/src/openssl31/crypto/ec/curve448/curve448.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright 2017-2022 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * Copyright 2015-2016 Cryptography Research, Inc. |
4 | | * |
5 | | * Licensed under the Apache License 2.0 (the "License"). You may not use |
6 | | * this file except in compliance with the License. You can obtain a copy |
7 | | * in the file LICENSE in the source distribution or at |
8 | | * https://www.openssl.org/source/license.html |
9 | | * |
10 | | * Originally written by Mike Hamburg |
11 | | */ |
12 | | #include <openssl/crypto.h> |
13 | | #include "word.h" |
14 | | #include "field.h" |
15 | | |
16 | | #include "point_448.h" |
17 | | #include "ed448.h" |
18 | | #include "crypto/ecx.h" |
19 | | #include "curve448_local.h" |
20 | | |
21 | 182 | #define COFACTOR 4 |
22 | | |
23 | 55 | #define C448_WNAF_FIXED_TABLE_BITS 5 |
24 | 55 | #define C448_WNAF_VAR_TABLE_BITS 3 |
25 | | |
26 | 6.55k | #define EDWARDS_D (-39081) |
27 | | |
28 | | static const curve448_scalar_t precomputed_scalarmul_adjustment = { |
29 | | { |
30 | | { |
31 | | SC_LIMB(0xc873d6d54a7bb0cfULL), SC_LIMB(0xe933d8d723a70aadULL), |
32 | | SC_LIMB(0xbb124b65129c96fdULL), SC_LIMB(0x00000008335dc163ULL) |
33 | | } |
34 | | } |
35 | | }; |
36 | | |
37 | 613 | #define TWISTED_D (EDWARDS_D - 1) |
38 | | |
39 | 91.8k | #define WBITS C448_WORD_BITS /* NB this may be different from ARCH_WORD_BITS */ |
40 | | |
41 | | /* Inverse. */ |
42 | | static void gf_invert(gf y, const gf x, int assert_nonzero) |
43 | 116 | { |
44 | 116 | mask_t ret; |
45 | 116 | gf t1, t2; |
46 | | |
47 | 116 | gf_sqr(t1, x); /* o^2 */ |
48 | 116 | ret = gf_isr(t2, t1); /* +-1/sqrt(o^2) = +-1/o */ |
49 | 116 | (void)ret; |
50 | 116 | if (assert_nonzero) |
51 | 25 | assert(ret); |
52 | 116 | gf_sqr(t1, t2); |
53 | 116 | gf_mul(t2, t1, x); /* not direct to y in case of alias. */ |
54 | 116 | gf_copy(y, t2); |
55 | 116 | } |
56 | | |
57 | | /** identity = (0,1) */ |
58 | | const curve448_point_t ossl_curve448_point_identity = |
59 | | { {{{{0}}}, {{{1}}}, {{{1}}}, {{{0}}}} }; |
60 | | |
61 | | static void point_double_internal(curve448_point_t p, const curve448_point_t q, |
62 | | int before_double) |
63 | 26.0k | { |
64 | 26.0k | gf a, b, c, d; |
65 | | |
66 | 26.0k | gf_sqr(c, q->x); |
67 | 26.0k | gf_sqr(a, q->y); |
68 | 26.0k | gf_add_nr(d, c, a); /* 2+e */ |
69 | 26.0k | gf_add_nr(p->t, q->y, q->x); /* 2+e */ |
70 | 26.0k | gf_sqr(b, p->t); |
71 | 26.0k | gf_subx_nr(b, b, d, 3); /* 4+e */ |
72 | 26.0k | gf_sub_nr(p->t, a, c); /* 3+e */ |
73 | 26.0k | gf_sqr(p->x, q->z); |
74 | 26.0k | gf_add_nr(p->z, p->x, p->x); /* 2+e */ |
75 | 26.0k | gf_subx_nr(a, p->z, p->t, 4); /* 6+e */ |
76 | 26.0k | if (GF_HEADROOM == 5) |
77 | 0 | gf_weak_reduce(a); /* or 1+e */ |
78 | 26.0k | gf_mul(p->x, a, b); |
79 | 26.0k | gf_mul(p->z, p->t, a); |
80 | 26.0k | gf_mul(p->y, p->t, d); |
81 | 26.0k | if (!before_double) |
82 | 7.20k | gf_mul(p->t, b, d); |
83 | 26.0k | } |
84 | | |
85 | | void ossl_curve448_point_double(curve448_point_t p, const curve448_point_t q) |
86 | 55 | { |
87 | 55 | point_double_internal(p, q, 0); |
88 | 55 | } |
89 | | |
90 | | /* Operations on [p]niels */ |
91 | | static ossl_inline void cond_neg_niels(niels_t n, mask_t neg) |
92 | 9.27k | { |
93 | 9.27k | gf_cond_swap(n->a, n->b, neg); |
94 | 9.27k | gf_cond_neg(n->c, neg); |
95 | 9.27k | } |
96 | | |
97 | | static void pt_to_pniels(pniels_t b, const curve448_point_t a) |
98 | 495 | { |
99 | 495 | gf_sub(b->n->a, a->y, a->x); |
100 | 495 | gf_add(b->n->b, a->x, a->y); |
101 | 495 | gf_mulw(b->n->c, a->t, 2 * TWISTED_D); |
102 | 495 | gf_add(b->z, a->z, a->z); |
103 | 495 | } |
104 | | |
105 | | static void pniels_to_pt(curve448_point_t e, const pniels_t d) |
106 | 50 | { |
107 | 50 | gf eu; |
108 | | |
109 | 50 | gf_add(eu, d->n->b, d->n->a); |
110 | 50 | gf_sub(e->y, d->n->b, d->n->a); |
111 | 50 | gf_mul(e->t, e->y, eu); |
112 | 50 | gf_mul(e->x, d->z, e->y); |
113 | 50 | gf_mul(e->y, d->z, eu); |
114 | 50 | gf_sqr(e->z, d->z); |
115 | 50 | } |
116 | | |
117 | | static void niels_to_pt(curve448_point_t e, const niels_t n) |
118 | 108 | { |
119 | 108 | gf_add(e->y, n->b, n->a); |
120 | 108 | gf_sub(e->x, n->b, n->a); |
121 | 108 | gf_mul(e->t, e->y, e->x); |
122 | 108 | gf_copy(e->z, ONE); |
123 | 108 | } |
124 | | |
125 | | static void add_niels_to_pt(curve448_point_t d, const niels_t e, |
126 | | int before_double) |
127 | 12.5k | { |
128 | 12.5k | gf a, b, c; |
129 | | |
130 | 12.5k | gf_sub_nr(b, d->y, d->x); /* 3+e */ |
131 | 12.5k | gf_mul(a, e->a, b); |
132 | 12.5k | gf_add_nr(b, d->x, d->y); /* 2+e */ |
133 | 12.5k | gf_mul(d->y, e->b, b); |
134 | 12.5k | gf_mul(d->x, e->c, d->t); |
135 | 12.5k | gf_add_nr(c, a, d->y); /* 2+e */ |
136 | 12.5k | gf_sub_nr(b, d->y, a); /* 3+e */ |
137 | 12.5k | gf_sub_nr(d->y, d->z, d->x); /* 3+e */ |
138 | 12.5k | gf_add_nr(a, d->x, d->z); /* 2+e */ |
139 | 12.5k | gf_mul(d->z, a, d->y); |
140 | 12.5k | gf_mul(d->x, d->y, b); |
141 | 12.5k | gf_mul(d->y, a, c); |
142 | 12.5k | if (!before_double) |
143 | 7.95k | gf_mul(d->t, b, c); |
144 | 12.5k | } |
145 | | |
146 | | static void sub_niels_from_pt(curve448_point_t d, const niels_t e, |
147 | | int before_double) |
148 | 2.68k | { |
149 | 2.68k | gf a, b, c; |
150 | | |
151 | 2.68k | gf_sub_nr(b, d->y, d->x); /* 3+e */ |
152 | 2.68k | gf_mul(a, e->b, b); |
153 | 2.68k | gf_add_nr(b, d->x, d->y); /* 2+e */ |
154 | 2.68k | gf_mul(d->y, e->a, b); |
155 | 2.68k | gf_mul(d->x, e->c, d->t); |
156 | 2.68k | gf_add_nr(c, a, d->y); /* 2+e */ |
157 | 2.68k | gf_sub_nr(b, d->y, a); /* 3+e */ |
158 | 2.68k | gf_add_nr(d->y, d->z, d->x); /* 2+e */ |
159 | 2.68k | gf_sub_nr(a, d->z, d->x); /* 3+e */ |
160 | 2.68k | gf_mul(d->z, a, d->y); |
161 | 2.68k | gf_mul(d->x, d->y, b); |
162 | 2.68k | gf_mul(d->y, a, c); |
163 | 2.68k | if (!before_double) |
164 | 151 | gf_mul(d->t, b, c); |
165 | 2.68k | } |
166 | | |
167 | | static void add_pniels_to_pt(curve448_point_t p, const pniels_t pn, |
168 | | int before_double) |
169 | 2.31k | { |
170 | 2.31k | gf L0; |
171 | | |
172 | 2.31k | gf_mul(L0, p->z, pn->z); |
173 | 2.31k | gf_copy(p->z, L0); |
174 | 2.31k | add_niels_to_pt(p, pn->n, before_double); |
175 | 2.31k | } |
176 | | |
177 | | static void sub_pniels_from_pt(curve448_point_t p, const pniels_t pn, |
178 | | int before_double) |
179 | 2.04k | { |
180 | 2.04k | gf L0; |
181 | | |
182 | 2.04k | gf_mul(L0, p->z, pn->z); |
183 | 2.04k | gf_copy(p->z, L0); |
184 | 2.04k | sub_niels_from_pt(p, pn->n, before_double); |
185 | 2.04k | } |
186 | | |
187 | | c448_bool_t |
188 | | ossl_curve448_point_eq(const curve448_point_t p, |
189 | | const curve448_point_t q) |
190 | 55 | { |
191 | 55 | mask_t succ; |
192 | 55 | gf a, b; |
193 | | |
194 | | /* equality mod 2-torsion compares x/y */ |
195 | 55 | gf_mul(a, p->y, q->x); |
196 | 55 | gf_mul(b, q->y, p->x); |
197 | 55 | succ = gf_eq(a, b); |
198 | | |
199 | 55 | return mask_to_bool(succ); |
200 | 55 | } |
201 | | |
202 | | c448_bool_t |
203 | | ossl_curve448_point_valid(const curve448_point_t p) |
204 | 118 | { |
205 | 118 | mask_t out; |
206 | 118 | gf a, b, c; |
207 | | |
208 | 118 | gf_mul(a, p->x, p->y); |
209 | 118 | gf_mul(b, p->z, p->t); |
210 | 118 | out = gf_eq(a, b); |
211 | 118 | gf_sqr(a, p->x); |
212 | 118 | gf_sqr(b, p->y); |
213 | 118 | gf_sub(a, b, a); |
214 | 118 | gf_sqr(b, p->t); |
215 | 118 | gf_mulw(c, b, TWISTED_D); |
216 | 118 | gf_sqr(b, p->z); |
217 | 118 | gf_add(b, b, c); |
218 | 118 | out &= gf_eq(a, b); |
219 | 118 | out &= ~gf_eq(p->z, ZERO); |
220 | 118 | return mask_to_bool(out); |
221 | 118 | } |
222 | | |
223 | | static ossl_inline void constant_time_lookup_niels(niels_s * RESTRICT ni, |
224 | | const niels_t * table, |
225 | | int nelts, int idx) |
226 | 9.27k | { |
227 | 9.27k | constant_time_lookup(ni, table, sizeof(niels_s), nelts, idx); |
228 | 9.27k | } |
229 | | |
230 | | void |
231 | | ossl_curve448_precomputed_scalarmul(curve448_point_t out, |
232 | | const curve448_precomputed_s * table, |
233 | | const curve448_scalar_t scalar) |
234 | 103 | { |
235 | 103 | unsigned int i, j, k; |
236 | 103 | const unsigned int n = COMBS_N, t = COMBS_T, s = COMBS_S; |
237 | 103 | niels_t ni; |
238 | 103 | curve448_scalar_t scalar1x; |
239 | | |
240 | 103 | ossl_curve448_scalar_add(scalar1x, scalar, precomputed_scalarmul_adjustment); |
241 | 103 | ossl_curve448_scalar_halve(scalar1x, scalar1x); |
242 | | |
243 | 1.95k | for (i = s; i > 0; i--) { |
244 | 1.85k | if (i != s) |
245 | 1.75k | point_double_internal(out, out, 0); |
246 | | |
247 | 11.1k | for (j = 0; j < n; j++) { |
248 | 9.27k | int tab = 0; |
249 | 9.27k | mask_t invert; |
250 | | |
251 | 55.6k | for (k = 0; k < t; k++) { |
252 | 46.3k | unsigned int bit = (i - 1) + s * (k + j * t); |
253 | | |
254 | 46.3k | if (bit < C448_SCALAR_BITS) |
255 | 45.9k | tab |= |
256 | 45.9k | (scalar1x->limb[bit / WBITS] >> (bit % WBITS) & 1) << k; |
257 | 46.3k | } |
258 | | |
259 | 9.27k | invert = (tab >> (t - 1)) - 1; |
260 | 9.27k | tab ^= invert; |
261 | 9.27k | tab &= (1 << (t - 1)) - 1; |
262 | | |
263 | 9.27k | constant_time_lookup_niels(ni, &table->table[j << (t - 1)], |
264 | 9.27k | 1 << (t - 1), tab); |
265 | | |
266 | 9.27k | cond_neg_niels(ni, invert); |
267 | 9.27k | if ((i != s) || j != 0) |
268 | 9.16k | add_niels_to_pt(out, ni, j == n - 1 && i != 1); |
269 | 103 | else |
270 | 103 | niels_to_pt(out, ni); |
271 | 9.27k | } |
272 | 1.85k | } |
273 | | |
274 | 103 | OPENSSL_cleanse(ni, sizeof(ni)); |
275 | 103 | OPENSSL_cleanse(scalar1x, sizeof(scalar1x)); |
276 | 103 | } |
277 | | |
278 | | void |
279 | | ossl_curve448_point_mul_by_ratio_and_encode_like_eddsa( |
280 | | uint8_t enc[EDDSA_448_PUBLIC_BYTES], |
281 | | const curve448_point_t p) |
282 | 25 | { |
283 | 25 | gf x, y, z, t; |
284 | 25 | curve448_point_t q; |
285 | | |
286 | | /* The point is now on the twisted curve. Move it to untwisted. */ |
287 | 25 | curve448_point_copy(q, p); |
288 | | |
289 | 25 | { |
290 | | /* 4-isogeny: 2xy/(y^+x^2), (y^2-x^2)/(2z^2-y^2+x^2) */ |
291 | 25 | gf u; |
292 | | |
293 | 25 | gf_sqr(x, q->x); |
294 | 25 | gf_sqr(t, q->y); |
295 | 25 | gf_add(u, x, t); |
296 | 25 | gf_add(z, q->y, q->x); |
297 | 25 | gf_sqr(y, z); |
298 | 25 | gf_sub(y, y, u); |
299 | 25 | gf_sub(z, t, x); |
300 | 25 | gf_sqr(x, q->z); |
301 | 25 | gf_add(t, x, x); |
302 | 25 | gf_sub(t, t, z); |
303 | 25 | gf_mul(x, t, y); |
304 | 25 | gf_mul(y, z, u); |
305 | 25 | gf_mul(z, u, t); |
306 | 25 | OPENSSL_cleanse(u, sizeof(u)); |
307 | 25 | } |
308 | | |
309 | | /* Affinize */ |
310 | 25 | gf_invert(z, z, 1); |
311 | 25 | gf_mul(t, x, z); |
312 | 25 | gf_mul(x, y, z); |
313 | | |
314 | | /* Encode */ |
315 | 25 | enc[EDDSA_448_PRIVATE_BYTES - 1] = 0; |
316 | 25 | gf_serialize(enc, x, 1); |
317 | 25 | enc[EDDSA_448_PRIVATE_BYTES - 1] |= 0x80 & gf_lobit(t); |
318 | | |
319 | 25 | OPENSSL_cleanse(x, sizeof(x)); |
320 | 25 | OPENSSL_cleanse(y, sizeof(y)); |
321 | 25 | OPENSSL_cleanse(z, sizeof(z)); |
322 | 25 | OPENSSL_cleanse(t, sizeof(t)); |
323 | 25 | ossl_curve448_point_destroy(q); |
324 | 25 | } |
325 | | |
326 | | c448_error_t |
327 | | ossl_curve448_point_decode_like_eddsa_and_mul_by_ratio( |
328 | | curve448_point_t p, |
329 | | const uint8_t enc[EDDSA_448_PUBLIC_BYTES]) |
330 | 118 | { |
331 | 118 | uint8_t enc2[EDDSA_448_PUBLIC_BYTES]; |
332 | 118 | mask_t low; |
333 | 118 | mask_t succ; |
334 | | |
335 | 118 | memcpy(enc2, enc, sizeof(enc2)); |
336 | | |
337 | 118 | low = ~word_is_zero(enc2[EDDSA_448_PRIVATE_BYTES - 1] & 0x80); |
338 | 118 | enc2[EDDSA_448_PRIVATE_BYTES - 1] &= ~0x80; |
339 | | |
340 | 118 | succ = gf_deserialize(p->y, enc2, 1, 0); |
341 | 118 | succ &= word_is_zero(enc2[EDDSA_448_PRIVATE_BYTES - 1]); |
342 | | |
343 | 118 | gf_sqr(p->x, p->y); |
344 | 118 | gf_sub(p->z, ONE, p->x); /* num = 1-y^2 */ |
345 | 118 | gf_mulw(p->t, p->x, EDWARDS_D); /* dy^2 */ |
346 | 118 | gf_sub(p->t, ONE, p->t); /* denom = 1-dy^2 or 1-d + dy^2 */ |
347 | | |
348 | 118 | gf_mul(p->x, p->z, p->t); |
349 | 118 | succ &= gf_isr(p->t, p->x); /* 1/sqrt(num * denom) */ |
350 | | |
351 | 118 | gf_mul(p->x, p->t, p->z); /* sqrt(num / denom) */ |
352 | 118 | gf_cond_neg(p->x, gf_lobit(p->x) ^ low); |
353 | 118 | gf_copy(p->z, ONE); |
354 | | |
355 | 118 | { |
356 | 118 | gf a, b, c, d; |
357 | | |
358 | | /* 4-isogeny 2xy/(y^2-ax^2), (y^2+ax^2)/(2-y^2-ax^2) */ |
359 | 118 | gf_sqr(c, p->x); |
360 | 118 | gf_sqr(a, p->y); |
361 | 118 | gf_add(d, c, a); |
362 | 118 | gf_add(p->t, p->y, p->x); |
363 | 118 | gf_sqr(b, p->t); |
364 | 118 | gf_sub(b, b, d); |
365 | 118 | gf_sub(p->t, a, c); |
366 | 118 | gf_sqr(p->x, p->z); |
367 | 118 | gf_add(p->z, p->x, p->x); |
368 | 118 | gf_sub(a, p->z, d); |
369 | 118 | gf_mul(p->x, a, b); |
370 | 118 | gf_mul(p->z, p->t, a); |
371 | 118 | gf_mul(p->y, p->t, d); |
372 | 118 | gf_mul(p->t, b, d); |
373 | 118 | OPENSSL_cleanse(a, sizeof(a)); |
374 | 118 | OPENSSL_cleanse(b, sizeof(b)); |
375 | 118 | OPENSSL_cleanse(c, sizeof(c)); |
376 | 118 | OPENSSL_cleanse(d, sizeof(d)); |
377 | 118 | } |
378 | | |
379 | 118 | OPENSSL_cleanse(enc2, sizeof(enc2)); |
380 | 118 | assert(ossl_curve448_point_valid(p) || ~succ); |
381 | | |
382 | 118 | return c448_succeed_if(mask_to_bool(succ)); |
383 | 118 | } |
384 | | |
385 | | c448_error_t |
386 | | ossl_x448_int(uint8_t out[X_PUBLIC_BYTES], |
387 | | const uint8_t base[X_PUBLIC_BYTES], |
388 | | const uint8_t scalar[X_PRIVATE_BYTES]) |
389 | 13 | { |
390 | 13 | gf x1, x2, z2, x3, z3, t1, t2; |
391 | 13 | int t; |
392 | 13 | mask_t swap = 0; |
393 | 13 | mask_t nz; |
394 | | |
395 | 13 | (void)gf_deserialize(x1, base, 1, 0); |
396 | 13 | gf_copy(x2, ONE); |
397 | 13 | gf_copy(z2, ZERO); |
398 | 13 | gf_copy(x3, x1); |
399 | 13 | gf_copy(z3, ONE); |
400 | | |
401 | 5.83k | for (t = X_PRIVATE_BITS - 1; t >= 0; t--) { |
402 | 5.82k | uint8_t sb = scalar[t / 8]; |
403 | 5.82k | mask_t k_t; |
404 | | |
405 | | /* Scalar conditioning */ |
406 | 5.82k | if (t / 8 == 0) |
407 | 104 | sb &= -(uint8_t)COFACTOR; |
408 | 5.72k | else if (t == X_PRIVATE_BITS - 1) |
409 | 13 | sb = -1; |
410 | | |
411 | 5.82k | k_t = (sb >> (t % 8)) & 1; |
412 | 5.82k | k_t = 0 - k_t; /* set to all 0s or all 1s */ |
413 | | |
414 | 5.82k | swap ^= k_t; |
415 | 5.82k | gf_cond_swap(x2, x3, swap); |
416 | 5.82k | gf_cond_swap(z2, z3, swap); |
417 | 5.82k | swap = k_t; |
418 | | |
419 | | /* |
420 | | * The "_nr" below skips coefficient reduction. In the following |
421 | | * comments, "2+e" is saying that the coefficients are at most 2+epsilon |
422 | | * times the reduction limit. |
423 | | */ |
424 | 5.82k | gf_add_nr(t1, x2, z2); /* A = x2 + z2 */ /* 2+e */ |
425 | 5.82k | gf_sub_nr(t2, x2, z2); /* B = x2 - z2 */ /* 3+e */ |
426 | 5.82k | gf_sub_nr(z2, x3, z3); /* D = x3 - z3 */ /* 3+e */ |
427 | 5.82k | gf_mul(x2, t1, z2); /* DA */ |
428 | 5.82k | gf_add_nr(z2, z3, x3); /* C = x3 + z3 */ /* 2+e */ |
429 | 5.82k | gf_mul(x3, t2, z2); /* CB */ |
430 | 5.82k | gf_sub_nr(z3, x2, x3); /* DA-CB */ /* 3+e */ |
431 | 5.82k | gf_sqr(z2, z3); /* (DA-CB)^2 */ |
432 | 5.82k | gf_mul(z3, x1, z2); /* z3 = x1(DA-CB)^2 */ |
433 | 5.82k | gf_add_nr(z2, x2, x3); /* (DA+CB) */ /* 2+e */ |
434 | 5.82k | gf_sqr(x3, z2); /* x3 = (DA+CB)^2 */ |
435 | | |
436 | 5.82k | gf_sqr(z2, t1); /* AA = A^2 */ |
437 | 5.82k | gf_sqr(t1, t2); /* BB = B^2 */ |
438 | 5.82k | gf_mul(x2, z2, t1); /* x2 = AA*BB */ |
439 | 5.82k | gf_sub_nr(t2, z2, t1); /* E = AA-BB */ /* 3+e */ |
440 | | |
441 | 5.82k | gf_mulw(t1, t2, -EDWARDS_D); /* E*-d = a24*E */ |
442 | 5.82k | gf_add_nr(t1, t1, z2); /* AA + a24*E */ /* 2+e */ |
443 | 5.82k | gf_mul(z2, t2, t1); /* z2 = E(AA+a24*E) */ |
444 | 5.82k | } |
445 | | |
446 | | /* Finish */ |
447 | 13 | gf_cond_swap(x2, x3, swap); |
448 | 13 | gf_cond_swap(z2, z3, swap); |
449 | 13 | gf_invert(z2, z2, 0); |
450 | 13 | gf_mul(x1, x2, z2); |
451 | 13 | gf_serialize(out, x1, 1); |
452 | 13 | nz = ~gf_eq(x1, ZERO); |
453 | | |
454 | 13 | OPENSSL_cleanse(x1, sizeof(x1)); |
455 | 13 | OPENSSL_cleanse(x2, sizeof(x2)); |
456 | 13 | OPENSSL_cleanse(z2, sizeof(z2)); |
457 | 13 | OPENSSL_cleanse(x3, sizeof(x3)); |
458 | 13 | OPENSSL_cleanse(z3, sizeof(z3)); |
459 | 13 | OPENSSL_cleanse(t1, sizeof(t1)); |
460 | 13 | OPENSSL_cleanse(t2, sizeof(t2)); |
461 | | |
462 | 13 | return c448_succeed_if(mask_to_bool(nz)); |
463 | 13 | } |
464 | | |
465 | | void |
466 | | ossl_curve448_point_mul_by_ratio_and_encode_like_x448(uint8_t |
467 | | out[X_PUBLIC_BYTES], |
468 | | const curve448_point_t p) |
469 | 78 | { |
470 | 78 | curve448_point_t q; |
471 | | |
472 | 78 | curve448_point_copy(q, p); |
473 | 78 | gf_invert(q->t, q->x, 0); /* 1/x */ |
474 | 78 | gf_mul(q->z, q->t, q->y); /* y/x */ |
475 | 78 | gf_sqr(q->y, q->z); /* (y/x)^2 */ |
476 | 78 | gf_serialize(out, q->y, 1); |
477 | 78 | ossl_curve448_point_destroy(q); |
478 | 78 | } |
479 | | |
480 | | void ossl_x448_derive_public_key(uint8_t out[X_PUBLIC_BYTES], |
481 | | const uint8_t scalar[X_PRIVATE_BYTES]) |
482 | 78 | { |
483 | | /* Scalar conditioning */ |
484 | 78 | uint8_t scalar2[X_PRIVATE_BYTES]; |
485 | 78 | curve448_scalar_t the_scalar; |
486 | 78 | curve448_point_t p; |
487 | 78 | unsigned int i; |
488 | | |
489 | 78 | memcpy(scalar2, scalar, sizeof(scalar2)); |
490 | 78 | scalar2[0] &= -(uint8_t)COFACTOR; |
491 | | |
492 | 78 | scalar2[X_PRIVATE_BYTES - 1] &= ~((0u - 1u) << ((X_PRIVATE_BITS + 7) % 8)); |
493 | 78 | scalar2[X_PRIVATE_BYTES - 1] |= 1 << ((X_PRIVATE_BITS + 7) % 8); |
494 | | |
495 | 78 | ossl_curve448_scalar_decode_long(the_scalar, scalar2, sizeof(scalar2)); |
496 | | |
497 | | /* Compensate for the encoding ratio */ |
498 | 156 | for (i = 1; i < X448_ENCODE_RATIO; i <<= 1) |
499 | 78 | ossl_curve448_scalar_halve(the_scalar, the_scalar); |
500 | | |
501 | 78 | ossl_curve448_precomputed_scalarmul(p, ossl_curve448_precomputed_base, |
502 | 78 | the_scalar); |
503 | 78 | ossl_curve448_point_mul_by_ratio_and_encode_like_x448(out, p); |
504 | 78 | ossl_curve448_point_destroy(p); |
505 | 78 | } |
506 | | |
507 | | /* Control for variable-time scalar multiply algorithms. */ |
508 | | struct smvt_control { |
509 | | int power, addend; |
510 | | }; |
511 | | |
512 | | #if defined(__GNUC__) && (__GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ > 3)) |
513 | 0 | # define NUMTRAILINGZEROS __builtin_ctz |
514 | | #else |
515 | | # define NUMTRAILINGZEROS numtrailingzeros |
516 | | static uint32_t numtrailingzeros(uint32_t i) |
517 | | { |
518 | | uint32_t tmp; |
519 | | uint32_t num = 31; |
520 | | |
521 | | if (i == 0) |
522 | | return 32; |
523 | | |
524 | | tmp = i << 16; |
525 | | if (tmp != 0) { |
526 | | i = tmp; |
527 | | num -= 16; |
528 | | } |
529 | | tmp = i << 8; |
530 | | if (tmp != 0) { |
531 | | i = tmp; |
532 | | num -= 8; |
533 | | } |
534 | | tmp = i << 4; |
535 | | if (tmp != 0) { |
536 | | i = tmp; |
537 | | num -= 4; |
538 | | } |
539 | | tmp = i << 2; |
540 | | if (tmp != 0) { |
541 | | i = tmp; |
542 | | num -= 2; |
543 | | } |
544 | | tmp = i << 1; |
545 | | if (tmp != 0) |
546 | | num--; |
547 | | |
548 | | return num; |
549 | | } |
550 | | #endif |
551 | | |
552 | | static int recode_wnaf(struct smvt_control *control, |
553 | | /* [nbits/(table_bits + 1) + 3] */ |
554 | | const curve448_scalar_t scalar, |
555 | | unsigned int table_bits) |
556 | 0 | { |
557 | 0 | unsigned int table_size = C448_SCALAR_BITS / (table_bits + 1) + 3; |
558 | 0 | int position = table_size - 1; /* at the end */ |
559 | 0 | uint64_t current = scalar->limb[0] & 0xFFFF; |
560 | 0 | uint32_t mask = (1 << (table_bits + 1)) - 1; |
561 | 0 | unsigned int w; |
562 | 0 | const unsigned int B_OVER_16 = sizeof(scalar->limb[0]) / 2; |
563 | 0 | unsigned int n, i; |
564 | | |
565 | | /* place the end marker */ |
566 | 0 | control[position].power = -1; |
567 | 0 | control[position].addend = 0; |
568 | 0 | position--; |
569 | | |
570 | | /* |
571 | | * PERF: Could negate scalar if it's large. But then would need more cases |
572 | | * in the actual code that uses it, all for an expected reduction of like |
573 | | * 1/5 op. Probably not worth it. |
574 | | */ |
575 | |
|
576 | 0 | for (w = 1; w < (C448_SCALAR_BITS - 1) / 16 + 3; w++) { |
577 | 0 | if (w < (C448_SCALAR_BITS - 1) / 16 + 1) { |
578 | | /* Refill the 16 high bits of current */ |
579 | 0 | current += (uint32_t)((scalar->limb[w / B_OVER_16] |
580 | 0 | >> (16 * (w % B_OVER_16))) << 16); |
581 | 0 | } |
582 | |
|
583 | 0 | while (current & 0xFFFF) { |
584 | 0 | uint32_t pos = NUMTRAILINGZEROS((uint32_t)current); |
585 | 0 | uint32_t odd = (uint32_t)current >> pos; |
586 | 0 | int32_t delta = odd & mask; |
587 | |
|
588 | 0 | assert(position >= 0); |
589 | 0 | assert(pos < 32); /* can't fail since current & 0xFFFF != 0 */ |
590 | 0 | if (odd & (1 << (table_bits + 1))) |
591 | 0 | delta -= (1 << (table_bits + 1)); |
592 | 0 | current -= delta * (1 << pos); |
593 | 0 | control[position].power = pos + 16 * (w - 1); |
594 | 0 | control[position].addend = delta; |
595 | 0 | position--; |
596 | 0 | } |
597 | 0 | current >>= 16; |
598 | 0 | } |
599 | 0 | assert(current == 0); |
600 | | |
601 | 0 | position++; |
602 | 0 | n = table_size - position; |
603 | 0 | for (i = 0; i < n; i++) |
604 | 0 | control[i] = control[i + position]; |
605 | |
|
606 | 0 | return n - 1; |
607 | 0 | } |
608 | | |
609 | | static void prepare_wnaf_table(pniels_t * output, |
610 | | const curve448_point_t working, |
611 | | unsigned int tbits) |
612 | 55 | { |
613 | 55 | curve448_point_t tmp; |
614 | 55 | int i; |
615 | 55 | pniels_t twop; |
616 | | |
617 | 55 | pt_to_pniels(output[0], working); |
618 | | |
619 | 55 | if (tbits == 0) |
620 | 0 | return; |
621 | | |
622 | 55 | ossl_curve448_point_double(tmp, working); |
623 | 55 | pt_to_pniels(twop, tmp); |
624 | | |
625 | 55 | add_pniels_to_pt(tmp, output[0], 0); |
626 | 55 | pt_to_pniels(output[1], tmp); |
627 | | |
628 | 385 | for (i = 2; i < 1 << tbits; i++) { |
629 | 330 | add_pniels_to_pt(tmp, twop, 0); |
630 | 330 | pt_to_pniels(output[i], tmp); |
631 | 330 | } |
632 | | |
633 | 55 | ossl_curve448_point_destroy(tmp); |
634 | 55 | OPENSSL_cleanse(twop, sizeof(twop)); |
635 | 55 | } |
636 | | |
637 | | void |
638 | | ossl_curve448_base_double_scalarmul_non_secret(curve448_point_t combo, |
639 | | const curve448_scalar_t scalar1, |
640 | | const curve448_point_t base2, |
641 | | const curve448_scalar_t scalar2) |
642 | 55 | { |
643 | 55 | const int table_bits_var = C448_WNAF_VAR_TABLE_BITS; |
644 | 55 | const int table_bits_pre = C448_WNAF_FIXED_TABLE_BITS; |
645 | 55 | struct smvt_control control_var[C448_SCALAR_BITS / |
646 | 55 | (C448_WNAF_VAR_TABLE_BITS + 1) + 3]; |
647 | 55 | struct smvt_control control_pre[C448_SCALAR_BITS / |
648 | 55 | (C448_WNAF_FIXED_TABLE_BITS + 1) + 3]; |
649 | 55 | int ncb_pre = recode_wnaf(control_pre, scalar1, table_bits_pre); |
650 | 55 | int ncb_var = recode_wnaf(control_var, scalar2, table_bits_var); |
651 | 55 | pniels_t precmp_var[1 << C448_WNAF_VAR_TABLE_BITS]; |
652 | 55 | int contp = 0, contv = 0, i; |
653 | | |
654 | 55 | prepare_wnaf_table(precmp_var, base2, table_bits_var); |
655 | 55 | i = control_var[0].power; |
656 | | |
657 | 55 | if (i < 0) { |
658 | 0 | curve448_point_copy(combo, ossl_curve448_point_identity); |
659 | 0 | return; |
660 | 0 | } |
661 | 55 | if (i > control_pre[0].power) { |
662 | 47 | pniels_to_pt(combo, precmp_var[control_var[0].addend >> 1]); |
663 | 47 | contv++; |
664 | 47 | } else if (i == control_pre[0].power && i >= 0) { |
665 | 3 | pniels_to_pt(combo, precmp_var[control_var[0].addend >> 1]); |
666 | 3 | add_niels_to_pt(combo, |
667 | 3 | ossl_curve448_wnaf_base[control_pre[0].addend >> 1], |
668 | 3 | i); |
669 | 3 | contv++; |
670 | 3 | contp++; |
671 | 5 | } else { |
672 | 5 | i = control_pre[0].power; |
673 | 5 | niels_to_pt(combo, ossl_curve448_wnaf_base[control_pre[0].addend >> 1]); |
674 | 5 | contp++; |
675 | 5 | } |
676 | | |
677 | 24.3k | for (i--; i >= 0; i--) { |
678 | 24.2k | int cv = (i == control_var[contv].power); |
679 | 24.2k | int cp = (i == control_pre[contp].power); |
680 | | |
681 | 24.2k | point_double_internal(combo, combo, i && !(cv || cp)); |
682 | | |
683 | 24.2k | if (cv) { |
684 | 3.97k | assert(control_var[contv].addend); |
685 | | |
686 | 3.97k | if (control_var[contv].addend > 0) |
687 | 1.93k | add_pniels_to_pt(combo, |
688 | 1.93k | precmp_var[control_var[contv].addend >> 1], |
689 | 1.93k | i && !cp); |
690 | 2.04k | else |
691 | 2.04k | sub_pniels_from_pt(combo, |
692 | 2.04k | precmp_var[(-control_var[contv].addend) |
693 | 2.04k | >> 1], i && !cp); |
694 | 3.97k | contv++; |
695 | 3.97k | } |
696 | | |
697 | 24.2k | if (cp) { |
698 | 1.67k | assert(control_pre[contp].addend); |
699 | | |
700 | 1.67k | if (control_pre[contp].addend > 0) |
701 | 1.04k | add_niels_to_pt(combo, |
702 | 1.04k | ossl_curve448_wnaf_base[control_pre[contp].addend |
703 | 1.04k | >> 1], i); |
704 | 634 | else |
705 | 634 | sub_niels_from_pt(combo, |
706 | 634 | ossl_curve448_wnaf_base[(-control_pre |
707 | 634 | [contp].addend) >> 1], i); |
708 | 1.67k | contp++; |
709 | 1.67k | } |
710 | 24.2k | } |
711 | | |
712 | | /* This function is non-secret, but whatever this is cheap. */ |
713 | 55 | OPENSSL_cleanse(control_var, sizeof(control_var)); |
714 | 55 | OPENSSL_cleanse(control_pre, sizeof(control_pre)); |
715 | 55 | OPENSSL_cleanse(precmp_var, sizeof(precmp_var)); |
716 | | |
717 | 55 | assert(contv == ncb_var); |
718 | 55 | (void)ncb_var; |
719 | 55 | assert(contp == ncb_pre); |
720 | 55 | (void)ncb_pre; |
721 | 55 | } |
722 | | |
723 | | void ossl_curve448_point_destroy(curve448_point_t point) |
724 | 261 | { |
725 | 261 | OPENSSL_cleanse(point, sizeof(curve448_point_t)); |
726 | 261 | } |
727 | | |
728 | | int ossl_x448(uint8_t out_shared_key[56], const uint8_t private_key[56], |
729 | | const uint8_t peer_public_value[56]) |
730 | 13 | { |
731 | 13 | return ossl_x448_int(out_shared_key, peer_public_value, private_key) |
732 | 13 | == C448_SUCCESS; |
733 | 13 | } |
734 | | |
735 | | void ossl_x448_public_from_private(uint8_t out_public_value[56], |
736 | | const uint8_t private_key[56]) |
737 | 78 | { |
738 | 78 | ossl_x448_derive_public_key(out_public_value, private_key); |
739 | 78 | } |