/src/openssl31/crypto/bn/bn_rsa_fips186_4.c
Line  | Count  | Source (jump to first uncovered line)  | 
1  |  | /*  | 
2  |  |  * Copyright 2018-2023 The OpenSSL Project Authors. All Rights Reserved.  | 
3  |  |  * Copyright (c) 2018-2019, Oracle and/or its affiliates.  All rights reserved.  | 
4  |  |  *  | 
5  |  |  * Licensed under the Apache License 2.0 (the "License").  You may not use  | 
6  |  |  * this file except in compliance with the License.  You can obtain a copy  | 
7  |  |  * in the file LICENSE in the source distribution or at  | 
8  |  |  * https://www.openssl.org/source/license.html  | 
9  |  |  */  | 
10  |  |  | 
11  |  | /*  | 
12  |  |  * According to NIST SP800-131A "Transitioning the use of cryptographic  | 
13  |  |  * algorithms and key lengths" Generation of 1024 bit RSA keys are no longer  | 
14  |  |  * allowed for signatures (Table 2) or key transport (Table 5). In the code  | 
15  |  |  * below any attempt to generate 1024 bit RSA keys will result in an error (Note  | 
16  |  |  * that digital signature verification can still use deprecated 1024 bit keys).  | 
17  |  |  *  | 
18  |  |  * FIPS 186-4 relies on the use of the auxiliary primes p1, p2, q1 and q2 that  | 
19  |  |  * must be generated before the module generates the RSA primes p and q.  | 
20  |  |  * Table B.1 in FIPS 186-4 specifies RSA modulus lengths of 2048 and  | 
21  |  |  * 3072 bits only, the min/max total length of the auxiliary primes.  | 
22  |  |  * FIPS 186-5 Table A.1 includes an additional entry for 4096 which has been  | 
23  |  |  * included here.  | 
24  |  |  */  | 
25  |  | #include <stdio.h>  | 
26  |  | #include <openssl/bn.h>  | 
27  |  | #include "bn_local.h"  | 
28  |  | #include "crypto/bn.h"  | 
29  |  | #include "internal/nelem.h"  | 
30  |  |  | 
31  |  | #if BN_BITS2 == 64  | 
32  |  | # define BN_DEF(lo, hi) (BN_ULONG)hi<<32|lo  | 
33  |  | #else  | 
34  |  | # define BN_DEF(lo, hi) lo, hi  | 
35  |  | #endif  | 
36  |  |  | 
37  |  | /* 1 / sqrt(2) * 2^256, rounded up */  | 
38  |  | static const BN_ULONG inv_sqrt_2_val[] = { | 
39  |  |     BN_DEF(0x83339916UL, 0xED17AC85UL), BN_DEF(0x893BA84CUL, 0x1D6F60BAUL),  | 
40  |  |     BN_DEF(0x754ABE9FUL, 0x597D89B3UL), BN_DEF(0xF9DE6484UL, 0xB504F333UL)  | 
41  |  | };  | 
42  |  |  | 
43  |  | const BIGNUM ossl_bn_inv_sqrt_2 = { | 
44  |  |     (BN_ULONG *)inv_sqrt_2_val,  | 
45  |  |     OSSL_NELEM(inv_sqrt_2_val),  | 
46  |  |     OSSL_NELEM(inv_sqrt_2_val),  | 
47  |  |     0,  | 
48  |  |     BN_FLG_STATIC_DATA  | 
49  |  | };  | 
50  |  |  | 
51  |  | /*  | 
52  |  |  * Refer to FIPS 186-5 Table B.1 for minimum rounds of Miller Rabin  | 
53  |  |  * required for generation of RSA aux primes (p1, p2, q1 and q2).  | 
54  |  |  */  | 
55  |  | static int bn_rsa_fips186_5_aux_prime_MR_rounds(int nbits)  | 
56  | 0  | { | 
57  | 0  |     if (nbits >= 4096)  | 
58  | 0  |         return 44;  | 
59  | 0  |     if (nbits >= 3072)  | 
60  | 0  |         return 41;  | 
61  | 0  |     if (nbits >= 2048)  | 
62  | 0  |         return 38;  | 
63  | 0  |     return 0; /* Error */  | 
64  | 0  | }  | 
65  |  |  | 
66  |  | /*  | 
67  |  |  * Refer to FIPS 186-5 Table B.1 for minimum rounds of Miller Rabin  | 
68  |  |  * required for generation of RSA primes (p and q)  | 
69  |  |  */  | 
70  |  | static int bn_rsa_fips186_5_prime_MR_rounds(int nbits)  | 
71  | 0  | { | 
72  | 0  |     if (nbits >= 3072)  | 
73  | 0  |         return 4;  | 
74  | 0  |     if (nbits >= 2048)  | 
75  | 0  |         return 5;  | 
76  | 0  |     return 0; /* Error */  | 
77  | 0  | }  | 
78  |  |  | 
79  |  | /*  | 
80  |  |  * FIPS 186-5 Table A.1. "Min length of auxiliary primes p1, p2, q1, q2".  | 
81  |  |  * (FIPS 186-5 has an entry for >= 4096 bits).  | 
82  |  |  *  | 
83  |  |  * Params:  | 
84  |  |  *     nbits The key size in bits.  | 
85  |  |  * Returns:  | 
86  |  |  *     The minimum size of the auxiliary primes or 0 if nbits is invalid.  | 
87  |  |  */  | 
88  |  | static int bn_rsa_fips186_5_aux_prime_min_size(int nbits)  | 
89  | 0  | { | 
90  | 0  |     if (nbits >= 4096)  | 
91  | 0  |         return 201;  | 
92  | 0  |     if (nbits >= 3072)  | 
93  | 0  |         return 171;  | 
94  | 0  |     if (nbits >= 2048)  | 
95  | 0  |         return 141;  | 
96  | 0  |     return 0;  | 
97  | 0  | }  | 
98  |  |  | 
99  |  | /*  | 
100  |  |  * FIPS 186-5 Table A.1 "Max of len(p1) + len(p2) and  | 
101  |  |  * len(q1) + len(q2) for p,q Probable Primes".  | 
102  |  |  * (FIPS 186-5 has an entry for >= 4096 bits).  | 
103  |  |  * Params:  | 
104  |  |  *     nbits The key size in bits.  | 
105  |  |  * Returns:  | 
106  |  |  *     The maximum length or 0 if nbits is invalid.  | 
107  |  |  */  | 
108  |  | static int bn_rsa_fips186_5_aux_prime_max_sum_size_for_prob_primes(int nbits)  | 
109  | 0  | { | 
110  | 0  |     if (nbits >= 4096)  | 
111  | 0  |         return 2030;  | 
112  | 0  |     if (nbits >= 3072)  | 
113  | 0  |         return 1518;  | 
114  | 0  |     if (nbits >= 2048)  | 
115  | 0  |         return 1007;  | 
116  | 0  |     return 0;  | 
117  | 0  | }  | 
118  |  |  | 
119  |  | /*  | 
120  |  |  * Find the first odd integer that is a probable prime.  | 
121  |  |  *  | 
122  |  |  * See section FIPS 186-4 B.3.6 (Steps 4.2/5.2).  | 
123  |  |  *  | 
124  |  |  * Params:  | 
125  |  |  *     Xp1 The passed in starting point to find a probably prime.  | 
126  |  |  *     p1 The returned probable prime (first odd integer >= Xp1)  | 
127  |  |  *     ctx A BN_CTX object.  | 
128  |  |  *     rounds The number of Miller Rabin rounds  | 
129  |  |  *     cb An optional BIGNUM callback.  | 
130  |  |  * Returns: 1 on success otherwise it returns 0.  | 
131  |  |  */  | 
132  |  | static int bn_rsa_fips186_4_find_aux_prob_prime(const BIGNUM *Xp1,  | 
133  |  |                                                 BIGNUM *p1, BN_CTX *ctx,  | 
134  |  |                                                 int rounds,  | 
135  |  |                                                 BN_GENCB *cb)  | 
136  | 0  | { | 
137  | 0  |     int ret = 0;  | 
138  | 0  |     int i = 0;  | 
139  | 0  |     int tmp = 0;  | 
140  |  | 
  | 
141  | 0  |     if (BN_copy(p1, Xp1) == NULL)  | 
142  | 0  |         return 0;  | 
143  | 0  |     BN_set_flags(p1, BN_FLG_CONSTTIME);  | 
144  |  |  | 
145  |  |     /* Find the first odd number >= Xp1 that is probably prime */  | 
146  | 0  |     for(;;) { | 
147  | 0  |         i++;  | 
148  | 0  |         BN_GENCB_call(cb, 0, i);  | 
149  |  |         /* MR test with trial division */  | 
150  | 0  |         tmp = ossl_bn_check_generated_prime(p1, rounds, ctx, cb);  | 
151  | 0  |         if (tmp > 0)  | 
152  | 0  |             break;  | 
153  | 0  |         if (tmp < 0)  | 
154  | 0  |             goto err;  | 
155  |  |         /* Get next odd number */  | 
156  | 0  |         if (!BN_add_word(p1, 2))  | 
157  | 0  |             goto err;  | 
158  | 0  |     }  | 
159  | 0  |     BN_GENCB_call(cb, 2, i);  | 
160  | 0  |     ret = 1;  | 
161  | 0  | err:  | 
162  | 0  |     return ret;  | 
163  | 0  | }  | 
164  |  |  | 
165  |  | /*  | 
166  |  |  * Generate a probable prime (p or q).  | 
167  |  |  *  | 
168  |  |  * See FIPS 186-4 B.3.6 (Steps 4 & 5)  | 
169  |  |  *  | 
170  |  |  * Params:  | 
171  |  |  *     p The returned probable prime.  | 
172  |  |  *     Xpout An optionally returned random number used during generation of p.  | 
173  |  |  *     p1, p2 The returned auxiliary primes. If NULL they are not returned.  | 
174  |  |  *     Xp An optional passed in value (that is random number used during  | 
175  |  |  *        generation of p).  | 
176  |  |  *     Xp1, Xp2 Optional passed in values that are normally generated  | 
177  |  |  *              internally. Used to find p1, p2.  | 
178  |  |  *     nlen The bit length of the modulus (the key size).  | 
179  |  |  *     e The public exponent.  | 
180  |  |  *     ctx A BN_CTX object.  | 
181  |  |  *     cb An optional BIGNUM callback.  | 
182  |  |  * Returns: 1 on success otherwise it returns 0.  | 
183  |  |  */  | 
184  |  | int ossl_bn_rsa_fips186_4_gen_prob_primes(BIGNUM *p, BIGNUM *Xpout,  | 
185  |  |                                           BIGNUM *p1, BIGNUM *p2,  | 
186  |  |                                           const BIGNUM *Xp, const BIGNUM *Xp1,  | 
187  |  |                                           const BIGNUM *Xp2, int nlen,  | 
188  |  |                                           const BIGNUM *e, BN_CTX *ctx,  | 
189  |  |                                           BN_GENCB *cb)  | 
190  | 0  | { | 
191  | 0  |     int ret = 0;  | 
192  | 0  |     BIGNUM *p1i = NULL, *p2i = NULL, *Xp1i = NULL, *Xp2i = NULL;  | 
193  | 0  |     int bitlen, rounds;  | 
194  |  | 
  | 
195  | 0  |     if (p == NULL || Xpout == NULL)  | 
196  | 0  |         return 0;  | 
197  |  |  | 
198  | 0  |     BN_CTX_start(ctx);  | 
199  |  | 
  | 
200  | 0  |     p1i = (p1 != NULL) ? p1 : BN_CTX_get(ctx);  | 
201  | 0  |     p2i = (p2 != NULL) ? p2 : BN_CTX_get(ctx);  | 
202  | 0  |     Xp1i = (Xp1 != NULL) ? (BIGNUM *)Xp1 : BN_CTX_get(ctx);  | 
203  | 0  |     Xp2i = (Xp2 != NULL) ? (BIGNUM *)Xp2 : BN_CTX_get(ctx);  | 
204  | 0  |     if (p1i == NULL || p2i == NULL || Xp1i == NULL || Xp2i == NULL)  | 
205  | 0  |         goto err;  | 
206  |  |  | 
207  | 0  |     bitlen = bn_rsa_fips186_5_aux_prime_min_size(nlen);  | 
208  | 0  |     if (bitlen == 0)  | 
209  | 0  |         goto err;  | 
210  | 0  |     rounds = bn_rsa_fips186_5_aux_prime_MR_rounds(nlen);  | 
211  |  |  | 
212  |  |     /* (Steps 4.1/5.1): Randomly generate Xp1 if it is not passed in */  | 
213  | 0  |     if (Xp1 == NULL) { | 
214  |  |         /* Set the top and bottom bits to make it odd and the correct size */  | 
215  | 0  |         if (!BN_priv_rand_ex(Xp1i, bitlen, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD,  | 
216  | 0  |                              0, ctx))  | 
217  | 0  |             goto err;  | 
218  | 0  |     }  | 
219  |  |     /* (Steps 4.1/5.1): Randomly generate Xp2 if it is not passed in */  | 
220  | 0  |     if (Xp2 == NULL) { | 
221  |  |         /* Set the top and bottom bits to make it odd and the correct size */  | 
222  | 0  |         if (!BN_priv_rand_ex(Xp2i, bitlen, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD,  | 
223  | 0  |                              0, ctx))  | 
224  | 0  |             goto err;  | 
225  | 0  |     }  | 
226  |  |  | 
227  |  |     /* (Steps 4.2/5.2) - find first auxiliary probable primes */  | 
228  | 0  |     if (!bn_rsa_fips186_4_find_aux_prob_prime(Xp1i, p1i, ctx, rounds, cb)  | 
229  | 0  |             || !bn_rsa_fips186_4_find_aux_prob_prime(Xp2i, p2i, ctx, rounds, cb))  | 
230  | 0  |         goto err;  | 
231  |  |     /* (Table B.1) auxiliary prime Max length check */  | 
232  | 0  |     if ((BN_num_bits(p1i) + BN_num_bits(p2i)) >=  | 
233  | 0  |             bn_rsa_fips186_5_aux_prime_max_sum_size_for_prob_primes(nlen))  | 
234  | 0  |         goto err;  | 
235  |  |     /* (Steps 4.3/5.3) - generate prime */  | 
236  | 0  |     if (!ossl_bn_rsa_fips186_4_derive_prime(p, Xpout, Xp, p1i, p2i, nlen, e,  | 
237  | 0  |                                             ctx, cb))  | 
238  | 0  |         goto err;  | 
239  | 0  |     ret = 1;  | 
240  | 0  | err:  | 
241  |  |     /* Zeroize any internally generated values that are not returned */  | 
242  | 0  |     if (p1 == NULL)  | 
243  | 0  |         BN_clear(p1i);  | 
244  | 0  |     if (p2 == NULL)  | 
245  | 0  |         BN_clear(p2i);  | 
246  | 0  |     if (Xp1 == NULL)  | 
247  | 0  |         BN_clear(Xp1i);  | 
248  | 0  |     if (Xp2 == NULL)  | 
249  | 0  |         BN_clear(Xp2i);  | 
250  | 0  |     BN_CTX_end(ctx);  | 
251  | 0  |     return ret;  | 
252  | 0  | }  | 
253  |  |  | 
254  |  | /*  | 
255  |  |  * Constructs a probable prime (a candidate for p or q) using 2 auxiliary  | 
256  |  |  * prime numbers and the Chinese Remainder Theorem.  | 
257  |  |  *  | 
258  |  |  * See FIPS 186-4 C.9 "Compute a Probable Prime Factor Based on Auxiliary  | 
259  |  |  * Primes". Used by FIPS 186-4 B.3.6 Section (4.3) for p and Section (5.3) for q.  | 
260  |  |  *  | 
261  |  |  * Params:  | 
262  |  |  *     Y The returned prime factor (private_prime_factor) of the modulus n.  | 
263  |  |  *     X The returned random number used during generation of the prime factor.  | 
264  |  |  *     Xin An optional passed in value for X used for testing purposes.  | 
265  |  |  *     r1 An auxiliary prime.  | 
266  |  |  *     r2 An auxiliary prime.  | 
267  |  |  *     nlen The desired length of n (the RSA modulus).  | 
268  |  |  *     e The public exponent.  | 
269  |  |  *     ctx A BN_CTX object.  | 
270  |  |  *     cb An optional BIGNUM callback object.  | 
271  |  |  * Returns: 1 on success otherwise it returns 0.  | 
272  |  |  * Assumptions:  | 
273  |  |  *     Y, X, r1, r2, e are not NULL.  | 
274  |  |  */  | 
275  |  | int ossl_bn_rsa_fips186_4_derive_prime(BIGNUM *Y, BIGNUM *X, const BIGNUM *Xin,  | 
276  |  |                                        const BIGNUM *r1, const BIGNUM *r2,  | 
277  |  |                                        int nlen, const BIGNUM *e,  | 
278  |  |                                        BN_CTX *ctx, BN_GENCB *cb)  | 
279  | 0  | { | 
280  | 0  |     int ret = 0;  | 
281  | 0  |     int i, imax, rounds;  | 
282  | 0  |     int bits = nlen >> 1;  | 
283  | 0  |     BIGNUM *tmp, *R, *r1r2x2, *y1, *r1x2;  | 
284  | 0  |     BIGNUM *base, *range;  | 
285  |  | 
  | 
286  | 0  |     BN_CTX_start(ctx);  | 
287  |  | 
  | 
288  | 0  |     base = BN_CTX_get(ctx);  | 
289  | 0  |     range = BN_CTX_get(ctx);  | 
290  | 0  |     R = BN_CTX_get(ctx);  | 
291  | 0  |     tmp = BN_CTX_get(ctx);  | 
292  | 0  |     r1r2x2 = BN_CTX_get(ctx);  | 
293  | 0  |     y1 = BN_CTX_get(ctx);  | 
294  | 0  |     r1x2 = BN_CTX_get(ctx);  | 
295  | 0  |     if (r1x2 == NULL)  | 
296  | 0  |         goto err;  | 
297  |  |  | 
298  | 0  |     if (Xin != NULL && BN_copy(X, Xin) == NULL)  | 
299  | 0  |         goto err;  | 
300  |  |  | 
301  |  |     /*  | 
302  |  |      * We need to generate a random number X in the range  | 
303  |  |      * 1/sqrt(2) * 2^(nlen/2) <= X < 2^(nlen/2).  | 
304  |  |      * We can rewrite that as:  | 
305  |  |      * base = 1/sqrt(2) * 2^(nlen/2)  | 
306  |  |      * range = ((2^(nlen/2))) - (1/sqrt(2) * 2^(nlen/2))  | 
307  |  |      * X = base + random(range)  | 
308  |  |      * We only have the first 256 bit of 1/sqrt(2)  | 
309  |  |      */  | 
310  | 0  |     if (Xin == NULL) { | 
311  | 0  |         if (bits < BN_num_bits(&ossl_bn_inv_sqrt_2))  | 
312  | 0  |             goto err;  | 
313  | 0  |         if (!BN_lshift(base, &ossl_bn_inv_sqrt_2,  | 
314  | 0  |                        bits - BN_num_bits(&ossl_bn_inv_sqrt_2))  | 
315  | 0  |             || !BN_lshift(range, BN_value_one(), bits)  | 
316  | 0  |             || !BN_sub(range, range, base))  | 
317  | 0  |             goto err;  | 
318  | 0  |     }  | 
319  |  |  | 
320  |  |     /*  | 
321  |  |      * (Step 1) GCD(2r1, r2) = 1.  | 
322  |  |      *    Note: This algorithm was doing a gcd(2r1, r2)=1 test before doing an  | 
323  |  |      *    mod_inverse(2r1, r2) which are effectively the same operation.  | 
324  |  |      *    (The algorithm assumed that the gcd test would be faster). Since the  | 
325  |  |      *    mod_inverse is currently faster than calling the constant time  | 
326  |  |      *    BN_gcd(), the call to BN_gcd() has been omitted. The inverse result  | 
327  |  |      *    is used further down.  | 
328  |  |      */  | 
329  | 0  |     if (!(BN_lshift1(r1x2, r1)  | 
330  | 0  |             && (BN_mod_inverse(tmp, r1x2, r2, ctx) != NULL)  | 
331  |  |             /* (Step 2) R = ((r2^-1 mod 2r1) * r2) - ((2r1^-1 mod r2)*2r1) */  | 
332  | 0  |             && (BN_mod_inverse(R, r2, r1x2, ctx) != NULL)  | 
333  | 0  |             && BN_mul(R, R, r2, ctx) /* R = (r2^-1 mod 2r1) * r2 */  | 
334  | 0  |             && BN_mul(tmp, tmp, r1x2, ctx) /* tmp = (2r1^-1 mod r2)*2r1 */  | 
335  | 0  |             && BN_sub(R, R, tmp)  | 
336  |  |             /* Calculate 2r1r2 */  | 
337  | 0  |             && BN_mul(r1r2x2, r1x2, r2, ctx)))  | 
338  | 0  |         goto err;  | 
339  |  |     /* Make positive by adding the modulus */  | 
340  | 0  |     if (BN_is_negative(R) && !BN_add(R, R, r1r2x2))  | 
341  | 0  |         goto err;  | 
342  |  |  | 
343  |  |     /*  | 
344  |  |      * In FIPS 186-4 imax was set to 5 * nlen/2.  | 
345  |  |      * Analysis by Allen Roginsky  | 
346  |  |      * (See https://csrc.nist.gov/CSRC/media/Publications/fips/186/4/final/documents/comments-received-fips186-4-december-2015.pdf  | 
347  |  |      * page 68) indicates this has a 1 in 2 million chance of failure.  | 
348  |  |      * The number has been updated to 20 * nlen/2 as used in  | 
349  |  |      * FIPS186-5 Appendix B.9 Step 9.  | 
350  |  |      */  | 
351  | 0  |     rounds = bn_rsa_fips186_5_prime_MR_rounds(nlen);  | 
352  | 0  |     imax = 20 * bits; /* max = 20/2 * nbits */  | 
353  | 0  |     for (;;) { | 
354  | 0  |         if (Xin == NULL) { | 
355  |  |             /*  | 
356  |  |              * (Step 3) Choose Random X such that  | 
357  |  |              *    sqrt(2) * 2^(nlen/2-1) <= Random X <= (2^(nlen/2)) - 1.  | 
358  |  |              */  | 
359  | 0  |             if (!BN_priv_rand_range_ex(X, range, 0, ctx) || !BN_add(X, X, base))  | 
360  | 0  |                 goto err;  | 
361  | 0  |         }  | 
362  |  |         /* (Step 4) Y = X + ((R - X) mod 2r1r2) */  | 
363  | 0  |         if (!BN_mod_sub(Y, R, X, r1r2x2, ctx) || !BN_add(Y, Y, X))  | 
364  | 0  |             goto err;  | 
365  |  |         /* (Step 5) */  | 
366  | 0  |         i = 0;  | 
367  | 0  |         for (;;) { | 
368  |  |             /* (Step 6) */  | 
369  | 0  |             if (BN_num_bits(Y) > bits) { | 
370  | 0  |                 if (Xin == NULL)  | 
371  | 0  |                     break; /* Randomly Generated X so Go back to Step 3 */  | 
372  | 0  |                 else  | 
373  | 0  |                     goto err; /* X is not random so it will always fail */  | 
374  | 0  |             }  | 
375  | 0  |             BN_GENCB_call(cb, 0, 2);  | 
376  |  |  | 
377  |  |             /* (Step 7) If GCD(Y-1) == 1 & Y is probably prime then return Y */  | 
378  | 0  |             if (BN_copy(y1, Y) == NULL  | 
379  | 0  |                     || !BN_sub_word(y1, 1))  | 
380  | 0  |                 goto err;  | 
381  |  |  | 
382  | 0  |             if (BN_are_coprime(y1, e, ctx)) { | 
383  | 0  |                 int rv = ossl_bn_check_generated_prime(Y, rounds, ctx, cb);  | 
384  |  | 
  | 
385  | 0  |                 if (rv > 0)  | 
386  | 0  |                     goto end;  | 
387  | 0  |                 if (rv < 0)  | 
388  | 0  |                     goto err;  | 
389  | 0  |             }  | 
390  |  |             /* (Step 8-10) */  | 
391  | 0  |             if (++i >= imax) { | 
392  | 0  |                 ERR_raise(ERR_LIB_BN, BN_R_NO_PRIME_CANDIDATE);  | 
393  | 0  |                 goto err;  | 
394  | 0  |             }  | 
395  | 0  |             if (!BN_add(Y, Y, r1r2x2))  | 
396  | 0  |                 goto err;  | 
397  | 0  |         }  | 
398  | 0  |     }  | 
399  | 0  | end:  | 
400  | 0  |     ret = 1;  | 
401  | 0  |     BN_GENCB_call(cb, 3, 0);  | 
402  | 0  | err:  | 
403  | 0  |     BN_clear(y1);  | 
404  | 0  |     BN_CTX_end(ctx);  | 
405  | 0  |     return ret;  | 
406  | 0  | }  |