/src/openssl31/crypto/ec/ecp_nistp224.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright 2010-2021 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * |
4 | | * Licensed under the Apache License 2.0 (the "License"). You may not use |
5 | | * this file except in compliance with the License. You can obtain a copy |
6 | | * in the file LICENSE in the source distribution or at |
7 | | * https://www.openssl.org/source/license.html |
8 | | */ |
9 | | |
10 | | /* Copyright 2011 Google Inc. |
11 | | * |
12 | | * Licensed under the Apache License, Version 2.0 (the "License"); |
13 | | * |
14 | | * you may not use this file except in compliance with the License. |
15 | | * You may obtain a copy of the License at |
16 | | * |
17 | | * http://www.apache.org/licenses/LICENSE-2.0 |
18 | | * |
19 | | * Unless required by applicable law or agreed to in writing, software |
20 | | * distributed under the License is distributed on an "AS IS" BASIS, |
21 | | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
22 | | * See the License for the specific language governing permissions and |
23 | | * limitations under the License. |
24 | | */ |
25 | | |
26 | | /* |
27 | | * ECDSA low level APIs are deprecated for public use, but still ok for |
28 | | * internal use. |
29 | | */ |
30 | | #include "internal/deprecated.h" |
31 | | |
32 | | /* |
33 | | * A 64-bit implementation of the NIST P-224 elliptic curve point multiplication |
34 | | * |
35 | | * Inspired by Daniel J. Bernstein's public domain nistp224 implementation |
36 | | * and Adam Langley's public domain 64-bit C implementation of curve25519 |
37 | | */ |
38 | | |
39 | | #include <openssl/opensslconf.h> |
40 | | |
41 | | #include <stdint.h> |
42 | | #include <string.h> |
43 | | #include <openssl/err.h> |
44 | | #include "ec_local.h" |
45 | | |
46 | | #include "internal/numbers.h" |
47 | | |
48 | | #ifndef INT128_MAX |
49 | | # error "Your compiler doesn't appear to support 128-bit integer types" |
50 | | #endif |
51 | | |
52 | | typedef uint8_t u8; |
53 | | typedef uint64_t u64; |
54 | | |
55 | | /******************************************************************************/ |
56 | | /*- |
57 | | * INTERNAL REPRESENTATION OF FIELD ELEMENTS |
58 | | * |
59 | | * Field elements are represented as a_0 + 2^56*a_1 + 2^112*a_2 + 2^168*a_3 |
60 | | * using 64-bit coefficients called 'limbs', |
61 | | * and sometimes (for multiplication results) as |
62 | | * b_0 + 2^56*b_1 + 2^112*b_2 + 2^168*b_3 + 2^224*b_4 + 2^280*b_5 + 2^336*b_6 |
63 | | * using 128-bit coefficients called 'widelimbs'. |
64 | | * A 4-limb representation is an 'felem'; |
65 | | * a 7-widelimb representation is a 'widefelem'. |
66 | | * Even within felems, bits of adjacent limbs overlap, and we don't always |
67 | | * reduce the representations: we ensure that inputs to each felem |
68 | | * multiplication satisfy a_i < 2^60, so outputs satisfy b_i < 4*2^60*2^60, |
69 | | * and fit into a 128-bit word without overflow. The coefficients are then |
70 | | * again partially reduced to obtain an felem satisfying a_i < 2^57. |
71 | | * We only reduce to the unique minimal representation at the end of the |
72 | | * computation. |
73 | | */ |
74 | | |
75 | | typedef uint64_t limb; |
76 | | typedef uint64_t limb_aX __attribute((__aligned__(1))); |
77 | | typedef uint128_t widelimb; |
78 | | |
79 | | typedef limb felem[4]; |
80 | | typedef widelimb widefelem[7]; |
81 | | |
82 | | /* |
83 | | * Field element represented as a byte array. 28*8 = 224 bits is also the |
84 | | * group order size for the elliptic curve, and we also use this type for |
85 | | * scalars for point multiplication. |
86 | | */ |
87 | | typedef u8 felem_bytearray[28]; |
88 | | |
89 | | static const felem_bytearray nistp224_curve_params[5] = { |
90 | | {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* p */ |
91 | | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, |
92 | | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01}, |
93 | | {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* a */ |
94 | | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, |
95 | | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE}, |
96 | | {0xB4, 0x05, 0x0A, 0x85, 0x0C, 0x04, 0xB3, 0xAB, 0xF5, 0x41, /* b */ |
97 | | 0x32, 0x56, 0x50, 0x44, 0xB0, 0xB7, 0xD7, 0xBF, 0xD8, 0xBA, |
98 | | 0x27, 0x0B, 0x39, 0x43, 0x23, 0x55, 0xFF, 0xB4}, |
99 | | {0xB7, 0x0E, 0x0C, 0xBD, 0x6B, 0xB4, 0xBF, 0x7F, 0x32, 0x13, /* x */ |
100 | | 0x90, 0xB9, 0x4A, 0x03, 0xC1, 0xD3, 0x56, 0xC2, 0x11, 0x22, |
101 | | 0x34, 0x32, 0x80, 0xD6, 0x11, 0x5C, 0x1D, 0x21}, |
102 | | {0xbd, 0x37, 0x63, 0x88, 0xb5, 0xf7, 0x23, 0xfb, 0x4c, 0x22, /* y */ |
103 | | 0xdf, 0xe6, 0xcd, 0x43, 0x75, 0xa0, 0x5a, 0x07, 0x47, 0x64, |
104 | | 0x44, 0xd5, 0x81, 0x99, 0x85, 0x00, 0x7e, 0x34} |
105 | | }; |
106 | | |
107 | | /*- |
108 | | * Precomputed multiples of the standard generator |
109 | | * Points are given in coordinates (X, Y, Z) where Z normally is 1 |
110 | | * (0 for the point at infinity). |
111 | | * For each field element, slice a_0 is word 0, etc. |
112 | | * |
113 | | * The table has 2 * 16 elements, starting with the following: |
114 | | * index | bits | point |
115 | | * ------+---------+------------------------------ |
116 | | * 0 | 0 0 0 0 | 0G |
117 | | * 1 | 0 0 0 1 | 1G |
118 | | * 2 | 0 0 1 0 | 2^56G |
119 | | * 3 | 0 0 1 1 | (2^56 + 1)G |
120 | | * 4 | 0 1 0 0 | 2^112G |
121 | | * 5 | 0 1 0 1 | (2^112 + 1)G |
122 | | * 6 | 0 1 1 0 | (2^112 + 2^56)G |
123 | | * 7 | 0 1 1 1 | (2^112 + 2^56 + 1)G |
124 | | * 8 | 1 0 0 0 | 2^168G |
125 | | * 9 | 1 0 0 1 | (2^168 + 1)G |
126 | | * 10 | 1 0 1 0 | (2^168 + 2^56)G |
127 | | * 11 | 1 0 1 1 | (2^168 + 2^56 + 1)G |
128 | | * 12 | 1 1 0 0 | (2^168 + 2^112)G |
129 | | * 13 | 1 1 0 1 | (2^168 + 2^112 + 1)G |
130 | | * 14 | 1 1 1 0 | (2^168 + 2^112 + 2^56)G |
131 | | * 15 | 1 1 1 1 | (2^168 + 2^112 + 2^56 + 1)G |
132 | | * followed by a copy of this with each element multiplied by 2^28. |
133 | | * |
134 | | * The reason for this is so that we can clock bits into four different |
135 | | * locations when doing simple scalar multiplies against the base point, |
136 | | * and then another four locations using the second 16 elements. |
137 | | */ |
138 | | static const felem gmul[2][16][3] = { |
139 | | {{{0, 0, 0, 0}, |
140 | | {0, 0, 0, 0}, |
141 | | {0, 0, 0, 0}}, |
142 | | {{0x3280d6115c1d21, 0xc1d356c2112234, 0x7f321390b94a03, 0xb70e0cbd6bb4bf}, |
143 | | {0xd5819985007e34, 0x75a05a07476444, 0xfb4c22dfe6cd43, 0xbd376388b5f723}, |
144 | | {1, 0, 0, 0}}, |
145 | | {{0xfd9675666ebbe9, 0xbca7664d40ce5e, 0x2242df8d8a2a43, 0x1f49bbb0f99bc5}, |
146 | | {0x29e0b892dc9c43, 0xece8608436e662, 0xdc858f185310d0, 0x9812dd4eb8d321}, |
147 | | {1, 0, 0, 0}}, |
148 | | {{0x6d3e678d5d8eb8, 0x559eed1cb362f1, 0x16e9a3bbce8a3f, 0xeedcccd8c2a748}, |
149 | | {0xf19f90ed50266d, 0xabf2b4bf65f9df, 0x313865468fafec, 0x5cb379ba910a17}, |
150 | | {1, 0, 0, 0}}, |
151 | | {{0x0641966cab26e3, 0x91fb2991fab0a0, 0xefec27a4e13a0b, 0x0499aa8a5f8ebe}, |
152 | | {0x7510407766af5d, 0x84d929610d5450, 0x81d77aae82f706, 0x6916f6d4338c5b}, |
153 | | {1, 0, 0, 0}}, |
154 | | {{0xea95ac3b1f15c6, 0x086000905e82d4, 0xdd323ae4d1c8b1, 0x932b56be7685a3}, |
155 | | {0x9ef93dea25dbbf, 0x41665960f390f0, 0xfdec76dbe2a8a7, 0x523e80f019062a}, |
156 | | {1, 0, 0, 0}}, |
157 | | {{0x822fdd26732c73, 0xa01c83531b5d0f, 0x363f37347c1ba4, 0xc391b45c84725c}, |
158 | | {0xbbd5e1b2d6ad24, 0xddfbcde19dfaec, 0xc393da7e222a7f, 0x1efb7890ede244}, |
159 | | {1, 0, 0, 0}}, |
160 | | {{0x4c9e90ca217da1, 0xd11beca79159bb, 0xff8d33c2c98b7c, 0x2610b39409f849}, |
161 | | {0x44d1352ac64da0, 0xcdbb7b2c46b4fb, 0x966c079b753c89, 0xfe67e4e820b112}, |
162 | | {1, 0, 0, 0}}, |
163 | | {{0xe28cae2df5312d, 0xc71b61d16f5c6e, 0x79b7619a3e7c4c, 0x05c73240899b47}, |
164 | | {0x9f7f6382c73e3a, 0x18615165c56bda, 0x641fab2116fd56, 0x72855882b08394}, |
165 | | {1, 0, 0, 0}}, |
166 | | {{0x0469182f161c09, 0x74a98ca8d00fb5, 0xb89da93489a3e0, 0x41c98768fb0c1d}, |
167 | | {0xe5ea05fb32da81, 0x3dce9ffbca6855, 0x1cfe2d3fbf59e6, 0x0e5e03408738a7}, |
168 | | {1, 0, 0, 0}}, |
169 | | {{0xdab22b2333e87f, 0x4430137a5dd2f6, 0xe03ab9f738beb8, 0xcb0c5d0dc34f24}, |
170 | | {0x764a7df0c8fda5, 0x185ba5c3fa2044, 0x9281d688bcbe50, 0xc40331df893881}, |
171 | | {1, 0, 0, 0}}, |
172 | | {{0xb89530796f0f60, 0xade92bd26909a3, 0x1a0c83fb4884da, 0x1765bf22a5a984}, |
173 | | {0x772a9ee75db09e, 0x23bc6c67cec16f, 0x4c1edba8b14e2f, 0xe2a215d9611369}, |
174 | | {1, 0, 0, 0}}, |
175 | | {{0x571e509fb5efb3, 0xade88696410552, 0xc8ae85fada74fe, 0x6c7e4be83bbde3}, |
176 | | {0xff9f51160f4652, 0xb47ce2495a6539, 0xa2946c53b582f4, 0x286d2db3ee9a60}, |
177 | | {1, 0, 0, 0}}, |
178 | | {{0x40bbd5081a44af, 0x0995183b13926c, 0xbcefba6f47f6d0, 0x215619e9cc0057}, |
179 | | {0x8bc94d3b0df45e, 0xf11c54a3694f6f, 0x8631b93cdfe8b5, 0xe7e3f4b0982db9}, |
180 | | {1, 0, 0, 0}}, |
181 | | {{0xb17048ab3e1c7b, 0xac38f36ff8a1d8, 0x1c29819435d2c6, 0xc813132f4c07e9}, |
182 | | {0x2891425503b11f, 0x08781030579fea, 0xf5426ba5cc9674, 0x1e28ebf18562bc}, |
183 | | {1, 0, 0, 0}}, |
184 | | {{0x9f31997cc864eb, 0x06cd91d28b5e4c, 0xff17036691a973, 0xf1aef351497c58}, |
185 | | {0xdd1f2d600564ff, 0xdead073b1402db, 0x74a684435bd693, 0xeea7471f962558}, |
186 | | {1, 0, 0, 0}}}, |
187 | | {{{0, 0, 0, 0}, |
188 | | {0, 0, 0, 0}, |
189 | | {0, 0, 0, 0}}, |
190 | | {{0x9665266dddf554, 0x9613d78b60ef2d, 0xce27a34cdba417, 0xd35ab74d6afc31}, |
191 | | {0x85ccdd22deb15e, 0x2137e5783a6aab, 0xa141cffd8c93c6, 0x355a1830e90f2d}, |
192 | | {1, 0, 0, 0}}, |
193 | | {{0x1a494eadaade65, 0xd6da4da77fe53c, 0xe7992996abec86, 0x65c3553c6090e3}, |
194 | | {0xfa610b1fb09346, 0xf1c6540b8a4aaf, 0xc51a13ccd3cbab, 0x02995b1b18c28a}, |
195 | | {1, 0, 0, 0}}, |
196 | | {{0x7874568e7295ef, 0x86b419fbe38d04, 0xdc0690a7550d9a, 0xd3966a44beac33}, |
197 | | {0x2b7280ec29132f, 0xbeaa3b6a032df3, 0xdc7dd88ae41200, 0xd25e2513e3a100}, |
198 | | {1, 0, 0, 0}}, |
199 | | {{0x924857eb2efafd, 0xac2bce41223190, 0x8edaa1445553fc, 0x825800fd3562d5}, |
200 | | {0x8d79148ea96621, 0x23a01c3dd9ed8d, 0xaf8b219f9416b5, 0xd8db0cc277daea}, |
201 | | {1, 0, 0, 0}}, |
202 | | {{0x76a9c3b1a700f0, 0xe9acd29bc7e691, 0x69212d1a6b0327, 0x6322e97fe154be}, |
203 | | {0x469fc5465d62aa, 0x8d41ed18883b05, 0x1f8eae66c52b88, 0xe4fcbe9325be51}, |
204 | | {1, 0, 0, 0}}, |
205 | | {{0x825fdf583cac16, 0x020b857c7b023a, 0x683c17744b0165, 0x14ffd0a2daf2f1}, |
206 | | {0x323b36184218f9, 0x4944ec4e3b47d4, 0xc15b3080841acf, 0x0bced4b01a28bb}, |
207 | | {1, 0, 0, 0}}, |
208 | | {{0x92ac22230df5c4, 0x52f33b4063eda8, 0xcb3f19870c0c93, 0x40064f2ba65233}, |
209 | | {0xfe16f0924f8992, 0x012da25af5b517, 0x1a57bb24f723a6, 0x06f8bc76760def}, |
210 | | {1, 0, 0, 0}}, |
211 | | {{0x4a7084f7817cb9, 0xbcab0738ee9a78, 0x3ec11e11d9c326, 0xdc0fe90e0f1aae}, |
212 | | {0xcf639ea5f98390, 0x5c350aa22ffb74, 0x9afae98a4047b7, 0x956ec2d617fc45}, |
213 | | {1, 0, 0, 0}}, |
214 | | {{0x4306d648c1be6a, 0x9247cd8bc9a462, 0xf5595e377d2f2e, 0xbd1c3caff1a52e}, |
215 | | {0x045e14472409d0, 0x29f3e17078f773, 0x745a602b2d4f7d, 0x191837685cdfbb}, |
216 | | {1, 0, 0, 0}}, |
217 | | {{0x5b6ee254a8cb79, 0x4953433f5e7026, 0xe21faeb1d1def4, 0xc4c225785c09de}, |
218 | | {0x307ce7bba1e518, 0x31b125b1036db8, 0x47e91868839e8f, 0xc765866e33b9f3}, |
219 | | {1, 0, 0, 0}}, |
220 | | {{0x3bfece24f96906, 0x4794da641e5093, 0xde5df64f95db26, 0x297ecd89714b05}, |
221 | | {0x701bd3ebb2c3aa, 0x7073b4f53cb1d5, 0x13c5665658af16, 0x9895089d66fe58}, |
222 | | {1, 0, 0, 0}}, |
223 | | {{0x0fef05f78c4790, 0x2d773633b05d2e, 0x94229c3a951c94, 0xbbbd70df4911bb}, |
224 | | {0xb2c6963d2c1168, 0x105f47a72b0d73, 0x9fdf6111614080, 0x7b7e94b39e67b0}, |
225 | | {1, 0, 0, 0}}, |
226 | | {{0xad1a7d6efbe2b3, 0xf012482c0da69d, 0x6b3bdf12438345, 0x40d7558d7aa4d9}, |
227 | | {0x8a09fffb5c6d3d, 0x9a356e5d9ffd38, 0x5973f15f4f9b1c, 0xdcd5f59f63c3ea}, |
228 | | {1, 0, 0, 0}}, |
229 | | {{0xacf39f4c5ca7ab, 0x4c8071cc5fd737, 0xc64e3602cd1184, 0x0acd4644c9abba}, |
230 | | {0x6c011a36d8bf6e, 0xfecd87ba24e32a, 0x19f6f56574fad8, 0x050b204ced9405}, |
231 | | {1, 0, 0, 0}}, |
232 | | {{0xed4f1cae7d9a96, 0x5ceef7ad94c40a, 0x778e4a3bf3ef9b, 0x7405783dc3b55e}, |
233 | | {0x32477c61b6e8c6, 0xb46a97570f018b, 0x91176d0a7e95d1, 0x3df90fbc4c7d0e}, |
234 | | {1, 0, 0, 0}}} |
235 | | }; |
236 | | |
237 | | /* Precomputation for the group generator. */ |
238 | | struct nistp224_pre_comp_st { |
239 | | felem g_pre_comp[2][16][3]; |
240 | | CRYPTO_REF_COUNT references; |
241 | | CRYPTO_RWLOCK *lock; |
242 | | }; |
243 | | |
244 | | const EC_METHOD *EC_GFp_nistp224_method(void) |
245 | 32.5k | { |
246 | 32.5k | static const EC_METHOD ret = { |
247 | 32.5k | EC_FLAGS_DEFAULT_OCT, |
248 | 32.5k | NID_X9_62_prime_field, |
249 | 32.5k | ossl_ec_GFp_nistp224_group_init, |
250 | 32.5k | ossl_ec_GFp_simple_group_finish, |
251 | 32.5k | ossl_ec_GFp_simple_group_clear_finish, |
252 | 32.5k | ossl_ec_GFp_nist_group_copy, |
253 | 32.5k | ossl_ec_GFp_nistp224_group_set_curve, |
254 | 32.5k | ossl_ec_GFp_simple_group_get_curve, |
255 | 32.5k | ossl_ec_GFp_simple_group_get_degree, |
256 | 32.5k | ossl_ec_group_simple_order_bits, |
257 | 32.5k | ossl_ec_GFp_simple_group_check_discriminant, |
258 | 32.5k | ossl_ec_GFp_simple_point_init, |
259 | 32.5k | ossl_ec_GFp_simple_point_finish, |
260 | 32.5k | ossl_ec_GFp_simple_point_clear_finish, |
261 | 32.5k | ossl_ec_GFp_simple_point_copy, |
262 | 32.5k | ossl_ec_GFp_simple_point_set_to_infinity, |
263 | 32.5k | ossl_ec_GFp_simple_point_set_affine_coordinates, |
264 | 32.5k | ossl_ec_GFp_nistp224_point_get_affine_coordinates, |
265 | 32.5k | 0 /* point_set_compressed_coordinates */ , |
266 | 32.5k | 0 /* point2oct */ , |
267 | 32.5k | 0 /* oct2point */ , |
268 | 32.5k | ossl_ec_GFp_simple_add, |
269 | 32.5k | ossl_ec_GFp_simple_dbl, |
270 | 32.5k | ossl_ec_GFp_simple_invert, |
271 | 32.5k | ossl_ec_GFp_simple_is_at_infinity, |
272 | 32.5k | ossl_ec_GFp_simple_is_on_curve, |
273 | 32.5k | ossl_ec_GFp_simple_cmp, |
274 | 32.5k | ossl_ec_GFp_simple_make_affine, |
275 | 32.5k | ossl_ec_GFp_simple_points_make_affine, |
276 | 32.5k | ossl_ec_GFp_nistp224_points_mul, |
277 | 32.5k | ossl_ec_GFp_nistp224_precompute_mult, |
278 | 32.5k | ossl_ec_GFp_nistp224_have_precompute_mult, |
279 | 32.5k | ossl_ec_GFp_nist_field_mul, |
280 | 32.5k | ossl_ec_GFp_nist_field_sqr, |
281 | 32.5k | 0 /* field_div */ , |
282 | 32.5k | ossl_ec_GFp_simple_field_inv, |
283 | 32.5k | 0 /* field_encode */ , |
284 | 32.5k | 0 /* field_decode */ , |
285 | 32.5k | 0, /* field_set_to_one */ |
286 | 32.5k | ossl_ec_key_simple_priv2oct, |
287 | 32.5k | ossl_ec_key_simple_oct2priv, |
288 | 32.5k | 0, /* set private */ |
289 | 32.5k | ossl_ec_key_simple_generate_key, |
290 | 32.5k | ossl_ec_key_simple_check_key, |
291 | 32.5k | ossl_ec_key_simple_generate_public_key, |
292 | 32.5k | 0, /* keycopy */ |
293 | 32.5k | 0, /* keyfinish */ |
294 | 32.5k | ossl_ecdh_simple_compute_key, |
295 | 32.5k | ossl_ecdsa_simple_sign_setup, |
296 | 32.5k | ossl_ecdsa_simple_sign_sig, |
297 | 32.5k | ossl_ecdsa_simple_verify_sig, |
298 | 32.5k | 0, /* field_inverse_mod_ord */ |
299 | 32.5k | 0, /* blind_coordinates */ |
300 | 32.5k | 0, /* ladder_pre */ |
301 | 32.5k | 0, /* ladder_step */ |
302 | 32.5k | 0 /* ladder_post */ |
303 | 32.5k | }; |
304 | | |
305 | 32.5k | return &ret; |
306 | 32.5k | } |
307 | | |
308 | | /* |
309 | | * Helper functions to convert field elements to/from internal representation |
310 | | */ |
311 | | static void bin28_to_felem(felem out, const u8 in[28]) |
312 | 8.63k | { |
313 | 8.63k | out[0] = *((const limb *)(in)) & 0x00ffffffffffffff; |
314 | 8.63k | out[1] = (*((const limb_aX *)(in + 7))) & 0x00ffffffffffffff; |
315 | 8.63k | out[2] = (*((const limb_aX *)(in + 14))) & 0x00ffffffffffffff; |
316 | 8.63k | out[3] = (*((const limb_aX *)(in + 20))) >> 8; |
317 | 8.63k | } |
318 | | |
319 | | static void felem_to_bin28(u8 out[28], const felem in) |
320 | 12.3k | { |
321 | 12.3k | unsigned i; |
322 | 99.1k | for (i = 0; i < 7; ++i) { |
323 | 86.7k | out[i] = in[0] >> (8 * i); |
324 | 86.7k | out[i + 7] = in[1] >> (8 * i); |
325 | 86.7k | out[i + 14] = in[2] >> (8 * i); |
326 | 86.7k | out[i + 21] = in[3] >> (8 * i); |
327 | 86.7k | } |
328 | 12.3k | } |
329 | | |
330 | | /* From OpenSSL BIGNUM to internal representation */ |
331 | | static int BN_to_felem(felem out, const BIGNUM *bn) |
332 | 8.63k | { |
333 | 8.63k | felem_bytearray b_out; |
334 | 8.63k | int num_bytes; |
335 | | |
336 | 8.63k | if (BN_is_negative(bn)) { |
337 | 0 | ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE); |
338 | 0 | return 0; |
339 | 0 | } |
340 | 8.63k | num_bytes = BN_bn2lebinpad(bn, b_out, sizeof(b_out)); |
341 | 8.63k | if (num_bytes < 0) { |
342 | 0 | ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE); |
343 | 0 | return 0; |
344 | 0 | } |
345 | 8.63k | bin28_to_felem(out, b_out); |
346 | 8.63k | return 1; |
347 | 8.63k | } |
348 | | |
349 | | /* From internal representation to OpenSSL BIGNUM */ |
350 | | static BIGNUM *felem_to_BN(BIGNUM *out, const felem in) |
351 | 12.3k | { |
352 | 12.3k | felem_bytearray b_out; |
353 | 12.3k | felem_to_bin28(b_out, in); |
354 | 12.3k | return BN_lebin2bn(b_out, sizeof(b_out), out); |
355 | 12.3k | } |
356 | | |
357 | | /******************************************************************************/ |
358 | | /*- |
359 | | * FIELD OPERATIONS |
360 | | * |
361 | | * Field operations, using the internal representation of field elements. |
362 | | * NB! These operations are specific to our point multiplication and cannot be |
363 | | * expected to be correct in general - e.g., multiplication with a large scalar |
364 | | * will cause an overflow. |
365 | | * |
366 | | */ |
367 | | |
368 | | static void felem_one(felem out) |
369 | 0 | { |
370 | 0 | out[0] = 1; |
371 | 0 | out[1] = 0; |
372 | 0 | out[2] = 0; |
373 | 0 | out[3] = 0; |
374 | 0 | } |
375 | | |
376 | | static void felem_assign(felem out, const felem in) |
377 | 867k | { |
378 | 867k | out[0] = in[0]; |
379 | 867k | out[1] = in[1]; |
380 | 867k | out[2] = in[2]; |
381 | 867k | out[3] = in[3]; |
382 | 867k | } |
383 | | |
384 | | /* Sum two field elements: out += in */ |
385 | | static void felem_sum(felem out, const felem in) |
386 | 249k | { |
387 | 249k | out[0] += in[0]; |
388 | 249k | out[1] += in[1]; |
389 | 249k | out[2] += in[2]; |
390 | 249k | out[3] += in[3]; |
391 | 249k | } |
392 | | |
393 | | /* Subtract field elements: out -= in */ |
394 | | /* Assumes in[i] < 2^57 */ |
395 | | static void felem_diff(felem out, const felem in) |
396 | 236k | { |
397 | 236k | static const limb two58p2 = (((limb) 1) << 58) + (((limb) 1) << 2); |
398 | 236k | static const limb two58m2 = (((limb) 1) << 58) - (((limb) 1) << 2); |
399 | 236k | static const limb two58m42m2 = (((limb) 1) << 58) - |
400 | 236k | (((limb) 1) << 42) - (((limb) 1) << 2); |
401 | | |
402 | | /* Add 0 mod 2^224-2^96+1 to ensure out > in */ |
403 | 236k | out[0] += two58p2; |
404 | 236k | out[1] += two58m42m2; |
405 | 236k | out[2] += two58m2; |
406 | 236k | out[3] += two58m2; |
407 | | |
408 | 236k | out[0] -= in[0]; |
409 | 236k | out[1] -= in[1]; |
410 | 236k | out[2] -= in[2]; |
411 | 236k | out[3] -= in[3]; |
412 | 236k | } |
413 | | |
414 | | /* Subtract in unreduced 128-bit mode: out -= in */ |
415 | | /* Assumes in[i] < 2^119 */ |
416 | | static void widefelem_diff(widefelem out, const widefelem in) |
417 | 153k | { |
418 | 153k | static const widelimb two120 = ((widelimb) 1) << 120; |
419 | 153k | static const widelimb two120m64 = (((widelimb) 1) << 120) - |
420 | 153k | (((widelimb) 1) << 64); |
421 | 153k | static const widelimb two120m104m64 = (((widelimb) 1) << 120) - |
422 | 153k | (((widelimb) 1) << 104) - (((widelimb) 1) << 64); |
423 | | |
424 | | /* Add 0 mod 2^224-2^96+1 to ensure out > in */ |
425 | 153k | out[0] += two120; |
426 | 153k | out[1] += two120m64; |
427 | 153k | out[2] += two120m64; |
428 | 153k | out[3] += two120; |
429 | 153k | out[4] += two120m104m64; |
430 | 153k | out[5] += two120m64; |
431 | 153k | out[6] += two120m64; |
432 | | |
433 | 153k | out[0] -= in[0]; |
434 | 153k | out[1] -= in[1]; |
435 | 153k | out[2] -= in[2]; |
436 | 153k | out[3] -= in[3]; |
437 | 153k | out[4] -= in[4]; |
438 | 153k | out[5] -= in[5]; |
439 | 153k | out[6] -= in[6]; |
440 | 153k | } |
441 | | |
442 | | /* Subtract in mixed mode: out128 -= in64 */ |
443 | | /* in[i] < 2^63 */ |
444 | | static void felem_diff_128_64(widefelem out, const felem in) |
445 | 460k | { |
446 | 460k | static const widelimb two64p8 = (((widelimb) 1) << 64) + |
447 | 460k | (((widelimb) 1) << 8); |
448 | 460k | static const widelimb two64m8 = (((widelimb) 1) << 64) - |
449 | 460k | (((widelimb) 1) << 8); |
450 | 460k | static const widelimb two64m48m8 = (((widelimb) 1) << 64) - |
451 | 460k | (((widelimb) 1) << 48) - (((widelimb) 1) << 8); |
452 | | |
453 | | /* Add 0 mod 2^224-2^96+1 to ensure out > in */ |
454 | 460k | out[0] += two64p8; |
455 | 460k | out[1] += two64m48m8; |
456 | 460k | out[2] += two64m8; |
457 | 460k | out[3] += two64m8; |
458 | | |
459 | 460k | out[0] -= in[0]; |
460 | 460k | out[1] -= in[1]; |
461 | 460k | out[2] -= in[2]; |
462 | 460k | out[3] -= in[3]; |
463 | 460k | } |
464 | | |
465 | | /* |
466 | | * Multiply a field element by a scalar: out = out * scalar The scalars we |
467 | | * actually use are small, so results fit without overflow |
468 | | */ |
469 | | static void felem_scalar(felem out, const limb scalar) |
470 | 320k | { |
471 | 320k | out[0] *= scalar; |
472 | 320k | out[1] *= scalar; |
473 | 320k | out[2] *= scalar; |
474 | 320k | out[3] *= scalar; |
475 | 320k | } |
476 | | |
477 | | /* |
478 | | * Multiply an unreduced field element by a scalar: out = out * scalar The |
479 | | * scalars we actually use are small, so results fit without overflow |
480 | | */ |
481 | | static void widefelem_scalar(widefelem out, const widelimb scalar) |
482 | 83.0k | { |
483 | 83.0k | out[0] *= scalar; |
484 | 83.0k | out[1] *= scalar; |
485 | 83.0k | out[2] *= scalar; |
486 | 83.0k | out[3] *= scalar; |
487 | 83.0k | out[4] *= scalar; |
488 | 83.0k | out[5] *= scalar; |
489 | 83.0k | out[6] *= scalar; |
490 | 83.0k | } |
491 | | |
492 | | /* Square a field element: out = in^2 */ |
493 | | static void felem_square(widefelem out, const felem in) |
494 | 1.23M | { |
495 | 1.23M | limb tmp0, tmp1, tmp2; |
496 | 1.23M | tmp0 = 2 * in[0]; |
497 | 1.23M | tmp1 = 2 * in[1]; |
498 | 1.23M | tmp2 = 2 * in[2]; |
499 | 1.23M | out[0] = ((widelimb) in[0]) * in[0]; |
500 | 1.23M | out[1] = ((widelimb) in[0]) * tmp1; |
501 | 1.23M | out[2] = ((widelimb) in[0]) * tmp2 + ((widelimb) in[1]) * in[1]; |
502 | 1.23M | out[3] = ((widelimb) in[3]) * tmp0 + ((widelimb) in[1]) * tmp2; |
503 | 1.23M | out[4] = ((widelimb) in[3]) * tmp1 + ((widelimb) in[2]) * in[2]; |
504 | 1.23M | out[5] = ((widelimb) in[3]) * tmp2; |
505 | 1.23M | out[6] = ((widelimb) in[3]) * in[3]; |
506 | 1.23M | } |
507 | | |
508 | | /* Multiply two field elements: out = in1 * in2 */ |
509 | | static void felem_mul(widefelem out, const felem in1, const felem in2) |
510 | 901k | { |
511 | 901k | out[0] = ((widelimb) in1[0]) * in2[0]; |
512 | 901k | out[1] = ((widelimb) in1[0]) * in2[1] + ((widelimb) in1[1]) * in2[0]; |
513 | 901k | out[2] = ((widelimb) in1[0]) * in2[2] + ((widelimb) in1[1]) * in2[1] + |
514 | 901k | ((widelimb) in1[2]) * in2[0]; |
515 | 901k | out[3] = ((widelimb) in1[0]) * in2[3] + ((widelimb) in1[1]) * in2[2] + |
516 | 901k | ((widelimb) in1[2]) * in2[1] + ((widelimb) in1[3]) * in2[0]; |
517 | 901k | out[4] = ((widelimb) in1[1]) * in2[3] + ((widelimb) in1[2]) * in2[2] + |
518 | 901k | ((widelimb) in1[3]) * in2[1]; |
519 | 901k | out[5] = ((widelimb) in1[2]) * in2[3] + ((widelimb) in1[3]) * in2[2]; |
520 | 901k | out[6] = ((widelimb) in1[3]) * in2[3]; |
521 | 901k | } |
522 | | |
523 | | /*- |
524 | | * Reduce seven 128-bit coefficients to four 64-bit coefficients. |
525 | | * Requires in[i] < 2^126, |
526 | | * ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16 */ |
527 | | static void felem_reduce(felem out, const widefelem in) |
528 | 1.98M | { |
529 | 1.98M | static const widelimb two127p15 = (((widelimb) 1) << 127) + |
530 | 1.98M | (((widelimb) 1) << 15); |
531 | 1.98M | static const widelimb two127m71 = (((widelimb) 1) << 127) - |
532 | 1.98M | (((widelimb) 1) << 71); |
533 | 1.98M | static const widelimb two127m71m55 = (((widelimb) 1) << 127) - |
534 | 1.98M | (((widelimb) 1) << 71) - (((widelimb) 1) << 55); |
535 | 1.98M | widelimb output[5]; |
536 | | |
537 | | /* Add 0 mod 2^224-2^96+1 to ensure all differences are positive */ |
538 | 1.98M | output[0] = in[0] + two127p15; |
539 | 1.98M | output[1] = in[1] + two127m71m55; |
540 | 1.98M | output[2] = in[2] + two127m71; |
541 | 1.98M | output[3] = in[3]; |
542 | 1.98M | output[4] = in[4]; |
543 | | |
544 | | /* Eliminate in[4], in[5], in[6] */ |
545 | 1.98M | output[4] += in[6] >> 16; |
546 | 1.98M | output[3] += (in[6] & 0xffff) << 40; |
547 | 1.98M | output[2] -= in[6]; |
548 | | |
549 | 1.98M | output[3] += in[5] >> 16; |
550 | 1.98M | output[2] += (in[5] & 0xffff) << 40; |
551 | 1.98M | output[1] -= in[5]; |
552 | | |
553 | 1.98M | output[2] += output[4] >> 16; |
554 | 1.98M | output[1] += (output[4] & 0xffff) << 40; |
555 | 1.98M | output[0] -= output[4]; |
556 | | |
557 | | /* Carry 2 -> 3 -> 4 */ |
558 | 1.98M | output[3] += output[2] >> 56; |
559 | 1.98M | output[2] &= 0x00ffffffffffffff; |
560 | | |
561 | 1.98M | output[4] = output[3] >> 56; |
562 | 1.98M | output[3] &= 0x00ffffffffffffff; |
563 | | |
564 | | /* Now output[2] < 2^56, output[3] < 2^56, output[4] < 2^72 */ |
565 | | |
566 | | /* Eliminate output[4] */ |
567 | 1.98M | output[2] += output[4] >> 16; |
568 | | /* output[2] < 2^56 + 2^56 = 2^57 */ |
569 | 1.98M | output[1] += (output[4] & 0xffff) << 40; |
570 | 1.98M | output[0] -= output[4]; |
571 | | |
572 | | /* Carry 0 -> 1 -> 2 -> 3 */ |
573 | 1.98M | output[1] += output[0] >> 56; |
574 | 1.98M | out[0] = output[0] & 0x00ffffffffffffff; |
575 | | |
576 | 1.98M | output[2] += output[1] >> 56; |
577 | | /* output[2] < 2^57 + 2^72 */ |
578 | 1.98M | out[1] = output[1] & 0x00ffffffffffffff; |
579 | 1.98M | output[3] += output[2] >> 56; |
580 | | /* output[3] <= 2^56 + 2^16 */ |
581 | 1.98M | out[2] = output[2] & 0x00ffffffffffffff; |
582 | | |
583 | | /*- |
584 | | * out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, |
585 | | * out[3] <= 2^56 + 2^16 (due to final carry), |
586 | | * so out < 2*p |
587 | | */ |
588 | 1.98M | out[3] = output[3]; |
589 | 1.98M | } |
590 | | |
591 | | static void felem_square_reduce(felem out, const felem in) |
592 | 0 | { |
593 | 0 | widefelem tmp; |
594 | 0 | felem_square(tmp, in); |
595 | 0 | felem_reduce(out, tmp); |
596 | 0 | } |
597 | | |
598 | | static void felem_mul_reduce(felem out, const felem in1, const felem in2) |
599 | 0 | { |
600 | 0 | widefelem tmp; |
601 | 0 | felem_mul(tmp, in1, in2); |
602 | 0 | felem_reduce(out, tmp); |
603 | 0 | } |
604 | | |
605 | | /* |
606 | | * Reduce to unique minimal representation. Requires 0 <= in < 2*p (always |
607 | | * call felem_reduce first) |
608 | | */ |
609 | | static void felem_contract(felem out, const felem in) |
610 | 9.19k | { |
611 | 9.19k | static const int64_t two56 = ((limb) 1) << 56; |
612 | | /* 0 <= in < 2*p, p = 2^224 - 2^96 + 1 */ |
613 | | /* if in > p , reduce in = in - 2^224 + 2^96 - 1 */ |
614 | 9.19k | int64_t tmp[4], a; |
615 | 9.19k | tmp[0] = in[0]; |
616 | 9.19k | tmp[1] = in[1]; |
617 | 9.19k | tmp[2] = in[2]; |
618 | 9.19k | tmp[3] = in[3]; |
619 | | /* Case 1: a = 1 iff in >= 2^224 */ |
620 | 9.19k | a = (in[3] >> 56); |
621 | 9.19k | tmp[0] -= a; |
622 | 9.19k | tmp[1] += a << 40; |
623 | 9.19k | tmp[3] &= 0x00ffffffffffffff; |
624 | | /* |
625 | | * Case 2: a = 0 iff p <= in < 2^224, i.e., the high 128 bits are all 1 |
626 | | * and the lower part is non-zero |
627 | | */ |
628 | 9.19k | a = ((in[3] & in[2] & (in[1] | 0x000000ffffffffff)) + 1) | |
629 | 9.19k | (((int64_t) (in[0] + (in[1] & 0x000000ffffffffff)) - 1) >> 63); |
630 | 9.19k | a &= 0x00ffffffffffffff; |
631 | | /* turn a into an all-one mask (if a = 0) or an all-zero mask */ |
632 | 9.19k | a = (a - 1) >> 63; |
633 | | /* subtract 2^224 - 2^96 + 1 if a is all-one */ |
634 | 9.19k | tmp[3] &= a ^ 0xffffffffffffffff; |
635 | 9.19k | tmp[2] &= a ^ 0xffffffffffffffff; |
636 | 9.19k | tmp[1] &= (a ^ 0xffffffffffffffff) | 0x000000ffffffffff; |
637 | 9.19k | tmp[0] -= 1 & a; |
638 | | |
639 | | /* |
640 | | * eliminate negative coefficients: if tmp[0] is negative, tmp[1] must be |
641 | | * non-zero, so we only need one step |
642 | | */ |
643 | 9.19k | a = tmp[0] >> 63; |
644 | 9.19k | tmp[0] += two56 & a; |
645 | 9.19k | tmp[1] -= 1 & a; |
646 | | |
647 | | /* carry 1 -> 2 -> 3 */ |
648 | 9.19k | tmp[2] += tmp[1] >> 56; |
649 | 9.19k | tmp[1] &= 0x00ffffffffffffff; |
650 | | |
651 | 9.19k | tmp[3] += tmp[2] >> 56; |
652 | 9.19k | tmp[2] &= 0x00ffffffffffffff; |
653 | | |
654 | | /* Now 0 <= out < p */ |
655 | 9.19k | out[0] = tmp[0]; |
656 | 9.19k | out[1] = tmp[1]; |
657 | 9.19k | out[2] = tmp[2]; |
658 | 9.19k | out[3] = tmp[3]; |
659 | 9.19k | } |
660 | | |
661 | | /* |
662 | | * Get negative value: out = -in |
663 | | * Requires in[i] < 2^63, |
664 | | * ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16 |
665 | | */ |
666 | | static void felem_neg(felem out, const felem in) |
667 | 10.7k | { |
668 | 10.7k | widefelem tmp; |
669 | | |
670 | 10.7k | memset(tmp, 0, sizeof(tmp)); |
671 | 10.7k | felem_diff_128_64(tmp, in); |
672 | 10.7k | felem_reduce(out, tmp); |
673 | 10.7k | } |
674 | | |
675 | | /* |
676 | | * Zero-check: returns 1 if input is 0, and 0 otherwise. We know that field |
677 | | * elements are reduced to in < 2^225, so we only need to check three cases: |
678 | | * 0, 2^224 - 2^96 + 1, and 2^225 - 2^97 + 2 |
679 | | */ |
680 | | static limb felem_is_zero(const felem in) |
681 | 283k | { |
682 | 283k | limb zero, two224m96p1, two225m97p2; |
683 | | |
684 | 283k | zero = in[0] | in[1] | in[2] | in[3]; |
685 | 283k | zero = (((int64_t) (zero) - 1) >> 63) & 1; |
686 | 283k | two224m96p1 = (in[0] ^ 1) | (in[1] ^ 0x00ffff0000000000) |
687 | 283k | | (in[2] ^ 0x00ffffffffffffff) | (in[3] ^ 0x00ffffffffffffff); |
688 | 283k | two224m96p1 = (((int64_t) (two224m96p1) - 1) >> 63) & 1; |
689 | 283k | two225m97p2 = (in[0] ^ 2) | (in[1] ^ 0x00fffe0000000000) |
690 | 283k | | (in[2] ^ 0x00ffffffffffffff) | (in[3] ^ 0x01ffffffffffffff); |
691 | 283k | two225m97p2 = (((int64_t) (two225m97p2) - 1) >> 63) & 1; |
692 | 283k | return (zero | two224m96p1 | two225m97p2); |
693 | 283k | } |
694 | | |
695 | | static int felem_is_zero_int(const void *in) |
696 | 0 | { |
697 | 0 | return (int)(felem_is_zero(in) & ((limb) 1)); |
698 | 0 | } |
699 | | |
700 | | /* Invert a field element */ |
701 | | /* Computation chain copied from djb's code */ |
702 | | static void felem_inv(felem out, const felem in) |
703 | 2.64k | { |
704 | 2.64k | felem ftmp, ftmp2, ftmp3, ftmp4; |
705 | 2.64k | widefelem tmp; |
706 | 2.64k | unsigned i; |
707 | | |
708 | 2.64k | felem_square(tmp, in); |
709 | 2.64k | felem_reduce(ftmp, tmp); /* 2 */ |
710 | 2.64k | felem_mul(tmp, in, ftmp); |
711 | 2.64k | felem_reduce(ftmp, tmp); /* 2^2 - 1 */ |
712 | 2.64k | felem_square(tmp, ftmp); |
713 | 2.64k | felem_reduce(ftmp, tmp); /* 2^3 - 2 */ |
714 | 2.64k | felem_mul(tmp, in, ftmp); |
715 | 2.64k | felem_reduce(ftmp, tmp); /* 2^3 - 1 */ |
716 | 2.64k | felem_square(tmp, ftmp); |
717 | 2.64k | felem_reduce(ftmp2, tmp); /* 2^4 - 2 */ |
718 | 2.64k | felem_square(tmp, ftmp2); |
719 | 2.64k | felem_reduce(ftmp2, tmp); /* 2^5 - 4 */ |
720 | 2.64k | felem_square(tmp, ftmp2); |
721 | 2.64k | felem_reduce(ftmp2, tmp); /* 2^6 - 8 */ |
722 | 2.64k | felem_mul(tmp, ftmp2, ftmp); |
723 | 2.64k | felem_reduce(ftmp, tmp); /* 2^6 - 1 */ |
724 | 2.64k | felem_square(tmp, ftmp); |
725 | 2.64k | felem_reduce(ftmp2, tmp); /* 2^7 - 2 */ |
726 | 15.8k | for (i = 0; i < 5; ++i) { /* 2^12 - 2^6 */ |
727 | 13.2k | felem_square(tmp, ftmp2); |
728 | 13.2k | felem_reduce(ftmp2, tmp); |
729 | 13.2k | } |
730 | 2.64k | felem_mul(tmp, ftmp2, ftmp); |
731 | 2.64k | felem_reduce(ftmp2, tmp); /* 2^12 - 1 */ |
732 | 2.64k | felem_square(tmp, ftmp2); |
733 | 2.64k | felem_reduce(ftmp3, tmp); /* 2^13 - 2 */ |
734 | 31.6k | for (i = 0; i < 11; ++i) { /* 2^24 - 2^12 */ |
735 | 29.0k | felem_square(tmp, ftmp3); |
736 | 29.0k | felem_reduce(ftmp3, tmp); |
737 | 29.0k | } |
738 | 2.64k | felem_mul(tmp, ftmp3, ftmp2); |
739 | 2.64k | felem_reduce(ftmp2, tmp); /* 2^24 - 1 */ |
740 | 2.64k | felem_square(tmp, ftmp2); |
741 | 2.64k | felem_reduce(ftmp3, tmp); /* 2^25 - 2 */ |
742 | 63.3k | for (i = 0; i < 23; ++i) { /* 2^48 - 2^24 */ |
743 | 60.7k | felem_square(tmp, ftmp3); |
744 | 60.7k | felem_reduce(ftmp3, tmp); |
745 | 60.7k | } |
746 | 2.64k | felem_mul(tmp, ftmp3, ftmp2); |
747 | 2.64k | felem_reduce(ftmp3, tmp); /* 2^48 - 1 */ |
748 | 2.64k | felem_square(tmp, ftmp3); |
749 | 2.64k | felem_reduce(ftmp4, tmp); /* 2^49 - 2 */ |
750 | 126k | for (i = 0; i < 47; ++i) { /* 2^96 - 2^48 */ |
751 | 124k | felem_square(tmp, ftmp4); |
752 | 124k | felem_reduce(ftmp4, tmp); |
753 | 124k | } |
754 | 2.64k | felem_mul(tmp, ftmp3, ftmp4); |
755 | 2.64k | felem_reduce(ftmp3, tmp); /* 2^96 - 1 */ |
756 | 2.64k | felem_square(tmp, ftmp3); |
757 | 2.64k | felem_reduce(ftmp4, tmp); /* 2^97 - 2 */ |
758 | 63.3k | for (i = 0; i < 23; ++i) { /* 2^120 - 2^24 */ |
759 | 60.7k | felem_square(tmp, ftmp4); |
760 | 60.7k | felem_reduce(ftmp4, tmp); |
761 | 60.7k | } |
762 | 2.64k | felem_mul(tmp, ftmp2, ftmp4); |
763 | 2.64k | felem_reduce(ftmp2, tmp); /* 2^120 - 1 */ |
764 | 18.4k | for (i = 0; i < 6; ++i) { /* 2^126 - 2^6 */ |
765 | 15.8k | felem_square(tmp, ftmp2); |
766 | 15.8k | felem_reduce(ftmp2, tmp); |
767 | 15.8k | } |
768 | 2.64k | felem_mul(tmp, ftmp2, ftmp); |
769 | 2.64k | felem_reduce(ftmp, tmp); /* 2^126 - 1 */ |
770 | 2.64k | felem_square(tmp, ftmp); |
771 | 2.64k | felem_reduce(ftmp, tmp); /* 2^127 - 2 */ |
772 | 2.64k | felem_mul(tmp, ftmp, in); |
773 | 2.64k | felem_reduce(ftmp, tmp); /* 2^127 - 1 */ |
774 | 258k | for (i = 0; i < 97; ++i) { /* 2^224 - 2^97 */ |
775 | 256k | felem_square(tmp, ftmp); |
776 | 256k | felem_reduce(ftmp, tmp); |
777 | 256k | } |
778 | 2.64k | felem_mul(tmp, ftmp, ftmp3); |
779 | 2.64k | felem_reduce(out, tmp); /* 2^224 - 2^96 - 1 */ |
780 | 2.64k | } |
781 | | |
782 | | /* |
783 | | * Copy in constant time: if icopy == 1, copy in to out, if icopy == 0, copy |
784 | | * out to itself. |
785 | | */ |
786 | | static void copy_conditional(felem out, const felem in, limb icopy) |
787 | 435k | { |
788 | 435k | unsigned i; |
789 | | /* |
790 | | * icopy is a (64-bit) 0 or 1, so copy is either all-zero or all-one |
791 | | */ |
792 | 435k | const limb copy = -icopy; |
793 | 2.17M | for (i = 0; i < 4; ++i) { |
794 | 1.74M | const limb tmp = copy & (in[i] ^ out[i]); |
795 | 1.74M | out[i] ^= tmp; |
796 | 1.74M | } |
797 | 435k | } |
798 | | |
799 | | /******************************************************************************/ |
800 | | /*- |
801 | | * ELLIPTIC CURVE POINT OPERATIONS |
802 | | * |
803 | | * Points are represented in Jacobian projective coordinates: |
804 | | * (X, Y, Z) corresponds to the affine point (X/Z^2, Y/Z^3), |
805 | | * or to the point at infinity if Z == 0. |
806 | | * |
807 | | */ |
808 | | |
809 | | /*- |
810 | | * Double an elliptic curve point: |
811 | | * (X', Y', Z') = 2 * (X, Y, Z), where |
812 | | * X' = (3 * (X - Z^2) * (X + Z^2))^2 - 8 * X * Y^2 |
813 | | * Y' = 3 * (X - Z^2) * (X + Z^2) * (4 * X * Y^2 - X') - 8 * Y^4 |
814 | | * Z' = (Y + Z)^2 - Y^2 - Z^2 = 2 * Y * Z |
815 | | * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed, |
816 | | * while x_out == y_in is not (maybe this works, but it's not tested). |
817 | | */ |
818 | | static void |
819 | | point_double(felem x_out, felem y_out, felem z_out, |
820 | | const felem x_in, const felem y_in, const felem z_in) |
821 | 83.0k | { |
822 | 83.0k | widefelem tmp, tmp2; |
823 | 83.0k | felem delta, gamma, beta, alpha, ftmp, ftmp2; |
824 | | |
825 | 83.0k | felem_assign(ftmp, x_in); |
826 | 83.0k | felem_assign(ftmp2, x_in); |
827 | | |
828 | | /* delta = z^2 */ |
829 | 83.0k | felem_square(tmp, z_in); |
830 | 83.0k | felem_reduce(delta, tmp); |
831 | | |
832 | | /* gamma = y^2 */ |
833 | 83.0k | felem_square(tmp, y_in); |
834 | 83.0k | felem_reduce(gamma, tmp); |
835 | | |
836 | | /* beta = x*gamma */ |
837 | 83.0k | felem_mul(tmp, x_in, gamma); |
838 | 83.0k | felem_reduce(beta, tmp); |
839 | | |
840 | | /* alpha = 3*(x-delta)*(x+delta) */ |
841 | 83.0k | felem_diff(ftmp, delta); |
842 | | /* ftmp[i] < 2^57 + 2^58 + 2 < 2^59 */ |
843 | 83.0k | felem_sum(ftmp2, delta); |
844 | | /* ftmp2[i] < 2^57 + 2^57 = 2^58 */ |
845 | 83.0k | felem_scalar(ftmp2, 3); |
846 | | /* ftmp2[i] < 3 * 2^58 < 2^60 */ |
847 | 83.0k | felem_mul(tmp, ftmp, ftmp2); |
848 | | /* tmp[i] < 2^60 * 2^59 * 4 = 2^121 */ |
849 | 83.0k | felem_reduce(alpha, tmp); |
850 | | |
851 | | /* x' = alpha^2 - 8*beta */ |
852 | 83.0k | felem_square(tmp, alpha); |
853 | | /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */ |
854 | 83.0k | felem_assign(ftmp, beta); |
855 | 83.0k | felem_scalar(ftmp, 8); |
856 | | /* ftmp[i] < 8 * 2^57 = 2^60 */ |
857 | 83.0k | felem_diff_128_64(tmp, ftmp); |
858 | | /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */ |
859 | 83.0k | felem_reduce(x_out, tmp); |
860 | | |
861 | | /* z' = (y + z)^2 - gamma - delta */ |
862 | 83.0k | felem_sum(delta, gamma); |
863 | | /* delta[i] < 2^57 + 2^57 = 2^58 */ |
864 | 83.0k | felem_assign(ftmp, y_in); |
865 | 83.0k | felem_sum(ftmp, z_in); |
866 | | /* ftmp[i] < 2^57 + 2^57 = 2^58 */ |
867 | 83.0k | felem_square(tmp, ftmp); |
868 | | /* tmp[i] < 4 * 2^58 * 2^58 = 2^118 */ |
869 | 83.0k | felem_diff_128_64(tmp, delta); |
870 | | /* tmp[i] < 2^118 + 2^64 + 8 < 2^119 */ |
871 | 83.0k | felem_reduce(z_out, tmp); |
872 | | |
873 | | /* y' = alpha*(4*beta - x') - 8*gamma^2 */ |
874 | 83.0k | felem_scalar(beta, 4); |
875 | | /* beta[i] < 4 * 2^57 = 2^59 */ |
876 | 83.0k | felem_diff(beta, x_out); |
877 | | /* beta[i] < 2^59 + 2^58 + 2 < 2^60 */ |
878 | 83.0k | felem_mul(tmp, alpha, beta); |
879 | | /* tmp[i] < 4 * 2^57 * 2^60 = 2^119 */ |
880 | 83.0k | felem_square(tmp2, gamma); |
881 | | /* tmp2[i] < 4 * 2^57 * 2^57 = 2^116 */ |
882 | 83.0k | widefelem_scalar(tmp2, 8); |
883 | | /* tmp2[i] < 8 * 2^116 = 2^119 */ |
884 | 83.0k | widefelem_diff(tmp, tmp2); |
885 | | /* tmp[i] < 2^119 + 2^120 < 2^121 */ |
886 | 83.0k | felem_reduce(y_out, tmp); |
887 | 83.0k | } |
888 | | |
889 | | /*- |
890 | | * Add two elliptic curve points: |
891 | | * (X_1, Y_1, Z_1) + (X_2, Y_2, Z_2) = (X_3, Y_3, Z_3), where |
892 | | * X_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1)^2 - (Z_1^2 * X_2 - Z_2^2 * X_1)^3 - |
893 | | * 2 * Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2 |
894 | | * Y_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1) * (Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2 - X_3) - |
895 | | * Z_2^3 * Y_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^3 |
896 | | * Z_3 = (Z_1^2 * X_2 - Z_2^2 * X_1) * (Z_1 * Z_2) |
897 | | * |
898 | | * This runs faster if 'mixed' is set, which requires Z_2 = 1 or Z_2 = 0. |
899 | | */ |
900 | | |
901 | | /* |
902 | | * This function is not entirely constant-time: it includes a branch for |
903 | | * checking whether the two input points are equal, (while not equal to the |
904 | | * point at infinity). This case never happens during single point |
905 | | * multiplication, so there is no timing leak for ECDH or ECDSA signing. |
906 | | */ |
907 | | static void point_add(felem x3, felem y3, felem z3, |
908 | | const felem x1, const felem y1, const felem z1, |
909 | | const int mixed, const felem x2, const felem y2, |
910 | | const felem z2) |
911 | 70.8k | { |
912 | 70.8k | felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, x_out, y_out, z_out; |
913 | 70.8k | widefelem tmp, tmp2; |
914 | 70.8k | limb z1_is_zero, z2_is_zero, x_equal, y_equal; |
915 | 70.8k | limb points_equal; |
916 | | |
917 | 70.8k | if (!mixed) { |
918 | | /* ftmp2 = z2^2 */ |
919 | 12.1k | felem_square(tmp, z2); |
920 | 12.1k | felem_reduce(ftmp2, tmp); |
921 | | |
922 | | /* ftmp4 = z2^3 */ |
923 | 12.1k | felem_mul(tmp, ftmp2, z2); |
924 | 12.1k | felem_reduce(ftmp4, tmp); |
925 | | |
926 | | /* ftmp4 = z2^3*y1 */ |
927 | 12.1k | felem_mul(tmp2, ftmp4, y1); |
928 | 12.1k | felem_reduce(ftmp4, tmp2); |
929 | | |
930 | | /* ftmp2 = z2^2*x1 */ |
931 | 12.1k | felem_mul(tmp2, ftmp2, x1); |
932 | 12.1k | felem_reduce(ftmp2, tmp2); |
933 | 58.6k | } else { |
934 | | /* |
935 | | * We'll assume z2 = 1 (special case z2 = 0 is handled later) |
936 | | */ |
937 | | |
938 | | /* ftmp4 = z2^3*y1 */ |
939 | 58.6k | felem_assign(ftmp4, y1); |
940 | | |
941 | | /* ftmp2 = z2^2*x1 */ |
942 | 58.6k | felem_assign(ftmp2, x1); |
943 | 58.6k | } |
944 | | |
945 | | /* ftmp = z1^2 */ |
946 | 70.8k | felem_square(tmp, z1); |
947 | 70.8k | felem_reduce(ftmp, tmp); |
948 | | |
949 | | /* ftmp3 = z1^3 */ |
950 | 70.8k | felem_mul(tmp, ftmp, z1); |
951 | 70.8k | felem_reduce(ftmp3, tmp); |
952 | | |
953 | | /* tmp = z1^3*y2 */ |
954 | 70.8k | felem_mul(tmp, ftmp3, y2); |
955 | | /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */ |
956 | | |
957 | | /* ftmp3 = z1^3*y2 - z2^3*y1 */ |
958 | 70.8k | felem_diff_128_64(tmp, ftmp4); |
959 | | /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */ |
960 | 70.8k | felem_reduce(ftmp3, tmp); |
961 | | |
962 | | /* tmp = z1^2*x2 */ |
963 | 70.8k | felem_mul(tmp, ftmp, x2); |
964 | | /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */ |
965 | | |
966 | | /* ftmp = z1^2*x2 - z2^2*x1 */ |
967 | 70.8k | felem_diff_128_64(tmp, ftmp2); |
968 | | /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */ |
969 | 70.8k | felem_reduce(ftmp, tmp); |
970 | | |
971 | | /* |
972 | | * The formulae are incorrect if the points are equal, in affine coordinates |
973 | | * (X_1, Y_1) == (X_2, Y_2), so we check for this and do doubling if this |
974 | | * happens. |
975 | | * |
976 | | * We use bitwise operations to avoid potential side-channels introduced by |
977 | | * the short-circuiting behaviour of boolean operators. |
978 | | */ |
979 | 70.8k | x_equal = felem_is_zero(ftmp); |
980 | 70.8k | y_equal = felem_is_zero(ftmp3); |
981 | | /* |
982 | | * The special case of either point being the point at infinity (z1 and/or |
983 | | * z2 are zero), is handled separately later on in this function, so we |
984 | | * avoid jumping to point_double here in those special cases. |
985 | | */ |
986 | 70.8k | z1_is_zero = felem_is_zero(z1); |
987 | 70.8k | z2_is_zero = felem_is_zero(z2); |
988 | | |
989 | | /* |
990 | | * Compared to `ecp_nistp256.c` and `ecp_nistp521.c`, in this |
991 | | * specific implementation `felem_is_zero()` returns truth as `0x1` |
992 | | * (rather than `0xff..ff`). |
993 | | * |
994 | | * This implies that `~true` in this implementation becomes |
995 | | * `0xff..fe` (rather than `0x0`): for this reason, to be used in |
996 | | * the if expression, we mask out only the last bit in the next |
997 | | * line. |
998 | | */ |
999 | 70.8k | points_equal = (x_equal & y_equal & (~z1_is_zero) & (~z2_is_zero)) & 1; |
1000 | | |
1001 | 70.8k | if (points_equal) { |
1002 | | /* |
1003 | | * This is obviously not constant-time but, as mentioned before, this |
1004 | | * case never happens during single point multiplication, so there is no |
1005 | | * timing leak for ECDH or ECDSA signing. |
1006 | | */ |
1007 | 0 | point_double(x3, y3, z3, x1, y1, z1); |
1008 | 0 | return; |
1009 | 0 | } |
1010 | | |
1011 | | /* ftmp5 = z1*z2 */ |
1012 | 70.8k | if (!mixed) { |
1013 | 12.1k | felem_mul(tmp, z1, z2); |
1014 | 12.1k | felem_reduce(ftmp5, tmp); |
1015 | 58.6k | } else { |
1016 | | /* special case z2 = 0 is handled later */ |
1017 | 58.6k | felem_assign(ftmp5, z1); |
1018 | 58.6k | } |
1019 | | |
1020 | | /* z_out = (z1^2*x2 - z2^2*x1)*(z1*z2) */ |
1021 | 70.8k | felem_mul(tmp, ftmp, ftmp5); |
1022 | 70.8k | felem_reduce(z_out, tmp); |
1023 | | |
1024 | | /* ftmp = (z1^2*x2 - z2^2*x1)^2 */ |
1025 | 70.8k | felem_assign(ftmp5, ftmp); |
1026 | 70.8k | felem_square(tmp, ftmp); |
1027 | 70.8k | felem_reduce(ftmp, tmp); |
1028 | | |
1029 | | /* ftmp5 = (z1^2*x2 - z2^2*x1)^3 */ |
1030 | 70.8k | felem_mul(tmp, ftmp, ftmp5); |
1031 | 70.8k | felem_reduce(ftmp5, tmp); |
1032 | | |
1033 | | /* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */ |
1034 | 70.8k | felem_mul(tmp, ftmp2, ftmp); |
1035 | 70.8k | felem_reduce(ftmp2, tmp); |
1036 | | |
1037 | | /* tmp = z2^3*y1*(z1^2*x2 - z2^2*x1)^3 */ |
1038 | 70.8k | felem_mul(tmp, ftmp4, ftmp5); |
1039 | | /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */ |
1040 | | |
1041 | | /* tmp2 = (z1^3*y2 - z2^3*y1)^2 */ |
1042 | 70.8k | felem_square(tmp2, ftmp3); |
1043 | | /* tmp2[i] < 4 * 2^57 * 2^57 < 2^116 */ |
1044 | | |
1045 | | /* tmp2 = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 */ |
1046 | 70.8k | felem_diff_128_64(tmp2, ftmp5); |
1047 | | /* tmp2[i] < 2^116 + 2^64 + 8 < 2^117 */ |
1048 | | |
1049 | | /* ftmp5 = 2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */ |
1050 | 70.8k | felem_assign(ftmp5, ftmp2); |
1051 | 70.8k | felem_scalar(ftmp5, 2); |
1052 | | /* ftmp5[i] < 2 * 2^57 = 2^58 */ |
1053 | | |
1054 | | /*- |
1055 | | * x_out = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 - |
1056 | | * 2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2 |
1057 | | */ |
1058 | 70.8k | felem_diff_128_64(tmp2, ftmp5); |
1059 | | /* tmp2[i] < 2^117 + 2^64 + 8 < 2^118 */ |
1060 | 70.8k | felem_reduce(x_out, tmp2); |
1061 | | |
1062 | | /* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out */ |
1063 | 70.8k | felem_diff(ftmp2, x_out); |
1064 | | /* ftmp2[i] < 2^57 + 2^58 + 2 < 2^59 */ |
1065 | | |
1066 | | /* |
1067 | | * tmp2 = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out) |
1068 | | */ |
1069 | 70.8k | felem_mul(tmp2, ftmp3, ftmp2); |
1070 | | /* tmp2[i] < 4 * 2^57 * 2^59 = 2^118 */ |
1071 | | |
1072 | | /*- |
1073 | | * y_out = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out) - |
1074 | | * z2^3*y1*(z1^2*x2 - z2^2*x1)^3 |
1075 | | */ |
1076 | 70.8k | widefelem_diff(tmp2, tmp); |
1077 | | /* tmp2[i] < 2^118 + 2^120 < 2^121 */ |
1078 | 70.8k | felem_reduce(y_out, tmp2); |
1079 | | |
1080 | | /* |
1081 | | * the result (x_out, y_out, z_out) is incorrect if one of the inputs is |
1082 | | * the point at infinity, so we need to check for this separately |
1083 | | */ |
1084 | | |
1085 | | /* |
1086 | | * if point 1 is at infinity, copy point 2 to output, and vice versa |
1087 | | */ |
1088 | 70.8k | copy_conditional(x_out, x2, z1_is_zero); |
1089 | 70.8k | copy_conditional(x_out, x1, z2_is_zero); |
1090 | 70.8k | copy_conditional(y_out, y2, z1_is_zero); |
1091 | 70.8k | copy_conditional(y_out, y1, z2_is_zero); |
1092 | 70.8k | copy_conditional(z_out, z2, z1_is_zero); |
1093 | 70.8k | copy_conditional(z_out, z1, z2_is_zero); |
1094 | 70.8k | felem_assign(x3, x_out); |
1095 | 70.8k | felem_assign(y3, y_out); |
1096 | 70.8k | felem_assign(z3, z_out); |
1097 | 70.8k | } |
1098 | | |
1099 | | /* |
1100 | | * select_point selects the |idx|th point from a precomputation table and |
1101 | | * copies it to out. |
1102 | | * The pre_comp array argument should be size of |size| argument |
1103 | | */ |
1104 | | static void select_point(const u64 idx, unsigned int size, |
1105 | | const felem pre_comp[][3], felem out[3]) |
1106 | 70.4k | { |
1107 | 70.4k | unsigned i, j; |
1108 | 70.4k | limb *outlimbs = &out[0][0]; |
1109 | | |
1110 | 70.4k | memset(out, 0, sizeof(*out) * 3); |
1111 | 1.20M | for (i = 0; i < size; i++) { |
1112 | 1.13M | const limb *inlimbs = &pre_comp[i][0][0]; |
1113 | 1.13M | u64 mask = i ^ idx; |
1114 | 1.13M | mask |= mask >> 4; |
1115 | 1.13M | mask |= mask >> 2; |
1116 | 1.13M | mask |= mask >> 1; |
1117 | 1.13M | mask &= 1; |
1118 | 1.13M | mask--; |
1119 | 14.7M | for (j = 0; j < 4 * 3; j++) |
1120 | 13.6M | outlimbs[j] |= inlimbs[j] & mask; |
1121 | 1.13M | } |
1122 | 70.4k | } |
1123 | | |
1124 | | /* get_bit returns the |i|th bit in |in| */ |
1125 | | static char get_bit(const felem_bytearray in, unsigned i) |
1126 | 303k | { |
1127 | 303k | if (i >= 224) |
1128 | 476 | return 0; |
1129 | 302k | return (in[i >> 3] >> (i & 7)) & 1; |
1130 | 303k | } |
1131 | | |
1132 | | /* |
1133 | | * Interleaved point multiplication using precomputed point multiples: The |
1134 | | * small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[], the scalars |
1135 | | * in scalars[]. If g_scalar is non-NULL, we also add this multiple of the |
1136 | | * generator, using certain (large) precomputed multiples in g_pre_comp. |
1137 | | * Output point (X, Y, Z) is stored in x_out, y_out, z_out |
1138 | | */ |
1139 | | static void batch_mul(felem x_out, felem y_out, felem z_out, |
1140 | | const felem_bytearray scalars[], |
1141 | | const unsigned num_points, const u8 *g_scalar, |
1142 | | const int mixed, const felem pre_comp[][17][3], |
1143 | | const felem g_pre_comp[2][16][3]) |
1144 | 1.30k | { |
1145 | 1.30k | int i, skip; |
1146 | 1.30k | unsigned num; |
1147 | 1.30k | unsigned gen_mul = (g_scalar != NULL); |
1148 | 1.30k | felem nq[3], tmp[4]; |
1149 | 1.30k | u64 bits; |
1150 | 1.30k | u8 sign, digit; |
1151 | | |
1152 | | /* set nq to the point at infinity */ |
1153 | 1.30k | memset(nq, 0, sizeof(nq)); |
1154 | | |
1155 | | /* |
1156 | | * Loop over all scalars msb-to-lsb, interleaving additions of multiples |
1157 | | * of the generator (two in each of the last 28 rounds) and additions of |
1158 | | * other points multiples (every 5th round). |
1159 | | */ |
1160 | 1.30k | skip = 1; /* save two point operations in the first |
1161 | | * round */ |
1162 | 83.7k | for (i = (num_points ? 220 : 27); i >= 0; --i) { |
1163 | | /* double */ |
1164 | 82.4k | if (!skip) |
1165 | 81.1k | point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]); |
1166 | | |
1167 | | /* add multiples of the generator */ |
1168 | 82.4k | if (gen_mul && (i <= 27)) { |
1169 | | /* first, look 28 bits upwards */ |
1170 | 29.8k | bits = get_bit(g_scalar, i + 196) << 3; |
1171 | 29.8k | bits |= get_bit(g_scalar, i + 140) << 2; |
1172 | 29.8k | bits |= get_bit(g_scalar, i + 84) << 1; |
1173 | 29.8k | bits |= get_bit(g_scalar, i + 28); |
1174 | | /* select the point to add, in constant time */ |
1175 | 29.8k | select_point(bits, 16, g_pre_comp[1], tmp); |
1176 | | |
1177 | 29.8k | if (!skip) { |
1178 | | /* value 1 below is argument for "mixed" */ |
1179 | 28.8k | point_add(nq[0], nq[1], nq[2], |
1180 | 28.8k | nq[0], nq[1], nq[2], 1, tmp[0], tmp[1], tmp[2]); |
1181 | 28.8k | } else { |
1182 | 1.06k | memcpy(nq, tmp, 3 * sizeof(felem)); |
1183 | 1.06k | skip = 0; |
1184 | 1.06k | } |
1185 | | |
1186 | | /* second, look at the current position */ |
1187 | 29.8k | bits = get_bit(g_scalar, i + 168) << 3; |
1188 | 29.8k | bits |= get_bit(g_scalar, i + 112) << 2; |
1189 | 29.8k | bits |= get_bit(g_scalar, i + 56) << 1; |
1190 | 29.8k | bits |= get_bit(g_scalar, i); |
1191 | | /* select the point to add, in constant time */ |
1192 | 29.8k | select_point(bits, 16, g_pre_comp[0], tmp); |
1193 | 29.8k | point_add(nq[0], nq[1], nq[2], |
1194 | 29.8k | nq[0], nq[1], nq[2], |
1195 | 29.8k | 1 /* mixed */ , tmp[0], tmp[1], tmp[2]); |
1196 | 29.8k | } |
1197 | | |
1198 | | /* do other additions every 5 doublings */ |
1199 | 82.4k | if (num_points && (i % 5 == 0)) { |
1200 | | /* loop over all scalars */ |
1201 | 21.4k | for (num = 0; num < num_points; ++num) { |
1202 | 10.7k | bits = get_bit(scalars[num], i + 4) << 5; |
1203 | 10.7k | bits |= get_bit(scalars[num], i + 3) << 4; |
1204 | 10.7k | bits |= get_bit(scalars[num], i + 2) << 3; |
1205 | 10.7k | bits |= get_bit(scalars[num], i + 1) << 2; |
1206 | 10.7k | bits |= get_bit(scalars[num], i) << 1; |
1207 | 10.7k | bits |= get_bit(scalars[num], i - 1); |
1208 | 10.7k | ossl_ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits); |
1209 | | |
1210 | | /* select the point to add or subtract */ |
1211 | 10.7k | select_point(digit, 17, pre_comp[num], tmp); |
1212 | 10.7k | felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the negative |
1213 | | * point */ |
1214 | 10.7k | copy_conditional(tmp[1], tmp[3], sign); |
1215 | | |
1216 | 10.7k | if (!skip) { |
1217 | 10.4k | point_add(nq[0], nq[1], nq[2], |
1218 | 10.4k | nq[0], nq[1], nq[2], |
1219 | 10.4k | mixed, tmp[0], tmp[1], tmp[2]); |
1220 | 10.4k | } else { |
1221 | 238 | memcpy(nq, tmp, 3 * sizeof(felem)); |
1222 | 238 | skip = 0; |
1223 | 238 | } |
1224 | 10.7k | } |
1225 | 10.7k | } |
1226 | 82.4k | } |
1227 | 1.30k | felem_assign(x_out, nq[0]); |
1228 | 1.30k | felem_assign(y_out, nq[1]); |
1229 | 1.30k | felem_assign(z_out, nq[2]); |
1230 | 1.30k | } |
1231 | | |
1232 | | /******************************************************************************/ |
1233 | | /* |
1234 | | * FUNCTIONS TO MANAGE PRECOMPUTATION |
1235 | | */ |
1236 | | |
1237 | | static NISTP224_PRE_COMP *nistp224_pre_comp_new(void) |
1238 | 0 | { |
1239 | 0 | NISTP224_PRE_COMP *ret = OPENSSL_zalloc(sizeof(*ret)); |
1240 | |
|
1241 | 0 | if (!ret) { |
1242 | 0 | ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE); |
1243 | 0 | return ret; |
1244 | 0 | } |
1245 | | |
1246 | 0 | ret->references = 1; |
1247 | |
|
1248 | 0 | ret->lock = CRYPTO_THREAD_lock_new(); |
1249 | 0 | if (ret->lock == NULL) { |
1250 | 0 | ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE); |
1251 | 0 | OPENSSL_free(ret); |
1252 | 0 | return NULL; |
1253 | 0 | } |
1254 | 0 | return ret; |
1255 | 0 | } |
1256 | | |
1257 | | NISTP224_PRE_COMP *EC_nistp224_pre_comp_dup(NISTP224_PRE_COMP *p) |
1258 | 0 | { |
1259 | 0 | int i; |
1260 | 0 | if (p != NULL) |
1261 | 0 | CRYPTO_UP_REF(&p->references, &i, p->lock); |
1262 | 0 | return p; |
1263 | 0 | } |
1264 | | |
1265 | | void EC_nistp224_pre_comp_free(NISTP224_PRE_COMP *p) |
1266 | 0 | { |
1267 | 0 | int i; |
1268 | |
|
1269 | 0 | if (p == NULL) |
1270 | 0 | return; |
1271 | | |
1272 | 0 | CRYPTO_DOWN_REF(&p->references, &i, p->lock); |
1273 | 0 | REF_PRINT_COUNT("EC_nistp224", p); |
1274 | 0 | if (i > 0) |
1275 | 0 | return; |
1276 | 0 | REF_ASSERT_ISNT(i < 0); |
1277 | |
|
1278 | 0 | CRYPTO_THREAD_lock_free(p->lock); |
1279 | 0 | OPENSSL_free(p); |
1280 | 0 | } |
1281 | | |
1282 | | /******************************************************************************/ |
1283 | | /* |
1284 | | * OPENSSL EC_METHOD FUNCTIONS |
1285 | | */ |
1286 | | |
1287 | | int ossl_ec_GFp_nistp224_group_init(EC_GROUP *group) |
1288 | 63.2k | { |
1289 | 63.2k | int ret; |
1290 | 63.2k | ret = ossl_ec_GFp_simple_group_init(group); |
1291 | 63.2k | group->a_is_minus3 = 1; |
1292 | 63.2k | return ret; |
1293 | 63.2k | } |
1294 | | |
1295 | | int ossl_ec_GFp_nistp224_group_set_curve(EC_GROUP *group, const BIGNUM *p, |
1296 | | const BIGNUM *a, const BIGNUM *b, |
1297 | | BN_CTX *ctx) |
1298 | 32.5k | { |
1299 | 32.5k | int ret = 0; |
1300 | 32.5k | BIGNUM *curve_p, *curve_a, *curve_b; |
1301 | 32.5k | #ifndef FIPS_MODULE |
1302 | 32.5k | BN_CTX *new_ctx = NULL; |
1303 | | |
1304 | 32.5k | if (ctx == NULL) |
1305 | 0 | ctx = new_ctx = BN_CTX_new(); |
1306 | 32.5k | #endif |
1307 | 32.5k | if (ctx == NULL) |
1308 | 0 | return 0; |
1309 | | |
1310 | 32.5k | BN_CTX_start(ctx); |
1311 | 32.5k | curve_p = BN_CTX_get(ctx); |
1312 | 32.5k | curve_a = BN_CTX_get(ctx); |
1313 | 32.5k | curve_b = BN_CTX_get(ctx); |
1314 | 32.5k | if (curve_b == NULL) |
1315 | 0 | goto err; |
1316 | 32.5k | BN_bin2bn(nistp224_curve_params[0], sizeof(felem_bytearray), curve_p); |
1317 | 32.5k | BN_bin2bn(nistp224_curve_params[1], sizeof(felem_bytearray), curve_a); |
1318 | 32.5k | BN_bin2bn(nistp224_curve_params[2], sizeof(felem_bytearray), curve_b); |
1319 | 32.5k | if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || (BN_cmp(curve_b, b))) { |
1320 | 0 | ERR_raise(ERR_LIB_EC, EC_R_WRONG_CURVE_PARAMETERS); |
1321 | 0 | goto err; |
1322 | 0 | } |
1323 | 32.5k | group->field_mod_func = BN_nist_mod_224; |
1324 | 32.5k | ret = ossl_ec_GFp_simple_group_set_curve(group, p, a, b, ctx); |
1325 | 32.5k | err: |
1326 | 32.5k | BN_CTX_end(ctx); |
1327 | 32.5k | #ifndef FIPS_MODULE |
1328 | 32.5k | BN_CTX_free(new_ctx); |
1329 | 32.5k | #endif |
1330 | 32.5k | return ret; |
1331 | 32.5k | } |
1332 | | |
1333 | | /* |
1334 | | * Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') = |
1335 | | * (X/Z^2, Y/Z^3) |
1336 | | */ |
1337 | | int ossl_ec_GFp_nistp224_point_get_affine_coordinates(const EC_GROUP *group, |
1338 | | const EC_POINT *point, |
1339 | | BIGNUM *x, BIGNUM *y, |
1340 | | BN_CTX *ctx) |
1341 | 2.64k | { |
1342 | 2.64k | felem z1, z2, x_in, y_in, x_out, y_out; |
1343 | 2.64k | widefelem tmp; |
1344 | | |
1345 | 2.64k | if (EC_POINT_is_at_infinity(group, point)) { |
1346 | 0 | ERR_raise(ERR_LIB_EC, EC_R_POINT_AT_INFINITY); |
1347 | 0 | return 0; |
1348 | 0 | } |
1349 | 2.64k | if ((!BN_to_felem(x_in, point->X)) || (!BN_to_felem(y_in, point->Y)) || |
1350 | 2.64k | (!BN_to_felem(z1, point->Z))) |
1351 | 0 | return 0; |
1352 | 2.64k | felem_inv(z2, z1); |
1353 | 2.64k | felem_square(tmp, z2); |
1354 | 2.64k | felem_reduce(z1, tmp); |
1355 | 2.64k | felem_mul(tmp, x_in, z1); |
1356 | 2.64k | felem_reduce(x_in, tmp); |
1357 | 2.64k | felem_contract(x_out, x_in); |
1358 | 2.64k | if (x != NULL) { |
1359 | 2.64k | if (!felem_to_BN(x, x_out)) { |
1360 | 0 | ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB); |
1361 | 0 | return 0; |
1362 | 0 | } |
1363 | 2.64k | } |
1364 | 2.64k | felem_mul(tmp, z1, z2); |
1365 | 2.64k | felem_reduce(z1, tmp); |
1366 | 2.64k | felem_mul(tmp, y_in, z1); |
1367 | 2.64k | felem_reduce(y_in, tmp); |
1368 | 2.64k | felem_contract(y_out, y_in); |
1369 | 2.64k | if (y != NULL) { |
1370 | 2.64k | if (!felem_to_BN(y, y_out)) { |
1371 | 0 | ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB); |
1372 | 0 | return 0; |
1373 | 0 | } |
1374 | 2.64k | } |
1375 | 2.64k | return 1; |
1376 | 2.64k | } |
1377 | | |
1378 | | static void make_points_affine(size_t num, felem points[ /* num */ ][3], |
1379 | | felem tmp_felems[ /* num+1 */ ]) |
1380 | 0 | { |
1381 | | /* |
1382 | | * Runs in constant time, unless an input is the point at infinity (which |
1383 | | * normally shouldn't happen). |
1384 | | */ |
1385 | 0 | ossl_ec_GFp_nistp_points_make_affine_internal(num, |
1386 | 0 | points, |
1387 | 0 | sizeof(felem), |
1388 | 0 | tmp_felems, |
1389 | 0 | (void (*)(void *))felem_one, |
1390 | 0 | felem_is_zero_int, |
1391 | 0 | (void (*)(void *, const void *)) |
1392 | 0 | felem_assign, |
1393 | 0 | (void (*)(void *, const void *)) |
1394 | 0 | felem_square_reduce, (void (*) |
1395 | 0 | (void *, |
1396 | 0 | const void |
1397 | 0 | *, |
1398 | 0 | const void |
1399 | 0 | *)) |
1400 | 0 | felem_mul_reduce, |
1401 | 0 | (void (*)(void *, const void *)) |
1402 | 0 | felem_inv, |
1403 | 0 | (void (*)(void *, const void *)) |
1404 | 0 | felem_contract); |
1405 | 0 | } |
1406 | | |
1407 | | /* |
1408 | | * Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL |
1409 | | * values Result is stored in r (r can equal one of the inputs). |
1410 | | */ |
1411 | | int ossl_ec_GFp_nistp224_points_mul(const EC_GROUP *group, EC_POINT *r, |
1412 | | const BIGNUM *scalar, size_t num, |
1413 | | const EC_POINT *points[], |
1414 | | const BIGNUM *scalars[], BN_CTX *ctx) |
1415 | 1.30k | { |
1416 | 1.30k | int ret = 0; |
1417 | 1.30k | int j; |
1418 | 1.30k | unsigned i; |
1419 | 1.30k | int mixed = 0; |
1420 | 1.30k | BIGNUM *x, *y, *z, *tmp_scalar; |
1421 | 1.30k | felem_bytearray g_secret; |
1422 | 1.30k | felem_bytearray *secrets = NULL; |
1423 | 1.30k | felem (*pre_comp)[17][3] = NULL; |
1424 | 1.30k | felem *tmp_felems = NULL; |
1425 | 1.30k | int num_bytes; |
1426 | 1.30k | int have_pre_comp = 0; |
1427 | 1.30k | size_t num_points = num; |
1428 | 1.30k | felem x_in, y_in, z_in, x_out, y_out, z_out; |
1429 | 1.30k | NISTP224_PRE_COMP *pre = NULL; |
1430 | 1.30k | const felem(*g_pre_comp)[16][3] = NULL; |
1431 | 1.30k | EC_POINT *generator = NULL; |
1432 | 1.30k | const EC_POINT *p = NULL; |
1433 | 1.30k | const BIGNUM *p_scalar = NULL; |
1434 | | |
1435 | 1.30k | BN_CTX_start(ctx); |
1436 | 1.30k | x = BN_CTX_get(ctx); |
1437 | 1.30k | y = BN_CTX_get(ctx); |
1438 | 1.30k | z = BN_CTX_get(ctx); |
1439 | 1.30k | tmp_scalar = BN_CTX_get(ctx); |
1440 | 1.30k | if (tmp_scalar == NULL) |
1441 | 0 | goto err; |
1442 | | |
1443 | 1.30k | if (scalar != NULL) { |
1444 | 1.06k | pre = group->pre_comp.nistp224; |
1445 | 1.06k | if (pre) |
1446 | | /* we have precomputation, try to use it */ |
1447 | 0 | g_pre_comp = (const felem(*)[16][3])pre->g_pre_comp; |
1448 | 1.06k | else |
1449 | | /* try to use the standard precomputation */ |
1450 | 1.06k | g_pre_comp = &gmul[0]; |
1451 | 1.06k | generator = EC_POINT_new(group); |
1452 | 1.06k | if (generator == NULL) |
1453 | 0 | goto err; |
1454 | | /* get the generator from precomputation */ |
1455 | 1.06k | if (!felem_to_BN(x, g_pre_comp[0][1][0]) || |
1456 | 1.06k | !felem_to_BN(y, g_pre_comp[0][1][1]) || |
1457 | 1.06k | !felem_to_BN(z, g_pre_comp[0][1][2])) { |
1458 | 0 | ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB); |
1459 | 0 | goto err; |
1460 | 0 | } |
1461 | 1.06k | if (!ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group, |
1462 | 1.06k | generator, |
1463 | 1.06k | x, y, z, ctx)) |
1464 | 0 | goto err; |
1465 | 1.06k | if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) |
1466 | | /* precomputation matches generator */ |
1467 | 1.06k | have_pre_comp = 1; |
1468 | 0 | else |
1469 | | /* |
1470 | | * we don't have valid precomputation: treat the generator as a |
1471 | | * random point |
1472 | | */ |
1473 | 0 | num_points = num_points + 1; |
1474 | 1.06k | } |
1475 | | |
1476 | 1.30k | if (num_points > 0) { |
1477 | 238 | if (num_points >= 3) { |
1478 | | /* |
1479 | | * unless we precompute multiples for just one or two points, |
1480 | | * converting those into affine form is time well spent |
1481 | | */ |
1482 | 0 | mixed = 1; |
1483 | 0 | } |
1484 | 238 | secrets = OPENSSL_zalloc(sizeof(*secrets) * num_points); |
1485 | 238 | pre_comp = OPENSSL_zalloc(sizeof(*pre_comp) * num_points); |
1486 | 238 | if (mixed) |
1487 | 0 | tmp_felems = |
1488 | 0 | OPENSSL_malloc(sizeof(felem) * (num_points * 17 + 1)); |
1489 | 238 | if ((secrets == NULL) || (pre_comp == NULL) |
1490 | 238 | || (mixed && (tmp_felems == NULL))) { |
1491 | 0 | ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE); |
1492 | 0 | goto err; |
1493 | 0 | } |
1494 | | |
1495 | | /* |
1496 | | * we treat NULL scalars as 0, and NULL points as points at infinity, |
1497 | | * i.e., they contribute nothing to the linear combination |
1498 | | */ |
1499 | 476 | for (i = 0; i < num_points; ++i) { |
1500 | 238 | if (i == num) { |
1501 | | /* the generator */ |
1502 | 0 | p = EC_GROUP_get0_generator(group); |
1503 | 0 | p_scalar = scalar; |
1504 | 238 | } else { |
1505 | | /* the i^th point */ |
1506 | 238 | p = points[i]; |
1507 | 238 | p_scalar = scalars[i]; |
1508 | 238 | } |
1509 | 238 | if ((p_scalar != NULL) && (p != NULL)) { |
1510 | | /* reduce scalar to 0 <= scalar < 2^224 */ |
1511 | 238 | if ((BN_num_bits(p_scalar) > 224) |
1512 | 238 | || (BN_is_negative(p_scalar))) { |
1513 | | /* |
1514 | | * this is an unusual input, and we don't guarantee |
1515 | | * constant-timeness |
1516 | | */ |
1517 | 0 | if (!BN_nnmod(tmp_scalar, p_scalar, group->order, ctx)) { |
1518 | 0 | ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB); |
1519 | 0 | goto err; |
1520 | 0 | } |
1521 | 0 | num_bytes = BN_bn2lebinpad(tmp_scalar, |
1522 | 0 | secrets[i], sizeof(secrets[i])); |
1523 | 238 | } else { |
1524 | 238 | num_bytes = BN_bn2lebinpad(p_scalar, |
1525 | 238 | secrets[i], sizeof(secrets[i])); |
1526 | 238 | } |
1527 | 238 | if (num_bytes < 0) { |
1528 | 0 | ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB); |
1529 | 0 | goto err; |
1530 | 0 | } |
1531 | | /* precompute multiples */ |
1532 | 238 | if ((!BN_to_felem(x_out, p->X)) || |
1533 | 238 | (!BN_to_felem(y_out, p->Y)) || |
1534 | 238 | (!BN_to_felem(z_out, p->Z))) |
1535 | 0 | goto err; |
1536 | 238 | felem_assign(pre_comp[i][1][0], x_out); |
1537 | 238 | felem_assign(pre_comp[i][1][1], y_out); |
1538 | 238 | felem_assign(pre_comp[i][1][2], z_out); |
1539 | 3.80k | for (j = 2; j <= 16; ++j) { |
1540 | 3.57k | if (j & 1) { |
1541 | 1.66k | point_add(pre_comp[i][j][0], pre_comp[i][j][1], |
1542 | 1.66k | pre_comp[i][j][2], pre_comp[i][1][0], |
1543 | 1.66k | pre_comp[i][1][1], pre_comp[i][1][2], 0, |
1544 | 1.66k | pre_comp[i][j - 1][0], |
1545 | 1.66k | pre_comp[i][j - 1][1], |
1546 | 1.66k | pre_comp[i][j - 1][2]); |
1547 | 1.90k | } else { |
1548 | 1.90k | point_double(pre_comp[i][j][0], pre_comp[i][j][1], |
1549 | 1.90k | pre_comp[i][j][2], pre_comp[i][j / 2][0], |
1550 | 1.90k | pre_comp[i][j / 2][1], |
1551 | 1.90k | pre_comp[i][j / 2][2]); |
1552 | 1.90k | } |
1553 | 3.57k | } |
1554 | 238 | } |
1555 | 238 | } |
1556 | 238 | if (mixed) |
1557 | 0 | make_points_affine(num_points * 17, pre_comp[0], tmp_felems); |
1558 | 238 | } |
1559 | | |
1560 | | /* the scalar for the generator */ |
1561 | 1.30k | if ((scalar != NULL) && (have_pre_comp)) { |
1562 | 1.06k | memset(g_secret, 0, sizeof(g_secret)); |
1563 | | /* reduce scalar to 0 <= scalar < 2^224 */ |
1564 | 1.06k | if ((BN_num_bits(scalar) > 224) || (BN_is_negative(scalar))) { |
1565 | | /* |
1566 | | * this is an unusual input, and we don't guarantee |
1567 | | * constant-timeness |
1568 | | */ |
1569 | 111 | if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) { |
1570 | 0 | ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB); |
1571 | 0 | goto err; |
1572 | 0 | } |
1573 | 111 | num_bytes = BN_bn2lebinpad(tmp_scalar, g_secret, sizeof(g_secret)); |
1574 | 956 | } else { |
1575 | 956 | num_bytes = BN_bn2lebinpad(scalar, g_secret, sizeof(g_secret)); |
1576 | 956 | } |
1577 | | /* do the multiplication with generator precomputation */ |
1578 | 1.06k | batch_mul(x_out, y_out, z_out, |
1579 | 1.06k | (const felem_bytearray(*))secrets, num_points, |
1580 | 1.06k | g_secret, |
1581 | 1.06k | mixed, (const felem(*)[17][3])pre_comp, g_pre_comp); |
1582 | 1.06k | } else { |
1583 | | /* do the multiplication without generator precomputation */ |
1584 | 238 | batch_mul(x_out, y_out, z_out, |
1585 | 238 | (const felem_bytearray(*))secrets, num_points, |
1586 | 238 | NULL, mixed, (const felem(*)[17][3])pre_comp, NULL); |
1587 | 238 | } |
1588 | | /* reduce the output to its unique minimal representation */ |
1589 | 1.30k | felem_contract(x_in, x_out); |
1590 | 1.30k | felem_contract(y_in, y_out); |
1591 | 1.30k | felem_contract(z_in, z_out); |
1592 | 1.30k | if ((!felem_to_BN(x, x_in)) || (!felem_to_BN(y, y_in)) || |
1593 | 1.30k | (!felem_to_BN(z, z_in))) { |
1594 | 0 | ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB); |
1595 | 0 | goto err; |
1596 | 0 | } |
1597 | 1.30k | ret = ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group, r, x, y, z, |
1598 | 1.30k | ctx); |
1599 | | |
1600 | 1.30k | err: |
1601 | 1.30k | BN_CTX_end(ctx); |
1602 | 1.30k | EC_POINT_free(generator); |
1603 | 1.30k | OPENSSL_free(secrets); |
1604 | 1.30k | OPENSSL_free(pre_comp); |
1605 | 1.30k | OPENSSL_free(tmp_felems); |
1606 | 1.30k | return ret; |
1607 | 1.30k | } |
1608 | | |
1609 | | int ossl_ec_GFp_nistp224_precompute_mult(EC_GROUP *group, BN_CTX *ctx) |
1610 | 0 | { |
1611 | 0 | int ret = 0; |
1612 | 0 | NISTP224_PRE_COMP *pre = NULL; |
1613 | 0 | int i, j; |
1614 | 0 | BIGNUM *x, *y; |
1615 | 0 | EC_POINT *generator = NULL; |
1616 | 0 | felem tmp_felems[32]; |
1617 | 0 | #ifndef FIPS_MODULE |
1618 | 0 | BN_CTX *new_ctx = NULL; |
1619 | 0 | #endif |
1620 | | |
1621 | | /* throw away old precomputation */ |
1622 | 0 | EC_pre_comp_free(group); |
1623 | |
|
1624 | 0 | #ifndef FIPS_MODULE |
1625 | 0 | if (ctx == NULL) |
1626 | 0 | ctx = new_ctx = BN_CTX_new(); |
1627 | 0 | #endif |
1628 | 0 | if (ctx == NULL) |
1629 | 0 | return 0; |
1630 | | |
1631 | 0 | BN_CTX_start(ctx); |
1632 | 0 | x = BN_CTX_get(ctx); |
1633 | 0 | y = BN_CTX_get(ctx); |
1634 | 0 | if (y == NULL) |
1635 | 0 | goto err; |
1636 | | /* get the generator */ |
1637 | 0 | if (group->generator == NULL) |
1638 | 0 | goto err; |
1639 | 0 | generator = EC_POINT_new(group); |
1640 | 0 | if (generator == NULL) |
1641 | 0 | goto err; |
1642 | 0 | BN_bin2bn(nistp224_curve_params[3], sizeof(felem_bytearray), x); |
1643 | 0 | BN_bin2bn(nistp224_curve_params[4], sizeof(felem_bytearray), y); |
1644 | 0 | if (!EC_POINT_set_affine_coordinates(group, generator, x, y, ctx)) |
1645 | 0 | goto err; |
1646 | 0 | if ((pre = nistp224_pre_comp_new()) == NULL) |
1647 | 0 | goto err; |
1648 | | /* |
1649 | | * if the generator is the standard one, use built-in precomputation |
1650 | | */ |
1651 | 0 | if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) { |
1652 | 0 | memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp)); |
1653 | 0 | goto done; |
1654 | 0 | } |
1655 | 0 | if ((!BN_to_felem(pre->g_pre_comp[0][1][0], group->generator->X)) || |
1656 | 0 | (!BN_to_felem(pre->g_pre_comp[0][1][1], group->generator->Y)) || |
1657 | 0 | (!BN_to_felem(pre->g_pre_comp[0][1][2], group->generator->Z))) |
1658 | 0 | goto err; |
1659 | | /* |
1660 | | * compute 2^56*G, 2^112*G, 2^168*G for the first table, 2^28*G, 2^84*G, |
1661 | | * 2^140*G, 2^196*G for the second one |
1662 | | */ |
1663 | 0 | for (i = 1; i <= 8; i <<= 1) { |
1664 | 0 | point_double(pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], |
1665 | 0 | pre->g_pre_comp[1][i][2], pre->g_pre_comp[0][i][0], |
1666 | 0 | pre->g_pre_comp[0][i][1], pre->g_pre_comp[0][i][2]); |
1667 | 0 | for (j = 0; j < 27; ++j) { |
1668 | 0 | point_double(pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], |
1669 | 0 | pre->g_pre_comp[1][i][2], pre->g_pre_comp[1][i][0], |
1670 | 0 | pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]); |
1671 | 0 | } |
1672 | 0 | if (i == 8) |
1673 | 0 | break; |
1674 | 0 | point_double(pre->g_pre_comp[0][2 * i][0], |
1675 | 0 | pre->g_pre_comp[0][2 * i][1], |
1676 | 0 | pre->g_pre_comp[0][2 * i][2], pre->g_pre_comp[1][i][0], |
1677 | 0 | pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]); |
1678 | 0 | for (j = 0; j < 27; ++j) { |
1679 | 0 | point_double(pre->g_pre_comp[0][2 * i][0], |
1680 | 0 | pre->g_pre_comp[0][2 * i][1], |
1681 | 0 | pre->g_pre_comp[0][2 * i][2], |
1682 | 0 | pre->g_pre_comp[0][2 * i][0], |
1683 | 0 | pre->g_pre_comp[0][2 * i][1], |
1684 | 0 | pre->g_pre_comp[0][2 * i][2]); |
1685 | 0 | } |
1686 | 0 | } |
1687 | 0 | for (i = 0; i < 2; i++) { |
1688 | | /* g_pre_comp[i][0] is the point at infinity */ |
1689 | 0 | memset(pre->g_pre_comp[i][0], 0, sizeof(pre->g_pre_comp[i][0])); |
1690 | | /* the remaining multiples */ |
1691 | | /* 2^56*G + 2^112*G resp. 2^84*G + 2^140*G */ |
1692 | 0 | point_add(pre->g_pre_comp[i][6][0], pre->g_pre_comp[i][6][1], |
1693 | 0 | pre->g_pre_comp[i][6][2], pre->g_pre_comp[i][4][0], |
1694 | 0 | pre->g_pre_comp[i][4][1], pre->g_pre_comp[i][4][2], |
1695 | 0 | 0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1], |
1696 | 0 | pre->g_pre_comp[i][2][2]); |
1697 | | /* 2^56*G + 2^168*G resp. 2^84*G + 2^196*G */ |
1698 | 0 | point_add(pre->g_pre_comp[i][10][0], pre->g_pre_comp[i][10][1], |
1699 | 0 | pre->g_pre_comp[i][10][2], pre->g_pre_comp[i][8][0], |
1700 | 0 | pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2], |
1701 | 0 | 0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1], |
1702 | 0 | pre->g_pre_comp[i][2][2]); |
1703 | | /* 2^112*G + 2^168*G resp. 2^140*G + 2^196*G */ |
1704 | 0 | point_add(pre->g_pre_comp[i][12][0], pre->g_pre_comp[i][12][1], |
1705 | 0 | pre->g_pre_comp[i][12][2], pre->g_pre_comp[i][8][0], |
1706 | 0 | pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2], |
1707 | 0 | 0, pre->g_pre_comp[i][4][0], pre->g_pre_comp[i][4][1], |
1708 | 0 | pre->g_pre_comp[i][4][2]); |
1709 | | /* |
1710 | | * 2^56*G + 2^112*G + 2^168*G resp. 2^84*G + 2^140*G + 2^196*G |
1711 | | */ |
1712 | 0 | point_add(pre->g_pre_comp[i][14][0], pre->g_pre_comp[i][14][1], |
1713 | 0 | pre->g_pre_comp[i][14][2], pre->g_pre_comp[i][12][0], |
1714 | 0 | pre->g_pre_comp[i][12][1], pre->g_pre_comp[i][12][2], |
1715 | 0 | 0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1], |
1716 | 0 | pre->g_pre_comp[i][2][2]); |
1717 | 0 | for (j = 1; j < 8; ++j) { |
1718 | | /* odd multiples: add G resp. 2^28*G */ |
1719 | 0 | point_add(pre->g_pre_comp[i][2 * j + 1][0], |
1720 | 0 | pre->g_pre_comp[i][2 * j + 1][1], |
1721 | 0 | pre->g_pre_comp[i][2 * j + 1][2], |
1722 | 0 | pre->g_pre_comp[i][2 * j][0], |
1723 | 0 | pre->g_pre_comp[i][2 * j][1], |
1724 | 0 | pre->g_pre_comp[i][2 * j][2], 0, |
1725 | 0 | pre->g_pre_comp[i][1][0], pre->g_pre_comp[i][1][1], |
1726 | 0 | pre->g_pre_comp[i][1][2]); |
1727 | 0 | } |
1728 | 0 | } |
1729 | 0 | make_points_affine(31, &(pre->g_pre_comp[0][1]), tmp_felems); |
1730 | |
|
1731 | 0 | done: |
1732 | 0 | SETPRECOMP(group, nistp224, pre); |
1733 | 0 | pre = NULL; |
1734 | 0 | ret = 1; |
1735 | 0 | err: |
1736 | 0 | BN_CTX_end(ctx); |
1737 | 0 | EC_POINT_free(generator); |
1738 | 0 | #ifndef FIPS_MODULE |
1739 | 0 | BN_CTX_free(new_ctx); |
1740 | 0 | #endif |
1741 | 0 | EC_nistp224_pre_comp_free(pre); |
1742 | 0 | return ret; |
1743 | 0 | } |
1744 | | |
1745 | | int ossl_ec_GFp_nistp224_have_precompute_mult(const EC_GROUP *group) |
1746 | 0 | { |
1747 | 0 | return HAVEPRECOMP(group, nistp224); |
1748 | 0 | } |