Coverage Report

Created: 2025-06-13 06:58

/src/openssl31/crypto/ec/ecp_smpl.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 2001-2022 The OpenSSL Project Authors. All Rights Reserved.
3
 * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
4
 *
5
 * Licensed under the Apache License 2.0 (the "License").  You may not use
6
 * this file except in compliance with the License.  You can obtain a copy
7
 * in the file LICENSE in the source distribution or at
8
 * https://www.openssl.org/source/license.html
9
 */
10
11
/*
12
 * ECDSA low-level APIs are deprecated for public use, but still ok for
13
 * internal use.
14
 */
15
#include "internal/deprecated.h"
16
17
#include <openssl/err.h>
18
#include <openssl/symhacks.h>
19
20
#include "ec_local.h"
21
22
const EC_METHOD *EC_GFp_simple_method(void)
23
0
{
24
0
    static const EC_METHOD ret = {
25
0
        EC_FLAGS_DEFAULT_OCT,
26
0
        NID_X9_62_prime_field,
27
0
        ossl_ec_GFp_simple_group_init,
28
0
        ossl_ec_GFp_simple_group_finish,
29
0
        ossl_ec_GFp_simple_group_clear_finish,
30
0
        ossl_ec_GFp_simple_group_copy,
31
0
        ossl_ec_GFp_simple_group_set_curve,
32
0
        ossl_ec_GFp_simple_group_get_curve,
33
0
        ossl_ec_GFp_simple_group_get_degree,
34
0
        ossl_ec_group_simple_order_bits,
35
0
        ossl_ec_GFp_simple_group_check_discriminant,
36
0
        ossl_ec_GFp_simple_point_init,
37
0
        ossl_ec_GFp_simple_point_finish,
38
0
        ossl_ec_GFp_simple_point_clear_finish,
39
0
        ossl_ec_GFp_simple_point_copy,
40
0
        ossl_ec_GFp_simple_point_set_to_infinity,
41
0
        ossl_ec_GFp_simple_point_set_affine_coordinates,
42
0
        ossl_ec_GFp_simple_point_get_affine_coordinates,
43
0
        0, 0, 0,
44
0
        ossl_ec_GFp_simple_add,
45
0
        ossl_ec_GFp_simple_dbl,
46
0
        ossl_ec_GFp_simple_invert,
47
0
        ossl_ec_GFp_simple_is_at_infinity,
48
0
        ossl_ec_GFp_simple_is_on_curve,
49
0
        ossl_ec_GFp_simple_cmp,
50
0
        ossl_ec_GFp_simple_make_affine,
51
0
        ossl_ec_GFp_simple_points_make_affine,
52
0
        0 /* mul */ ,
53
0
        0 /* precompute_mult */ ,
54
0
        0 /* have_precompute_mult */ ,
55
0
        ossl_ec_GFp_simple_field_mul,
56
0
        ossl_ec_GFp_simple_field_sqr,
57
0
        0 /* field_div */ ,
58
0
        ossl_ec_GFp_simple_field_inv,
59
0
        0 /* field_encode */ ,
60
0
        0 /* field_decode */ ,
61
0
        0,                      /* field_set_to_one */
62
0
        ossl_ec_key_simple_priv2oct,
63
0
        ossl_ec_key_simple_oct2priv,
64
0
        0, /* set private */
65
0
        ossl_ec_key_simple_generate_key,
66
0
        ossl_ec_key_simple_check_key,
67
0
        ossl_ec_key_simple_generate_public_key,
68
0
        0, /* keycopy */
69
0
        0, /* keyfinish */
70
0
        ossl_ecdh_simple_compute_key,
71
0
        ossl_ecdsa_simple_sign_setup,
72
0
        ossl_ecdsa_simple_sign_sig,
73
0
        ossl_ecdsa_simple_verify_sig,
74
0
        0, /* field_inverse_mod_ord */
75
0
        ossl_ec_GFp_simple_blind_coordinates,
76
0
        ossl_ec_GFp_simple_ladder_pre,
77
0
        ossl_ec_GFp_simple_ladder_step,
78
0
        ossl_ec_GFp_simple_ladder_post
79
0
    };
80
81
0
    return &ret;
82
0
}
83
84
/*
85
 * Most method functions in this file are designed to work with
86
 * non-trivial representations of field elements if necessary
87
 * (see ecp_mont.c): while standard modular addition and subtraction
88
 * are used, the field_mul and field_sqr methods will be used for
89
 * multiplication, and field_encode and field_decode (if defined)
90
 * will be used for converting between representations.
91
 *
92
 * Functions ec_GFp_simple_points_make_affine() and
93
 * ec_GFp_simple_point_get_affine_coordinates() specifically assume
94
 * that if a non-trivial representation is used, it is a Montgomery
95
 * representation (i.e. 'encoding' means multiplying by some factor R).
96
 */
97
98
int ossl_ec_GFp_simple_group_init(EC_GROUP *group)
99
546k
{
100
546k
    group->field = BN_new();
101
546k
    group->a = BN_new();
102
546k
    group->b = BN_new();
103
546k
    if (group->field == NULL || group->a == NULL || group->b == NULL) {
104
0
        BN_free(group->field);
105
0
        BN_free(group->a);
106
0
        BN_free(group->b);
107
0
        return 0;
108
0
    }
109
546k
    group->a_is_minus3 = 0;
110
546k
    return 1;
111
546k
}
112
113
void ossl_ec_GFp_simple_group_finish(EC_GROUP *group)
114
546k
{
115
546k
    BN_free(group->field);
116
546k
    BN_free(group->a);
117
546k
    BN_free(group->b);
118
546k
}
119
120
void ossl_ec_GFp_simple_group_clear_finish(EC_GROUP *group)
121
0
{
122
0
    BN_clear_free(group->field);
123
0
    BN_clear_free(group->a);
124
0
    BN_clear_free(group->b);
125
0
}
126
127
int ossl_ec_GFp_simple_group_copy(EC_GROUP *dest, const EC_GROUP *src)
128
253k
{
129
253k
    if (!BN_copy(dest->field, src->field))
130
0
        return 0;
131
253k
    if (!BN_copy(dest->a, src->a))
132
0
        return 0;
133
253k
    if (!BN_copy(dest->b, src->b))
134
0
        return 0;
135
136
253k
    dest->a_is_minus3 = src->a_is_minus3;
137
138
253k
    return 1;
139
253k
}
140
141
int ossl_ec_GFp_simple_group_set_curve(EC_GROUP *group,
142
                                       const BIGNUM *p, const BIGNUM *a,
143
                                       const BIGNUM *b, BN_CTX *ctx)
144
221k
{
145
221k
    int ret = 0;
146
221k
    BN_CTX *new_ctx = NULL;
147
221k
    BIGNUM *tmp_a;
148
149
    /* p must be a prime > 3 */
150
221k
    if (BN_num_bits(p) <= 2 || !BN_is_odd(p)) {
151
35
        ERR_raise(ERR_LIB_EC, EC_R_INVALID_FIELD);
152
35
        return 0;
153
35
    }
154
155
221k
    if (ctx == NULL) {
156
0
        ctx = new_ctx = BN_CTX_new_ex(group->libctx);
157
0
        if (ctx == NULL)
158
0
            return 0;
159
0
    }
160
161
221k
    BN_CTX_start(ctx);
162
221k
    tmp_a = BN_CTX_get(ctx);
163
221k
    if (tmp_a == NULL)
164
0
        goto err;
165
166
    /* group->field */
167
221k
    if (!BN_copy(group->field, p))
168
0
        goto err;
169
221k
    BN_set_negative(group->field, 0);
170
171
    /* group->a */
172
221k
    if (!BN_nnmod(tmp_a, a, p, ctx))
173
0
        goto err;
174
221k
    if (group->meth->field_encode != NULL) {
175
177k
        if (!group->meth->field_encode(group, group->a, tmp_a, ctx))
176
0
            goto err;
177
177k
    } else if (!BN_copy(group->a, tmp_a))
178
0
        goto err;
179
180
    /* group->b */
181
221k
    if (!BN_nnmod(group->b, b, p, ctx))
182
0
        goto err;
183
221k
    if (group->meth->field_encode != NULL)
184
177k
        if (!group->meth->field_encode(group, group->b, group->b, ctx))
185
0
            goto err;
186
187
    /* group->a_is_minus3 */
188
221k
    if (!BN_add_word(tmp_a, 3))
189
0
        goto err;
190
221k
    group->a_is_minus3 = (0 == BN_cmp(tmp_a, group->field));
191
192
221k
    ret = 1;
193
194
221k
 err:
195
221k
    BN_CTX_end(ctx);
196
221k
    BN_CTX_free(new_ctx);
197
221k
    return ret;
198
221k
}
199
200
int ossl_ec_GFp_simple_group_get_curve(const EC_GROUP *group, BIGNUM *p,
201
                                       BIGNUM *a, BIGNUM *b, BN_CTX *ctx)
202
103k
{
203
103k
    int ret = 0;
204
103k
    BN_CTX *new_ctx = NULL;
205
206
103k
    if (p != NULL) {
207
102k
        if (!BN_copy(p, group->field))
208
0
            return 0;
209
102k
    }
210
211
103k
    if (a != NULL || b != NULL) {
212
102k
        if (group->meth->field_decode != NULL) {
213
100k
            if (ctx == NULL) {
214
779
                ctx = new_ctx = BN_CTX_new_ex(group->libctx);
215
779
                if (ctx == NULL)
216
0
                    return 0;
217
779
            }
218
100k
            if (a != NULL) {
219
100k
                if (!group->meth->field_decode(group, a, group->a, ctx))
220
0
                    goto err;
221
100k
            }
222
100k
            if (b != NULL) {
223
100k
                if (!group->meth->field_decode(group, b, group->b, ctx))
224
0
                    goto err;
225
100k
            }
226
100k
        } else {
227
1.68k
            if (a != NULL) {
228
1.68k
                if (!BN_copy(a, group->a))
229
0
                    goto err;
230
1.68k
            }
231
1.68k
            if (b != NULL) {
232
1.68k
                if (!BN_copy(b, group->b))
233
0
                    goto err;
234
1.68k
            }
235
1.68k
        }
236
102k
    }
237
238
103k
    ret = 1;
239
240
103k
 err:
241
103k
    BN_CTX_free(new_ctx);
242
103k
    return ret;
243
103k
}
244
245
int ossl_ec_GFp_simple_group_get_degree(const EC_GROUP *group)
246
7.26k
{
247
7.26k
    return BN_num_bits(group->field);
248
7.26k
}
249
250
int ossl_ec_GFp_simple_group_check_discriminant(const EC_GROUP *group,
251
                                                BN_CTX *ctx)
252
1.15k
{
253
1.15k
    int ret = 0;
254
1.15k
    BIGNUM *a, *b, *order, *tmp_1, *tmp_2;
255
1.15k
    const BIGNUM *p = group->field;
256
1.15k
    BN_CTX *new_ctx = NULL;
257
258
1.15k
    if (ctx == NULL) {
259
0
        ctx = new_ctx = BN_CTX_new_ex(group->libctx);
260
0
        if (ctx == NULL) {
261
0
            ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
262
0
            goto err;
263
0
        }
264
0
    }
265
1.15k
    BN_CTX_start(ctx);
266
1.15k
    a = BN_CTX_get(ctx);
267
1.15k
    b = BN_CTX_get(ctx);
268
1.15k
    tmp_1 = BN_CTX_get(ctx);
269
1.15k
    tmp_2 = BN_CTX_get(ctx);
270
1.15k
    order = BN_CTX_get(ctx);
271
1.15k
    if (order == NULL)
272
0
        goto err;
273
274
1.15k
    if (group->meth->field_decode != NULL) {
275
736
        if (!group->meth->field_decode(group, a, group->a, ctx))
276
0
            goto err;
277
736
        if (!group->meth->field_decode(group, b, group->b, ctx))
278
0
            goto err;
279
736
    } else {
280
417
        if (!BN_copy(a, group->a))
281
0
            goto err;
282
417
        if (!BN_copy(b, group->b))
283
0
            goto err;
284
417
    }
285
286
    /*-
287
     * check the discriminant:
288
     * y^2 = x^3 + a*x + b is an elliptic curve <=> 4*a^3 + 27*b^2 != 0 (mod p)
289
     * 0 =< a, b < p
290
     */
291
1.15k
    if (BN_is_zero(a)) {
292
133
        if (BN_is_zero(b))
293
7
            goto err;
294
1.02k
    } else if (!BN_is_zero(b)) {
295
962
        if (!BN_mod_sqr(tmp_1, a, p, ctx))
296
0
            goto err;
297
962
        if (!BN_mod_mul(tmp_2, tmp_1, a, p, ctx))
298
0
            goto err;
299
962
        if (!BN_lshift(tmp_1, tmp_2, 2))
300
0
            goto err;
301
        /* tmp_1 = 4*a^3 */
302
303
962
        if (!BN_mod_sqr(tmp_2, b, p, ctx))
304
0
            goto err;
305
962
        if (!BN_mul_word(tmp_2, 27))
306
0
            goto err;
307
        /* tmp_2 = 27*b^2 */
308
309
962
        if (!BN_mod_add(a, tmp_1, tmp_2, p, ctx))
310
0
            goto err;
311
962
        if (BN_is_zero(a))
312
0
            goto err;
313
962
    }
314
1.14k
    ret = 1;
315
316
1.15k
 err:
317
1.15k
    BN_CTX_end(ctx);
318
1.15k
    BN_CTX_free(new_ctx);
319
1.15k
    return ret;
320
1.14k
}
321
322
int ossl_ec_GFp_simple_point_init(EC_POINT *point)
323
1.19M
{
324
1.19M
    point->X = BN_new();
325
1.19M
    point->Y = BN_new();
326
1.19M
    point->Z = BN_new();
327
1.19M
    point->Z_is_one = 0;
328
329
1.19M
    if (point->X == NULL || point->Y == NULL || point->Z == NULL) {
330
0
        BN_free(point->X);
331
0
        BN_free(point->Y);
332
0
        BN_free(point->Z);
333
0
        return 0;
334
0
    }
335
1.19M
    return 1;
336
1.19M
}
337
338
void ossl_ec_GFp_simple_point_finish(EC_POINT *point)
339
1.16M
{
340
1.16M
    BN_free(point->X);
341
1.16M
    BN_free(point->Y);
342
1.16M
    BN_free(point->Z);
343
1.16M
}
344
345
void ossl_ec_GFp_simple_point_clear_finish(EC_POINT *point)
346
21.6k
{
347
21.6k
    BN_clear_free(point->X);
348
21.6k
    BN_clear_free(point->Y);
349
21.6k
    BN_clear_free(point->Z);
350
21.6k
    point->Z_is_one = 0;
351
21.6k
}
352
353
int ossl_ec_GFp_simple_point_copy(EC_POINT *dest, const EC_POINT *src)
354
622k
{
355
622k
    if (!BN_copy(dest->X, src->X))
356
0
        return 0;
357
622k
    if (!BN_copy(dest->Y, src->Y))
358
0
        return 0;
359
622k
    if (!BN_copy(dest->Z, src->Z))
360
0
        return 0;
361
622k
    dest->Z_is_one = src->Z_is_one;
362
622k
    dest->curve_name = src->curve_name;
363
364
622k
    return 1;
365
622k
}
366
367
int ossl_ec_GFp_simple_point_set_to_infinity(const EC_GROUP *group,
368
                                             EC_POINT *point)
369
16.4k
{
370
16.4k
    point->Z_is_one = 0;
371
16.4k
    BN_zero(point->Z);
372
16.4k
    return 1;
373
16.4k
}
374
375
int ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(const EC_GROUP *group,
376
                                                       EC_POINT *point,
377
                                                       const BIGNUM *x,
378
                                                       const BIGNUM *y,
379
                                                       const BIGNUM *z,
380
                                                       BN_CTX *ctx)
381
487k
{
382
487k
    BN_CTX *new_ctx = NULL;
383
487k
    int ret = 0;
384
385
487k
    if (ctx == NULL) {
386
0
        ctx = new_ctx = BN_CTX_new_ex(group->libctx);
387
0
        if (ctx == NULL)
388
0
            return 0;
389
0
    }
390
391
487k
    if (x != NULL) {
392
487k
        if (!BN_nnmod(point->X, x, group->field, ctx))
393
0
            goto err;
394
487k
        if (group->meth->field_encode) {
395
388k
            if (!group->meth->field_encode(group, point->X, point->X, ctx))
396
0
                goto err;
397
388k
        }
398
487k
    }
399
400
487k
    if (y != NULL) {
401
487k
        if (!BN_nnmod(point->Y, y, group->field, ctx))
402
0
            goto err;
403
487k
        if (group->meth->field_encode) {
404
388k
            if (!group->meth->field_encode(group, point->Y, point->Y, ctx))
405
0
                goto err;
406
388k
        }
407
487k
    }
408
409
487k
    if (z != NULL) {
410
487k
        int Z_is_one;
411
412
487k
        if (!BN_nnmod(point->Z, z, group->field, ctx))
413
0
            goto err;
414
487k
        Z_is_one = BN_is_one(point->Z);
415
487k
        if (group->meth->field_encode) {
416
388k
            if (Z_is_one && (group->meth->field_set_to_one != 0)) {
417
388k
                if (!group->meth->field_set_to_one(group, point->Z, ctx))
418
0
                    goto err;
419
388k
            } else {
420
0
                if (!group->
421
0
                    meth->field_encode(group, point->Z, point->Z, ctx))
422
0
                    goto err;
423
0
            }
424
388k
        }
425
487k
        point->Z_is_one = Z_is_one;
426
487k
    }
427
428
487k
    ret = 1;
429
430
487k
 err:
431
487k
    BN_CTX_free(new_ctx);
432
487k
    return ret;
433
487k
}
434
435
int ossl_ec_GFp_simple_get_Jprojective_coordinates_GFp(const EC_GROUP *group,
436
                                                       const EC_POINT *point,
437
                                                       BIGNUM *x, BIGNUM *y,
438
                                                       BIGNUM *z, BN_CTX *ctx)
439
0
{
440
0
    BN_CTX *new_ctx = NULL;
441
0
    int ret = 0;
442
443
0
    if (group->meth->field_decode != NULL) {
444
0
        if (ctx == NULL) {
445
0
            ctx = new_ctx = BN_CTX_new_ex(group->libctx);
446
0
            if (ctx == NULL)
447
0
                return 0;
448
0
        }
449
450
0
        if (x != NULL) {
451
0
            if (!group->meth->field_decode(group, x, point->X, ctx))
452
0
                goto err;
453
0
        }
454
0
        if (y != NULL) {
455
0
            if (!group->meth->field_decode(group, y, point->Y, ctx))
456
0
                goto err;
457
0
        }
458
0
        if (z != NULL) {
459
0
            if (!group->meth->field_decode(group, z, point->Z, ctx))
460
0
                goto err;
461
0
        }
462
0
    } else {
463
0
        if (x != NULL) {
464
0
            if (!BN_copy(x, point->X))
465
0
                goto err;
466
0
        }
467
0
        if (y != NULL) {
468
0
            if (!BN_copy(y, point->Y))
469
0
                goto err;
470
0
        }
471
0
        if (z != NULL) {
472
0
            if (!BN_copy(z, point->Z))
473
0
                goto err;
474
0
        }
475
0
    }
476
477
0
    ret = 1;
478
479
0
 err:
480
0
    BN_CTX_free(new_ctx);
481
0
    return ret;
482
0
}
483
484
int ossl_ec_GFp_simple_point_set_affine_coordinates(const EC_GROUP *group,
485
                                                    EC_POINT *point,
486
                                                    const BIGNUM *x,
487
                                                    const BIGNUM *y, BN_CTX *ctx)
488
480k
{
489
480k
    if (x == NULL || y == NULL) {
490
        /*
491
         * unlike for projective coordinates, we do not tolerate this
492
         */
493
0
        ERR_raise(ERR_LIB_EC, ERR_R_PASSED_NULL_PARAMETER);
494
0
        return 0;
495
0
    }
496
497
480k
    return EC_POINT_set_Jprojective_coordinates_GFp(group, point, x, y,
498
480k
                                                    BN_value_one(), ctx);
499
480k
}
500
501
int ossl_ec_GFp_simple_point_get_affine_coordinates(const EC_GROUP *group,
502
                                                    const EC_POINT *point,
503
                                                    BIGNUM *x, BIGNUM *y,
504
                                                    BN_CTX *ctx)
505
18.7k
{
506
18.7k
    BN_CTX *new_ctx = NULL;
507
18.7k
    BIGNUM *Z, *Z_1, *Z_2, *Z_3;
508
18.7k
    const BIGNUM *Z_;
509
18.7k
    int ret = 0;
510
511
18.7k
    if (EC_POINT_is_at_infinity(group, point)) {
512
0
        ERR_raise(ERR_LIB_EC, EC_R_POINT_AT_INFINITY);
513
0
        return 0;
514
0
    }
515
516
18.7k
    if (ctx == NULL) {
517
0
        ctx = new_ctx = BN_CTX_new_ex(group->libctx);
518
0
        if (ctx == NULL)
519
0
            return 0;
520
0
    }
521
522
18.7k
    BN_CTX_start(ctx);
523
18.7k
    Z = BN_CTX_get(ctx);
524
18.7k
    Z_1 = BN_CTX_get(ctx);
525
18.7k
    Z_2 = BN_CTX_get(ctx);
526
18.7k
    Z_3 = BN_CTX_get(ctx);
527
18.7k
    if (Z_3 == NULL)
528
0
        goto err;
529
530
    /* transform  (X, Y, Z)  into  (x, y) := (X/Z^2, Y/Z^3) */
531
532
18.7k
    if (group->meth->field_decode != NULL) {
533
18.7k
        if (!group->meth->field_decode(group, Z, point->Z, ctx))
534
0
            goto err;
535
18.7k
        Z_ = Z;
536
18.7k
    } else {
537
0
        Z_ = point->Z;
538
0
    }
539
540
18.7k
    if (BN_is_one(Z_)) {
541
18.1k
        if (group->meth->field_decode != NULL) {
542
18.1k
            if (x != NULL) {
543
18.1k
                if (!group->meth->field_decode(group, x, point->X, ctx))
544
0
                    goto err;
545
18.1k
            }
546
18.1k
            if (y != NULL) {
547
17.9k
                if (!group->meth->field_decode(group, y, point->Y, ctx))
548
0
                    goto err;
549
17.9k
            }
550
18.1k
        } else {
551
0
            if (x != NULL) {
552
0
                if (!BN_copy(x, point->X))
553
0
                    goto err;
554
0
            }
555
0
            if (y != NULL) {
556
0
                if (!BN_copy(y, point->Y))
557
0
                    goto err;
558
0
            }
559
0
        }
560
18.1k
    } else {
561
548
        if (!group->meth->field_inv(group, Z_1, Z_, ctx)) {
562
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
563
0
            goto err;
564
0
        }
565
566
548
        if (group->meth->field_encode == NULL) {
567
            /* field_sqr works on standard representation */
568
0
            if (!group->meth->field_sqr(group, Z_2, Z_1, ctx))
569
0
                goto err;
570
548
        } else {
571
548
            if (!BN_mod_sqr(Z_2, Z_1, group->field, ctx))
572
0
                goto err;
573
548
        }
574
575
548
        if (x != NULL) {
576
            /*
577
             * in the Montgomery case, field_mul will cancel out Montgomery
578
             * factor in X:
579
             */
580
548
            if (!group->meth->field_mul(group, x, point->X, Z_2, ctx))
581
0
                goto err;
582
548
        }
583
584
548
        if (y != NULL) {
585
456
            if (group->meth->field_encode == NULL) {
586
                /*
587
                 * field_mul works on standard representation
588
                 */
589
0
                if (!group->meth->field_mul(group, Z_3, Z_2, Z_1, ctx))
590
0
                    goto err;
591
456
            } else {
592
456
                if (!BN_mod_mul(Z_3, Z_2, Z_1, group->field, ctx))
593
0
                    goto err;
594
456
            }
595
596
            /*
597
             * in the Montgomery case, field_mul will cancel out Montgomery
598
             * factor in Y:
599
             */
600
456
            if (!group->meth->field_mul(group, y, point->Y, Z_3, ctx))
601
0
                goto err;
602
456
        }
603
548
    }
604
605
18.7k
    ret = 1;
606
607
18.7k
 err:
608
18.7k
    BN_CTX_end(ctx);
609
18.7k
    BN_CTX_free(new_ctx);
610
18.7k
    return ret;
611
18.7k
}
612
613
int ossl_ec_GFp_simple_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
614
                           const EC_POINT *b, BN_CTX *ctx)
615
96.6k
{
616
96.6k
    int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *,
617
96.6k
                      const BIGNUM *, BN_CTX *);
618
96.6k
    int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
619
96.6k
    const BIGNUM *p;
620
96.6k
    BN_CTX *new_ctx = NULL;
621
96.6k
    BIGNUM *n0, *n1, *n2, *n3, *n4, *n5, *n6;
622
96.6k
    int ret = 0;
623
624
96.6k
    if (a == b)
625
0
        return EC_POINT_dbl(group, r, a, ctx);
626
96.6k
    if (EC_POINT_is_at_infinity(group, a))
627
6.66k
        return EC_POINT_copy(r, b);
628
89.9k
    if (EC_POINT_is_at_infinity(group, b))
629
931
        return EC_POINT_copy(r, a);
630
631
89.0k
    field_mul = group->meth->field_mul;
632
89.0k
    field_sqr = group->meth->field_sqr;
633
89.0k
    p = group->field;
634
635
89.0k
    if (ctx == NULL) {
636
0
        ctx = new_ctx = BN_CTX_new_ex(group->libctx);
637
0
        if (ctx == NULL)
638
0
            return 0;
639
0
    }
640
641
89.0k
    BN_CTX_start(ctx);
642
89.0k
    n0 = BN_CTX_get(ctx);
643
89.0k
    n1 = BN_CTX_get(ctx);
644
89.0k
    n2 = BN_CTX_get(ctx);
645
89.0k
    n3 = BN_CTX_get(ctx);
646
89.0k
    n4 = BN_CTX_get(ctx);
647
89.0k
    n5 = BN_CTX_get(ctx);
648
89.0k
    n6 = BN_CTX_get(ctx);
649
89.0k
    if (n6 == NULL)
650
0
        goto end;
651
652
    /*
653
     * Note that in this function we must not read components of 'a' or 'b'
654
     * once we have written the corresponding components of 'r'. ('r' might
655
     * be one of 'a' or 'b'.)
656
     */
657
658
    /* n1, n2 */
659
89.0k
    if (b->Z_is_one) {
660
77.7k
        if (!BN_copy(n1, a->X))
661
0
            goto end;
662
77.7k
        if (!BN_copy(n2, a->Y))
663
0
            goto end;
664
        /* n1 = X_a */
665
        /* n2 = Y_a */
666
77.7k
    } else {
667
11.3k
        if (!field_sqr(group, n0, b->Z, ctx))
668
0
            goto end;
669
11.3k
        if (!field_mul(group, n1, a->X, n0, ctx))
670
0
            goto end;
671
        /* n1 = X_a * Z_b^2 */
672
673
11.3k
        if (!field_mul(group, n0, n0, b->Z, ctx))
674
0
            goto end;
675
11.3k
        if (!field_mul(group, n2, a->Y, n0, ctx))
676
0
            goto end;
677
        /* n2 = Y_a * Z_b^3 */
678
11.3k
    }
679
680
    /* n3, n4 */
681
89.0k
    if (a->Z_is_one) {
682
2.36k
        if (!BN_copy(n3, b->X))
683
0
            goto end;
684
2.36k
        if (!BN_copy(n4, b->Y))
685
0
            goto end;
686
        /* n3 = X_b */
687
        /* n4 = Y_b */
688
86.6k
    } else {
689
86.6k
        if (!field_sqr(group, n0, a->Z, ctx))
690
0
            goto end;
691
86.6k
        if (!field_mul(group, n3, b->X, n0, ctx))
692
0
            goto end;
693
        /* n3 = X_b * Z_a^2 */
694
695
86.6k
        if (!field_mul(group, n0, n0, a->Z, ctx))
696
0
            goto end;
697
86.6k
        if (!field_mul(group, n4, b->Y, n0, ctx))
698
0
            goto end;
699
        /* n4 = Y_b * Z_a^3 */
700
86.6k
    }
701
702
    /* n5, n6 */
703
89.0k
    if (!BN_mod_sub_quick(n5, n1, n3, p))
704
0
        goto end;
705
89.0k
    if (!BN_mod_sub_quick(n6, n2, n4, p))
706
0
        goto end;
707
    /* n5 = n1 - n3 */
708
    /* n6 = n2 - n4 */
709
710
89.0k
    if (BN_is_zero(n5)) {
711
1.89k
        if (BN_is_zero(n6)) {
712
            /* a is the same point as b */
713
192
            BN_CTX_end(ctx);
714
192
            ret = EC_POINT_dbl(group, r, a, ctx);
715
192
            ctx = NULL;
716
192
            goto end;
717
1.70k
        } else {
718
            /* a is the inverse of b */
719
1.70k
            BN_zero(r->Z);
720
1.70k
            r->Z_is_one = 0;
721
1.70k
            ret = 1;
722
1.70k
            goto end;
723
1.70k
        }
724
1.89k
    }
725
726
    /* 'n7', 'n8' */
727
87.1k
    if (!BN_mod_add_quick(n1, n1, n3, p))
728
0
        goto end;
729
87.1k
    if (!BN_mod_add_quick(n2, n2, n4, p))
730
0
        goto end;
731
    /* 'n7' = n1 + n3 */
732
    /* 'n8' = n2 + n4 */
733
734
    /* Z_r */
735
87.1k
    if (a->Z_is_one && b->Z_is_one) {
736
0
        if (!BN_copy(r->Z, n5))
737
0
            goto end;
738
87.1k
    } else {
739
87.1k
        if (a->Z_is_one) {
740
2.32k
            if (!BN_copy(n0, b->Z))
741
0
                goto end;
742
84.8k
        } else if (b->Z_is_one) {
743
75.9k
            if (!BN_copy(n0, a->Z))
744
0
                goto end;
745
75.9k
        } else {
746
8.91k
            if (!field_mul(group, n0, a->Z, b->Z, ctx))
747
0
                goto end;
748
8.91k
        }
749
87.1k
        if (!field_mul(group, r->Z, n0, n5, ctx))
750
0
            goto end;
751
87.1k
    }
752
87.1k
    r->Z_is_one = 0;
753
    /* Z_r = Z_a * Z_b * n5 */
754
755
    /* X_r */
756
87.1k
    if (!field_sqr(group, n0, n6, ctx))
757
0
        goto end;
758
87.1k
    if (!field_sqr(group, n4, n5, ctx))
759
0
        goto end;
760
87.1k
    if (!field_mul(group, n3, n1, n4, ctx))
761
0
        goto end;
762
87.1k
    if (!BN_mod_sub_quick(r->X, n0, n3, p))
763
0
        goto end;
764
    /* X_r = n6^2 - n5^2 * 'n7' */
765
766
    /* 'n9' */
767
87.1k
    if (!BN_mod_lshift1_quick(n0, r->X, p))
768
0
        goto end;
769
87.1k
    if (!BN_mod_sub_quick(n0, n3, n0, p))
770
0
        goto end;
771
    /* n9 = n5^2 * 'n7' - 2 * X_r */
772
773
    /* Y_r */
774
87.1k
    if (!field_mul(group, n0, n0, n6, ctx))
775
0
        goto end;
776
87.1k
    if (!field_mul(group, n5, n4, n5, ctx))
777
0
        goto end;               /* now n5 is n5^3 */
778
87.1k
    if (!field_mul(group, n1, n2, n5, ctx))
779
0
        goto end;
780
87.1k
    if (!BN_mod_sub_quick(n0, n0, n1, p))
781
0
        goto end;
782
87.1k
    if (BN_is_odd(n0))
783
43.6k
        if (!BN_add(n0, n0, p))
784
0
            goto end;
785
    /* now  0 <= n0 < 2*p,  and n0 is even */
786
87.1k
    if (!BN_rshift1(r->Y, n0))
787
0
        goto end;
788
    /* Y_r = (n6 * 'n9' - 'n8' * 'n5^3') / 2 */
789
790
87.1k
    ret = 1;
791
792
89.0k
 end:
793
89.0k
    BN_CTX_end(ctx);
794
89.0k
    BN_CTX_free(new_ctx);
795
89.0k
    return ret;
796
87.1k
}
797
798
int ossl_ec_GFp_simple_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
799
                           BN_CTX *ctx)
800
636k
{
801
636k
    int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *,
802
636k
                      const BIGNUM *, BN_CTX *);
803
636k
    int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
804
636k
    const BIGNUM *p;
805
636k
    BN_CTX *new_ctx = NULL;
806
636k
    BIGNUM *n0, *n1, *n2, *n3;
807
636k
    int ret = 0;
808
809
636k
    if (EC_POINT_is_at_infinity(group, a)) {
810
44.7k
        BN_zero(r->Z);
811
44.7k
        r->Z_is_one = 0;
812
44.7k
        return 1;
813
44.7k
    }
814
815
591k
    field_mul = group->meth->field_mul;
816
591k
    field_sqr = group->meth->field_sqr;
817
591k
    p = group->field;
818
819
591k
    if (ctx == NULL) {
820
0
        ctx = new_ctx = BN_CTX_new_ex(group->libctx);
821
0
        if (ctx == NULL)
822
0
            return 0;
823
0
    }
824
825
591k
    BN_CTX_start(ctx);
826
591k
    n0 = BN_CTX_get(ctx);
827
591k
    n1 = BN_CTX_get(ctx);
828
591k
    n2 = BN_CTX_get(ctx);
829
591k
    n3 = BN_CTX_get(ctx);
830
591k
    if (n3 == NULL)
831
0
        goto err;
832
833
    /*
834
     * Note that in this function we must not read components of 'a' once we
835
     * have written the corresponding components of 'r'. ('r' might the same
836
     * as 'a'.)
837
     */
838
839
    /* n1 */
840
591k
    if (a->Z_is_one) {
841
9.00k
        if (!field_sqr(group, n0, a->X, ctx))
842
0
            goto err;
843
9.00k
        if (!BN_mod_lshift1_quick(n1, n0, p))
844
0
            goto err;
845
9.00k
        if (!BN_mod_add_quick(n0, n0, n1, p))
846
0
            goto err;
847
9.00k
        if (!BN_mod_add_quick(n1, n0, group->a, p))
848
0
            goto err;
849
        /* n1 = 3 * X_a^2 + a_curve */
850
582k
    } else if (group->a_is_minus3) {
851
363k
        if (!field_sqr(group, n1, a->Z, ctx))
852
0
            goto err;
853
363k
        if (!BN_mod_add_quick(n0, a->X, n1, p))
854
0
            goto err;
855
363k
        if (!BN_mod_sub_quick(n2, a->X, n1, p))
856
0
            goto err;
857
363k
        if (!field_mul(group, n1, n0, n2, ctx))
858
0
            goto err;
859
363k
        if (!BN_mod_lshift1_quick(n0, n1, p))
860
0
            goto err;
861
363k
        if (!BN_mod_add_quick(n1, n0, n1, p))
862
0
            goto err;
863
        /*-
864
         * n1 = 3 * (X_a + Z_a^2) * (X_a - Z_a^2)
865
         *    = 3 * X_a^2 - 3 * Z_a^4
866
         */
867
363k
    } else {
868
219k
        if (!field_sqr(group, n0, a->X, ctx))
869
0
            goto err;
870
219k
        if (!BN_mod_lshift1_quick(n1, n0, p))
871
0
            goto err;
872
219k
        if (!BN_mod_add_quick(n0, n0, n1, p))
873
0
            goto err;
874
219k
        if (!field_sqr(group, n1, a->Z, ctx))
875
0
            goto err;
876
219k
        if (!field_sqr(group, n1, n1, ctx))
877
0
            goto err;
878
219k
        if (!field_mul(group, n1, n1, group->a, ctx))
879
0
            goto err;
880
219k
        if (!BN_mod_add_quick(n1, n1, n0, p))
881
0
            goto err;
882
        /* n1 = 3 * X_a^2 + a_curve * Z_a^4 */
883
219k
    }
884
885
    /* Z_r */
886
591k
    if (a->Z_is_one) {
887
9.00k
        if (!BN_copy(n0, a->Y))
888
0
            goto err;
889
582k
    } else {
890
582k
        if (!field_mul(group, n0, a->Y, a->Z, ctx))
891
0
            goto err;
892
582k
    }
893
591k
    if (!BN_mod_lshift1_quick(r->Z, n0, p))
894
0
        goto err;
895
591k
    r->Z_is_one = 0;
896
    /* Z_r = 2 * Y_a * Z_a */
897
898
    /* n2 */
899
591k
    if (!field_sqr(group, n3, a->Y, ctx))
900
0
        goto err;
901
591k
    if (!field_mul(group, n2, a->X, n3, ctx))
902
0
        goto err;
903
591k
    if (!BN_mod_lshift_quick(n2, n2, 2, p))
904
0
        goto err;
905
    /* n2 = 4 * X_a * Y_a^2 */
906
907
    /* X_r */
908
591k
    if (!BN_mod_lshift1_quick(n0, n2, p))
909
0
        goto err;
910
591k
    if (!field_sqr(group, r->X, n1, ctx))
911
0
        goto err;
912
591k
    if (!BN_mod_sub_quick(r->X, r->X, n0, p))
913
0
        goto err;
914
    /* X_r = n1^2 - 2 * n2 */
915
916
    /* n3 */
917
591k
    if (!field_sqr(group, n0, n3, ctx))
918
0
        goto err;
919
591k
    if (!BN_mod_lshift_quick(n3, n0, 3, p))
920
0
        goto err;
921
    /* n3 = 8 * Y_a^4 */
922
923
    /* Y_r */
924
591k
    if (!BN_mod_sub_quick(n0, n2, r->X, p))
925
0
        goto err;
926
591k
    if (!field_mul(group, n0, n1, n0, ctx))
927
0
        goto err;
928
591k
    if (!BN_mod_sub_quick(r->Y, n0, n3, p))
929
0
        goto err;
930
    /* Y_r = n1 * (n2 - X_r) - n3 */
931
932
591k
    ret = 1;
933
934
591k
 err:
935
591k
    BN_CTX_end(ctx);
936
591k
    BN_CTX_free(new_ctx);
937
591k
    return ret;
938
591k
}
939
940
int ossl_ec_GFp_simple_invert(const EC_GROUP *group, EC_POINT *point,
941
                              BN_CTX *ctx)
942
43.6k
{
943
43.6k
    if (EC_POINT_is_at_infinity(group, point) || BN_is_zero(point->Y))
944
        /* point is its own inverse */
945
4.21k
        return 1;
946
947
39.4k
    return BN_usub(point->Y, group->field, point->Y);
948
43.6k
}
949
950
int ossl_ec_GFp_simple_is_at_infinity(const EC_GROUP *group,
951
                                      const EC_POINT *point)
952
1.83M
{
953
1.83M
    return BN_is_zero(point->Z);
954
1.83M
}
955
956
int ossl_ec_GFp_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point,
957
                                   BN_CTX *ctx)
958
485k
{
959
485k
    int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *,
960
485k
                      const BIGNUM *, BN_CTX *);
961
485k
    int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
962
485k
    const BIGNUM *p;
963
485k
    BN_CTX *new_ctx = NULL;
964
485k
    BIGNUM *rh, *tmp, *Z4, *Z6;
965
485k
    int ret = -1;
966
967
485k
    if (EC_POINT_is_at_infinity(group, point))
968
0
        return 1;
969
970
485k
    field_mul = group->meth->field_mul;
971
485k
    field_sqr = group->meth->field_sqr;
972
485k
    p = group->field;
973
974
485k
    if (ctx == NULL) {
975
0
        ctx = new_ctx = BN_CTX_new_ex(group->libctx);
976
0
        if (ctx == NULL)
977
0
            return -1;
978
0
    }
979
980
485k
    BN_CTX_start(ctx);
981
485k
    rh = BN_CTX_get(ctx);
982
485k
    tmp = BN_CTX_get(ctx);
983
485k
    Z4 = BN_CTX_get(ctx);
984
485k
    Z6 = BN_CTX_get(ctx);
985
485k
    if (Z6 == NULL)
986
0
        goto err;
987
988
    /*-
989
     * We have a curve defined by a Weierstrass equation
990
     *      y^2 = x^3 + a*x + b.
991
     * The point to consider is given in Jacobian projective coordinates
992
     * where  (X, Y, Z)  represents  (x, y) = (X/Z^2, Y/Z^3).
993
     * Substituting this and multiplying by  Z^6  transforms the above equation into
994
     *      Y^2 = X^3 + a*X*Z^4 + b*Z^6.
995
     * To test this, we add up the right-hand side in 'rh'.
996
     */
997
998
    /* rh := X^2 */
999
485k
    if (!field_sqr(group, rh, point->X, ctx))
1000
0
        goto err;
1001
1002
485k
    if (!point->Z_is_one) {
1003
536
        if (!field_sqr(group, tmp, point->Z, ctx))
1004
0
            goto err;
1005
536
        if (!field_sqr(group, Z4, tmp, ctx))
1006
0
            goto err;
1007
536
        if (!field_mul(group, Z6, Z4, tmp, ctx))
1008
0
            goto err;
1009
1010
        /* rh := (rh + a*Z^4)*X */
1011
536
        if (group->a_is_minus3) {
1012
442
            if (!BN_mod_lshift1_quick(tmp, Z4, p))
1013
0
                goto err;
1014
442
            if (!BN_mod_add_quick(tmp, tmp, Z4, p))
1015
0
                goto err;
1016
442
            if (!BN_mod_sub_quick(rh, rh, tmp, p))
1017
0
                goto err;
1018
442
            if (!field_mul(group, rh, rh, point->X, ctx))
1019
0
                goto err;
1020
442
        } else {
1021
94
            if (!field_mul(group, tmp, Z4, group->a, ctx))
1022
0
                goto err;
1023
94
            if (!BN_mod_add_quick(rh, rh, tmp, p))
1024
0
                goto err;
1025
94
            if (!field_mul(group, rh, rh, point->X, ctx))
1026
0
                goto err;
1027
94
        }
1028
1029
        /* rh := rh + b*Z^6 */
1030
536
        if (!field_mul(group, tmp, group->b, Z6, ctx))
1031
0
            goto err;
1032
536
        if (!BN_mod_add_quick(rh, rh, tmp, p))
1033
0
            goto err;
1034
485k
    } else {
1035
        /* point->Z_is_one */
1036
1037
        /* rh := (rh + a)*X */
1038
485k
        if (!BN_mod_add_quick(rh, rh, group->a, p))
1039
0
            goto err;
1040
485k
        if (!field_mul(group, rh, rh, point->X, ctx))
1041
0
            goto err;
1042
        /* rh := rh + b */
1043
485k
        if (!BN_mod_add_quick(rh, rh, group->b, p))
1044
0
            goto err;
1045
485k
    }
1046
1047
    /* 'lh' := Y^2 */
1048
485k
    if (!field_sqr(group, tmp, point->Y, ctx))
1049
0
        goto err;
1050
1051
485k
    ret = (0 == BN_ucmp(tmp, rh));
1052
1053
485k
 err:
1054
485k
    BN_CTX_end(ctx);
1055
485k
    BN_CTX_free(new_ctx);
1056
485k
    return ret;
1057
485k
}
1058
1059
int ossl_ec_GFp_simple_cmp(const EC_GROUP *group, const EC_POINT *a,
1060
                           const EC_POINT *b, BN_CTX *ctx)
1061
83.8k
{
1062
    /*-
1063
     * return values:
1064
     *  -1   error
1065
     *   0   equal (in affine coordinates)
1066
     *   1   not equal
1067
     */
1068
1069
83.8k
    int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *,
1070
83.8k
                      const BIGNUM *, BN_CTX *);
1071
83.8k
    int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
1072
83.8k
    BN_CTX *new_ctx = NULL;
1073
83.8k
    BIGNUM *tmp1, *tmp2, *Za23, *Zb23;
1074
83.8k
    const BIGNUM *tmp1_, *tmp2_;
1075
83.8k
    int ret = -1;
1076
1077
83.8k
    if (EC_POINT_is_at_infinity(group, a)) {
1078
85
        return EC_POINT_is_at_infinity(group, b) ? 0 : 1;
1079
85
    }
1080
1081
83.7k
    if (EC_POINT_is_at_infinity(group, b))
1082
0
        return 1;
1083
1084
83.7k
    if (a->Z_is_one && b->Z_is_one) {
1085
83.2k
        return ((BN_cmp(a->X, b->X) == 0) && BN_cmp(a->Y, b->Y) == 0) ? 0 : 1;
1086
83.2k
    }
1087
1088
521
    field_mul = group->meth->field_mul;
1089
521
    field_sqr = group->meth->field_sqr;
1090
1091
521
    if (ctx == NULL) {
1092
0
        ctx = new_ctx = BN_CTX_new_ex(group->libctx);
1093
0
        if (ctx == NULL)
1094
0
            return -1;
1095
0
    }
1096
1097
521
    BN_CTX_start(ctx);
1098
521
    tmp1 = BN_CTX_get(ctx);
1099
521
    tmp2 = BN_CTX_get(ctx);
1100
521
    Za23 = BN_CTX_get(ctx);
1101
521
    Zb23 = BN_CTX_get(ctx);
1102
521
    if (Zb23 == NULL)
1103
0
        goto end;
1104
1105
    /*-
1106
     * We have to decide whether
1107
     *     (X_a/Z_a^2, Y_a/Z_a^3) = (X_b/Z_b^2, Y_b/Z_b^3),
1108
     * or equivalently, whether
1109
     *     (X_a*Z_b^2, Y_a*Z_b^3) = (X_b*Z_a^2, Y_b*Z_a^3).
1110
     */
1111
1112
521
    if (!b->Z_is_one) {
1113
470
        if (!field_sqr(group, Zb23, b->Z, ctx))
1114
0
            goto end;
1115
470
        if (!field_mul(group, tmp1, a->X, Zb23, ctx))
1116
0
            goto end;
1117
470
        tmp1_ = tmp1;
1118
470
    } else
1119
51
        tmp1_ = a->X;
1120
521
    if (!a->Z_is_one) {
1121
521
        if (!field_sqr(group, Za23, a->Z, ctx))
1122
0
            goto end;
1123
521
        if (!field_mul(group, tmp2, b->X, Za23, ctx))
1124
0
            goto end;
1125
521
        tmp2_ = tmp2;
1126
521
    } else
1127
0
        tmp2_ = b->X;
1128
1129
    /* compare  X_a*Z_b^2  with  X_b*Z_a^2 */
1130
521
    if (BN_cmp(tmp1_, tmp2_) != 0) {
1131
48
        ret = 1;                /* points differ */
1132
48
        goto end;
1133
48
    }
1134
1135
473
    if (!b->Z_is_one) {
1136
470
        if (!field_mul(group, Zb23, Zb23, b->Z, ctx))
1137
0
            goto end;
1138
470
        if (!field_mul(group, tmp1, a->Y, Zb23, ctx))
1139
0
            goto end;
1140
        /* tmp1_ = tmp1 */
1141
470
    } else
1142
3
        tmp1_ = a->Y;
1143
473
    if (!a->Z_is_one) {
1144
473
        if (!field_mul(group, Za23, Za23, a->Z, ctx))
1145
0
            goto end;
1146
473
        if (!field_mul(group, tmp2, b->Y, Za23, ctx))
1147
0
            goto end;
1148
        /* tmp2_ = tmp2 */
1149
473
    } else
1150
0
        tmp2_ = b->Y;
1151
1152
    /* compare  Y_a*Z_b^3  with  Y_b*Z_a^3 */
1153
473
    if (BN_cmp(tmp1_, tmp2_) != 0) {
1154
0
        ret = 1;                /* points differ */
1155
0
        goto end;
1156
0
    }
1157
1158
    /* points are equal */
1159
473
    ret = 0;
1160
1161
521
 end:
1162
521
    BN_CTX_end(ctx);
1163
521
    BN_CTX_free(new_ctx);
1164
521
    return ret;
1165
473
}
1166
1167
int ossl_ec_GFp_simple_make_affine(const EC_GROUP *group, EC_POINT *point,
1168
                                   BN_CTX *ctx)
1169
0
{
1170
0
    BN_CTX *new_ctx = NULL;
1171
0
    BIGNUM *x, *y;
1172
0
    int ret = 0;
1173
1174
0
    if (point->Z_is_one || EC_POINT_is_at_infinity(group, point))
1175
0
        return 1;
1176
1177
0
    if (ctx == NULL) {
1178
0
        ctx = new_ctx = BN_CTX_new_ex(group->libctx);
1179
0
        if (ctx == NULL)
1180
0
            return 0;
1181
0
    }
1182
1183
0
    BN_CTX_start(ctx);
1184
0
    x = BN_CTX_get(ctx);
1185
0
    y = BN_CTX_get(ctx);
1186
0
    if (y == NULL)
1187
0
        goto err;
1188
1189
0
    if (!EC_POINT_get_affine_coordinates(group, point, x, y, ctx))
1190
0
        goto err;
1191
0
    if (!EC_POINT_set_affine_coordinates(group, point, x, y, ctx))
1192
0
        goto err;
1193
0
    if (!point->Z_is_one) {
1194
0
        ERR_raise(ERR_LIB_EC, ERR_R_INTERNAL_ERROR);
1195
0
        goto err;
1196
0
    }
1197
1198
0
    ret = 1;
1199
1200
0
 err:
1201
0
    BN_CTX_end(ctx);
1202
0
    BN_CTX_free(new_ctx);
1203
0
    return ret;
1204
0
}
1205
1206
int ossl_ec_GFp_simple_points_make_affine(const EC_GROUP *group, size_t num,
1207
                                          EC_POINT *points[], BN_CTX *ctx)
1208
3.17k
{
1209
3.17k
    BN_CTX *new_ctx = NULL;
1210
3.17k
    BIGNUM *tmp, *tmp_Z;
1211
3.17k
    BIGNUM **prod_Z = NULL;
1212
3.17k
    size_t i;
1213
3.17k
    int ret = 0;
1214
1215
3.17k
    if (num == 0)
1216
0
        return 1;
1217
1218
3.17k
    if (ctx == NULL) {
1219
0
        ctx = new_ctx = BN_CTX_new_ex(group->libctx);
1220
0
        if (ctx == NULL)
1221
0
            return 0;
1222
0
    }
1223
1224
3.17k
    BN_CTX_start(ctx);
1225
3.17k
    tmp = BN_CTX_get(ctx);
1226
3.17k
    tmp_Z = BN_CTX_get(ctx);
1227
3.17k
    if (tmp_Z == NULL)
1228
0
        goto err;
1229
1230
3.17k
    prod_Z = OPENSSL_malloc(num * sizeof(prod_Z[0]));
1231
3.17k
    if (prod_Z == NULL)
1232
0
        goto err;
1233
18.7k
    for (i = 0; i < num; i++) {
1234
15.5k
        prod_Z[i] = BN_new();
1235
15.5k
        if (prod_Z[i] == NULL)
1236
0
            goto err;
1237
15.5k
    }
1238
1239
    /*
1240
     * Set each prod_Z[i] to the product of points[0]->Z .. points[i]->Z,
1241
     * skipping any zero-valued inputs (pretend that they're 1).
1242
     */
1243
1244
3.17k
    if (!BN_is_zero(points[0]->Z)) {
1245
3.17k
        if (!BN_copy(prod_Z[0], points[0]->Z))
1246
0
            goto err;
1247
3.17k
    } else {
1248
0
        if (group->meth->field_set_to_one != 0) {
1249
0
            if (!group->meth->field_set_to_one(group, prod_Z[0], ctx))
1250
0
                goto err;
1251
0
        } else {
1252
0
            if (!BN_one(prod_Z[0]))
1253
0
                goto err;
1254
0
        }
1255
0
    }
1256
1257
15.5k
    for (i = 1; i < num; i++) {
1258
12.3k
        if (!BN_is_zero(points[i]->Z)) {
1259
12.3k
            if (!group->
1260
12.3k
                meth->field_mul(group, prod_Z[i], prod_Z[i - 1], points[i]->Z,
1261
12.3k
                                ctx))
1262
0
                goto err;
1263
12.3k
        } else {
1264
42
            if (!BN_copy(prod_Z[i], prod_Z[i - 1]))
1265
0
                goto err;
1266
42
        }
1267
12.3k
    }
1268
1269
    /*
1270
     * Now use a single explicit inversion to replace every non-zero
1271
     * points[i]->Z by its inverse.
1272
     */
1273
1274
3.17k
    if (!group->meth->field_inv(group, tmp, prod_Z[num - 1], ctx)) {
1275
0
        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1276
0
        goto err;
1277
0
    }
1278
3.17k
    if (group->meth->field_encode != NULL) {
1279
        /*
1280
         * In the Montgomery case, we just turned R*H (representing H) into
1281
         * 1/(R*H), but we need R*(1/H) (representing 1/H); i.e. we need to
1282
         * multiply by the Montgomery factor twice.
1283
         */
1284
3.17k
        if (!group->meth->field_encode(group, tmp, tmp, ctx))
1285
0
            goto err;
1286
3.17k
        if (!group->meth->field_encode(group, tmp, tmp, ctx))
1287
0
            goto err;
1288
3.17k
    }
1289
1290
15.5k
    for (i = num - 1; i > 0; --i) {
1291
        /*
1292
         * Loop invariant: tmp is the product of the inverses of points[0]->Z
1293
         * .. points[i]->Z (zero-valued inputs skipped).
1294
         */
1295
12.3k
        if (!BN_is_zero(points[i]->Z)) {
1296
            /*
1297
             * Set tmp_Z to the inverse of points[i]->Z (as product of Z
1298
             * inverses 0 .. i, Z values 0 .. i - 1).
1299
             */
1300
12.3k
            if (!group->
1301
12.3k
                meth->field_mul(group, tmp_Z, prod_Z[i - 1], tmp, ctx))
1302
0
                goto err;
1303
            /*
1304
             * Update tmp to satisfy the loop invariant for i - 1.
1305
             */
1306
12.3k
            if (!group->meth->field_mul(group, tmp, tmp, points[i]->Z, ctx))
1307
0
                goto err;
1308
            /* Replace points[i]->Z by its inverse. */
1309
12.3k
            if (!BN_copy(points[i]->Z, tmp_Z))
1310
0
                goto err;
1311
12.3k
        }
1312
12.3k
    }
1313
1314
3.17k
    if (!BN_is_zero(points[0]->Z)) {
1315
        /* Replace points[0]->Z by its inverse. */
1316
3.17k
        if (!BN_copy(points[0]->Z, tmp))
1317
0
            goto err;
1318
3.17k
    }
1319
1320
    /* Finally, fix up the X and Y coordinates for all points. */
1321
1322
18.7k
    for (i = 0; i < num; i++) {
1323
15.5k
        EC_POINT *p = points[i];
1324
1325
15.5k
        if (!BN_is_zero(p->Z)) {
1326
            /* turn  (X, Y, 1/Z)  into  (X/Z^2, Y/Z^3, 1) */
1327
1328
15.4k
            if (!group->meth->field_sqr(group, tmp, p->Z, ctx))
1329
0
                goto err;
1330
15.4k
            if (!group->meth->field_mul(group, p->X, p->X, tmp, ctx))
1331
0
                goto err;
1332
1333
15.4k
            if (!group->meth->field_mul(group, tmp, tmp, p->Z, ctx))
1334
0
                goto err;
1335
15.4k
            if (!group->meth->field_mul(group, p->Y, p->Y, tmp, ctx))
1336
0
                goto err;
1337
1338
15.4k
            if (group->meth->field_set_to_one != 0) {
1339
15.4k
                if (!group->meth->field_set_to_one(group, p->Z, ctx))
1340
0
                    goto err;
1341
15.4k
            } else {
1342
0
                if (!BN_one(p->Z))
1343
0
                    goto err;
1344
0
            }
1345
15.4k
            p->Z_is_one = 1;
1346
15.4k
        }
1347
15.5k
    }
1348
1349
3.17k
    ret = 1;
1350
1351
3.17k
 err:
1352
3.17k
    BN_CTX_end(ctx);
1353
3.17k
    BN_CTX_free(new_ctx);
1354
3.17k
    if (prod_Z != NULL) {
1355
18.7k
        for (i = 0; i < num; i++) {
1356
15.5k
            if (prod_Z[i] == NULL)
1357
0
                break;
1358
15.5k
            BN_clear_free(prod_Z[i]);
1359
15.5k
        }
1360
3.17k
        OPENSSL_free(prod_Z);
1361
3.17k
    }
1362
3.17k
    return ret;
1363
3.17k
}
1364
1365
int ossl_ec_GFp_simple_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
1366
                                 const BIGNUM *b, BN_CTX *ctx)
1367
0
{
1368
0
    return BN_mod_mul(r, a, b, group->field, ctx);
1369
0
}
1370
1371
int ossl_ec_GFp_simple_field_sqr(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
1372
                                 BN_CTX *ctx)
1373
0
{
1374
0
    return BN_mod_sqr(r, a, group->field, ctx);
1375
0
}
1376
1377
/*-
1378
 * Computes the multiplicative inverse of a in GF(p), storing the result in r.
1379
 * If a is zero (or equivalent), you'll get an EC_R_CANNOT_INVERT error.
1380
 * Since we don't have a Mont structure here, SCA hardening is with blinding.
1381
 * NB: "a" must be in _decoded_ form. (i.e. field_decode must precede.)
1382
 */
1383
int ossl_ec_GFp_simple_field_inv(const EC_GROUP *group, BIGNUM *r,
1384
                                 const BIGNUM *a, BN_CTX *ctx)
1385
0
{
1386
0
    BIGNUM *e = NULL;
1387
0
    BN_CTX *new_ctx = NULL;
1388
0
    int ret = 0;
1389
1390
0
    if (ctx == NULL
1391
0
            && (ctx = new_ctx = BN_CTX_secure_new_ex(group->libctx)) == NULL)
1392
0
        return 0;
1393
1394
0
    BN_CTX_start(ctx);
1395
0
    if ((e = BN_CTX_get(ctx)) == NULL)
1396
0
        goto err;
1397
1398
0
    do {
1399
0
        if (!BN_priv_rand_range_ex(e, group->field, 0, ctx))
1400
0
        goto err;
1401
0
    } while (BN_is_zero(e));
1402
1403
    /* r := a * e */
1404
0
    if (!group->meth->field_mul(group, r, a, e, ctx))
1405
0
        goto err;
1406
    /* r := 1/(a * e) */
1407
0
    if (!BN_mod_inverse(r, r, group->field, ctx)) {
1408
0
        ERR_raise(ERR_LIB_EC, EC_R_CANNOT_INVERT);
1409
0
        goto err;
1410
0
    }
1411
    /* r := e/(a * e) = 1/a */
1412
0
    if (!group->meth->field_mul(group, r, r, e, ctx))
1413
0
        goto err;
1414
1415
0
    ret = 1;
1416
1417
0
 err:
1418
0
    BN_CTX_end(ctx);
1419
0
    BN_CTX_free(new_ctx);
1420
0
    return ret;
1421
0
}
1422
1423
/*-
1424
 * Apply randomization of EC point projective coordinates:
1425
 *
1426
 *   (X, Y ,Z ) = (lambda^2*X, lambda^3*Y, lambda*Z)
1427
 *   lambda = [1,group->field)
1428
 *
1429
 */
1430
int ossl_ec_GFp_simple_blind_coordinates(const EC_GROUP *group, EC_POINT *p,
1431
                                         BN_CTX *ctx)
1432
3.12k
{
1433
3.12k
    int ret = 0;
1434
3.12k
    BIGNUM *lambda = NULL;
1435
3.12k
    BIGNUM *temp = NULL;
1436
1437
3.12k
    BN_CTX_start(ctx);
1438
3.12k
    lambda = BN_CTX_get(ctx);
1439
3.12k
    temp = BN_CTX_get(ctx);
1440
3.12k
    if (temp == NULL) {
1441
0
        ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
1442
0
        goto end;
1443
0
    }
1444
1445
    /*-
1446
     * Make sure lambda is not zero.
1447
     * If the RNG fails, we cannot blind but nevertheless want
1448
     * code to continue smoothly and not clobber the error stack.
1449
     */
1450
3.12k
    do {
1451
3.12k
        ERR_set_mark();
1452
3.12k
        ret = BN_priv_rand_range_ex(lambda, group->field, 0, ctx);
1453
3.12k
        ERR_pop_to_mark();
1454
3.12k
        if (ret == 0) {
1455
0
            ret = 1;
1456
0
            goto end;
1457
0
        }
1458
3.12k
    } while (BN_is_zero(lambda));
1459
1460
    /* if field_encode defined convert between representations */
1461
3.12k
    if ((group->meth->field_encode != NULL
1462
3.12k
         && !group->meth->field_encode(group, lambda, lambda, ctx))
1463
3.12k
        || !group->meth->field_mul(group, p->Z, p->Z, lambda, ctx)
1464
3.12k
        || !group->meth->field_sqr(group, temp, lambda, ctx)
1465
3.12k
        || !group->meth->field_mul(group, p->X, p->X, temp, ctx)
1466
3.12k
        || !group->meth->field_mul(group, temp, temp, lambda, ctx)
1467
3.12k
        || !group->meth->field_mul(group, p->Y, p->Y, temp, ctx))
1468
0
        goto end;
1469
1470
3.12k
    p->Z_is_one = 0;
1471
3.12k
    ret = 1;
1472
1473
3.12k
 end:
1474
3.12k
    BN_CTX_end(ctx);
1475
3.12k
    return ret;
1476
3.12k
}
1477
1478
/*-
1479
 * Input:
1480
 * - p: affine coordinates
1481
 *
1482
 * Output:
1483
 * - s := p, r := 2p: blinded projective (homogeneous) coordinates
1484
 *
1485
 * For doubling we use Formula 3 from Izu-Takagi "A fast parallel elliptic curve
1486
 * multiplication resistant against side channel attacks" appendix, described at
1487
 * https://hyperelliptic.org/EFD/g1p/auto-shortw-xz.html#doubling-dbl-2002-it-2
1488
 * simplified for Z1=1.
1489
 *
1490
 * Blinding uses the equivalence relation (\lambda X, \lambda Y, \lambda Z)
1491
 * for any non-zero \lambda that holds for projective (homogeneous) coords.
1492
 */
1493
int ossl_ec_GFp_simple_ladder_pre(const EC_GROUP *group,
1494
                                  EC_POINT *r, EC_POINT *s,
1495
                                  EC_POINT *p, BN_CTX *ctx)
1496
4.01k
{
1497
4.01k
    BIGNUM *t1, *t2, *t3, *t4, *t5 = NULL;
1498
1499
4.01k
    t1 = s->Z;
1500
4.01k
    t2 = r->Z;
1501
4.01k
    t3 = s->X;
1502
4.01k
    t4 = r->X;
1503
4.01k
    t5 = s->Y;
1504
1505
4.01k
    if (!p->Z_is_one /* r := 2p */
1506
4.01k
        || !group->meth->field_sqr(group, t3, p->X, ctx)
1507
4.01k
        || !BN_mod_sub_quick(t4, t3, group->a, group->field)
1508
4.01k
        || !group->meth->field_sqr(group, t4, t4, ctx)
1509
4.01k
        || !group->meth->field_mul(group, t5, p->X, group->b, ctx)
1510
4.01k
        || !BN_mod_lshift_quick(t5, t5, 3, group->field)
1511
        /* r->X coord output */
1512
4.01k
        || !BN_mod_sub_quick(r->X, t4, t5, group->field)
1513
4.01k
        || !BN_mod_add_quick(t1, t3, group->a, group->field)
1514
4.01k
        || !group->meth->field_mul(group, t2, p->X, t1, ctx)
1515
4.01k
        || !BN_mod_add_quick(t2, group->b, t2, group->field)
1516
        /* r->Z coord output */
1517
4.01k
        || !BN_mod_lshift_quick(r->Z, t2, 2, group->field))
1518
0
        return 0;
1519
1520
    /* make sure lambda (r->Y here for storage) is not zero */
1521
4.01k
    do {
1522
4.01k
        if (!BN_priv_rand_range_ex(r->Y, group->field, 0, ctx))
1523
0
            return 0;
1524
4.01k
    } while (BN_is_zero(r->Y));
1525
1526
    /* make sure lambda (s->Z here for storage) is not zero */
1527
4.01k
    do {
1528
4.01k
        if (!BN_priv_rand_range_ex(s->Z, group->field, 0, ctx))
1529
0
            return 0;
1530
4.01k
    } while (BN_is_zero(s->Z));
1531
1532
    /* if field_encode defined convert between representations */
1533
4.01k
    if (group->meth->field_encode != NULL
1534
4.01k
        && (!group->meth->field_encode(group, r->Y, r->Y, ctx)
1535
4.01k
            || !group->meth->field_encode(group, s->Z, s->Z, ctx)))
1536
0
        return 0;
1537
1538
    /* blind r and s independently */
1539
4.01k
    if (!group->meth->field_mul(group, r->Z, r->Z, r->Y, ctx)
1540
4.01k
        || !group->meth->field_mul(group, r->X, r->X, r->Y, ctx)
1541
4.01k
        || !group->meth->field_mul(group, s->X, p->X, s->Z, ctx)) /* s := p */
1542
0
        return 0;
1543
1544
4.01k
    r->Z_is_one = 0;
1545
4.01k
    s->Z_is_one = 0;
1546
1547
4.01k
    return 1;
1548
4.01k
}
1549
1550
/*-
1551
 * Input:
1552
 * - s, r: projective (homogeneous) coordinates
1553
 * - p: affine coordinates
1554
 *
1555
 * Output:
1556
 * - s := r + s, r := 2r: projective (homogeneous) coordinates
1557
 *
1558
 * Differential addition-and-doubling using Eq. (9) and (10) from Izu-Takagi
1559
 * "A fast parallel elliptic curve multiplication resistant against side channel
1560
 * attacks", as described at
1561
 * https://hyperelliptic.org/EFD/g1p/auto-shortw-xz.html#ladder-mladd-2002-it-4
1562
 */
1563
int ossl_ec_GFp_simple_ladder_step(const EC_GROUP *group,
1564
                                   EC_POINT *r, EC_POINT *s,
1565
                                   EC_POINT *p, BN_CTX *ctx)
1566
1.71M
{
1567
1.71M
    int ret = 0;
1568
1.71M
    BIGNUM *t0, *t1, *t2, *t3, *t4, *t5, *t6 = NULL;
1569
1570
1.71M
    BN_CTX_start(ctx);
1571
1.71M
    t0 = BN_CTX_get(ctx);
1572
1.71M
    t1 = BN_CTX_get(ctx);
1573
1.71M
    t2 = BN_CTX_get(ctx);
1574
1.71M
    t3 = BN_CTX_get(ctx);
1575
1.71M
    t4 = BN_CTX_get(ctx);
1576
1.71M
    t5 = BN_CTX_get(ctx);
1577
1.71M
    t6 = BN_CTX_get(ctx);
1578
1579
1.71M
    if (t6 == NULL
1580
1.71M
        || !group->meth->field_mul(group, t6, r->X, s->X, ctx)
1581
1.71M
        || !group->meth->field_mul(group, t0, r->Z, s->Z, ctx)
1582
1.71M
        || !group->meth->field_mul(group, t4, r->X, s->Z, ctx)
1583
1.71M
        || !group->meth->field_mul(group, t3, r->Z, s->X, ctx)
1584
1.71M
        || !group->meth->field_mul(group, t5, group->a, t0, ctx)
1585
1.71M
        || !BN_mod_add_quick(t5, t6, t5, group->field)
1586
1.71M
        || !BN_mod_add_quick(t6, t3, t4, group->field)
1587
1.71M
        || !group->meth->field_mul(group, t5, t6, t5, ctx)
1588
1.71M
        || !group->meth->field_sqr(group, t0, t0, ctx)
1589
1.71M
        || !BN_mod_lshift_quick(t2, group->b, 2, group->field)
1590
1.71M
        || !group->meth->field_mul(group, t0, t2, t0, ctx)
1591
1.71M
        || !BN_mod_lshift1_quick(t5, t5, group->field)
1592
1.71M
        || !BN_mod_sub_quick(t3, t4, t3, group->field)
1593
        /* s->Z coord output */
1594
1.71M
        || !group->meth->field_sqr(group, s->Z, t3, ctx)
1595
1.71M
        || !group->meth->field_mul(group, t4, s->Z, p->X, ctx)
1596
1.71M
        || !BN_mod_add_quick(t0, t0, t5, group->field)
1597
        /* s->X coord output */
1598
1.71M
        || !BN_mod_sub_quick(s->X, t0, t4, group->field)
1599
1.71M
        || !group->meth->field_sqr(group, t4, r->X, ctx)
1600
1.71M
        || !group->meth->field_sqr(group, t5, r->Z, ctx)
1601
1.71M
        || !group->meth->field_mul(group, t6, t5, group->a, ctx)
1602
1.71M
        || !BN_mod_add_quick(t1, r->X, r->Z, group->field)
1603
1.71M
        || !group->meth->field_sqr(group, t1, t1, ctx)
1604
1.71M
        || !BN_mod_sub_quick(t1, t1, t4, group->field)
1605
1.71M
        || !BN_mod_sub_quick(t1, t1, t5, group->field)
1606
1.71M
        || !BN_mod_sub_quick(t3, t4, t6, group->field)
1607
1.71M
        || !group->meth->field_sqr(group, t3, t3, ctx)
1608
1.71M
        || !group->meth->field_mul(group, t0, t5, t1, ctx)
1609
1.71M
        || !group->meth->field_mul(group, t0, t2, t0, ctx)
1610
        /* r->X coord output */
1611
1.71M
        || !BN_mod_sub_quick(r->X, t3, t0, group->field)
1612
1.71M
        || !BN_mod_add_quick(t3, t4, t6, group->field)
1613
1.71M
        || !group->meth->field_sqr(group, t4, t5, ctx)
1614
1.71M
        || !group->meth->field_mul(group, t4, t4, t2, ctx)
1615
1.71M
        || !group->meth->field_mul(group, t1, t1, t3, ctx)
1616
1.71M
        || !BN_mod_lshift1_quick(t1, t1, group->field)
1617
        /* r->Z coord output */
1618
1.71M
        || !BN_mod_add_quick(r->Z, t4, t1, group->field))
1619
0
        goto err;
1620
1621
1.71M
    ret = 1;
1622
1623
1.71M
 err:
1624
1.71M
    BN_CTX_end(ctx);
1625
1.71M
    return ret;
1626
1.71M
}
1627
1628
/*-
1629
 * Input:
1630
 * - s, r: projective (homogeneous) coordinates
1631
 * - p: affine coordinates
1632
 *
1633
 * Output:
1634
 * - r := (x,y): affine coordinates
1635
 *
1636
 * Recovers the y-coordinate of r using Eq. (8) from Brier-Joye, "Weierstrass
1637
 * Elliptic Curves and Side-Channel Attacks", modified to work in mixed
1638
 * projective coords, i.e. p is affine and (r,s) in projective (homogeneous)
1639
 * coords, and return r in affine coordinates.
1640
 *
1641
 * X4 = two*Y1*X2*Z3*Z2;
1642
 * Y4 = two*b*Z3*SQR(Z2) + Z3*(a*Z2+X1*X2)*(X1*Z2+X2) - X3*SQR(X1*Z2-X2);
1643
 * Z4 = two*Y1*Z3*SQR(Z2);
1644
 *
1645
 * Z4 != 0 because:
1646
 *  - Z2==0 implies r is at infinity (handled by the BN_is_zero(r->Z) branch);
1647
 *  - Z3==0 implies s is at infinity (handled by the BN_is_zero(s->Z) branch);
1648
 *  - Y1==0 implies p has order 2, so either r or s are infinity and handled by
1649
 *    one of the BN_is_zero(...) branches.
1650
 */
1651
int ossl_ec_GFp_simple_ladder_post(const EC_GROUP *group,
1652
                                   EC_POINT *r, EC_POINT *s,
1653
                                   EC_POINT *p, BN_CTX *ctx)
1654
4.01k
{
1655
4.01k
    int ret = 0;
1656
4.01k
    BIGNUM *t0, *t1, *t2, *t3, *t4, *t5, *t6 = NULL;
1657
1658
4.01k
    if (BN_is_zero(r->Z))
1659
296
        return EC_POINT_set_to_infinity(group, r);
1660
1661
3.71k
    if (BN_is_zero(s->Z)) {
1662
83
        if (!EC_POINT_copy(r, p)
1663
83
            || !EC_POINT_invert(group, r, ctx))
1664
0
            return 0;
1665
83
        return 1;
1666
83
    }
1667
1668
3.63k
    BN_CTX_start(ctx);
1669
3.63k
    t0 = BN_CTX_get(ctx);
1670
3.63k
    t1 = BN_CTX_get(ctx);
1671
3.63k
    t2 = BN_CTX_get(ctx);
1672
3.63k
    t3 = BN_CTX_get(ctx);
1673
3.63k
    t4 = BN_CTX_get(ctx);
1674
3.63k
    t5 = BN_CTX_get(ctx);
1675
3.63k
    t6 = BN_CTX_get(ctx);
1676
1677
3.63k
    if (t6 == NULL
1678
3.63k
        || !BN_mod_lshift1_quick(t4, p->Y, group->field)
1679
3.63k
        || !group->meth->field_mul(group, t6, r->X, t4, ctx)
1680
3.63k
        || !group->meth->field_mul(group, t6, s->Z, t6, ctx)
1681
3.63k
        || !group->meth->field_mul(group, t5, r->Z, t6, ctx)
1682
3.63k
        || !BN_mod_lshift1_quick(t1, group->b, group->field)
1683
3.63k
        || !group->meth->field_mul(group, t1, s->Z, t1, ctx)
1684
3.63k
        || !group->meth->field_sqr(group, t3, r->Z, ctx)
1685
3.63k
        || !group->meth->field_mul(group, t2, t3, t1, ctx)
1686
3.63k
        || !group->meth->field_mul(group, t6, r->Z, group->a, ctx)
1687
3.63k
        || !group->meth->field_mul(group, t1, p->X, r->X, ctx)
1688
3.63k
        || !BN_mod_add_quick(t1, t1, t6, group->field)
1689
3.63k
        || !group->meth->field_mul(group, t1, s->Z, t1, ctx)
1690
3.63k
        || !group->meth->field_mul(group, t0, p->X, r->Z, ctx)
1691
3.63k
        || !BN_mod_add_quick(t6, r->X, t0, group->field)
1692
3.63k
        || !group->meth->field_mul(group, t6, t6, t1, ctx)
1693
3.63k
        || !BN_mod_add_quick(t6, t6, t2, group->field)
1694
3.63k
        || !BN_mod_sub_quick(t0, t0, r->X, group->field)
1695
3.63k
        || !group->meth->field_sqr(group, t0, t0, ctx)
1696
3.63k
        || !group->meth->field_mul(group, t0, t0, s->X, ctx)
1697
3.63k
        || !BN_mod_sub_quick(t0, t6, t0, group->field)
1698
3.63k
        || !group->meth->field_mul(group, t1, s->Z, t4, ctx)
1699
3.63k
        || !group->meth->field_mul(group, t1, t3, t1, ctx)
1700
3.63k
        || (group->meth->field_decode != NULL
1701
3.63k
            && !group->meth->field_decode(group, t1, t1, ctx))
1702
3.63k
        || !group->meth->field_inv(group, t1, t1, ctx)
1703
3.63k
        || (group->meth->field_encode != NULL
1704
3.63k
            && !group->meth->field_encode(group, t1, t1, ctx))
1705
3.63k
        || !group->meth->field_mul(group, r->X, t5, t1, ctx)
1706
3.63k
        || !group->meth->field_mul(group, r->Y, t0, t1, ctx))
1707
0
        goto err;
1708
1709
3.63k
    if (group->meth->field_set_to_one != NULL) {
1710
3.63k
        if (!group->meth->field_set_to_one(group, r->Z, ctx))
1711
0
            goto err;
1712
3.63k
    } else {
1713
0
        if (!BN_one(r->Z))
1714
0
            goto err;
1715
0
    }
1716
1717
3.63k
    r->Z_is_one = 1;
1718
3.63k
    ret = 1;
1719
1720
3.63k
 err:
1721
3.63k
    BN_CTX_end(ctx);
1722
3.63k
    return ret;
1723
3.63k
}