |
304 | 43.8M | shift = 0; |
305 | 72.5M | while (!BN_is_bit_set(A, shift)) { /* note that 0 < A */ |
306 | 28.7M | shift++; |
307 | | |
308 | 28.7M | if (BN_is_odd(Y)) { |
309 | 18.8M | if (!BN_uadd(Y, Y, n)) |
310 | 0 | goto err; |
311 | 18.8M | } |
312 | | /* now Y is even */ |
313 | 28.7M | if (!BN_rshift1(Y, Y)) |
314 | 0 | goto err; |
315 | 28.7M | } |
316 | 43.8M | if (shift > 0) { |
317 | 28.1M | if (!BN_rshift(A, A, shift)) |
318 | 0 | goto err; |
319 | 28.1M | } |
320 | | |
321 | | /*- |
322 | | * We still have (1) and (2). |
323 | | * Both A and B are odd. |
324 | | * The following computations ensure that |
325 | | * |
326 | | * 0 <= B < |n|, |
327 | | * 0 < A < |n|, |
328 | | * (1) -sign*X*a == B (mod |n|), |
329 | | * (2) sign*Y*a == A (mod |n|), |
330 | | * |
331 | | * and that either A or B is even in the next iteration. |
332 | | */ |
333 | 43.8M | if (BN_ucmp(B, A) >= 0) { |
334 | | /* -sign*(X + Y)*a == B - A (mod |n|) */ |
335 | 15.6M | if (!BN_uadd(X, X, Y)) |
336 | 0 | goto err; |
337 | | /* |
338 | | * NB: we could use BN_mod_add_quick(X, X, Y, n), but that |
339 | | * actually makes the algorithm slower |
340 | | */ |
341 | 15.6M | if (!BN_usub(B, B, A)) |
342 | 0 | goto err; |
343 | 28.1M | } else { |
344 | | /* sign*(X + Y)*a == A - B (mod |n|) */ |
345 | 28.1M | if (!BN_uadd(Y, Y, X)) |
346 | 0 | goto err; |
347 | | /* |
348 | | * as above, BN_mod_add_quick(Y, Y, X, n) would slow things down |
349 | | */ |
350 | 28.1M | if (!BN_usub(A, A, B)) |
351 | 0 | goto err; |
352 | 28.1M | } |
353 | 43.8M | } |
354 | 724k | } else { |
355 | | /* general inversion algorithm */ |
356 | | |
357 | 174k | while (!BN_is_zero(B)) { |
358 | 169k | BIGNUM *tmp; |
359 | | |
360 | | /*- |
361 | | * 0 < B < A, |
362 | | * (*) -sign*X*a == B (mod |n|), |
363 | | * sign*Y*a == A (mod |n|) |
364 | | */ |
365 | | |
366 | | /* (D, M) := (A/B, A%B) ... */ |
367 | 169k | if (BN_num_bits(A) == BN_num_bits(B)) { |
368 | 35.0k | if (!BN_one(D)) |
369 | 0 | goto err; |
370 | 35.0k | if (!BN_sub(M, A, B)) |
371 | 0 | goto err; |
372 | 134k | } else if (BN_num_bits(A) == BN_num_bits(B) + 1) { |
373 | | /* A/B is 1, 2, or 3 */ |
374 | 63.2k | if (!BN_lshift1(T, B)) |
375 | 0 | goto err; |
376 | 63.2k | if (BN_ucmp(A, T) < 0) { |
377 | | /* A < 2*B, so D=1 */ |
378 | 35.9k | if (!BN_one(D)) |
379 | 0 | goto err; |
380 | 35.9k | if (!BN_sub(M, A, B)) |
381 | 0 | goto err; |
382 | 35.9k | } else { |
383 | | /* A >= 2*B, so D=2 or D=3 */ |
384 | 27.2k | if (!BN_sub(M, A, T)) |
385 | 0 | goto err; |
386 | 27.2k | if (!BN_add(D, T, B)) |
387 | 0 | goto err; /* use D (:= 3*B) as temp */ |
388 | 27.2k | if (BN_ucmp(A, D) < 0) { |
389 | | /* A < 3*B, so D=2 */ |
390 | 21.7k | if (!BN_set_word(D, 2)) |
391 | 0 | goto err; |
392 | | /* |
393 | | * M (= A - 2*B) already has the correct value |
394 | | */ |
395 | 21.7k | } else { |
396 | | /* only D=3 remains */ |
397 | 5.52k | if (!BN_set_word(D, 3)) |
398 | 0 | goto err; |
399 | | /* |
400 | | * currently M = A - 2*B, but we need M = A - 3*B |
401 | | */ |
402 | 5.52k | if (!BN_sub(M, M, B)) |
403 | 0 | goto err; |
404 | 5.52k | } |
405 | 27.2k | } |
406 | 70.9k | } else { |
407 | 70.9k | if (!BN_div(D, M, A, B, ctx)) |
408 | 0 | goto err; |
409 | 70.9k | } |
410 | | |
411 | | /*- |
412 | | * Now |
413 | | * A = D*B + M; |
414 | | * thus we have |
415 | | * (**) sign*Y*a == D*B + M (mod |n|). |
416 | | */ |
417 | | |
418 | 169k | tmp = A; /* keep the BIGNUM object, the value does not matter */ |
419 | | |
420 | | /* (A, B) := (B, A mod B) ... */ |
421 | 169k | A = B; |
422 | 169k | B = M; |
423 | | /* ... so we have 0 <= B < A again */ |
424 | | |
425 | | /*- |
426 | | * Since the former M is now B and the former B is now A, |
427 | | * (**) translates into |
428 | | * sign*Y*a == D*A + B (mod |n|), |
429 | | * i.e. |
430 | | * sign*Y*a - D*A == B (mod |n|). |
431 | | * Similarly, (*) translates into |
432 | | * -sign*X*a == A (mod |n|). |
433 | | * |
434 | | * Thus, |
435 | | * sign*Y*a + D*sign*X*a == B (mod |n|), |
436 | | * i.e. |
437 | | * sign*(Y + D*X)*a == B (mod |n|). |
438 | | * |
439 | | * So if we set (X, Y, sign) := (Y + D*X, X, -sign), we arrive back at |
440 | | * -sign*X*a == B (mod |n|), |
441 | | * sign*Y*a == A (mod |n|). |
442 | | * Note that X and Y stay non-negative all the time. |
443 | | */ |
444 | | |
445 | | /* |
446 | | * most of the time D is very small, so we can optimize tmp := D*X+Y |
447 | | */ |
448 | 169k | if (BN_is_one(D)) { |
449 | 70.9k | if (!BN_add(tmp, X, Y)) |
450 | 0 | goto err; |
451 | 98.2k | } else { |
452 | 98.2k | if (BN_is_word(D, 2)) { |
453 | 30.5k | if (!BN_lshift1(tmp, X)) |
454 | 0 | goto err; |
455 | 67.7k | } else if (BN_is_word(D, 4)) { |
456 | 10.0k | if (!BN_lshift(tmp, X, 2)) |
457 | 0 | goto err; |
458 | 57.6k | } else if (D->top == 1) { |
459 | 57.6k | if (!BN_copy(tmp, X)) |
460 | 0 | goto err; |
461 | 57.6k | if (!BN_mul_word(tmp, D->d[0])) |
462 | 0 | goto err; |
463 | 57.6k | } else { |
464 | 71 | if (!BN_mul(tmp, D, X, ctx)) |
465 | 0 | goto err; |
466 | 71 | } |
467 | 98.2k | if (!BN_add(tmp, tmp, Y)) |
468 | 0 | goto err; |
469 | 98.2k | } |
470 | | |
471 | 169k | M = Y; /* keep the BIGNUM object, the value does not matter */ |
472 | 169k | Y = X; |
473 | 169k | X = tmp; |
474 | 169k | sign = -sign; |
475 | 169k | } |
476 | 5.26k | } |
477 | | |
478 | | /*- |
479 | | * The while loop (Euclid's algorithm) ends when |
480 | | * A == gcd(a,n); |
481 | | * we have |
482 | | * sign*Y*a == A (mod |n|), |
483 | | * where Y is non-negative. |
484 | | */ |
485 | | |
486 | 729k | if (sign < 0) { |
487 | 726k | if (!BN_sub(Y, n, Y)) |
488 | 0 | goto err; |
489 | 726k | } |
490 | | /* Now Y*a == A (mod |n|). */ |
491 | | |
492 | 729k | if (BN_is_one(A)) { |
493 | | /* Y*a == 1 (mod |n|) */ |
494 | 724k | if (!Y->neg && BN_ucmp(Y, n) < 0) { |
495 | 193k | if (!BN_copy(R, Y)) |
496 | 0 | goto err; |
497 | 531k | } else { |
498 | 531k | if (!BN_nnmod(R, Y, n, ctx)) |
499 | 0 | goto err; |
500 | 531k | } |
501 | 724k | } else { |
502 | 4.66k | *pnoinv = 1; |
503 | 4.66k | goto err; |
504 | 4.66k | } |
505 | 724k | ret = R; |
506 | 729k | err: |
507 | 729k | if ((ret == NULL) && (in == NULL)) |
508 | 0 | BN_free(R); |
509 | 729k | BN_CTX_end(ctx); |
510 | 729k | bn_check_top(ret); |
511 | 729k | return ret; |
512 | 724k | } |
513 | | |
514 | | /* solves ax == 1 (mod n) */ |
515 | | BIGNUM *BN_mod_inverse(BIGNUM *in, |
516 | | const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx) |
517 | 748k | { |
518 | 748k | BN_CTX *new_ctx = NULL; |
519 | 748k | BIGNUM *rv; |
520 | 748k | int noinv = 0; |
521 | | |
522 | 748k | if (ctx == NULL) { |
523 | 0 | ctx = new_ctx = BN_CTX_new_ex(NULL); |
524 | 0 | if (ctx == NULL) { |
525 | 0 | ERR_raise(ERR_LIB_BN, ERR_R_MALLOC_FAILURE); |
526 | 0 | return NULL; |
527 | 0 | } |
528 | 0 | } |
529 | | |
530 | 748k | rv = int_bn_mod_inverse(in, a, n, ctx, &noinv); |
531 | 748k | if (noinv) |
532 | 748k | ERR_raise(ERR_LIB_BN, BN_R_NO_INVERSE); |
533 | 748k | BN_CTX_free(new_ctx); |
534 | 748k | return rv; |
535 | 748k | } |
536 | | |
537 | | /* |
538 | | * The numbers a and b are coprime if the only positive integer that is a |
539 | | * divisor of both of them is 1. |
540 | | * i.e. gcd(a,b) = 1. |
541 | | * |
542 | | * Coprimes have the property: b has a multiplicative inverse modulo a |
543 | | * i.e there is some value x such that bx = 1 (mod a). |
544 | | * |
545 | | * Testing the modulo inverse is currently much faster than the constant |
546 | | * time version of BN_gcd(). |
547 | | */ |
548 | | int BN_are_coprime(BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) |
549 | 0 | { |
550 | 0 | int ret = 0; |
551 | 0 | BIGNUM *tmp; |
552 | |
|
553 | 0 | BN_CTX_start(ctx); |
554 | 0 | tmp = BN_CTX_get(ctx); |
555 | 0 | if (tmp == NULL) |
556 | 0 | goto end; |
557 | | |
558 | 0 | ERR_set_mark(); |
559 | 0 | BN_set_flags(a, BN_FLG_CONSTTIME); |
560 | 0 | ret = (BN_mod_inverse(tmp, a, b, ctx) != NULL); |
561 | | /* Clear any errors (an error is returned if there is no inverse) */ |
562 | 0 | ERR_pop_to_mark(); |
563 | 0 | end: |
564 | 0 | BN_CTX_end(ctx); |
565 | 0 | return ret; |
566 | 0 | } |
567 | | |
568 | | /*- |
569 | | * This function is based on the constant-time GCD work by Bernstein and Yang: |
570 | | * https://eprint.iacr.org/2019/266 |
571 | | * Generalized fast GCD function to allow even inputs. |
572 | | * The algorithm first finds the shared powers of 2 between |
573 | | * the inputs, and removes them, reducing at least one of the |
574 | | * inputs to an odd value. Then it proceeds to calculate the GCD. |
575 | | * Before returning the resulting GCD, we take care of adding |
576 | | * back the powers of two removed at the beginning. |
577 | | * Note 1: we assume the bit length of both inputs is public information, |
578 | | * since access to top potentially leaks this information. |
579 | | */ |
580 | | int BN_gcd(BIGNUM *r, const BIGNUM *in_a, const BIGNUM *in_b, BN_CTX *ctx) |
581 | 1.04k | { |
582 | 1.04k | BIGNUM *g, *temp = NULL; |
583 | 1.04k | BN_ULONG mask = 0; |
584 | 1.04k | int i, j, top, rlen, glen, m, bit = 1, delta = 1, cond = 0, shifts = 0, ret = 0; |
585 | | |
586 | | /* Note 2: zero input corner cases are not constant-time since they are |
587 | | * handled immediately. An attacker can run an attack under this |
588 | | * assumption without the need of side-channel information. */ |
589 | 1.04k | if (BN_is_zero(in_b)) { |
590 | 4 | ret = BN_copy(r, in_a) != NULL; |
591 | 4 | r->neg = 0; |
592 | 4 | return ret; |
593 | 4 | } |
594 | 1.03k | if (BN_is_zero(in_a)) { |
595 | 7 | ret = BN_copy(r, in_b) != NULL; |
596 | 7 | r->neg = 0; |
597 | 7 | return ret; |
598 | 7 | } |
599 | | |
600 | 1.03k | bn_check_top(in_a); |
601 | 1.03k | bn_check_top(in_b); |
602 | | |
603 | 1.03k | BN_CTX_start(ctx); |
604 | 1.03k | temp = BN_CTX_get(ctx); |
605 | 1.03k | g = BN_CTX_get(ctx); |
606 | | |
607 | | /* make r != 0, g != 0 even, so BN_rshift is not a potential nop */ |
608 | 1.03k | if (g == NULL |
609 | 1.03k | || !BN_lshift1(g, in_b) |
610 | 1.03k | || !BN_lshift1(r, in_a)) |
611 | 0 | goto err; |
612 | | |
613 | | /* find shared powers of two, i.e. "shifts" >= 1 */ |
614 | 35.5k | for (i = 0; i < r->dmax && i < g->dmax; i++) { |
615 | 34.5k | mask = ~(r->d[i] | g->d[i]); |
616 | 2.24M | for (j = 0; j < BN_BITS2; j++) { |
617 | 2.21M | bit &= mask; |
618 | 2.21M | shifts += bit; |
619 | 2.21M | mask >>= 1; |
620 | 2.21M | } |
621 | 34.5k | } |
622 | | |
623 | | /* subtract shared powers of two; shifts >= 1 */ |
624 | 1.03k | if (!BN_rshift(r, r, shifts) |
625 | 1.03k | || !BN_rshift(g, g, shifts)) |
626 | 0 | goto err; |
627 | | |
628 | | /* expand to biggest nword, with room for a possible extra word */ |
629 | 1.03k | top = 1 + ((r->top >= g->top) ? r->top : g->top); |
630 | 1.03k | if (bn_wexpand(r, top) == NULL |
631 | 1.03k | || bn_wexpand(g, top) == NULL |
632 | 1.03k | || bn_wexpand(temp, top) == NULL) |
633 | 0 | goto err; |
634 | | |
635 | | /* re arrange inputs s.t. r is odd */ |
636 | 1.03k | BN_consttime_swap((~r->d[0]) & 1, r, g, top); |
637 | | |
638 | | /* compute the number of iterations */ |
639 | 1.03k | rlen = BN_num_bits(r); |
640 | 1.03k | glen = BN_num_bits(g); |
641 | 1.03k | m = 4 + 3 * ((rlen >= glen) ? rlen : glen); |
642 | | |
643 | 10.7M | for (i = 0; i < m; i++) { |
644 | | /* conditionally flip signs if delta is positive and g is odd */ |
645 | 10.7M | cond = ((unsigned int)-delta >> (8 * sizeof(delta) - 1)) & g->d[0] & 1 |
646 | | /* make sure g->top > 0 (i.e. if top == 0 then g == 0 always) */ |
647 | 10.7M | & (~((unsigned int)(g->top - 1) >> (sizeof(g->top) * 8 - 1))); |
648 | 10.7M | delta = (-cond & -delta) | ((cond - 1) & delta); |
649 | 10.7M | r->neg ^= cond; |
650 | | /* swap */ |
651 | 10.7M | BN_consttime_swap(cond, r, g, top); |
652 | | |
653 | | /* elimination step */ |
654 | 10.7M | delta++; |
655 | 10.7M | if (!BN_add(temp, g, r)) |
656 | 0 | goto err; |
657 | 10.7M | BN_consttime_swap(g->d[0] & 1 /* g is odd */ |
658 | | /* make sure g->top > 0 (i.e. if top == 0 then g == 0 always) */ |
659 | 10.7M | & (~((unsigned int)(g->top - 1) >> (sizeof(g->top) * 8 - 1))), |
660 | 10.7M | g, temp, top); |
661 | 10.7M | if (!BN_rshift1(g, g)) |
662 | 0 | goto err; |
663 | 10.7M | } |
664 | | |
665 | | /* remove possible negative sign */ |
666 | 1.03k | r->neg = 0; |
667 | | /* add powers of 2 removed, then correct the artificial shift */ |
668 | 1.03k | if (!BN_lshift(r, r, shifts) |
669 | 1.03k | || !BN_rshift1(r, r)) |
670 | 0 | goto err; |
671 | | |
672 | 1.03k | ret = 1; |
673 | | |
674 | 1.03k | err: |
675 | 1.03k | BN_CTX_end(ctx); |
676 | 1.03k | bn_check_top(r); |
677 | 1.03k | return ret; |
678 | 1.03k | } |